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Abstract: Though low signal to noise ratio (SNR) experimentsin DTI give key
information about tracking and anisotropy, e.g. by measurements with very small voxel
sizes, due to the complicated impact of thermal noise such experiments are up to now
seldom analysed. In this paper Monte Carlo simulations are presented which investigate
the random fields of noise for different DTI variablesin low SNR situations. Based on this
study a strategy for spatial smoothing, which demands essentially uniform noise, is
derived. To construct a convenient filter the weights of the nonlinear Aurich chain are
adapted to DTI. This edge preserving three dimensional filter isthen validated in different
variants viaaquas realistic model and is applied to very new data with isotropic voxels of
the size 1x1x1 mm? which correspond to a spatial mean SNR of approximately 3.
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1 Introduction

Thermal or Johnson noise in Diffusion Tensor datais one of the obstacles which obstruct
the evaluation of experiments with low Signal to Noise Ratios (SNR). The Rician family
of distributions for the Diffusion Weighted magnitude Signals (DWI), see[1,2,3], is
modified non linearily to the noise distributions of the tensor coefficients and to those of
further derived variables, like anisotropy or main diffusion directions, which describe
anatomical details of nerve fiber bundles. Mainly due to these nonlinearities noise in

derived variables has a very complicated structure.

To increase the SNR's[2] of the variables, denoising is frequently performed voxel wise.
To this end, experiments with the minimal number of necessary gradients and perhaps
different b values [4] are repeated. The tensor coefficients are then derived by multivariate
linear regression on the log linearized DWI s via the Stejskal Tanner equations [4.1]. Ina
more recent experimental setup, multi gradient experiments [5,6,7] with appreciably
enhanced numbers of gradients, frequently uniformly oriented in space, are applied. The
tensor is here derived by avoxel wise singular value decomposition [7]. In both cases, the
multitude of experiments reduces noise effectsin the tensor and in derived variables.

Scanning time and subject motion [4] limit these procedures.

A complementary smoothing technique is offered by spatial smoothing where, for asingle
data set, small samples of neighboring voxels are used to estimate the mean of alocal
variable within this sample. Spatial smoothing is rather restrictive, care must be taken to
avoid the introduction of bias effects. Such bias or blurring effects can be introduced by
mixing information from different objects, like e.g. by averaging noisy diffusion
directions from spatially close but different axon bundles. Aswill be shown, the
application of convenient nonliner filter constructions can reduce blurring essentially.
Most nonlinear spatial filters, see for arecent review [8] presuppose that the noise
distributions within the neighborhoods involved are homogenous and that they are at least
close to a Gaussian shape. Only recently anonlinear filter was developed, which can be

applied to situations with varying variance [9].



At present spatial smoothing or regularization in DTI is discussed for different random
variables, like e.g. the magnitude signal or DWI [10], the tensor field [11,12], the
Eigenvalues and anisotropy coefficients [13,14,15] or the principal diffusion directions
[16,17,18]. Applying smoothing methods directly to the variable of interest has the
advantage to restrict on low dimensional fields of the variable minimizing computer time
and to deal with interpretable quantities supporting special adapted regularization
methods, like in [16,17,18]. On the other hand, for some of these variables, like
Eigenvalues, anisotropy coefficients or main directions already in case of voxel wise
smoothing bias effects are reported. These are investigated in model calculations for
SNR’s above 20 by perturbation theory [19] or above approximately 5 by Monte Carlo
simulations [13, 14, 20]. The results indicate that the voxel wise statistics of random
variablesinvolved in aDTI analysisisin genera at least for medium SNRs
(approximately 5-15) and low SNRs ( <5, where the Rician properties become essentia )
no more Gaussian and may be better described by skewed distributions [13]. The fact,
that bias and variance in simulation studiesincrease with /SNR [14,19,20], further
indicates that these distributions presumably change with DWI (or diffusion) from voxel
to voxel and form a specific random field for every variable in the brain. Thisisaso
exemplified by Monte Carlo ssimulations of Skare [7], which show that bias and variance
of anisotropy depend on the, in practice unknown, angles between local main diffusion
and the diffusion gradients applied.

In spite of their difficult statistical properties, the analysis of DTI experiments with low
SNR’sisimportant, as these experiments hide key information to several central topics.
To reduce partial volume effects which can e.g. cause “ phantom connections’ [4] between
anatomically separated fiber tracts, experiments with small voxels which produce, due to
their low signal intensities, low SNR’s are desirable. Also recent experiments with high b
values [21] which separate fast and slow diffusion fractions lead to variables with low
SNR. In addition, scanning time and artifacts due to high numbers of experimental
replications or in multigradient experiments could be reduced, when spatial smoothing of
low SNR data could reliably complement voxel wise smoothing.

To thisend, in the first chapter of thiswork DTI data are analysed for typical features
which may help to construct convenient spatial filters. The main results can be
summarized as follows: Discontinuities, e.g. in the anisotropy field, favour the application

of nonlinear, edge preserving filters, like those proposed in Parker [10] to reduce blurring.

3



On the other hand, as the fields of the variables have, aside from the edges, aso extended
regions with appreciable smooth curvature, the linear approximation quality of thefilter is
also important. Thisisanon trivial observation, as most edge preserving filters, like the
diffusion equation applied in [10], the M-smoother [22] or the Aurich chain [23], achieve
optimal edge resolution only for arestricted class of functions which change stepwise
between constant regions. These filters produce for a parameterization adapted to this
situation only weak approximations in regions with appreciable smooth curvature. It isthe
main goal of this paper to establish a new spatial filter which combines edge detection

with a good generalization quality for curved functions.

Asthisfilter shall be applicable in low SNR situations, it is necessary to find out the
variables with the most regular distributions close to Gaussian. Therefore, a special Monte
Carlo study is performed to investigate for arange of DTI variables and for different
experimental designs how their distributions comply with these basic statistical demands
of spatial smoothing. Low and high b value experiments with minimal and multigradient
equipment are involved. Most attention is payed to low SNR situations, however, the
smoothing strategies found are also convenient for medium and high SNR. Starting with
the fields of the DWIs, the random fields of the tensor and that of derived variables like
Eigenvalues etc. are investigated for a simple diffusion model with realistic parameters. In
case of minimal gradient experiments with constant b values the Rician distributed DWIs
offer the most regular field of distributionsin all cases studied. For multigradient
experiments a more ambiguous situation is apparent. In contrast to other variables, the
angle of the main diffusion shows aregular distribution field close to Gaussian even for
low SNR due to the improved direction resolution. For replications of minimal
experiments with different b values and for multigradient experiments a novel “back”
transformation of the tensor, derived from the multitude of experimental DWIs, to a

minimal set of virtual DWIs with approximately Gaussian statistics is discussed.

