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Abstract: Though low signal to noise ratio (SNR) experiments in DTI give key 
information about tracking and anisotropy, e.g. by measurements with very small voxel 
sizes, due to the complicated impact of thermal noise such experiments are up to now 
seldom analysed. In this paper Monte Carlo simulations are presented which investigate 
the random fields of noise for different DTI variables in low SNR situations. Based on this 
study a strategy for spatial smoothing, which demands essentially uniform noise, is 
derived. To construct a convenient filter the weights of the nonlinear Aurich chain are 
adapted to DTI. This edge preserving three dimensional filter is then validated in different 
variants via a quasi realistic model and is applied to very new data with isotropic voxels of 
the size 1x1x1 mm3 which correspond to a spatial mean SNR of approximately 3. 
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1 Introduction 

 
 
 
Thermal or Johnson noise in Diffusion Tensor data is one of the obstacles which obstruct  

the evaluation of experiments with low Signal to Noise Ratios (SNR). The Rician family 

of distributions for the Diffusion Weighted magnitude Signals (DWI), see [1,2,3 ],  is 

modified non linearily to the noise distributions of the tensor coefficients and to those of 

further derived  variables, like anisotropy or main diffusion directions, which describe 

anatomical details of nerve fiber bundles. Mainly due to these nonlinearities noise in 

derived variables has a very complicated structure. 

 
To increase the SNR`s [2] of the variables, denoising is frequently performed  voxel wise. 

To this end, experiments with the minimal number of necessary gradients and perhaps 

different b values [4] are repeated. The tensor coefficients are then derived by multivariate 

linear regression on the log linearized DWI`s via the Stejskal Tanner equations [4.1]. In a 

more recent experimental setup, multi gradient experiments [5,6,7] with appreciably 

enhanced numbers of gradients, frequently uniformly oriented in space, are applied. The 

tensor is here derived by a voxel wise singular value decomposition [7].  In both cases, the 

multitude of experiments reduces noise effects in the tensor and in derived variables. 

Scanning time and subject motion [4] limit these procedures.  

 

A complementary smoothing technique is offered by spatial smoothing where, for a single 

data set, small samples of neighboring voxels are used to estimate the mean of a local 

variable within this sample. Spatial smoothing is rather restrictive, care must be taken to 

avoid the introduction of bias effects. Such bias or blurring effects can be introduced by 

mixing information from different objects, like e.g. by averaging noisy diffusion 

directions from spatially close but different axon bundles. As will be shown, the 

application of convenient nonliner filter constructions can reduce blurring essentially. 

Most nonlinear spatial filters, see for a recent review [8] presuppose that the noise 

distributions within the  neighborhoods involved are homogenous and that they are at least 

close to a Gaussian shape. Only recently a nonlinear filter was developed, which can be 

applied to situations with varying variance [9].  
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At present spatial smoothing or regularization in DTI is discussed for different random 

variables, like e.g. the magnitude signal or DWI [10], the tensor field [11,12], the 

Eigenvalues and anisotropy coefficients [13,14,15] or the principal diffusion directions 

[16,17,18]. Applying smoothing methods directly to the variable of interest has the 

advantage to restrict on low dimensional fields of the variable minimizing computer time 

and to deal with interpretable quantities supporting special adapted regularization 

methods, like in [16,17,18].  On the other hand, for some of these variables, like 

Eigenvalues, anisotropy coefficients or main directions already in case of voxel wise 

smoothing bias effects are reported. These are investigated in model calculations for 

SNR`s above 20 by perturbation theory [19] or above approximately 5 by Monte Carlo 

simulations [13, 14, 20]. The results indicate that the voxel wise statistics of random 

variables involved in a DTI analysis is in general at least for medium SNRs 

(approximately 5-15) and low SNRs ( <5 , where the Rician properties become essential ) 

no more Gaussian  and may be better described by skewed distributions [13]. The fact, 

that bias and variance in simulation studies increase  with 1/SNR  [14,19,20], further 

indicates that these distributions presumably change with DWI (or diffusion) from voxel 

to voxel and form a specific random field for every variable in the brain. This is also 

exemplified by Monte Carlo simulations of Skare [7], which show that bias and variance 

of anisotropy depend on the, in practice unknown, angles between local main diffusion 

and the diffusion gradients applied.  

 
In spite of their difficult statistical properties, the analysis of DTI experiments with low 

SNR`s is important, as these experiments hide key information to several central topics. 

To reduce partial volume effects which can e.g. cause “phantom connections” [4] between 

anatomically separated  fiber tracts, experiments with small voxels which produce, due to 

their low signal intensities, low SNR`s are desirable. Also recent experiments with high b 

values [21] which separate fast and slow diffusion fractions lead to variables  with low 

SNR. In addition, scanning time and artifacts due to high numbers of experimental 

replications or in multigradient experiments could be reduced, when spatial smoothing of 

low SNR data could reliably complement voxel wise smoothing.   

 
To this end, in the first chapter of this work DTI data are analysed for typical features 

which may help to construct convenient spatial filters. The main results can be 

summarized as follows: Discontinuities, e.g. in the anisotropy field, favour the application 

of nonlinear, edge preserving filters, like those proposed in Parker [10] to reduce blurring. 
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On the other hand, as the fields of the variables have, aside from the edges, also extended 

regions with appreciable smooth curvature, the linear approximation quality of the filter is 

also important. This is a non trivial observation, as most edge preserving filters, like the 

diffusion equation applied in [10], the M-smoother [22] or the Aurich chain [23],  achieve 

optimal edge resolution only for a restricted class of functions which change stepwise 

between constant regions. These filters produce for a parameterization adapted to this 

situation only weak approximations in regions with appreciable smooth curvature. It is the 

main goal of this paper to establish a new spatial filter which combines edge detection 

with a good generalization quality for curved functions.  

 
As this filter shall be applicable in low SNR situations, it is necessary to find out the 

variables with the most regular distributions close to Gaussian. Therefore, a special Monte 

Carlo study is performed to investigate for a range of DTI variables and for different 

experimental designs how their distributions comply with these basic statistical demands 

of spatial smoothing. Low and high b value experiments with minimal and multigradient 

equipment are involved. Most attention is payed to low SNR situations, however, the 

smoothing strategies found are also convenient for medium and high SNR. Starting with 

the fields of the DWIs, the random fields of the tensor and that of derived variables like 

Eigenvalues etc. are investigated for a simple diffusion model with realistic parameters. In 

case of minimal gradient experiments with constant b values the Rician distributed DWIs 

offer the most regular field of distributions in all cases studied. For multigradient 

experiments a more ambiguous situation is apparent. In contrast to other variables, the 

angle of the main diffusion shows a regular distribution field close to Gaussian even for 

low SNR due to the improved direction resolution. For replications of minimal 

experiments with different b values and for multigradient experiments a novel “back” 

transformation of the tensor, derived from the multitude of experimental DWIs, to a 

minimal set of virtual DWIs with approximately Gaussian statistics is discussed.   

