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Abstract

In this paper we quantify the inception selection effect of diagnosis in a large German long
term care (LTC) portfolio. First we are interested in modeling transition intensities, which
will then be used in a multistate model set up to estimate transition probabilities. Finally
we use these probability estimates as the basis for premium calculations. For the estimation
of transition intensities we use semiparametric hazard models introduced by Cox (1972)
allowing the inclusion of diagnosis as explanatory variable. Using modern model diagnostics
we build a statistical model for the transition intensities and show that the resulting transition
probability estimates including diagnosis perform better than when diagnosis is neglected.
To quantify the inception selection effect of diagnosis we show how these improved transition
probability estimates affect the premiums in an LTC insurance contract. In particular for
younger age groups higher premiums are obtained when the diagnoses are taken into account
compared to a model which disregards diagnosis. This demonstrates the actuarial need for

allowing for an inception selection effect of diagnosis.
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1 Introduction

In this paper a statistical and actuarial analysis of long term care (LTC) insurance data is
conducted. Several authors have dealt with this topic. Levikson and Mizrahi (1994) consider
Markovian multi-state models for pricing LTC insurance contracts. For this, they use transition
probabilities which depend only on age and on the health of the insured persons. Premiums are
then determined by using backward induction methods for given transition probabilities. Jones
and Willmot (1993) present a stochastic multi-state model to analyse future requirements and
costs in long-term care. Individuals are supposed to enter LTC according to a non-homogeneous
Poisson process, while transitions among different care levels are only specified by assuming
fixed known transition probabilities. They derive the distribution of the number of individuals
requiring care at each level at an arbitrary future time.

Our aim is the modeling of transition intensities between states. Czado and Rudolph (2002)
examined part of an LTC-claim portfolio of a German health insurance using a Cox proportional
hazard model. They have shown that besides age of the claimant and time spent in LTC,
also factors like gender, severness of the claim and type of care have a significant influence on
survival. We want to analyse the same data, taking the diagnoses which led to LTC into account
which are additionally given in the data. The main purpose of this paper is to investigate the
effects a neglect of the information given by the diagnosis has on the transition intensities and
probabilities. We will show that the inclusion of this information leads to more realistic transition
rates and probabilities. In particular we show that estimated mortality probabilities including
diagnosis are closer to the observed empirical mortality probabilities.

Finally, we want to investigate the inception selection effect of diagnosis on premiums calculated
in a LTC insurance product, where annuities are paid depending on type of care and care
level when long term care is required. Although the overall influence of the diagnoses on the
premiums is rather slight, they should be taken into account when pricing LTC premiums for
clients between 20 - 40 years. Without the information of the diagnoses premiums seem to be
underestimated for this group.

The paper is organized as follows. In Section 2 an introduction to Cox’s semiparametric model
is given. The estimation of the transition intensities to death is given in Section 3. An important
point is the assessment of model fit which is presented in Section 4. We use fractional polynomials
proposed by Royston and Altman (1994) and an exponential approach to model the influence

of continuous covariates on the transition intensities. The assumption of proportional hazards is



checked using scaled Schoenfeld residuals (see Grambsch and Therneau (1994)). In Section 5 an
estimation of transition probabilities is conducted using the estimated hazard rates as transition
rates in a multiple state model. An actuarial application including premium calculations for

specific LTC contracts is given in Section 6. A summary and discussion complete the paper.

2 Cox’s semiparametric hazard model

Cox’s semiparametric hazard model (Cox 1972) is a standard tool for modeling survival data.
The data is given in form of triplets (7},0;,Z;),j = 1,...,n, allowing for censoring. Here, the
observation time T; = min(X}, C;) of individual j takes the minimum value of the survival time

X or the subject specific censoring time Cj. The indicator defined as

1 event observed for subject j

0 censored

denotes if the event of interest, death for instance, has been observed or if individual j is censored
at time Cj. Z;(t) € RP is the vector of covariates for the j-th individual which may depend on

time. Under the semiparametric hazard model the hazard function A(¢|Z(t)) has the form

A Z(t)) = Ao(t) exp[B"Z(1)], (2.1)

where B € RP is the vector of unknown regression coefficients and the baseline hazard Ao(t) is
an arbitrary function of time. The original model of Cox (1972) excluded time dependency of
the covariate, i.e. Z(t) = Z. In this case the proportional hazards assumption has to hold, i.e.

the hazard ratio for two individuals with covariate vectors Z and Z*, respectively

MUZ) ez L :
N2~ a0 explpz] ~ PR A2~ 2 22

is independent of time. For time-varying covariates Z(t) this ratio is not independent of time, but
for any two given values of a covariate the relative hazard in (2.2) is still determined by a time
independent coefficient 3. Parameter estimation of 8 is done using Cox’s partial likelihood (Cox
1975), a method which allows estimation without knowing the baseline hazard. Estimation of
the cumulative hazard function Ag(t) := f(f Ao(s)ds is achieved by Breslow’s estimator (Breslow

1974). For this let t; < to < ... < tp be the observed death times and the Breslow estimator is



now given by

) d.
Ao(t) = - — (2.3)
' tzgt > jer() exp[B'Zj]

where d; is the number of events at time ¢; and R(t;) is the risk set at time ¢;, i.e. the set of

subjects that is still under study at time just prior to ;.