Based on this analysis a new three dimensional nonlinear spatial filter for scalar fieldsis
proposed. Its construction is based on the Aurich chain of sigmafilters [23]. This chain,
originally constructed for constant signals seperated by steps and corrupted by Gaussian
noise, is modified to include the conditions of discontinous signals with high curvature
and with Rician noise. The construction is applicable to the individual spatial DWI fields,
but with minor modifications also to fields of other variables. Edgesin the spatial fields of
the variables are regarded as information about anatomic boundaries between different



fiber bundles or other organic unities. Asthe DWIs are derived by projections of the
diffusion tensor viathe gradient directions not necessarily al edges of the tensor field are
present in every DWI field. Therefore, the weights of the filter for e.g. a DWI component
are extended to incorporate this information preventing wrong information mixing or
blurring. The filter application is performed fully automatic, the only input parameter is
the standard deviation of noise, which can easily be derived from the background of the
images. Thefilter is fast and both numerically and statistically robust. Thisfilter is
validated in low SNR situations by a quasi realistic “gold standard” model, which was
achieved on the basis of measured DTI data which were consecutively smoothed by a
method published in [28]. Finaly, toillustrate the effectiveness of thefilter it is applied
to very new data which are measured on an isotropic grid with avoxel volume of

1x1x1 mm® and amean SNR » 3.

2 Theory

2.1 Noise, Edges and Curvature

Toillustrate typical featuresin DTI data, we present in Fig. 1 some data for a region around

the corpus callosum within an axial slice. To reduce noise, three replications of aminimal
experiment with the gradients {{1,0,1] [ 1,0,1],[0,1,1],[0,- 1.1],[11,0] ,[- 1L.1,0]} /2

under clinical conditions (1.5 T, voxel size: 1.9x1.9x4 mm?®) for the b value b=880 sec/mm?
were performed. For b=0 two replications were applied. After averaging the replicated
magnitude signals the tensor is derived viathe Stejskal Tanner equation , see Eq. (2). Inthe
left panel of Fig. 1 the tensor field component d,,(X) is presented, see Eq.(1), in the right

panel the mean DWI, |S;(%)| _, for |g;) =[0,- 11]/+/2. A closer inspection of the data till

shows appreciable noise with spatially varying variance, compare e.g. in di; the yellow
valleys of the pyramidal tracts and the green bow of the corpus callosum region in front.
Especially the region around the corpus callosum shows steep intensity variations due to the
ventricles, see the red-blue maxima of water diffusion in di;. Also in |S| the water diffusion is
separated from that in white matter by edges. Asin |S| large intensities correspond to small
diffusion also the transition from corpus callosum to neighbouring white matter tissueis



frequently stepwise, see e.g. the steep red-blue bow of the corpus callosum DWI in front. This
isrelated to a strong variation of the local anisotropy or Eigenvalues when the corpus
callosum is left within white matter. In contrast, also regions with smoothly curved intensities
are apparent in both panels. This feature may be more obviousin Fig. 5, where a smoothed
DWI is presented.

dyq | S|

Fig. 1: Left panel shows dy; on an axia dice around corpus callosum. Red-blue maxima are mainly due to high

diffusion within the ventricles. Right panel shows the mean DWI for the gradient [0,1,-1]/ \/E in the same
region, here the maxima are mainly due to the signal from the corpus callosum diffusion. The data are denoised
voxel wise via DWI averaging based on two replications for the b=0 experiment and three replications for b=880
sec/mm?, red arrows indicate parts of corpus callosum and of pyramidal tract, the few extremal voxelsin the
corners are outside the brain.

The presence of steep variations or edgesin DTI datais further supported by the following
observation: According to empirical knowledge about the streams of axon tracks [24, 25] itis
evident that neighbouring nerve bundles can have strongly different main directionsin white
matter. This has the consequence that the Eigenvectorsin regions with different fiber streams
change in a discontinous way. As the tensor isreal and symmetric, the tensor field can be

formulated as a function of the Eigenvalue and Eigenvector fields |, (X) and |i(7()> in braket
notatation, where the ket, |...) , is athree dimensional vector, the bra, {...|, its transpose and

(...]...y ascalar product:
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This representation implies that spatial discontinuities or “steep” variationsin the
Eigenvalues or Eigenvectors map to the tensor field and to other derived quantities like
the anisotropy coefficients. They will in general also transform to the DWIswhich are
connected to d(X) by the Stejskal Tanner equations, see Eq. (2).

_ _ -b§'i<x><i<*>\@j>2
s G|=ls ) tre )

Where b isthe b value of the experiment, f a volume fraction, which isonly for slow

diffusion components different from unity, | g; ) adiffusion gradient and |S,(X)[,|S; (¥)|
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are the magnitude signals. However, asthe so called ADCs, § | i(>‘<)<i(>‘<)‘ gj>2 , are

i=1

dependend on the angles between |i(X)) and |g; ), discontinuities of d(X) are not
necessarily present in all DWIs, ‘SJ. (X)‘ . Assume e.g. two diffusions in neighbouring
voxels wich change discontinuously their main directions,, |1(>?)> , but keep the same angle
with \ g J.> . In addition, assume that the two diffusion ellipsoids have identical shapes and
are circular in the planes spanned by |2(X)) and |3(X)) . Rotating for every diffusion

| 2(%)) around |1(X)) into the plane spanned by |1(X)) and \gj> produces identical ADC's
for both diffusions and due to |S,(X)| , DWIs which change continuously between both

voxels. On the other hand, at least one |S; (X)| must show any discontinuity which is

present in d(X), elsethe step could not be resolved by the projections of the gradients.

2.2 Therandom fields of the DTI variables and spatial smoothing

According to Jensen's inequality for concave or convex transformations of random
variables [26], bias effects like those discussed in the Introduction are to be expected for
the nonlinearly transformed random variables of DTI. Case studies on the propagation of
noise show that bias and variance in DTI variables increase with 1/SNR [14,19,20].