 

Based on this analysis a new three dimensional nonlinear spatial filter for scalar fields is 

proposed. Its construction is based on the Aurich chain of sigma filters [23]. This chain, 

originally constructed for constant signals seperated by steps and corrupted by Gaussian 

noise, is modified to include the conditions of discontinous signals with high curvature 

and with Rician noise. The construction is applicable to the individual spatial DWI fields, 

but with minor modifications also to fields of other variables. Edges in the spatial fields of 

the variables are regarded as information about anatomic boundaries between different 
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fiber bundles or other organic unities. As the DWIs are derived by projections of the 

diffusion tensor via the gradient directions not necessarily all edges of the tensor field are 

present in every DWI field. Therefore, the weights of the filter for e.g. a DWI component 

are extended to incorporate this information preventing wrong information mixing or 

blurring. The filter application is performed fully automatic, the only input parameter is 

the standard deviation of noise, which can easily be derived from the background of the 

images. The filter is fast and both numerically and statistically robust. This filter is 

validated in low SNR situations by a quasi realistic “gold standard” model, which was 

achieved on the basis of measured DTI data which were consecutively smoothed by a 

method published in [28].  Finally, to illustrate the effectiveness of the filter it is applied 

to very new data which are measured on an isotropic grid with a voxel volume of          

1x1x1 mm3  and a mean 3SNR ≈ . 

 
 

 
 
2 Theory 
 
 
 
2.1 Noise, Edges and Curvature  
 
 
To illustrate typical features in DTI  data, we present in Fig. 1 some data for a region around 

the corpus callosum within an axial slice. To reduce noise, three replications of a minimal 

experiment with the gradients [ ] [ ] [ ] [ ] [ ] [ ]{ 1,0,1 , 1,0,1 , 0,1,1 , 0, 1,1 , 1,1,0 , 1,1,0 }/ 2− − −  

under clinical conditions (1.5 T, voxel size: 1.9x1.9x4 mm3) for the b value b=880 sec/mm2 

were performed. For b=0 two replications were applied. After averaging the replicated 

magnitude signals the tensor is derived via the Stejskal Tanner equation , see Eq. (2).  In the 

left panel of Fig. 1 the tensor field component 11( )d x
r

 is presented, see Eq.(1), in the right 

panel the mean DWI, ( )j mean
S x

r
, for [0, 1,1] / 2jg = −

r
.  A closer inspection of the data still 

shows appreciable noise with spatially varying variance, compare e.g. in d11 the yellow 

valleys of the pyramidal tracts and the green bow of the corpus callosum region in front.  

Especially the region around the corpus callosum shows steep intensity variations due to the 

ventricles, see the red-blue maxima of water diffusion in d11. Also in |S| the water diffusion is 

separated from that in white matter by edges. As in |S| large intensities correspond to small 

diffusion also the transition from corpus callosum to neighbouring white matter tissue is 
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frequently stepwise, see e.g. the steep red-blue bow of the corpus callosum DWI in front. This 

is related to a strong variation of the local anisotropy or Eigenvalues when the corpus 

callosum is left within white matter. In contrast, also regions with smoothly curved intensities 

are apparent in both panels. This feature may be more obvious in Fig. 5, where a smoothed 

DWI is presented. 

 

 
 
Fig. 1: Left panel shows d11 on an axial slice around corpus callosum. Red-blue maxima are mainly due to high 

diffusion within the ventricles. Right panel shows the mean DWI for the gradient [0,1,-1]/ 2  in the same 

region, here the maxima are mainly due to the signal from the corpus callosum diffusion. The data are denoised 

voxel wise via DWI averaging based on two replications for the b=0 experiment and three replications for b=880 

sec/mm2,  red arrows indicate parts of corpus callosum and of pyramidal tract, the few extremal voxels in the 

corners are outside the brain. 

 

The presence of steep variations or edges in DTI data is further supported by the following 

observation:  According to empirical knowledge about the streams of axon tracks [24, 25] it is 

evident that neighbouring nerve bundles can have strongly different main directions in white 

matter. This has the consequence that the Eigenvectors in regions with different fiber streams 

change in a discontinous way. As the tensor is real and symmetric, the tensor field can be 

formulated as a function of the Eigenvalue and Eigenvector fields ( )i xλ
r

 and ( )i x
r

 in braket 

notatation, where the ket, ... , is a three dimensional vector, the bra, ... , its transpose and 

... ...  a scalar product: 

 



 7

11 12 13 3

12 22 23
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
i

i

d x d x d x
d x d x d x d x x i x i x

d x d x d x
λ

=

 
 = = 
 
 

∑

r r r
r r r r r r r

r r r
 (1)  

    
This representation implies that spatial discontinuities or “steep” variations in the 

Eigenvalues or Eigenvectors map to the tensor field and to other derived quantities like 

the anisotropy coefficients. They will in general also transform to the DWIs which are 

connected to ( )d x
r

 by the Stejskal Tanner equations, see Eq. (2).   

3

1

2
( ) ( )

0( ) ( ) * *
i j

i

b x i x g

jS x S x f e
λ

=

− ∑
=

r r rr r
    (2) 

 
Where b is the b value of the experiment, f a volume fraction, which is only for slow 

diffusion components different from unity, jg
r

 a diffusion gradient and 0 ( ) , ( )jS x S x
r r

  

are the magnitude signals. However, as the so called ADCs ,
3 2

1

( ) ( )i j
i

x i x gλ
=
∑ r r r

 ,  are 

dependend on the angles between ( )i x
r

 and jg
r

,  discontinuities of ( )d x
r

 are not 

necessarily present in all DWIs, ( )jS x
r

. Assume e.g. two diffusions in neighbouring 

voxels wich change discontinuously their main directions , 1( )x
r

, but keep the same angle 

with jg
r

. In addition, assume that the two diffusion ellipsoids have identical shapes and 

are circular in the planes spanned by 2( )x
r

 and 3( )x
r

. Rotating for every diffusion 

2( )x
r

 around 1( )x
r

 into the plane spanned by 1( )x
r

and  jg
r

 produces identical ADC`s 

for both diffusions and due to 0 ( )S x
r

 , DWIs which change continuously between both 

voxels. On the other hand, at least one ( )jS x
r

 must show any discontinuity which is 

present in ( )d x
r

, else the step could not be resolved by the projections of the gradients.  