3 Data Analysis for Compulsory Long Term Care Insurance

The data was recorded between April 1, 1995 and December 31, 1998. In 1995 the German
government introduced compulsory long term care (LTC) insurance. This required part of the
German welfare system paid benefits for home care since April 1, 1995. Starting July 1, 1996, the
benefits were extended to care in a nursing home as well. For 5042 claimants, 3175 female and
1867 male, information about age, gender, severity and type of care (at home or in a nursing
home) are available. There are three different levels of severity, which are roughly defined as

follows:
e Level 1: considerable need of long-term care
e Level 2: severe need of long-term care
e Level 3: extreme need of long-term care

For further details on the exact definitions of these levels of severity see Czado and Rudolph
(2002). In addition, the diagnoses which led to LTC are known. Table 1 contains a short de-
scription of the covariates considered in the model. The care status may change over time. If a
change occurs at time t we refer to this time as a event time. Transitions between care levels as
well as transitions between type of care are possible.

One aim of this paper is to investigate the effects of the diagnoses which lead to LTC on
the hazard function. It is important to note that only 45.5 % of the claimants are recorded with
a single diagnosis. The occurrence of multiple diagnoses, mainly double and triple diagnoses,
is very common (see Table 2). This fact has to be taken into account in the modeling. There
are 11 different diagnoses recorded in the data set, the seven main diagnoses are listed in Table
3 together with the percentage of a single diagnosis. The occurrence of all combinations of
double diagnoses and the three main groups of triple diagnoses can be found in Tables 4 and 5,

respectively.



Covariate Description Values
Zage(t) age of claimant when a
state transition occurs at event time t 0 - 108 years
ZSen gender 1 = female, 0 = male
Znn (1) nursing home care indicator 1 = care in a nursing home,
at event time t 0 = care at home at event time t
Zpever2(t) indicator for Level 2 at event time t 1 = care at level 2 at event time t, 0 = otherwise
Zpevers(t) indicator for Level 3 at event time t 1 = care at level 3 at event time t, 0 = otherwise
ZDiagnosisi  diagnosis which led to LTC 1 = diagnosis i, 0 = otherwise

Table 1: Description of available covariates in the LTC data set

Number of diagnoses 1 2 3 4 ) 6
Number of claimants | 2296 | 1830 | 708 | 178 | 27 3
Percentage 45.55 | 36.30 | 14.04 | 3.53 | 0.54 | 0.05

Table 2: Number of diagnoses causing LTC and their relative frequency

Diagnosis Number of claimants with | Number of single diagnosis | Percentage
(multiple diagnoses included)

Tumor 694 276* 39.8
Psychosis 1254 394* 314
Heart attack 1922 378* 19.7
Stroke 1044 309* 29.6
Arthritis 534 85* 15.9
Lung disease 93 16* 12.9
Dementia 2151 587* 27.3
Bone disease 1015 189* 18.6
Others 226 66 29.2

Table 3: Frequency of diagnoses (multiple diagnoses included) and percentage of single diagnoses

(* indicates diagnosis later considered in the analysis)

3.1 Analysis of the Survival of LTC Claimants

We used a Cox semiparametric hazard model, where possible covariates are all diagnoses as

well as the remaining covariates listed in Table 1. Significant covariates are filtered out by
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Psychosis | Heart | Stroke | Arthritis | Lung | Dementia | Bone disease | Others
Tumor 52* 65* 46 7 4 54* 36 4
Psychosis 109* 84* 22 3 141* 45 23
Heart 105* 2% 12 351* 128 17
Stroke 8 1 135* 28 10
Arthritis 1 66* 31 5
Lung 6 4 0
Dementia 134 15
Bone disease o

Table 4: Frequency of combinations of double diagnoses (* indicates diagnosis combination later

considered in the analysis)

Diagnoses Frequency
Psychosis, Heart attack and Dementia 74*
Heart attack, Stroke and Dementia 56
Heart attack, Arthritis and Dementia 54*

Table 5: Frequency of the most important combinations of triple diagnoses (* indicates diagnosis

combination later considered in the analysis)

using partial log-likelihood ratio tests and Akaike’s information criterion (AIC) (Akaike 1973).