Further, Skare et a demonstrate by model simulations that bias and variance of anisotropy
coefficiants can depend on the angles between local diffusion and the diffusion gradients
applied [7]. These results indicate that the random properties of DTI variables should in
genera be described by locally varying random fields. This can be substantiated by the
structure of the Stejskal Tanner equations, see Eq. (2): The exact magnitude signals
without noise, DWlect , depend on the local angles between diffusion and gradients and
on the local Eigenvalues or diffusion strengths. This dependence is mapped to the specific
DWI distribution within the Rician family [2], determined by the SNR (= DWilgyact /
standard deviation of noise). Superpositions of the logarithm of noisy DWIs determinein
minimal experiments the tensor coefficients and so carry over their local dependence on
diffusion and gradients to the statistical properties of derived random variables, like
anisotropy. In contrast, a spatially uniform Gaussian statistics for the field of avariable
would be optimal for an attempt to apply spatial smoothing methods without running into
poor mean value estimates or uncontrollable bias effects. In this context Monte Carlo
simulations are performed to quantify the distribution properties in dependence of the
SNR. Thefina aim of thisinvestigation isto find variables which are suitable for spatial

filtering in low SNR situations in the frame of different experimental arrangements.

In the following Monte Carlo study noise propagation is simulated within a simplified
model. The tensor describes a three dimensional cigar shaped diffusion which rotates with

its main axis within the x-y plane of the lab system around the z axis, the tensor has the

form:
- o
¢y d, 0 :
d= gdlz d,, 0 i ©)
é 0 o Uutds- J(dy - d)* +4d,"
2 2

where the element dszis the smaller eigenvalue of the upper submatrix. As all unkown
parameters are contained in the upper submatrix, the simulated measurements, quantified
by Eg. (2), need to be performed only in the x-y plane. Consequently, for a minimal
experiment only 3 diffusion gradients in this plane are necessary. The simplified model
was chosen as neither Eqg. (2) nor the tensor diagonalization depend essentially on the
effective tensor dimension. Therefore, we can expect that the model is suited to reveal the
typical statistical features of DTI variables. On the other hand, due to its simplicity the



model allows a more comprehensive study than more general models. In literature many
three dimensional Monte Carlo case studies on the noise propagation in DTI can be found,
seeeg. [7, 13, 14, 19, 20]. They treat experiments with medium and high SNRs. Some of
their results which are important for the present investigation are incorporated into the

final summarizing discussion below.

For fixed diagonal tensor coefficients d;; and d,, the off diagonal d;»is changed in 40

constant steps within theinterval d,,1 & 0.8*/d,d,,,0.8*/d,,d,, 4. Thisinterval is

defined by the positive definiteness condition of the tensor and covers, without the factor
0.8, all possible off diagonal diffusions. The factor isintroduced to limit theratio of it's
sorted eigenvalues |, >1, to |, /1, <10, preventing unrealistic high anisotropy. Low and
high b value experiments are ssimulated via the Stejskal Tanner equation (2) . For the first
group of experiments b=900 mm? and f=1 are applied with the diagonal components
d11=.00156 mm?%s and d22=.00084 mm?/s to achieve arealistic mean diffusity of .00084
mm?%s [14]. For b=3500 s'mm? the procedure of Clark et al [21] was used. There, the
slow tensor component is fitted by a monoexponential model to the signal decay within a
high b-value interval. The fraction, f, of the low component is achieved by an
extrapolation of high b-value data. The slow diagonal diffusion for the Monte Carlo
simulation is defined to be di1=.0007 mm?%s and d,=.00035 mm%s with f=".31. Thisisin
agreement with the fraction and the slow three dimensional mean diffusity of .00035
mm?'s found in corpus callosum by Clark et al [21]. For both models, the fractional
anisotropy FA per voxel is approximately in the range FAT [.4,.9], the main diffusion

directions scatter within a cone of 70 degrees around [1,0]. The b=0 mm? signal was
assumed to be |Sp|=1000.

In recent experimental arrangements the frame of minimal experiments is extended to
more gradients. In this context, Jones [5], Papadakis [6] and Skare [7] discuss the
propagation of noise from the DWIsto the tensor coefficients for higher numbers and
varying directions of gradients. Skare proposes a condition number, cond , depending only
on the gradient directions, which controls an error in the tensor components due to noise
in the signals. In our simulations uniformly distributed gradient directions are applied

which were proposed by Jones [5] with arather optimal condition number, cond =1.4, for
aplane measurement. All applied gradient sets include the direction g, =[11]/ J2 which

is used as reference projection in the graphical presentations.



To introduce Johnson noise, noise simulated by a complex Gaussian distribution with
standard deviation s is added to the signals independently for every gradient direction,
seee.g. Skareet a or Pierpaoli and Basser [13, 15] for a precise algorithmic definition of
the procedure applied. Different noise levels with standard deviations s are involved in
the simulations. Experiments for b=900 smm? are performed with s = 30*n, with
n=1...6. The slow diffusion component was investigated with s(=15, 20 and 30. Asa
SNR=100/3 for the b=0 signal correspondsfor a1.5 T DTI scanner approximately to a
voxel size of 2x2x4 mm®, the voxel sizes investigated vary for b=900 mm?
approximately from 2.5 to 16 mm® and for b=3500 Ymm? from 16 to 32 mm®.

The Stgjskal-Tanner equations are solved numerically for the tensor coefficients by the
singular value decomposition, see [7] for details. This algorithm can treat both minimal
and overdetermined experiments, where the number of gradients > number of tensor
coefficients, with the same b valuesin al experiments. In case of different b values a
multivariate linear regression, proposed by Basser et a [4.1] was applied. Finally the
tensor was diagonalized to determine the eigenvalues and eigenvectors and to derive from

them several variables.

For different random variables, ¢, measures of bias effects and higher moments, m, ,about

the mean, mean,, are discussed and presented in Fig. 2-3. In detail, the relative bias,
(mean;, - Guur) / Qoer » the bias uncertainty, \/ﬁ I Qo 7S ¢/ | Qoar | the skewness,
m/s q3, and the normalized standard deviation of noise quantifying heteroscedasticity,

s ,/max(s ), are presented and discussed for the variables [Sy2|, diz, the

. + + . .
eigenvaluesl , >1, =1 ,, thetrace % and the fractional anisotropy FA, see

Basser [27]. The angles, aeact, Of the main exact Eigenvectors are defined as angles with

[1,0] and areintherange ¢ p pu, see below. The direction of anoisy main Eigenvector is
g 2'2H

defined only modulo p, therefore it is aligned to the exact Eigenvector beforeit’s angle, a,
with [1,0] is calculated. To avoid singularities, the biasis quantified by

(mean, - a,,)/const, see Figures, the other moments for g=a are calculated like above.

All variables are plotted versus the SNR, [S3™|/s ,, varying with the diffusion coefficient
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di2 . The quantity | S5* | isderived by the gradient @,, =[1,1] /+/2 from the model
diffusion not distorted by noise. A large number of Monte Carlo simulations was

performed to explore the systematics in the distributions, typical results are presented and
discussed.