 
 
2.2 The random fields of the DTI variables and spatial smoothing  
 
 
According to Jensen`s inequality for concave or convex transformations of random 

variables [26], bias effects like those discussed in the Introduction are to be expected for 

the nonlinearly transformed random variables of DTI. Case studies on the propagation of 

noise show that bias and variance in DTI variables increase with 1/SNR [14,19,20]. 
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Further, Skare et al demonstrate by model simulations that bias and variance of anisotropy 

coefficiants can depend on the angles between local diffusion and the diffusion gradients 

applied [7]. These results indicate that the random properties of DTI variables should in 

general be described by locally varying random fields. This can be substantiated by the 

structure of the Stejskal Tanner equations, see Eq. (2): The exact magnitude signals 

without noise, DWIexact , depend on the local angles between diffusion and gradients and 

on the local Eigenvalues or diffusion strengths. This dependence is mapped to the specific 

DWI distribution within the Rician family [2], determined by the SNR (= DWIexact / 

standard deviation of noise).  Superpositions of the logarithm of  noisy DWIs determine in 

minimal experiments the tensor coefficients and so carry over their local dependence on 

diffusion and gradients to the statistical properties of derived random variables, like 

anisotropy. In contrast, a spatially uniform Gaussian statistics for the field of a variable 

would be optimal for an attempt to apply spatial smoothing methods without running into 

poor mean value estimates or uncontrollable bias effects. In this context Monte Carlo 

simulations are performed to quantify the distribution properties in dependence of the 

SNR. The final aim of this investigation is to find variables which are suitable for spatial 

filtering in low SNR situations in the frame of different experimental arrangements.  

 
In the following Monte Carlo study noise propagation is simulated within a simplified 

model. The tensor describes a three dimensional cigar shaped diffusion which rotates with 

its main axis within the x-y plane of the lab system around the z axis, the tensor has the 

form:   

11 12

12 22

22
11 22 11 22 12

0
0

( ) 4
0 0

2

d d
d d d

d d d d d

 
 
 
 =
 
 + − − +
 
 

,  (3) 

 
where the element d33 is the smaller eigenvalue of the upper submatrix. As all unkown 

parameters are contained in the upper submatrix, the simulated measurements, quantified 

by Eq. (2), need to be performed only in the x-y plane. Consequently, for a minimal 

experiment only 3 diffusion gradients in this plane are necessary. The simplified model 

was chosen as neither Eq. (2) nor the tensor diagonalization depend essentially on the 

effective tensor dimension. Therefore, we can expect that the model is suited to reveal the 

typical statistical features of DTI variables. On the other hand, due to its simplicity the 
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model allows a more comprehensive study than more general models. In literature many 

three dimensional Monte Carlo case studies on the noise propagation in DTI can be found, 

see e.g. [7, 13, 14, 19, 20]. They treat experiments with medium and high SNRs.  Some of 

their results which are important for the present investigation are incorporated into the 

final summarizing discussion below.  

 
For fixed diagonal tensor coefficients d11 and d22  the off diagonal d12 is changed in 40 

constant steps within the interval  12 11 22 11 220.8* ,0.8*d d d d d ∈ −  . This interval is 

defined by the positive definiteness condition of the tensor and covers, without the factor 

0.8, all possible off diagonal diffusions. The factor is introduced to limit the ratio of it`s  

sorted eigenvalues 1 2λ λ>  to 1 2/ 10λ λ < , preventing unrealistic high anisotropy. Low and 

high b value experiments are simulated via the Stejskal Tanner equation (2) . For the first 

group of experiments b=900 s/mm2 and  f=1 are applied with the diagonal components 

d11=.00156 mm2/s  and d22=.00084 mm2/s to achieve a realistic mean diffusity of .00084 

mm2/s  [14]. For b=3500  s/mm2 the procedure of Clark et al [21] was used. There, the 

slow tensor component is fitted by a monoexponential model to the signal decay within a 

high b-value interval. The fraction, f, of the slow component is achieved by an 

extrapolation of high b-value data. The slow diagonal diffusion for the Monte Carlo 

simulation is defined to be d11=.0007 mm2/s and d22=.00035 mm2/s with f= .31. This is in 

agreement with the fraction and the slow three dimensional mean diffusity of  .00035  

mm2/s found in corpus callosum by Clark et al [21]. For both models, the fractional 

anisotropy FA per voxel is approximately in the range [.4,.9]FA∈ , the main diffusion 

directions scatter within a cone of 70 degrees around [1,0]. The b=0 s/mm2 signal was 

assumed to be |S0|=1000.  

 
In recent experimental arrangements the frame of minimal experiments is extended to 

more gradients. In this context, Jones [5], Papadakis [6] and Skare [7] discuss the 

propagation of noise from the DWIs to the tensor coefficients for higher numbers and 

varying directions of gradients. Skare proposes a condition number, cond , depending only 

on the gradient directions, which controls an error in the tensor components due to noise 

in the signals. In our simulations uniformly distributed gradient directions are applied 

which were proposed by Jones [5] with a rather optimal condition number, 1.4cond = , for 

a plane measurement. All applied gradient sets include the direction 12 [1,1] / 2g =
r

 which 

is used as reference projection in the graphical presentations.  
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To introduce Johnson noise, noise simulated by a complex Gaussian distribution  with 

standard deviation σ0 is added to the signals independently for every gradient direction, 

see e.g. Skare et al or Pierpaoli and Basser [13, 15] for a precise algorithmic definition of 

the procedure applied. Different noise levels with standard deviations σ0 are involved in 

the simulations. Experiments for b=900 s/mm2 are performed with σ0 = 30*n, with 

n=1…6. The slow diffusion component was investigated with σ0=15, 20  and 30. As a 

SNR=100/3 for the b=0 signal corresponds for a 1.5 T DTI scanner approximately to a 

voxel size of 2x2x4 mm3,  the voxel sizes investigated vary for b=900 s/mm2  

approximately from 2.5 to 16 mm3  and for b=3500 s/mm2  from 16 to 32 mm3.   

 
The Stejskal-Tanner equations are solved numerically for the tensor coefficients by the 

singular value decomposition, see [7] for details. This algorithm can treat both minimal 

and overdetermined experiments, where the number of gradients > number of tensor 

coefficients, with the same b values in all experiments. In case of different b values a 

multivariate linear regression, proposed by Basser et al [4.1] was applied. Finally the 

tensor was diagonalized to determine the eigenvalues and eigenvectors and to derive from 

them several variables. 