Interactions are considered as well. Details of the model selection are given in Gschl8l (2002)

(pp. 54-63). As final model for the hazard rate the following was chosen:

At)

+ o+ o+ + o+ o+

BisZ arthritis + Br6ZLage(t) X Zrumor + Br1liage(t) X Zarthritis

ﬁ?lznh(t) X ZStroke + ,822Znh (t) X ZLung + 523ZTumor X ZHeart

Ao (t) exp[B1Z age(t) + BoZiser + B3Znn(t) + B1ZiLever2(t) + BsZLevers(t)
IBGZSez X Znh(t) + ﬂ?znh(t) X ZLevel2(t) + IBSZnh(t) X ZLevelS (t)
IBQZDementia + 510 ZStroke + /811 ZPsychosis + ﬁlZZTumor + 513 Zyeart + ﬂl4zLung

ﬁlSZSez X ZTumor + ﬂlQZSeax X ZPsychosis + ﬁ?OZnh(t) X ZPsychosis

BoaZnge(t) X Zeart + Po5Zrever2(t) X Zitreart + 262 Lever3(t) X Zieart

(3.1)




+  P21Zrumor X Lipever2(t) + BosZrumor X Lipever3(t) + B29ZLrumor X Zpsychosis

+ ,BSOZTumor X ZDementia + IBSIZPsychosis X ZStroke + IBSZZTumor X ZAge(t) X ZHeart]-

Since numerous interactions are present in Model (3.1), the interpretation is not an easy task.
Therefore, the multipliers exp[3’Z] are plotted for several groups of claimants in Figure 1. A
higher care level results in a higher risk of mortality, whereas women seem to have a lower risk
to die. In most of the groups claimants with care level 1 and 2 in nursing homes (thin lines) have
a lower life expectancy than claimants who receive care at home. For claimants with care level 3
however, the type of care doesn’t play a very decisive role. Women with care level 3 even have a
lower mortality risk when living in a nursing home (except for women with lung diseases). Note,

that tumors clearly reduce the expected lifetime.

4 Assessing the Model Adequacy

We now want to assess the fit of Model (3.1). There are two assumptions to check. The functional

form of continuous covariates and the proportional hazards assumption.

4.1 Functional Form

Under the Cox semiparametric hazard model continuous covariates are linear in the log-hazard.
Otherwise adequate transformations have to be found. We check this assumption using martin-

gale residuals. The martingale residual for the j-th individual is defined as

t ~ N
NI (1) = Nj(t) — /0 Y;(s) expldZ; (s)ldAo(s), §=1,...n, (42)

where N;(t) is a counting process denoting the number of events up to time t and Y;(¢) = I{T; > t}
indicates whether individual j is still under study at time t. A smoothed plot of the martingale
residuals (see Therneau, Grambsch, and Fleming (1990)) against the variable of interest should
be a straight line, otherwise the plot indicates the correct shape of the covariate. In Model (3.1),
age is the only continuous covariate included. We have plotted martingale residuals of age for
a variety of groups with single and double diagnoses (plots are not shown here, but contained
in GschloBl (2002)). Most of the plots clearly reveal a nonlinear functional form of age and an
obvious difference in the shape of single diagnoses and the same diagnoses in combination with

another one is observed. Just men with psychosis, psychosis and heart attack or psychosis and
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Figure 1: Estimated multipliers exp[,é’ Z] for women and men with single diagnoses in Model

(3.1) (Legend is given in Table 6)

x-axis | Diagnosis || Line types | Care Level | Type of Care
1 Arthritis — Level 1 Nursing home
2 Dementia — Level 1 Home
3 Stroke --- Level 2 Nursing home
4 Psychosis --- Level 2 Home
5 Heart - = Level 3 Nursing home
6 Lung - — Level 3 Home
7 Tumor

Table 6: Legend to Figure 1



dementia may be summarized to one group of claimants due to their similar functional form. In

the following this group will be referred to as

1 member of this group
Zpup =
0 otherwise

PHD PHD with exponential term

Martingale residuals
Martingale residuals

o 20 a0 60 80 100 o 20 a0 60 80 100

Age Age

Figure 2: Martingale residuals for men with psychosis, heart attack and dementia in model (3.1)

and with exponential term (4.3)

For all the other groups, age should be modeled separately. The martingale residuals for the
group PHD plotted in the left panel of Figure 2 indicate that an exponential function might be
appropriate, whereas the correct functional form for women with tumor (see left panel of Figure
3) might be given by a quadratic function. Fractional polynomials (see Royston and Altman
(1994)) which include quadratic shapes can be used here. We will check an exponential fit first.

Therefore the interaction

exp(c : ZAge(t)) X ZGroup (4'3)

is added to Model (3.1), where Zgyoup is an indicator function for the considered group of
claimants. Apart from Group PHD, we only consider the diagnoses groups indicated by a * in
Table 3, 4 and 5, this means, single, double and triple diagnoses groups are modeled separately.
The remaining claimants are summarized in the group ”others”. The covariate Z 44.(t) in Model
(3.1) is replaced by the interaction Z age¢(t) X (1 — Zgroup) to guarantee that only the age of the
group of interest is modeled in a nonlinear way. The constant ¢ in (4.3) varies from 0.002 to
0.102, for groups with a concave shape the negative of these values is included as well. Since

the optimal value of ¢ is determined by maximizing the log-likelihood with respect to ¢, using a



grid search for the optimum, we consider two degrees of freedom for the new interaction term
(4.3)- one for the regression coefficient and one for c. A significant improvement of the fit can
be achieved for women with tumor (¢ = —0.1020) and the group PHD (¢ = 0.002). Here, the
partial log-likelihood test results in a p-value of 3.24 - 1072 and 1.7 - 1072, respectively.
In a similar way we use fractional polynomials to find adequate transformations for age. A
fractional polynomial of degree m for a continuous covariate x is given by

m

@ (z,p) = By + Zﬁjxpja

j=1

where m is an integer, 3; are regression coefficients and p; < ... < p; are any real valued

exponents. p; = 0 corresponds to the logarithm of x, i.e. 20 =

In(z). Fractional polynomials
allow for a variety of different functional shapes and in most data sets fractional polynomials of
degree one and two are sufficient.