InFig. 2 A, B, C results of b=900 smm? experiments with three uniformly distributed
gradients in the x-y plane (cond=1.4) are presented, Fig. 2D presents aminimal
experiment for b=3500 mm?. The moments are derived via Monte Carlo sampling with
50 000 iterations per parameter combination or model diffusion. Results for the voxel
volumes 5 and 16 mm® are presented in Fig. 2A, C and Fig. 2B, D. The vertical bars at
SNR=1.8, 3.8 and 11.3 indicate the transition di» =0 mm?/s. On the left sides of these
transitions the exact main diffusion components increase their angles with [1,0] from 0° to
35° with decreasing SNR's, on the right sides these angles decrease from 0° to -35° with

increasing SNR's. Anisotropy, FAT [.4,.9], isroughly proportional to the magnitude of

these angles.

In the panels a) of Fig. 2 the relative bias of the variables defined above and indicated in
the Figure legend is presented. To facilitate the interpretion of the angular bias instead of
the relative, the absolute biasis presented in units. degree/constant, the value of constant
isindicated in the Figure. Asreal experiments are performed frequently with small
numbers of replications, the uncertainty or the standard deviation of the relative biasis
presented in panels b) of Fig. 2 A, B, D. In case of the angle the quantity standard
deviation(angle)/const is presented. As with respect to spatial smoothing, symmetry and the
homogeneity of variance are important, in panels c) skewness and in panelsd) the
heteroscedasticity is presented in Fig. 2 A, B, D. These plots present the lower moments
of locally varying random fields for the variables, when different model diffusions, d,
are identified with differently localized voxels. In Table |, for the sake of transparency, a
numerical evaluation of these plotsis presented. For the columns of variables the ranges
of the plotted curves are given by : “minimum / maximum”. Three consecutive rowsin
the Table correspond to one panel as indicated, these rows are ordered according to the
labels A,B,D of Fig. 2.

Due to the convenient condition number for the gradient set the relative bias effectsin Fig.

2A are quite small, see thefirst row in Table|. For adifferent gradient set, e.g.
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{[1,0],[0,1],[1,1]}/x/§ , thebiasin all variablesis nearly doubled. However, the bias
uncertainty, see 4.th row, deteriorates single measurements appreciably. The maximum
uncertainty for FA is close to 50% and that of the angle close to 25°, which would
produce severe errorsin tracking algorithms, see Anderson [19]. In Fig 2B, see second
and 5.th row, both are reduced due to the enlarged SNR. In al variables of Fig. 2A, except
[S12| , skewness is appreciable and can become larger than that of a Rayleigh distribution,
which has an approximate skewness of 0.6, seerow 7. In Fig. 2B, see 8.th row, the
skewness of di», | 1, @ and Trace comes close to 0.6. High skewness enlarges the risc of a
non representative or outlying measurement appreciably, therefore spatial filters usually
presuppose symmetric distributions. Constant variance is a further prerequisite of
unbiased spatial smoothing. Heteroscedasticity in Fig. 2B can become even larger than
that in Fig. 2A, seerows 10 and 11, the exception is again |Syy|.

Minimal experiments for b=3500 Ymm? were performed for the voxel volumes

16, 24 and 32 mm® . See Fig. 2D and Table 1 for results with the voxel volume 16 mm?®.
Due to the enhanced b value and the weighting factor the SNR scale is reduced compared
to that of Fig. 2B and is closeto that of Fig. 2A. Theresultsin Fig. 2D and Fig. 2A show
similarities in the uncertainty, skewness and heteroscedasticiy, see rows 4,7,10 and 6,9,12.
Therelative biasis however appreciably enhanced compared to Fig. 2A, seerows 3 and 1.

S, | d, [, I, FA a Tr
a) .01/.2 -¥/+¥ -01/.06 -.2/-.04 -.02/.18 -.18/.16 -.01/0
0/.02 -¥/+¥ 0/01 -02/-.010 0/.02 -.02/.04 0/0
0/.8 -¥/+¥ -3/-03 -.15/5 -.2/.08 -.78/.4 -.2/-.05
by .1/6 5/+¥ .29/31 31 15/.5 3/.8 15/.2
.05/.2 .08/+¥ .08/.1 /.3 .05/.2 .08/.23 .05/.07
2112  3/+¥ 2/.3 31.7 15/.45 411 17/.18
co 0/3 -.8/1.3 13/17 -8/.1 -.6/.1 -1/.1 8/1.
01/.01 -3/6 .22/62 -35/2 -.2/.05 -.4/.42 215
0/6 -6/8 1/1.3 -4/.15 -52/.15 -5/15 .78/.82
d) .88/1 .55/1 .65/1 8/1 A45/1 35/1 82/1
99/1 48/1 54/1 T7/1 411 35/1 72/1
.68/1  .68/1 94/1 .65/1 5/1 .38/1 .95/1

Table 1 : Ranges of the curves presented in Fig. 2A, B, D. Minimum/maximum is given, el se see text.
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The presentation for the 5 mm®and the 16 mm?® voxel simulationsin Fig. 2 A, B, D,
suggests the following conclusion : At low and mean SNR (nearly) every variable shows
the feature of alocally varying random field. The deviations from Gaussian distributions
increase with 1/SNR, the quantitative ranges of bias, skewness and heteroscedasticity
prevent reasonable spatial smoothing without controled corrections. This conclusionis

further supported by results for other voxel volumes which are not presented graphically.

Only in case of the DWIs the distributions are known and simply parametrized via SNR
[2]. Asis outlined above, for ageneral gradient arrangement the variables derived from
the DWIs mix information of the logarithm of different noisy DWIs which leads to
families of distributions with highly complex dependence on basic parameters, like local
diffusion and gradient properties. In contrast, as the DWIs are distributed according to
Rice, viathe “SNR” of the mean signal, MNR, the true signal can be estimated [2], i.e. the
biasin any DWI canin principle be corrected. For all other variables investigated neither
an explicit shape of the distributions nor any bias correction is known for mean to low
SNRs.

Concerning skewness, above SNR » 4 the DWIs are symmetric according to Rice; below
SNR » 4 the maximal skewness of |S;o| in Fig. 2A iswell below the corresponding
maxima of the residual variables. In Fig. 2D this maximum is at |east below those of | 5,
Trace and dy,. Heteroscedasticity isminimal for |Syo| in Fig. 2A, inFig. 2D | 1, FA and a
are more uniform. However, asin DWIsthe variance scales with MNR, varying variance
can be incorporated approximately into spatial filters for the DWIs as will be shown
below.