 
For different random variables, q , measures of bias effects and higher moments, nµ ,about 

the mean, qmean , are discussed and presented in Fig. 2-3.  In detail, the relative bias, 

( ) /q exact exactmean q q− , the bias uncertainty, 2 / | | / | |exact q exactq qµ σ= , the skewness, 

3
3 / qµ σ , and the normalized standard deviation of noise quantifying heteroscedasticity, 

/ max( )q qσ σ , are presented and discussed for the variables |S12|, d12, the 

eigenvalues 1 2 3λ λ λ> = , the trace 1 2 3

3
λ λ λ+ +

 and the fractional anisotropy FA, see  

Basser [27]. The angles, αexact, of the main exact Eigenvectors are defined as angles with 

[1,0] and are in the range ,
2 2
π π −  

, see below. The direction of a noisy main Eigenvector is 

defined only modulo π, therefore it is aligned to the exact Eigenvector before it`s angle, α, 

with [1,0] is calculated. To avoid singularities, the bias is quantified by 

( ) /exactmean constα α− , see Figures, the other moments for q=α are calculated like above. 

All variables are plotted versus the SNR, 12 0/exactS σ , varying with the diffusion coefficient 
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d12  . The quantity 12| |exactS  is derived by the gradient 12 [1,1] / 2g =
r

 from the model 

diffusion not distorted by noise.  A large number of Monte Carlo simulations was 

performed to explore the systematics in the distributions, typical results are presented and 

discussed. 

 

In Fig. 2 A, B, C results of b=900 s/mm2 experiments with three uniformly distributed 

gradients in the x-y plane (cond=1.4) are presented, Fig. 2D presents a minimal 

experiment for b=3500 s/mm2. The moments are derived via Monte Carlo sampling with 

50 000 iterations per parameter combination or model diffusion. Results for the voxel 

volumes 5 and 16 mm3 are  presented in Fig. 2A, C and Fig. 2B, D. The vertical bars at 

SNR=1.8, 3.8 and 11.3 indicate the transition d12 =0 mm2/s. On the left sides of these 

transitions the exact main diffusion components increase their angles with [1,0] from 00 to 

350 with decreasing SNR`s, on the right sides these angles decrease from 00  to -350   with 

increasing SNR`s. Anisotropy, [.4,.9]FA∈ , is roughly proportional to the magnitude of 

these angles.  

 

In the panels a) of Fig. 2 the relative bias of the variables defined above and indicated in 

the Figure legend is presented. To facilitate the interpretion of the angular bias instead of 

the relative, the absolute bias is presented in units: degree/constant, the value of constant 

is indicated in the Figure. As real experiments are performed frequently with small 

numbers of replications, the uncertainty or the standard deviation of the relative bias is 

presented in panels b) of Fig. 2 A, B, D. In case of the angle the quantity standard 

deviation(angle)/const is presented. As with respect to spatial smoothing, symmetry and the 

homogeneity of variance are important, in panels c)  skewness and in panels d)  the 

heteroscedasticity is presented in Fig. 2 A, B, D. These plots present the lower moments 

of locally varying random fields for the variables, when different model diffusions, d12,  

are identified with differently localized voxels. In Table I, for the sake of transparency, a 

numerical evaluation of these plots is presented. For the columns of variables the ranges 

of the plotted curves are given by :  “minimum / maximum”. Three consecutive rows in 

the Table correspond to one panel as indicated, these rows are ordered according to the 

labels A,B,D of Fig. 2. 

 

Due to the convenient condition number for the gradient set the relative bias effects in Fig. 

2A are quite small, see the first row in Table I. For a different gradient set, e.g. 
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{[1,0],[0,1],[1,1]}/ 2 , the bias in all variables is nearly doubled. However, the bias  

uncertainty, see 4.th row, deteriorates single measurements appreciably. The maximum 

uncertainty for FA is close to 50% and that of the angle close to 25°, which would 

produce severe errors in tracking algorithms, see Anderson [19]. In Fig 2B, see second 

and 5.th row, both are reduced due to the enlarged SNR. In all variables of Fig. 2A, except 

|S12| , skewness is appreciable and can become larger than that of a Rayleigh distribution, 

which has an approximate skewness of 0.6, see row 7. In Fig. 2B, see 8.th row, the 

skewness of d12, λ1, α and Trace comes close to 0.6. High skewness enlarges the risc of a 

non representative or outlying measurement appreciably, therefore spatial filters usually 

presuppose symmetric distributions. Constant variance is a further prerequisite of 

unbiased spatial smoothing. Heteroscedasticity in Fig. 2B can become even larger than 

that in Fig. 2A, see rows 10 and 11, the exception is again |S12|.  

 

Minimal experiments for b=3500 s/mm2  were performed for the voxel volumes 

16, 24 and 32 mm3 . See Fig. 2D and Table 1 for results with the voxel volume 16 mm3 . 

Due to the enhanced b value and the weighting factor the SNR scale is reduced compared 

to that of Fig. 2B and is close to that of Fig. 2A. The results in Fig. 2D and Fig. 2A show 

similarities in the uncertainty, skewness and heteroscedasticiy, see rows 4,7,10 and 6,9,12. 

The relative bias is however appreciably enhanced compared to Fig. 2A, see rows 3 and 1. 

 
 

12 12 1 2| |
) .01/.2 / .01/.06 .2 / .04 .02 / .18 .18 / .16 .01/ 0

0 / .02 / 0 / .01 .02 / .01 0 / .02 .02 / .04 0 / 0
0 / .8 / .3 / .03 .15 / .5 .2 / .08 .78 / .4 .2 / .05

) .1/ .6 .5 / .29 / .31 .3/1 .15 / .5 .3 / .8 .15 / .2
.05 / .2

S d FA Tr
a

b

λ λ α
−∞ + ∞ − − − − − −
−∞ + ∞ − − −
−∞ + ∞ − − − − − − −

+ ∞
.08 / .08 / .1 .1/ .3 .05 / .2 .08 / .23 .05 / .07

.2 /1.2 .3 / .2 / .3 .3 / .7 .15 / .45 .4 /1 .17 / .18
) 0 / .3 .8 /1.3 1.3/1.7 .8 / .1 .6 / .1 1/.1 .8 /1.

.01/.01 .3 / .6 .22 / .62 .35 / .2 .2 / .05 .4 / .42 .2 / .5
0 / .6 .6 / .8 1/1.3 .4 / .15 .52 / .15 .5 / .1

c

+ ∞
+ ∞

− − − −
− − − −
− − − − 5 .78 / .82

) .88 /1 .55/1 .65/1 .8 /1 .45 /1 .35 /1 .82 /1
.99 /1 .48/1 .54 /1 .7 /1 .4 /1 .35 /1 .72 /1
.68 /1 .68/1 .94 /1 .65 /1 .5 /1 .38 /1 .95 /1

d

 

Table 1 : Ranges of the curves presented in Fig. 2A, B, D. Minimum/maximum is given, else see text. 