Again, in Model (3.1) Zg4¢(t) is replaced by Zage(t) X (1 — ZGroup) and the interaction

Z]Xge (t) X ZGTOUP

for m=1 and

(sz)llge(t) + Zz/)fge(t)) X ZGroup

for m=2 are added to the model, respectively. As proposed by Royston and Altman (1994) we
restrict the values for p; and py to the set p = {—2,—1,-0.5,0,0.5,1,2,3}. Again, we achieve
significant results for the same two groups as before using exponential forms. For women with
tumor age is modeled best by the fractional polynomial ZZ; .(t), for the group PHD the functional
form ZZE o(t) + Zage(t) seems to be adequate. The p-values of the corresponding log-likelihood
ratio tests compared to a linear modeling Z 44¢(t) X ZGroup are 0.011 and 0.07, respectively. Again,
these are based on two degrees of freedom. Comparing the fractional polynomial approach to
the exponential approach we get similar values of the log-likelihood for the goup PHD. Since the
exponential approach uses two degrees of freedom less, this one seems to be more appropriate.
To check the achieved improvement of the fit, we plot again the martingale residuals versus age
in Model (3.1) containing the exponential term for group PHD in the right panel of Figure 2.
The plot is now linear which indicates that we have found an appropriate transformation. For
women with tumor both approaches led to similar results as well (see Gschlo8l (2002), p.80-81).
A further look of the corresponding martingale plot in the left panel of Figure 3 shows, that the

plot is almost a straight line up from 40 years. The functional form is mainly determined by a
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few observations up to about fifteen years. Therefore, we build two separate groups, girls up to

15 years and women over 15 years with tumor using the following indicators

ZTumor,G =

ZT'u,mor,W =

1 if female, < 15 years, Tumor

0 otherwise

1 if female, > 15 years, Tumor

0 otherwise

A separate martingale plot for both groups (see the middle and right panel of Figure 3)

clearly shows, that there is no need of modeling age for women with tumor. For the girls we

haven’t got enough observations to make a statement. The interaction Zage X Zrymor,w is not

significant, thus, our model now has the following hazard function

A(t) = Xo(t)exp[B'Z(Model (3.1) without Z 44¢(%))]

X

exp[/@IZAge(t) X (1 - ZTumor,W) X (1 - ZPHD)

+ /833ZAge(t) X ZTumor,G + /834 exp(0.022 : ZAge(t)) X ZPHD] . (4'4)

Women with tumor

Women older than 15

Girls up to age 15

‘e LI

o 20 a0 60 80 100

Figure 3: Martingale residuals for women with all ages and

fifteen up to age 15 with tumor

40 S50 60 70 80 90 100

3 a 5 6 7

separated for women older than

4.2 Assessing the proportional hazards assumption

The second assumption to check is the proportional hazards assumption (2.2), i.e. if there is a

need to allow for time dependent coefficients. A graphical check can be done by using scaled

Schoenfeld residuals (see Grambsch and Therneau (1994) for further details). A plot of the
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scaled Schoenfeld residuals against time reveals the change of the coefficients with time, a con-
stant therefore indicates no time dependency. In Figure 4 these plots are presented for several
covariates in Model (3.1) and Model (4.4), respectively. For the time-varying covariates Z(t),
Zeverz(t) and Zjpeper3(t) constant values are assumed. A significant change over time can be
recorded in almost all covariates. However, this dependency seems to be present mainly during
the first 900 days of LTC, which is indicated through the vertical line. Afterwards most of the
plots are almost constant. We therefore split our data in observations up to 900 days in LTC
and observations longer than 900 days in LT'C and fit two separate models. Again the functional
form is allowed to include exponential and fractional polynomial terms. However when the data

set is split these give no significant improvement and as a result we get the following models

A(t)

Ao(t) exp[B1Zage(t) X Zrumor,g + B2Z age(t) X (1 — Zrymor,w) + B3ZSex

BaZlinh(t) + B5Zrevei2(t) + BoLieveis(t) + BrZrumor + BsZpementia + BoLHeart
B10Zpsychosis T Br1Zstroke + B12Z arthritis + P13 Lung

B1aZage(t) X (1 = Zrumor,w) X Lumor + B15Lage(t) X (1 = Zrumor,w) X ZLarthritis
B16Znn(t) X Lstroke + B17Znn(t) X Zpever2(t) + B18Znn(t) X Zpevers(t)