Concluding, in low SNR situations the DWIs should be preferred for spatial smoothing,
all other variables should be derived from these true value estimations. Even in situations
with medium SNRs, see Fig. 2B, the regular Gaussian distributions of the DWIs with
trivial bias shift make them to the preferable candidates for spatial smoothing.

13
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Fig. 2. Results of Monte Carlo simulations for b=900 mm? and voxel volumes of 5 mm?, Fig. 2A, and of
16 mm®, Fig. 2B. Therelative bias (panel a), the uncertainty of relative bias (panel b), the skewness (panel

¢) and the normalized standard deviation or heteroscedasticity (panel d) for different diffusions, dy, , scaled
by SNR=| s> |/s, along the horicontal axes are presented. Results for the variables Sy, dip, | 1, | 2, FA, a
and Trace are shown, coloring isindicated in the legend. In case of the angular a , the absolut bias and

standard deviation normalized by a constant given is plotted. Fig. 2D presents a simulation with b=3500
s/mm? and avoxel volume of 16 mm®. Fig. 2C presents an experiment likein Fig.2A, but for ng=15

replications. The random variables are derived from the averaged magnitude signals IS, |= é Is, |/n,°
i (]
j=1

i=1,2,3. Panel @) showsthe relative bias, panel b) skewness; panel c) the relative bias after bias correction.
The plot in panel d) characterizes the rel ation between the mean to noise ratio, MNR, and the SNR

according to Rice. For the SNR the range SNRIT [0, 2.8] is shown. The distance of this function to the

diagona straight line characterizes the Rician bias, the Gaussian distribution centered at MNR=1.5

illustrates the impact of uncertainty on the bias correction.
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It is recommendable that voxel wise and spatial smoothing are applied complementary. As
the edge resolution of nonlinear spatial filters depends on the noise level, see below, voxel
wise denoising should precede spatial smoothing, when possible. Two variants of voxel
wise denoising are in the trade. First, experiments with low numbers of gradients are
repeated to reduce noise by voxel wise averaging [19]. In the second variant,

multigradient experiments [5,6,7] are applied. Concerning the first variant for constant b
values, we assume that the experiments discussed above are repeated ng times. The naive

transition to individually averaged random variables (e.g. FA= 5 FA /ng) reduces their

i=1
uncertainty and approximately also skewness by a reduction factor, 1/,/n. , but not bias

and heteroscedasticity. When, however, averaging is performed only on the DWIs and
when all residual variables are derived from these averaged magnitude signals we find that
also biasisreduced in all variables. These results are only dlightly modified when, instead
averaging, the singular value decomposition on the 3*ng DWIsis applied to derive voxel
wise an averaged tensor. For DWI averaging with ng =15 relative bias and skewness for
an experiment with b=900 s’/mm? and avoxel volume of 5 mm?® are presented in panels

a) and b) of Fig. 2C. The uncertainty of Fig. 2A isreduced by 1/ \/E , heteroscedasticity
remains unchanged. The bias effects shown in panel @) of Fig. 2C can be further reduced.
Assume, we have after 15 replications reasonable estimates of | S, |, then the Rician
bias correction relating MNR=| S, |/So \/n: to SNR=| S, |/so, see Fig. 2C panel d),
can be applied viae.g. tabulated interpolation. All variables which are derived from these
estimates of | S, | should then asymptotically, like | S, | itself, be essentially
unbiased. See the relative biasin panel c) of Fig. 2C after an application of this bias

correction. A precise bias correction is limited by the reduction factor, \/n, , of the

standard deviation of the mean value distribution , s (|Smean|)=S/ \/E , see Fig. 2C panel

d). In case of low SNR's and too small ng this uncertainty can create poor mean value
estimates which correspond to undefined signals with |S|<0. For a SNR» 1 at least a factor
Nr=15 is necessary, see Fig. 2C panel d). The uncertainty of | S, | can be reduced by
additional spatial smoothing which produces an effective rise of ng . To estimate the
improvement, assume for simplicity strict homogenuos diffusion within the ne-1 nearest
voxels surrounding the voxel of interest in the signal and perform unweighted spatial
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averaging on the mean value of the DWIs based on ng experimental replications. The

results would be equivalent to those for Neeciive=NR* NF EXPeErimental replications.

In another type of data acquisition, minimal experiments are repeated with different b
values. This arrangement goes back to Basser [4.1]. The system of Stejskal Tanner
equations is solved for the mean tensor by multivariate linear regression, where a special
weighting viathe reciprocal error variance of the DWIs isproposed [4.1]. Severa
simulations for different b value combinations with maximum b=900 mm? were
performed. We found in all cases more regular distributions for the tensor fields when the
regression was performed without the weighting proposed, the introduction of the weights
increased in all cases bias and skewness. An example for avoxel size of 5 mm?® and values
b,=500, b,=700 and bs=900 s/mm? without weighting is presented in Fig. 3A, the
corresponding tensor components d;, di2 and dy, are shown. To perform additional spatial
smoothing a transformation to virtual DWIs based on this mean tensor is convenient, as
the noise levelsin these DWIsisreduced like in the mean tensor. Thisideawas first
proposed in the Proceedings of MICCAI 2001 by Hahn et a [28]. A transformation to
virtual DWIs viaEq.(2) with b=(b;+b,+b3)/3 and the same gradients like in the “real”
experiment produced in all cases which were studied DWI distributions with essentially
better smoothing prerequisites than those of the tensor components, see Fig 3A for a

typical comparison between tensor and virtual DWIs.

In case of amultigradient experiment with a constant b value the multitude of DWIs
reduce noise voxel wise in the tensor calculated viathe singular value decomposition. In
addition, for every diffusion direction some of the gradients will project ADC swith
relatively high magnitude signals or high SNR'’ s thus reducing bias effects. The
multigradient approach for the diffusion model of Fig. 2A isillustrated in Fig. 3B, where
45 uniformly distributed gradients with cond= 1.4 are applied. The number of DWIs
agrees with that of the experiment presented in Fig. 2C. Therelative biasin panel a) is
strongly reduced, compare panelsa) in Fig. 2A,C and Fig. 3B. Skewnessisin general
comparable with that of the replicated minimal experiment, see panelsc) in Fig. 2C and
Fig. 3B, however the skewness of the angle is essentially reduced due the high angular
resolution. A low relative bias could be achieved already by application of only 15
uniformly distributed gradients, however, for low skewness 45 gradients are necessary.
The second moments, see panels b) and d), in Fig. 3B are close to those of the experiment

presented in Fig. 2C, they are mainly determined by the number of DWiIs.
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conat=10