 



 13

The presentation for the 5 mm3 and the 16 mm3 voxel simulations in Fig. 2 A, B, D, 

suggests the following conclusion : At low and mean SNR (nearly) every variable shows 

the feature of a locally varying random field. The deviations from Gaussian distributions 

increase with 1/SNR, the quantitative ranges of bias, skewness and heteroscedasticity 

prevent reasonable spatial smoothing without controled corrections. This conclusion is 

further supported by results for other voxel volumes which are not presented graphically.  

 

Only in case of the DWIs the distributions are known and simply parametrized via SNR 

[2]. As is outlined above, for a general gradient arrangement the variables derived from 

the DWIs mix information of the logarithm of different noisy DWIs which leads to 

families of distributions with highly complex dependence on basic parameters, like local 

diffusion and gradient properties. In contrast, as the DWIs are distributed according to 

Rice, via the “SNR” of the mean signal, MNR, the true signal can be estimated [2], i.e. the 

bias in any DWI can in principle be corrected. For all other variables investigated neither 

an explicit shape of the distributions nor any bias correction is known for mean to low 

SNRs. 

 

Concerning skewness, above 4SNR ≈  the DWIs are symmetric according to Rice; below 

4SNR ≈  the maximal skewness of |S12| in Fig. 2A is well below the corresponding 

maxima of the residual variables. In Fig. 2D this maximum is at least below those of λ1, 

Trace and d12. Heteroscedasticity is minimal for |S12| in Fig. 2A, in Fig. 2D λ1, FA and α 

are more uniform. However, as in DWIs the variance scales with MNR, varying variance 

can be incorporated approximately into spatial filters for the DWIs as will be shown 

below.  

 

Concluding, in low SNR situations the DWIs should be preferred for spatial smoothing, 

all other variables should be derived from these true value estimations. Even in situations 

with medium SNRs, see Fig. 2B, the regular Gaussian distributions of the DWIs with 

trivial bias shift make them to the preferable candidates for spatial smoothing. 
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Fig. 2:   Results of Monte Carlo simulations for b=900 s/mm2  and voxel volumes of 5 mm3, Fig. 2A,  and of 

16 mm3, Fig. 2B. The relative bias (panel a), the uncertainty of relative bias (panel b), the skewness (panel 

c) and the normalized standard deviation or heteroscedasticity (panel d) for different diffusions, d12  , scaled 

by SNR=|
12
exactS |/σ0 along the horicontal axes are presented. Results for the variables |S12|, d12, λ1, λ2, FA, α 

and Trace are shown, coloring is indicated in the legend. In case of the angular α , the absolut bias and 

standard deviation normalized by a constant given is plotted. Fig. 2D presents a simulation with b=3500 

s/mm2  and a voxel volume of 16 mm3. Fig. 2C presents an experiment like in Fig.2A, but for nR=15 

replications. The random variables are derived from the averaged magnitude signals  
,

1

| | | | /
Rn

i i j R
j

S s n
=

= ∑ , 

i=1,2,3. Panel a) shows the relative bias, panel b) skewness; panel c) the relative bias after bias correction. 

The plot in panel d) characterizes the relation between the mean to noise ratio, MNR, and the SNR 

according to Rice. For the SNR the range [0, 2.8]SNR ∈ is shown. The distance of this function to the 

diagonal straight line characterizes the Rician bias, the Gaussian distribution centered at MNR=1.5 

illustrates the impact of uncertainty on the bias correction.  
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It is recommendable that voxel wise and spatial smoothing are applied complementary. As 

the edge resolution of nonlinear spatial filters depends on the noise level, see below, voxel 

wise denoising should precede spatial smoothing, when possible. Two variants of voxel 

wise denoising are in the trade. First, experiments with low numbers of gradients are 

repeated to reduce noise by voxel wise averaging [19]. In the second variant, 

multigradient experiments [5,6,7] are applied. Concerning the first variant for constant b 

values, we assume that the experiments discussed above are repeated nR times. The naive 

transition to individually averaged random variables (e.g.
1

/
Rn

i R
i

FA FA n
=

= ∑
∼

) reduces their 

uncertainty and approximately also skewness by a reduction factor, 1/ Rn , but not bias 

and heteroscedasticity. When, however, averaging is performed only on the DWIs and 

when all residual variables are derived from these averaged magnitude signals we find that 

also bias is reduced in all variables. These results are only slightly modified when, instead 

averaging, the singular value decomposition on the 3*nR  DWIs is applied to derive voxel 

wise an averaged tensor. For DWI averaging with nR =15 relative bias and skewness for 

an experiment with b=900  s/mm2 and a voxel volume of 5 mm3  are presented in panels 

a) and b) of  Fig. 2C. The uncertainty of Fig. 2A is reduced by 1/ Rn , heteroscedasticity 

remains unchanged. The bias effects shown in panel a) of Fig. 2C can be further reduced. 

Assume, we have after 15 replications reasonable estimates of  | |meanS , then the Rician 

bias correction relating MNR=| |meanS /σ0  Rn to SNR=| |exactS /σ0 , see Fig. 2C panel d), 

can be applied via e.g. tabulated interpolation. All variables which are derived from these 

estimates of | |exactS  should then asymptotically, like | |exactS  itself,  be essentially 

unbiased. See the relative bias in panel c) of Fig. 2C after an application of this bias 

correction. A precise bias correction is limited  by the reduction factor, Rn , of the 

standard deviation of the mean value distribution , σ(|Smean|)=σ/ Rn , see Fig. 2C panel 

d). In case of low SNR`s and too small nR this uncertainty can create poor mean value 

estimates which correspond to undefined signals with |S|<0. For a 1SNR ≈  at least a factor 

nR=15 is necessary, see Fig. 2C panel d). The uncertainty of | |meanS can be reduced by 

additional spatial smoothing which produces an effective rise of nR . To estimate the 

improvement, assume for simplicity strict homogenuos diffusion within the nF-1 nearest 

voxels surrounding the voxel of interest in the signal and perform unweighted spatial 
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averaging on the mean value of the DWIs based on nR experimental replications. The 

results would be equivalent to those for neffective=nR*nF experimental replications. 