/819ZSea: X ZTumor + /BQOZLevelZ (t) X ZHeart + /BQIZLevel?) (t) X ZHeart

+ o+ o+ o+ o+ o+

B22Zipsychosis % Lsiroke + B23Lrumor X Linteart + B2aZsiroke X L arihritis) (4.5)

for LTC durations up to 900 days and

At) = Xo(t)exp[BrZage(t) X (1 — Zrumorw) + P2Zser + B3Znn(t) + BaZipevern(t)
B5Z1.ever3(t) + Be Lrumor + Brlitcart + BsZLipsychosis + BoLisiroke

Brolog(Z age(t)) X Zrumor,w + B11Z age(t) X (1 = Zrumor,w) X Ziever2
Br2Z age(t) X (1 = Zrumor,w) X Zireve3(t) + B13Zsex X Znn(t)

B1aZser X Lpsychosis + B15Znn(t) X Zpever2(t) + B16Znn(t) X Zpevers(t)
B17Zpsychosis X Lstroke + P18Znn(t) X Zpsychosis + B19ZL Lever2(t) X Zipeart

620ZL8’U813 (t) X ZHeart] (4.6)

+ o+ o+ o+ o+ o+

for LTC durations longer than 900 days. A test for time dependency, implemented in the Splus-

routine zph, for Model (4.6) results in a single p-value greater than 0.08 for all covariates.
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Figure 4: Scaled Schoenfeld residuals against time for Models (3.1) and (4.4)

Therefore, there are no more significant time dependent covariates in the model. For the Model
(4.5), the proportional hazards assumption holds except for Zje,eo (p-value: 0.0043), Zpepers
(p-value: 0.0026) and Zpementia (p-value: 0.0016). Thus, the Models (4.5) and (4.6), based on
the split data, led to a significant improvement in comparison to Model (4.4).

Up to now only transition intensities to death have been considered. In a similar way a semi-
parametric hazard model can be used to model transitions between care at home and nursing
home and transitions between the different levels of care. These transitions are illustrated in the

multi-state models given in Figures 5 and 6. The results of the modeling of these transitions

13



won’t be shown in this paper, for details see Gschlol (2002), pp.93-97.

1: care at home

A12 3: Death

2: nursing home

Figure 5: State transitions between type of care and transitions to death

Note, that in Figure 5 besides transitions to death only transitions from care at home to
nursing home are taken into account while in Figure 6 only transitions to higher care levels are
considered. Since in our data transitions from a higher care status to a lower care status are

very rare events, the remaining transitions intensities are taken to be zero.

5 Estimation of transition probabilities

Having modeled transition intensities, we now want to estimate transition probabilities. Based
on these probabilities insurance companies calculate their rates. In particular, we consider the
model illustrated in Figure 6 here. In the multi-state model presented in Figure 5 probabilities
can be estimated analogous. Estimates of one-year transition probabilities from state i to state
j in dependency of Age x, Sex s, type of care ¢ (where ¢ = nh or ¢ = cah for care at home),

group k and LTC duration d of the claimant can be assessed by

ﬁij (iL', S, d7 c, k) = sttk<d+1 {j\z] (tky ZAge (tk) =2z, ZSew =S, Znh =, ZGroup = k)

Hd§t1<tk (1 - /\ij(tl: ZAge(tl) =,25ce = S, Lnp = c, ZGroup = k))} (57)

Here, k takes the values 1,...,22, denoting the groups of diagnoses indicated by a * in Tables
3, 4 und 5. This formula is based on the Kaplan-Meier-estimator S(t) = Htj<t(1 - S\(tj)) for

the survival function S(¢) = P(T > t). We obtain the estimated hazard functions j\ij(t, Z) using

14
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Figure 6: State transitions between levels and transitions to death

Breslow’s estimator (2.3). Since we have included the diagnoses and type of care (at home or in
nursing homes) in our model we also get probabilities in dependency of these covariates which
insurance companies ignore in their calculations. To eliminate this dependency we calculate a

weighted mean over the considered groups of diagnoses as follows

1 22

ﬁi’j ((II, 55 d) - ) B {Z[né,s,d,cah,kﬁi,j ((II, s, d, cah, k)

i
nx,s,d,cah + nx,s,d,nh k=1

+ n;,s,d,nh,kﬁi,j ((II, S, da nha k)] }7 (5.8)

where nfﬁ s.dcah, @04 nfﬁ s.dnh 8ive the number of observations in state i in Figure 6 with age
between x-5 and x+5 years, sex s, duration d, who receive care at home (cah) or in nursing
homes (nh), respectively. Here, nfc,s,d,cah,k and néys,d,nh,k, k =1,...,22 denote the corresponding
total numbers separated by the 22 groups of diagnoses. We now concentrate on transitions to
state 4, corresponding to death. We estimate these probabilities for Model (4.5) and Model (4.6)

as well as for the best model without diagnoses

A(t) = Xo(t)exp[B1Zage(t) + BoZsea + B3Znn(t) + BaZpever2(t) + P5Zpever3(t)
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+ 66ZAge(t) X ZSew + ﬁ?ZAge(t) X Znh(t) + BSZSew X Znh(t)

+ ﬂQZnh(t) X ZLevel2(t) + /Bloznh (t) X ZLevel?) (t)] (59)