0.2

const=10 - const=10

Fig. 3: Fig. 3A presents the tensor components for an experiment with b=700, 800 and 900 smm?and a
voxel volume of 5 mm?®, for more details see text. Else the virtual DWIs, inverted with b=700 ¥mm are
shown. Fig. 3B presents the variables indicated in the legend for a multigradient experiment with 45
gradients, b=900 mm? and a voxel volume of 5 mm®. Fig. 3C shows the tensor components derived by
singular value decomposition and the virtual DWIsinverted with 3 gradinets and cond=1.4. In Fig. 3A-C
panels a)-d) show relative bias, uncertainty, skewness and heteroscedasticity. Fig. 3D presentsin all panels

the relative bias for simulations with very low SN Rl [ZL 5] , with b=900 ¥mm? and avoxel volume of 2.5

mm?® Panel a) shows results for aminimal gradient set (cond=1.4) with 1 replication, panel b) for 15
replications, panel c) like b) but with consecutive bias correction. Panel d) presents multigradient
experiments with 45 and more gradients (cond=1.4).
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With respect to further spatial smoothing, the situation is ambiguous. Noise isonly
reduced in the tensor components and in the derived variables. Though their biasis
practically zero the further conditions for mean value estimation via spatial smoothing are
at least not optimal. Skewness for d;, and | 1 can become effective, heteroscedasticity for
a, FA, | 1 and dy», see panels ¢) and d). On the other hand, the relative noise level or
inverse SNR of theindividual variables, see panel b), islow, so that the filter bias caused

by smoothing of any variable may be of second order.

The situation could be improved in principle by application of more gradients or by some
replications of the whole experiment. An introduction of virtual DWIs with low level
noise, similar to the method applied in multi b value experiments above, see Fig. 3A, only
partially improves the situation. To demonstrate this, the tensor resulting from the singular
value decomposition for the 45 DWIsis transformed to 3 DWIs by avirtual experiment
with only 3 gradients, with cond=1.4 and the same b value asin the “real” experiment.
These DWIs have typically alow noise level, see panel b) in Fig. 3C, are only slightly
biased like the tensor coefficients, see panel a), are more symmetric than the tensor, see
panel ¢), but increase heteroscedasticity compared to the tensor, see panel d). possibly
this would be reasonable prerequisites for an adaptive filter, like that of Polzehl [9].

To study the situation for very low SNR, in the panels of Fig. 3D the relative biasfor a
b=900 s/mm? experiment with avoxel volume of 2.5 mm?®is presented, the corresponding
SNR range is approximately 1-5. In panel @) one minimal experiment with cond=1.4 is
applied, the corresponding bias reduction in panel b) is due to 15 replications and DWI
averaging. Thisresidual biasis further reduced, see panel ), by the bias correction
described above. Performance of a multigradiend experiment with 45 uniformly
distributed gradients, cond=1.4, produces aless perfect bias reduction, see panel d).
Remarkable is the fact, that this bias could not be further reduced by increasing the

numbers of gradients.

In experiments with low SNR noise can produce large fractions of voxels where the tensor
violates positive definiteness and can no more be interpreted as a quantity describing
diffusion. Especially in regions with large ansiotropy the smaller eigenvalues are close to
0 and frequently become negative by noise distortions. It was proposed by Ahrenset al
[29] to constrain the Eigenvalues positive within the least square algorithm which derives
voxel wise amean tensor. The presented combination of voxel wise and spatial
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smoothing offers an aternative solution to this problem. In the simulations of experiments
with b=900 ¥mm?and voxel sizes 2.5, 3.3, 4, 5.3, 8 and 16 mm?®, the fractions of negative
definite tensors were .23, .19, .15, .11, .05 and .03 when situations with atrue diffusions
FA>=0.8 were considered. After voxel wise denoising of the DWIs without any
discrimination between “negative’ or “positive” voxels by 10 (effective) replications,
these fractions reduced well below 103, A comparable reduction was achieved by
application of multigradient experiments with 10 gradients.

SUMMARY: The aim of the presented study was to explore the possibility of spatial
filtering on DTI variablesin low SNR situations. It was exemplified, that for low SNR,
the distributions of the DTI variables are those of spatially varying non Gaussian random
fields which in general conflicts the basic demand of spatial smoothing for uniform noise
close to Gaussian. Thisfeature is characteristic for the different experimental
arrangements which were simulated. This comprises the following arrangements: minimal
experiments with low and high b values, replications of such experiments with constant
and different b values and multigradient experiments. The local variability of the
distributions depends in a complex way on basic system parameterslike e.g. the angles
between local diffusion and the measuring gradients of the individual experiment.
According to the presented analysis and in agreement with earlier case studies published
in severa proceedings articles by Hahn et al [28, 30, 31], it seemsthat for low SNR only
the DWIs offer a possibility to bring the advantages of spatial smoothing into the game.
Their Rician distributions are well understood, scale with the experimentally well defined
MNR, offer asimple bias and variance correction and smoothly fuse with increasing SNR
into Gaussian distributions. These properties are not the optimal prerequisites for spatial
smoothing, but it is possible to adapt nonlinear filtersto DTI in such away, that a
reasonable quality for spatial DWI denoising can be achieved, see next chapter. For
DWIs even with very low SNR a good bias reduction could be derived for model
situations, see Figures 2C and 3D, where replications of minimal experiments with
constant b values are coupled to ideal and ssimplified spatial smoothing, postprocessed by
abias correction. More realistic validations of this strategy will be presented in the next
chapters. Note, that voxel wise denoising by experimental replications is an important first
step asthe quality of the edge resolution in spatial smoothing depends on the noise level.
Sometimes such replications are performed with different b values which, by multivariate

regression, lead to voxel wise denoised tensor coefficients. Asis exemplified in Fig. 3A
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and by numerous simulations within the present model, the prerequisites for spatial

smoothing can be improved considerably by a backtransformation to virtual DWIs.

Recently discussed multigradient experiments pose a more subtle situation. Such
arrangements reduce bias effectsin al variables, except DWIs, for low SNR quite
effectively with increasing numbers of gradients, see Fig. 3B. But the higher moments are
still not optimal for further spatial smoothing. In very low SNR situations however, see
Fig. 3D panel d), these bias effects could not be arbitrarily reduced by an increasing
number of gradients. Due to the high angular resolution in this arrangement the angleis an
exception and has an unbiased and symmetric distribution which may be, together with
the reduced noise level, sufficient for spatial smoothing. A backtransformation of the
tensor coefficientsto virtual DWIs, see Fig. 3C, improves the situation only partially, as

heteroscedasticity isincreased compared to the tensor.