  
In another type of data acquisition, minimal experiments are repeated with different b 

values. This arrangement goes back to Basser [4.1]. The system of Stejskal Tanner 

equations is solved for the mean tensor by multivariate linear regression, where a special 

weighting via the reciprocal error variance of the DWIs  is proposed [4.1].  Several 

simulations for different b value combinations with maximum b=900 s/mm2 were 

performed. We found in all cases more regular distributions for the tensor fields when the 

regression was performed without the weighting proposed, the introduction of the weights 

increased in all cases bias and skewness. An example for a voxel size of 5 mm3 and values 

b1=500, b2=700 and b3=900 s/mm2 without weighting is presented in Fig. 3A, the 

corresponding tensor components d11, d12 and d22 are shown. To perform additional spatial 

smoothing a transformation to virtual DWIs based on this mean tensor is convenient, as 

the noise levels in these DWIs is reduced like in the mean tensor. This idea was first  

proposed in the Proceedings of MICCAI 2001 by Hahn et al [28]. A transformation to 

virtual DWIs  via Eq.(2) with b=(b1+b2+b3)/3 and the same gradients like in the “real” 

experiment produced in all cases which were studied DWI distributions with essentially 

better smoothing prerequisites than those of the tensor components, see Fig 3A for a 

typical comparison between tensor and virtual DWIs.  

 
In case of a multigradient experiment with a constant b value the multitude of DWIs 

reduce noise voxel wise in the tensor calculated via the singular value decomposition. In 

addition, for every diffusion direction some of the gradients will project ADC`s with 

relatively high magnitude signals or high SNR’s thus reducing bias effects. The 

multigradient approach for the diffusion model of Fig. 2A is illustrated in Fig. 3B, where 

45 uniformly distributed gradients with cond=1.4 are applied. The number of DWIs 

agrees with that of the experiment presented in Fig. 2C. The relative bias in panel a) is 

strongly reduced,  compare  panels a) in Fig. 2A,C and Fig. 3B. Skewness is in general 

comparable with that of the replicated minimal experiment, see panels c) in Fig. 2C and 

Fig. 3B, however the skewness of the angle is essentially reduced due the high angular 

resolution. A low relative bias could be achieved already by application of only 15 

uniformly distributed gradients, however, for low skewness 45 gradients are necessary. 

The second moments, see panels b) and d), in Fig. 3B are close to those of the experiment 

presented in Fig. 2C, they are mainly determined by the number of DWIs. 
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Fig. 3: Fig. 3A presents the tensor components for an experiment with b=700, 800 and 900 s/mm2 and a 

voxel volume of 5 mm3, for more details see text. Else the virtual DWIs , inverted with b=700 s/mm are 

shown. Fig. 3B presents the variables indicated in the legend for a multigradient experiment with 45 

gradients, b=900 s/mm2 and a voxel volume of 5 mm3. Fig. 3C shows the tensor components derived by 

singular value decomposition and the virtual DWIs inverted with 3 gradinets and cond=1.4. In Fig. 3 A-C 

panels a)-d) show relative bias, uncertainty, skewness and heteroscedasticity. Fig. 3D presents in all panels 

the relative bias for simulations with very low SNR [ ]1,5∈ , with b=900 s/mm2 and  a voxel volume of 2.5 

mm3.  Panel a) shows results for a minimal gradient set (cond=1.4) with 1 replication, panel b) for 15 

replications, panel c) like b) but with consecutive bias correction. Panel d) presents multigradient 

experiments with 45 and more gradients (cond=1.4). 
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With respect to further spatial smoothing, the situation is ambiguous. Noise is only 

reduced in the tensor components and in the derived variables. Though their bias is 

practically zero the further conditions for mean value estimation via spatial smoothing are 

at least not optimal. Skewness for d12 and λ1 can become effective,  heteroscedasticity for 

α, FA, λ1 and d12, see panels c) and d). On the other hand, the relative noise level or 

inverse SNR of the individual variables, see panel b), is low, so that the filter bias caused 

by smoothing of any variable may be of second order.   

 

The situation could be improved in principle by application of more gradients or by some 

replications of the whole experiment. An introduction of virtual DWIs with low level 

noise, similar to the method applied in multi b value experiments above, see Fig. 3A, only 

partially improves the situation. To demonstrate this, the tensor resulting from the singular 

value decomposition for the 45 DWIs is transformed to 3 DWIs by a virtual experiment 

with only 3 gradients, with cond=1.4 and the same b value as in the “real” experiment. 

These DWIs have typically a low noise level, see panel b) in Fig. 3C, are only slightly 

biased like the tensor coefficients, see panel a), are more symmetric than the tensor, see 

panel c), but increase heteroscedasticity compared to the tensor, see panel d).  possibly 

this would be reasonable prerequisites for an adaptive filter, like that of Polzehl [9]. 

 

To study the situation for very low SNR, in the panels of Fig. 3D the relative bias for a 

b=900 s/mm2 experiment with a voxel volume of 2.5 mm3 is presented, the corresponding 

SNR range is approximately 1-5. In panel a) one minimal experiment with cond=1.4  is 

applied, the corresponding bias reduction in panel b) is due to 15 replications and DWI 

averaging. This residual bias is further reduced, see panel c), by the bias correction 

described above. Performance of a multigradiend experiment with 45 uniformly 

distributed gradients, cond=1.4,  produces a less perfect bias reduction, see panel d). 

Remarkable is the fact, that this bias could not be further reduced by increasing the 

numbers of gradients.    

 
In experiments with low SNR noise can produce large fractions of voxels where the tensor 

violates positive definiteness and can no more be interpreted as a quantity describing 

diffusion. Especially in regions with large ansiotropy the smaller eigenvalues are close to 

0 and frequently become negative by noise distortions. It was proposed by Ahrens et al 

[29] to constrain the Eigenvalues positive within the least square algorithm which derives 

voxel wise a mean tensor. The presented combination of  voxel wise and spatial 
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smoothing offers an alternative solution to this problem. In the simulations of experiments 

with b=900 s/mm2 and voxel sizes 2.5, 3.3, 4, 5.3, 8 and 16 mm3, the fractions of negative 

definite tensors were .23, .19, .15, .11, .05 and .03 when situations with a true diffusions 

FA>=0.8 were considered. After voxel wise denoising of the DWIs without any 

discrimination between “negative” or “positive” voxels by 10 (effective) replications, 

these fractions reduced well below 10-3. A comparable reduction was achieved by 

application of multigradient experiments with 10 gradients.   

 
SUMMARY: The aim of the presented study was to explore the possibility of  spatial 

filtering on DTI variables in low SNR situations. It was exemplified, that for low SNR, 

the distributions of the DTI variables are those of spatially varying non Gaussian random 

fields which in general conflicts the basic demand of spatial smoothing for uniform noise 

close to Gaussian. This feature is characteristic for the different experimental 

arrangements which were simulated. This comprises the following arrangements: minimal 

experiments with low and high b values, replications of such experiments with constant 

and different b values and multigradient experiments. The local variability of the 

distributions depends in a complex way on basic system parameters like e.g. the angles 

between local diffusion and the measuring gradients of the individual experiment. 