(see Rudolph (2000), p.78). Here again, we consider a weighted mean over the probabilities
similar to (5.8), but this time only averaged over the type of care. In addition, we determine the
empirical mortality probabilities given by pf (=, s,d) = B where p is the number of deaths and
n is the number of observations with age between x-5 and x+5 years, sex s and LTC duration d.
A graphical comparison of the mortality probabilities in the first year of LTC is given in Figure
7. It is obvious that the probabilities based on Model (4.5) including diagnoses are closer to
the empirical ones. See for example the groups of age 55 to 64 years (x-axis = 1) or women in
Level 3 (y-axis = 6). For the second and third year of LTC the difference between the models
decreases (see corresponding plots in Gschlofl (2002), pp.102-106). Therefore, the diagnoses
seem to have an important influence on survival particularly during the first year. In Model
(4.5) there are 7 diagnoses included, whereas Model (4.6) for longer durations than 900 days
only contains four significant diagnoses. In addition, the coefficients of the diagnoses, that are
not presented here, take higher values during the first 900 days, i.e. have a bigger impact on
survival. In Table 8, for the first three years of LTC three different measures of deviances between
the empirical mortality probabilities and estimated probabilities based on the models with and
without diagnoses are given. For each year we consider a weighted sum Z?il ni|pia — Py| of

absolute values, a weighted sum of squares Zfil ni(Pia — ﬁf4)2 and a weighted sum of log odds

Z?il ni(log(lfg‘M) - log(lf%a))Z. The sum is always taken over the 24 groups of claimants,

divided by gender, age (4 groups) and care level, which are plotted in Figure 7. Here, p;4 and p§,
denote the estimated and empirical mortality probabilities for claimant group i, n; is the number
of observations in the corresponding group. Thus, the reliability of the empirical probabilities is
taken into account. All of the three measures of deviances lead to qualitatively similar results. In
the first year of LTC the probabilities based on the Models (4.4) and (4.5) including diagnoses
are clearly closer to the empirical ones than those based on Model (5.9) without diagnoses. The
same is observed in the second year, although the difference between the models is decreasing.
Further, we note that the splitting of the data additionally improved the resulting estimated
probabilities. In the third year of LTC Model (4.4) based on the whole data still shows a smaller
error than Model (5.9) without diagnoses. However, the split Models (4.5) and (4.6) give the
worst results here. Since the data have been split after 900 days, for this year the probabilities

are based on both of the models. The sudden change in the underlying model could be a reason
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probability
0 0.10.20.30.40.50.6

probability
00.10.20.30.40506

for the observed aggravation.

Figure 7: Mortality probabilities during the first year of LTC (Legend see Table 7)

probability
00.10.20.30.405 0.6

top left

empirical probabilities p¢, (z,s,d =1),i=1,2,3

top right

Pia(z,s,d = 1) based on Model (4.5)

bottom left

pis(z,s,d = 1) based on Model (5.9)

X-axis y-axis
1 55-64 years || 1 | Male, Level 1
2 65-74 years || 2 | Male, Level 2
3 75-84 years || 3 | Male, Level 3
4 85-94 years || 4 | Female, Level 1
5 | Female, Level 2
6 | Female, Level 3

Table 7: Legend to Figure 7
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Model (5.9) | Models (4.5) and (4.6) | Model (4.4)
ity alpia — Dl
first year of LTC 301.018 198.942 222.869
second year of LTC 208.797 170.519 177.453
third year of LTC 135.589 154.542 129.524
>y ilia — P5y)”
first year of LTC 35.43 16.69 19.89
second year of LTC 21.28 16.05 16.14
third year of LTC 13.30 18.87 12.34
S ni(log(£24) — log(£24-))?
first year of LTC 3162.51 2110.49 2317.91
second year of LTC 1038.63 730.35 779.46
third year of LTC 651.03 687.55 554.75

Table 8: Several measures of deviances between the empirical mortality probabilities pf, and the
estimated mortality probabilities p;4 based on Model (5.9) without diagnoses and Models (4.5),
(4.6) and (4.4) including diagnoses

6 Inception Selection effect of diagnosis on LTC premiums

Using the estimated one-year transition probabilities now premiums can be calculated. We will
base our calculations on the multi-state model shown in Figure 5, extended by the additional
state "healthy” since transition probabilities from state "healthy” to the remaining states enter
into the calculations as well. This model is illustrated in Figure 8. Since in the data only infor-
mation about the transitions in the dotted box is given, we have to use external sources for the
transitions out of state 1, further details are given below.

We have chosen this model here for its simpler structure in comparison to the model including
transitions between care levels. Similar the model presented in Figure 6 could be used only
requiring higher computational efforts. In addition we take the estimated transition intensities
from care at home to nursing home to be more reliable than the estimated transition intensities
between care levels because those are based only on about half as much data.