In data with low SNR appreciable fractions of the voxels violate the condition of positive
definiteness for the tensor, which is a prerequisite for its diffusion interpretation. Our
model simulations indicate, that already for a moderate number of effective replications or
multigradients the situation isimproved essentially due to the convenient bias reduction in
the Eigenvalues. In this context the possibility of a sorting bias for noisy Eigenvaluesis
frequently discussed in model simulations, seee.g. [13, 4]. In our simplified model this
effect could not be studied as the diffusion is effectively two dimensional and therefore
the Eigenvalues are always sorted correctly. However, the mentioned bias reduction

should also reduce these effects in true three dimensional situations.

For medium SNR the results presented in Fig. 2B exemplify that the proposed strategy for
gpatial smoothing is still convenient. According to Rice, the DWI distributions are, among
all variables, optimal for voxel wise and spatial smoothing. This conclusion is supported
by adifferent investigation from Anderson [19] who studied noise effects on bias and
variance in Eigenvalues and Eigenvectors for SNRs from approximately 20 to 100 by
perturbation theory and simulations. For SNRs around 20 averaging of DWIs by
experimental replications is recommended to reduce noise effects. For higher SNRs
Anderson’ s results imply an equivalence between DWI and tensor averaging. Thisisin

line with aproposal by Pgjevic et a [12] who apply B-splines to obtain a continuous
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representation of the tensor coefficient fields for high SNR data. This method can be
regarded as a special variant of spatial smoothing applied to the tensor fields.

2.3 A nonlinear Filter

Nonlinear spatial smoothing or edge preserving regularization is still an active field of
research in statistics and image analysis, see Winkler et al [8] for areview and for a
foundation of such filters on Bayesian concepts. We propose to apply a chain of Sigmafilters,
which goes back to Aurich [23], and estimates the mean of a noisy scalar intensity function

f(x), xI R", n=dimension of space. The chain iterates nonlinear filters which combine a

spatial window, F , and an intensity window, Y . The corresponding parameters vary
according to special rules by which edge detection and generalization or smoothing quality
are balanced. After the presentation of the standard version, several new modifications which

are convenient for spatial DTI filtering will be introduced.

Onefilter step is defined by :

a FeyYEm fonfm
Fhmo f (X) " Neighborhood of x (4)

a  Fe)YE®, )

yi Neighborhood of x
. v A2 o2
with F (x,y) =g <7

and Y (f(X), f(y)) =g - o7/t

it' sk iterations are defined by :

X =FT o oRIoRM e f() ()

The number of iterations, k, the spreading factors of the windows, ¢ and d, and the initial
width of the spatial window, h, are regarded as parameters. Theinitia intensity window width

is me3*standard deviation of noiseon f .
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To enable an adaptive application of the filter for the reader, a short presentation of the basic
parameterization strategy will be given. Regard an intensity step H in an elsewhere constant
function of space which is corrupted by Gaussian noise with standard deviation s. The edge

to noiseratio, ENR, is given by
ENR=H/2s (6)

lterating the chain k-times reduces s by 1/a* and allows for large samples an edge

resolution down to

ENR=1/a“ 7)

where a > 1 isaspeed factor determining the parametersc, d and h via:

Vaa?
2Vp

Frequently k ist chosen such high that the filter reaches its fixed point, i.e. that further

c=%a?  d=1/a andh =

* smallest gridwidth where n=dimension of space.

iterations do no more change the results. Due to the nonlinearity of the chain, this
parameterization could be justified only for stepwise constant signals with Gaussian noise, see
MUhlhaus [32] for more details. As DTI magnitude signal's combine discontinuities with
curvature * 0, possibly hide edges of the diffusion tensor field, see chapter 2.1, and as their

noise is Rician several modifications of this basic procedure are introduced.

In Rician distributions, for low SNR s =s (MNR), therefore a heteroscedastic m=3*s (MNR)

isintroduced into Y . Increasing k and a increases the edge resol ution capacity, but, favoring
estimates with curvature=0, it reduces the ability to approximate curved functions. Therefore
a convenient balance suited for DTI data must be found by data or model validation. A further
improvement of the generalization properties can be achieved by the use of f (x) instead of

f. 57" (x) inthe last iteration, see Winkler et al. [8]. Asthe present filter produces finally an
estimate of the mean value of the magnitude signal, the Rician bias correction should be

applied for low SNR'sto the resulting ™" ().

In Fig 4 applications of this modified filter chain to smulated one dimensional noisy DWIs

are presented in panels a), b) and ¢). Denoising of functions with two different shapesis
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performed with the same parametersk=4 and a = /2 to demonstrate robustness of the
method. The intermediate and final filter results of the iterations are shown. The final mean
value estimate of the chain (yellow) is bias corrected (violet), the corresponding true model is
indicated by black lines. In panel @) a sample size of 500 pointsis applied, in panel b) the size
equals ngx500. Note the improvement of generalization for ng=4. Practically the same results
asin panel b) are achieved, when a sample of 500 points after voxel wise DWI averaging by
Nr=4 is applied. Discontinuities are already well reproduced in panel @). Panel ¢ shows an
application to step wise constant signals. The transition to nk=4 , not shown, improves the
generalization again but not the resolution of the step at ENR=1/2. To achieve that, an
essentially higher ng would be necessary. In panel d) alinear Gaussian filter is applied to the

Nr=4 situation. The blurring effects at the edges are inherent to linear spatial filters.

Due to the robustness of the filter construction, the weights can be further modified to model
peculiarities of DTI data. E.g., the spatial windows, F, which are isotropic Gaussiansin Eq
(4), can be adapted in their shape to the diffusion ellipsoid or tensor of the central voxel, d(x),

by polarized Gaussians.
— o (- Y)TLH0(x- y)/2
F (Xv y) =€ (8

The covariance matrix, L (X) , is derived from the raw or partially smoothed tensor, d(x), by

L(X) =d(xX) h%c*?/det(d(x))"" )

where the scaling factor is chosen in such away, that the volumes of isotropic and
anisotropic spatial windows are identical for every iteration, k, to conserve the maximal
sample size. This modification improves the isotropic window of Eq. (4) in situations were
the local diffusion ellipsoid reflects the alignment of the neighbouring fibers, like e.g. in the
pyramidal tract.
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Fig.4: Denoising of magnitude signalsisillustrated. On the data points of panels a),b),c) the nonlinear filter
chain is applied. The results of the consecutive iterations (k=4) are given by blue, green, red and yellow curves,
the final bias corrected approximation is violet. True signals are indicated by black lines. The individua graphs
give signal to noise ratios (SNR) versus space coordinate (x) and edge to noise ratios (ENR) at discontinuities. In

panel d) alinear Gaussian filter followed by the bias correction is applied. The sample sizes are ngx500.