According to the presented analysis and in agreement with earlier case studies published 

in several proceedings articles by Hahn et al [28, 30, 31], it seems that for low SNR only 

the DWIs offer a possibility to bring the advantages of spatial smoothing into the game. 

Their Rician distributions are well understood, scale with the experimentally well defined 

MNR, offer a simple bias and variance correction and smoothly fuse with increasing SNR 

into Gaussian distributions. These properties are not the optimal prerequisites for spatial 

smoothing, but it is possible to adapt nonlinear filters to DTI in such a way, that a 

reasonable quality for spatial DWI denoising can be achieved, see next chapter.  For 

DWIs even with very low SNR a good bias reduction could be derived for model 

situations, see Figures 2C and 3D, where replications of minimal experiments with 

constant b values are coupled to ideal and simplified spatial smoothing,  postprocessed by 

a bias correction. More realistic validations of this strategy will be presented in the next 

chapters. Note, that voxel wise denoising by experimental replications is an important first 

step as the quality of the edge resolution in spatial smoothing depends on the noise level. 

Sometimes such replications are performed with different b values which, by multivariate 

regression, lead to voxel wise denoised tensor coefficients. As is exemplified in Fig. 3A 
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and by numerous simulations within the present model, the prerequisites for spatial 

smoothing can be improved considerably by a backtransformation to virtual DWIs.  

 

Recently discussed multigradient experiments pose a more subtle situation. Such 

arrangements reduce bias effects in all variables, except DWIs, for low SNR quite 

effectively with increasing numbers of gradients, see Fig. 3B. But the higher moments are 

still not optimal for further spatial smoothing. In very low SNR situations however, see 

Fig. 3D panel d), these bias effects could not be arbitrarily reduced by an increasing 

number of gradients. Due to the high angular resolution in this arrangement the angle is an 

exception and has an unbiased and symmetric distribution which may be, together with 

the reduced noise level, sufficient for spatial smoothing. A backtransformation of the 

tensor coefficients to virtual DWIs, see Fig. 3C,  improves the situation only partially, as 

heteroscedasticity is increased compared to the tensor.  

 

In data with low SNR appreciable fractions of the voxels violate the condition of positive 

definiteness for the tensor, which is a prerequisite for its diffusion interpretation. Our 

model simulations indicate, that already for a moderate number of effective replications or 

multigradients the situation is improved essentially due to the convenient bias reduction in 

the Eigenvalues. In this context the possibility of a sorting bias for noisy Eigenvalues is 

frequently discussed in model simulations, see e.g. [13,  4]. In our simplified model this 

effect could not be studied as the diffusion is effectively two dimensional and therefore 

the Eigenvalues are always sorted correctly. However, the mentioned bias reduction 

should also reduce these effects in true three dimensional situations.   

 

For medium SNR the results presented in Fig. 2B exemplify that the proposed strategy for 

spatial smoothing is still convenient. According to Rice, the DWI distributions are, among 

all variables, optimal for voxel wise and spatial smoothing. This conclusion is supported 

by a different investigation from Anderson  [19] who studied noise effects on bias and 

variance in Eigenvalues and Eigenvectors for SNRs from approximately 20 to 100 by 

perturbation theory and simulations. For SNRs around 20 averaging of DWIs by 

experimental replications is recommended to reduce noise effects. For higher SNRs 

Anderson’s results imply an equivalence between DWI and tensor averaging. This is in 

line with a proposal by Pajevic et al [12] who apply B-splines to obtain a continuous 
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representation of the tensor coefficient fields for high SNR data. This method can be 

regarded as a special variant of spatial smoothing applied to the tensor fields. 

 
 
 
2.3 A nonlinear Filter 
 
 
Nonlinear spatial smoothing or edge preserving regularization is still an active field of 

research in statistics and image analysis, see Winkler et al [8] for a review and for a 

foundation of such filters on Bayesian concepts. We propose to apply a chain of Sigma filters, 

which goes back to Aurich  [23], and estimates the mean of a noisy scalar intensity function 

( ), , dimension of spacenf x x R n∈ = . The chain iterates nonlinear filters which combine a 

spatial window, Φ , and an intensity window, Ψ . The corresponding parameters vary 

according to special rules by which edge detection and generalization or smoothing quality 

are balanced. After the presentation of the standard version, several new modifications which 

are convenient for spatial DTI filtering will be introduced. 

 

One filter step is defined by : 
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The number of iterations, k, the spreading factors of the windows, c and d,  and the initial 

width of the spatial window, η, are regarded as parameters. The initial intensity window width 

is =3*   standard deviation of noise on fµ .  
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To enable an adaptive application of the filter for the reader, a short presentation of the basic 

parameterization strategy will be given. Regard an intensity step H in an elsewhere constant 

function of space which is corrupted by Gaussian noise with standard deviation σ. The edge 

to noise ratio, ENR, is given by 

 

 / 2ENR H σ=    (6) 

 

Iterating the chain k-times  reduces σ by 1/ kα  and allows for large samples an edge 

resolution down to    

 

1/ kENR α=     (7) 

 

where α > 1 is a speed factor determining the parameters c, d and η via : 

2nc α=  , 1/d α=  and 
24

*
2

n

smallest gridwidth
α

η
π

=  where dimn ension=  of space. 

Frequently k ist chosen such high that the filter reaches its fixed point, i.e. that further 

iterations do no more change the results. Due to the nonlinearity of the chain, this 

parameterization could be justified only for stepwise constant signals with Gaussian noise, see 

Mühlhaus [32] for more details. As DTI magnitude signals combine discontinuities with 

curvature 0≠ , possibly hide edges of the diffusion tensor field, see chapter 2.1, and as their 

noise is Rician several modifications of this basic procedure are introduced.   

 
In Rician distributions, for low SNR ( )MNRσ σ= ,  therefore a heteroscedastic µ=3∗σ(MNR) 

is introduced into Ψ. Increasing k and α increases the edge resolution capacity, but, favoring 

estimates with curvature=0, it reduces the ability to approximate curved functions. Therefore 

a convenient balance suited for DTI data must be found by data or model validation. A further 

improvement of the generalization properties can be achieved by the use of ( )f x  instead of 

1 ( )smooth
kf x−  in the last iteration, see Winkler et al. [8].  As the present filter produces finally an 

estimate of the mean value of the magnitude signal, the Rician bias correction should be 

applied for low SNR`s to the resulting ( )smooth
kf x .  