To model the insured risk we define a time continuous Markov Process S : T'x Q — {1,..,n}

with finite states 1,..,n, interval T' = [0,7) from policy begin to policy end and underlying
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1: healthy

Y

4: Death

A

Y

2: care at home 3: nursing home

Figure 8: State transitions in LTC insurance

probability space 2. Consider the following transition probabilities
Pij(z,t) := P(S(t) = j|S(z) =i) Vz<t zteT, ije{l,.,n}

The corresponding transition intensities are defined by

Py;(t,t + dt)
dt—0 dt

and
Ai(t) = Xij(t).
J#i

Then the forward Kolmogorov-differential equations (e.g. Karlin and Taylor (1981))

d

Epz](zu t) = Z 4 P (Za t)Akj (t) - RJ (Za t)>‘] (t) (610)

k:k#j

give a relation between transition intensities and probabilities. In particular for the multi-state

model presented in Figure 8 these differential equations are given by

%Pu(z,t) = —Pu(zt)(M2(t) + Ais(t) + Aua(t)),

%Plg(z,t) = Pp(z ) Aa(t) — Pia(z, 1) (a3 () + Aaa(t)),

%Plg(z,t) = Pp(z ) Ais(t) + Pia(z,£)Aos(t) — Pra(z, £ Asa(t),

%PM(z,t) = Ppy(z)Au(t) + Pia(z, ) Aaa () + Prs(z, £) Asa(t) (6.11)
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with solution
Pi(zt) = exp(- / t[)\lg(u)+>\13(u)+>\14(u)]du>, Pya(z,t) = exp - / t[>\23(u)+>\24(u)]du>,
Pys(z,t) = exp(- / t)\34(u)du>, Pyy(z,t) = 1 — Pg(z,1),

Py(z,t) = /ZtP22(z,u)Agg(u)ng(u,t)du, Pyy(z,t) = 1 — Poy(z,1) — Pys(2,1),

P(z,t) = / oy ()M () Poa (s ),

P13(Z, t) = /t[PH (Z, u))\13 (U) + P12(Z, u))\23 (U)ng (u, t)]du,

P14(Z,t) = 1- Pu(z,t) - Plg(z,t) - P13(Z,t). (612)

Since premium calculation is based on one-year transition probabilities we use a discretized
version of (6.12). In particular, the transition intensities are replaced by one-year transition
probabilities p;;j(n) = P(S(n + 1) = j|S(n) = 1) according to (5.7). The dependence of the
diagnoses is eliminated using a weighted mean over the 22 groups of diagnoses similar to (5.8).
The dependence of age, gender, LTC duration and care level is still included, for notational
convenience however the probabilities are only given in dependence of insurance duration n.

We assume the following payments:
e 7: annual premium, paid by the insured while the risk is in state 1
e b;: annuity paid by the insurer while the risk is in state i
e ¢;j: a lump sum paid by the insurer when a state transition from state i to state j occurs

Then the actuarial values of the expected benefits at the beginning of the insurance contract
are given as follows: for an individual with entry age x when a lump sum c¢;; is payable at the
moment of a change from healthy (state 1) to state 2 or 3 the actuarial value By ;(0),j € {2,3}

is given by
w—z—1

Bi,c,;(0) = Z P11(0,4)p1(6)v*cy;
i—0

Here w denotes the actuarial end-age, i.e. P(T > w) := 0 and v = ¢~ where ¢ is the force of
interest which is taken § = 0.035 in our calculations. That’s simply the probability that in year
i a transition from healthy to state j occurs multiplied by the discounted value of the benefit

and summed up over all years. For an annuity b; payable while an insured person is in state
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j € {2,3} the actuarial value By, (0) is given by

w—r—1

By, = Y Piy(0,0)'b;.
1=0

Here, the probability of an insured person being in state j in year i is multiplied by the discounted
value of the annuity. For a detailed derivation of these actuarial values see Rudolph (2000) and
Czado and Rudolph (2002). The actuarial values Bic,;, B1y;,J € {2,3} are calculated separately
for the three care levels. Then a mean weighted by the proportion of each care level in the
data is taken. Based on the equivalence principle at policy begin, i.e. the sum of all expected
benefits Z?ZQ(BU,].(O) + B1,,;(0)) at time 0 has to equal the sum of all expected premiums
Py (0) = Y971 Py (0,4)vir at time 0, finally the premium 7 can be calculated.

A computer program in C was written to calculate these premiums based on the mortality
intensities resulting from the semiparametric hazard models including diagnoses (4.5), (4.6) and
without diagnoses (5.9). The transitions intensities from state 2 to state 3 are modeled as well
with and without diagnoses, for details see Gschlo8l (2002). We want to compare the results to
the premiums resulting from the LTC-plan "PLTC” offered by a German health insurer. In this
plan the insured persons contract a fixed amount serving as a daily cash allowance. If an insured
person receives care at home it is paid 25 % of this allowance in level 1, 50 % in level 2 and 75 %
in level 3. In the case of care in nursing homes 100 % are paid. Therefore, input parameters of
the C program are annuities depending on type of care and care level. Since our data contain no
information about transitions from healthy to death as well as from healthy to care needing, we
use Bavarian life tables (1986-1988) and LTC incidence rates of custodial insurance, Japan, for
those transition probabilities. In Table 9 the estimated premiums based on the semiparametric
hazard models including and without diagnoses are compared to the premiums based on the
plan "PLTC” for an daily allowance of 10 Euro. The same results are presented graphically
in Figure 9. First of all note, that the premiums by the plan "PLTC” can only be taken as a
rough benchmark, since our calculations are based on probabilities from several sources and the
underlying interest rate of the plan "PLTC” is not known exactly.