It was demonstrated in chapter 2.1 that DWIs can hide edges which separate different
information units. To reduce this possible cause of blurring also the intensity windows can be
modified. For example one could use those of Eq. (10), instead of thosein Eq. (4),

Y (f(x), f(y),var) =Y (f(x), f(y)* Min[e, e, e;, €, €, 6]

with e = 1- 1/(1+ e b (|var; (x)- var (y)|- step))
b = steepness of sigmoid e
step = edge defining distance

(10)

for the functions var, e.g. the DWIs can be used. For convenient steepnes, b, the function

Min[e, e, e, €, 6,6,] iscloseto unity for |vari (X) - var, (y)| < stepand closeto zero else. The

modification in Eq. (10) introduces information about the localization of the edgesin all
DWIswhen a special DWI is denoised.
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In both modifications information from smoothed data is convenient. Therefore, in realistic
situations a two step procedure should be performed: first, apply the filter chain with Eq. (4),

in asecond run use Eq. (8) and (10) where d(x) and var,(x) from thefirst run are involved.

To cover the whole brain, in DTI experiments usually anisotropic voxels with an enlarged
grid in axia direction are applied. It would be more convenient for spatial smoothing to use
isotropic voxels which increase the effective space dimension, n, and lead to an improvement
of the generalization quality. Thisis due to the more symmetric grouping of the data enabling
areduced spreading or better localization of the spatial windows, seecand h .

2.4 Some Results

To validate the filter and the strategy proposed in chapter 2.2 a quasirealistic model is
introduced. It is based on an experiment with 1.5 T, using a diffusion weighted EPI sequence
with 6 noncolinear gradients and 4 b-values, b=400, 500, 700 and 880 smm? . The voxel size
is 1.9x1.9x4 mm?® to cover the whole brain, see[28] for further details. The smoothed and
postprocessed tensor is used as “gold standard” for further filter tests. In aregion around the
corpus callosum of the size 71x41x12 voxels the model tensor is transformed to the DWIs by
Eg. (2), noiseisintroduced like in chapter 2.2 and three dimensional versions of thefilter are
applied in this region. To measure the difference between model and noisy or smoothed DWI
the spatially averaged standard deviation with respect to the model is calculated and presented
in Table 2. To exclude boundary effects of the filter only 5 axial slices areinvolved in this
analysis, their middle slice is presented in Fig. 5. Also voxels with negative Eigenvalues and
within the ventricles are omitted from the error analysis, see black voxelsin left panel of
Fig.5.

At present, the filter is tested in two variants. First, Rician noise and the bias correction are
introduced and coupled with Eq. (4), seesmy in Tab. 2.
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Fig. 5: Left panel: for orientation the FA-map for an axial slice of the gold standard model without noiseis
presented; voxels within the liquid and with negative Eigenvalues are excluded (black). Right panel shows a
corresponding DWI-map for the gradient [0,1,0]; excluded voxels are projected to zero.

Then, Eq. (4) isreplaced by Eq. (8) and Eq. (10) based on d(x) and var, = DW of the gold
standard model, see sy in Tab.2. The noise levels s=60, 90 and 120 are applied to cover

medium and low SNR situations. In Tab. 2 asummary of thefilter testsfor every DWI is

presented.
s=60, Spm1 [S=60,Sm2 |5=90, Spm1 s=90, Sm2 s=120, sp1 | S=120, Sm2

DWI_(1,0,0) |27 23 36 31 42 41
DWI_(0,1,0) |28 24 36 32 44 41
DWI (0,0,1) |29 24 40 32 47 41
DWI_(1,1,0) |29 23 35 31 42 4
DWI _(1,0,1) |29 23 37 31 43 41
DWI_(0,1,1) |30 24 37 31 44 4
Mean ng 4.4 6.5 6 8 7.5 8.6

Table 2: Spatial means of the deviations between true and noisy (s) or true and smoothed DWIs (sy) . Two filter
variants are applied : M1={k=3, a=2, Eq. (4), Ricianvariance, bias correction}, M2={M1, but instead of Eq.
(4) Eq. (8) and Eq. (10) based on the true model are applied}. In the last row mean numbers of experimental
replications which produce equivalent denoising effects are given.

Asisevident from the last row in Table 2, spatial filtering is quite effective and can replace

on average 4-8 replications of experimentsin the SNR region investigated. The improvement
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between sy1 and su2 is mainly due to Eq. (10) which reduces blurring between anatomically

separated regions.

An application of the filter to very recent low SNR datais partially presented in Fig. 6. The
experiment was performed by members of a group guided by P.Narayana [33]. The data were
achieved by a 1.5 T scanner, with ab value of b=1000 sec/mm? , the voxel sizeis 1x1x1 mm?®
. The data cover avolume of 256x256x28 slices. The gradients applied are {[0,.526,-.851],
[0,-.526,-.851], [.526,-.851,0], [.526,.851,0], [-.851,0,.526] and [-.851,0,-.526]}, only one
replication for b=0 and b>0 is available up to now. The local SNR of the datais partialy very
low, the spatial mean SNR is approximately SNR » 3. To avoid the introduction of
approximation artifacts the three dimensional filter was applied to the DWIsin the version
based on Eq. (4), k=3 and a=2. Rician heteroscedastic variance and the bias correction are
included. The FA mapsin Fig. 6 demonstrate the high efficiency of the filter for isotropic
grids even at very low SNR. The structuresin the right panels are essentially in agreement
with anatomic knowledge. It is evident from the Figures that the results could not have been
achieved by a direct nonlinear smoothing of the raw FA maps, shown in the left panels. Also,

an enormous bias would be the result of such a strategy.

The present investigation is still somewhat preliminary. More test results are desirable. As Eq.
(8) and Eq. (10) improve filtering of different featuresin DWI data an investigation of their
specific properties would be interesting. Also the effectiveness of Eq. (10) without any model
knowledge remains to be tested. Further, isthe bias correction a critical point. When the mean
value estimate is below the -in practice- unknown true value, due to small non representative
noisy samplesin the filter windows, the bias correction can underestimate the true signal

appreciably. Convenient strategies are to be worked out.
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Fig. 6: Axial FA-maps of the data with isotropic voxels (see text), voxel volume=1x1x1 mm?. Left panels, FA
of raw data, right panels, FA based on smoothed DWIs, the filter processis performed with heteroscedastic
Rician variance and bias correction and Eq. (4).
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