The increase in the calculated premiums according to age is quite similar to the "PLTC”
premiums. However, in our calculations women have higher premiums in relation to men which
indicates that the risk for women might be underestimated in reality. Premiums based on the
information of the diagnoses are slightly higher as without this information (see Figure 9). In

particular, for men premiums including diagnoses are up to 6 % percent higher, for women up to
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Age | Premiums based on semiparametric hazard model Premium offered by

including diagnoses without diagnoses German health insurer
Female Male Female Male Female Male
20 2.79 1.60 2.74 1.51 1.74 1.18
25 3.46 1.98 3.40 1.87 2.38 1.52
30 4.33 2.48 4.26 2.34 3.23 2.03
35 5.48 3.15 5.40 2.97 4.28 2.69
40 7.02 4.05 6.91 3.82 5.59 3.51
45 9.03 5.21 8.92 4.94 7.27 4.59
50 11.71 6.75 11.61 6.42 9.48 6.05
55 15.37 8.79 15.25 8.43 12.43 8.04
60 20.35 11.51 20.21 11.17 16.49 10.84
65 27.15 15.15 26.99 14.92 21.53 14.40
70 36.10 20.05 36.16 20.01 29.69 20.09

Table 9: Premiums calculated based on a model with and without diagnoses in comparison to

premiums offered by a German health insurer for an daily allowance of 10 Euro

3.8 % (see Table 10). Further the diagnoses affect the premiums mainly for younger age groups,
for increasing age the influence of the diagnoses on premiums is diminishing. Hence, without the
consideration of diagnoses the risk seems to be underestimated for younger age groups and the
premiums offered by a German health insurer might be too low. This demonstrates the need to

account for inception selection effect of diagnosis.

Age 20 25 30 35 40 45 50 95 60 65 70
Men 1.060 1.059 1.056 1.057 1.055 1.051 1.047 1.038 1.025 1.010 0.996
Women | 1.037 1.038 1.014 1.037 1.036 1.033 1.029 1.029 1.028 1.026 1.019

Table 10: Ratio of premiums based on the model including diagnoses and the model without

diagnoses

7 Summary and Discussion

The main issue of this paper was to quantify the inception selection effect of diagnosis on LTC

insurance premiums when information on case specific diagnoses are available in a large port-
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Figure 9: Calculated premiums based on two semiparametric hazard models and for the plan

"PLTC” of a German health insurer. Thick lines: women, thin lines: men

folio. For this we first have to allow for diagnosis specific effects in the estimation of transition
intensities and probabilities. In the second step these transition intensities and probabilities are
utilized to price LT'C premiums. For the modeling of diagnosis effects on estimated transition
intensities and probabilities the problem of multiple diagnoses had to be considered. Modern
model diagnostics for the semiparametric hazard model were used. Violations of the assump-
tions of the model could be detected using graphical methods. An appropriate modeling of the
functional form of continuous covariates was achieved by using fractional polynomials and ex-
ponential functions. By splitting the data set, most of the time dependency present in the data
could be deleted. To obtain transition probabilities independent of the diagnoses a weighted
mean over the different groups of diagnoses was used. We have shown that the inclusion of
diagnoses leads to a significant improvement over a model without diagnoses. The transition
probabilities based on the model including diagnoses give more realistic estimates, particularly
in the first year of LTC. Although the influence of the diagnoses is diminishing with time, their
effects do not vanish completely. After diagnosis specific transition probabilities have been esti-

mated and validated, we show how LTC premiums can be calculated when annuities based on
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type of care and level of care are paid to the insured requiring LTC. For this LTC product this
gives higher premiums for younger age groups when diagnoses are taken into account. Although
the difference to the premiums without diagnoses decreases with age, still slightly higher val-
ues are observed. This indicates that insurance companies might underestimate their risk if the
diagnoses are neglected. Thus insurance companies should be encouraged to investigate if their
offered premiums are sufficient for their portfolio to cover the actual losses observed through a
retrospective analysis using the methods given in this paper. The need for analyses which study
specific inception selection effects is well recognized. For example Macdonald and Pritchard
(2001) study the effect of Alzheimer’s Disease on LTC. Since genetic testing for this disease is
available they can also investigate the adverse selection effect, which arises when carriers of the
disease buy LTC insurance at a high rate. In contrast our analysis does not include such effects.
However our approach is more general, since it includes diagnoses where the preposition of a
disease yielding to LTC cannot be tested at entry into the insurance contract. In summary, we
like to stress the need to understand the risks at younger ages when issuing LTC insurance (see
for example Weltz (2002)) and therefore we believe even a moderate improvement in assessing

the risk in younger age groups is important.
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