 

In Fig 4 applications of this modified filter chain to simulated one dimensional noisy DWIs 

are presented in panels a), b) and c). Denoising of functions with two different shapes is 
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performed with the same parameters k=4 and 2α = to demonstrate robustness of the 

method. The intermediate and final filter results of the iterations are shown. The final mean 

value estimate of the chain (yellow) is bias corrected (violet), the corresponding true model is 

indicated by black lines. In panel a) a sample size of 500 points is applied, in panel b) the size 

equals nRx500. Note the improvement of generalization for nR=4. Practically the same results 

as in panel b) are achieved, when a sample of 500 points after voxel wise DWI averaging by 

nR=4 is applied.  Discontinuities are already well reproduced in panel a). Panel c shows an 

application to step wise constant signals. The transition to nR=4 , not shown, improves the 

generalization again but not the resolution of the step at ENR=1/2. To achieve that, an 

essentially higher nR would be necessary. In panel d) a linear Gaussian filter is applied to the 

nR=4 situation. The blurring effects at the edges are inherent to linear spatial filters.  

 

Due to the robustness of the filter construction, the weights can be further modified to model 

peculiarities of DTI data. E.g., the spatial windows, Φ, which are isotropic Gaussians in Eq 

(4), can be adapted in their shape to the diffusion ellipsoid or tensor of the central voxel, d(x),  

by polarized Gaussians.   

 
1( ) ( )( ) / 2( , )

Tx y x x yx y e
−− − Λ −Φ =   (8) 

 
The covariance matrix, Λ(x) , is derived from the raw or partially smoothed tensor, ( )d x , by  

 
2 2 2 1/( ) ( ) /det( ( ))k nx d x c d xη −Λ =   (9) 

 
where the scaling factor is chosen in such a way, that the volumes of  isotropic and 

anisotropic spatial windows are identical for every iteration, k, to conserve the maximal 

sample size. This modification improves the isotropic window of Eq. (4) in situations were 

the local diffusion ellipsoid reflects the alignment of the neighbouring fibers, like e.g. in the 

pyramidal tract.  
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Fig.4:  Denoising of magnitude signals is illustrated. On the data points of panels a),b),c) the nonlinear filter 

chain is applied. The results of the consecutive iterations (k=4) are given by blue, green, red and yellow curves, 

the final bias corrected approximation is violet. True signals are indicated by black lines. The individual graphs 

give signal to noise ratios (SNR) versus space coordinate (x) and edge to noise ratios (ENR) at discontinuities. In 

panel d) a linear Gaussian filter followed by the bias correction is applied. The sample sizes are nRx500.   

 

It was demonstrated in chapter 2.1 that DWIs can hide edges which separate different 

information units. To reduce this possible cause of blurring also the intensity windows can be 

modified. For example one could use those of Eq. (10), instead of those in Eq. (4), 
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for the functions vari  e.g. the DWIs can be used. For convenient steepnes, β, the function 

1 2 3 4 5 6[ , , , , , ]Min e e e e e e  is close to unity for var ( ) var ( )i ix y step− < and close to zero else. The 

modification in Eq. (10)  introduces information about the localization of the edges in all 

DWIs when a special DWI is denoised.  
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In both modifications information from smoothed data is convenient. Therefore, in realistic 

situations a two step procedure should be performed: first, apply the filter chain with Eq. (4), 

in a second run use Eq. (8) and (10) where ( )d x  and var ( )i x  from the first run are involved.  

 

To cover the whole brain, in DTI experiments usually anisotropic voxels with an enlarged 

grid in axial direction are applied. It would be more convenient for spatial smoothing to use 

isotropic voxels which increase the effective space dimension, n, and lead to an improvement 

of the generalization quality. This is due to the more symmetric grouping of the data enabling 

a reduced spreading or better localization of the spatial windows, see c and η .  

 

 

 

2.4  Some Results 

 

 

To validate the filter and the strategy proposed in chapter 2.2 a quasirealistic model is 

introduced. It is based on an experiment with 1.5 T, using a diffusion weighted EPI sequence 

with 6 noncolinear gradients and 4 b-values, b=400, 500, 700 and 880 s/mm2 . The voxel size 

is 1.9x1.9x4 mm3 to cover the whole brain, see [28] for further details. The smoothed and 

postprocessed tensor is used as “gold standard” for further filter tests. In a region around the 

corpus callosum of the size 71x41x12 voxels the model tensor is transformed to the DWIs by 

Eq. (2), noise is introduced like in chapter 2.2 and three dimensional versions of the filter are 

applied in this region. To measure the difference between model and noisy or smoothed DWI 

the spatially averaged standard deviation with respect to the model is calculated and presented 

in Table 2. To exclude boundary effects of the filter only 5 axial slices are involved in this 

analysis, their middle slice is presented in Fig. 5. Also voxels with negative Eigenvalues and 

within the ventricles are omitted from the error analysis, see black voxels in left panel of 

Fig.5.  

 

At present, the filter is tested in two variants. First, Rician noise and the bias correction are 

introduced and coupled with Eq. (4), see σM1 in Tab. 2. 

 



 26

 
 

Fig. 5: Left panel: for orientation the FA-map for an axial slice of the gold standard model without noise is 

presented; voxels within the liquid and with negative Eigenvalues are excluded (black). Right panel shows a 

corresponding DWI-map for the gradient [0,1,0];  excluded voxels are projected to zero.   

 

 
Then, Eq. (4) is replaced by Eq. (8) and Eq. (10) based on ( ) and varid x DWI= of the gold 

standard model, see σM2 in Tab.2. The noise levels σ=60, 90 and 120 are applied to cover 

medium and low SNR situations. In Tab. 2 a summary of the filter tests for every DWI is 

presented.  

 

 σ=60,  σM1 σ=60, σM2 σ=90, σM1 σ=90, σM2 σ=120, σM1 σ=120, σM2 
DWI_(1,0,0) 27 23 36 31 42 41 
DWI_(0,1,0) 28 24 36 32 44 41 
DWI_(0,0,1) 29 24 40 32 47 41 
DWI_(1,1,0) 29 23 35 31 42 41 
DWI_(1,0,1) 29 23 37 31 43 41 
DWI_(0,1,1) 30 24 37 31 44 41 
Mean nR 4.4 6.5 6 8 7.5 8.6 
 
Table 2: Spatial means of the deviations between true and noisy (σ) or true and smoothed DWIs (σM) . Two filter 
variants are applied : M1={k=3, α=2, Eq. (4),  Rician variance,  bias correction}, M2={M1, but instead of Eq. 
(4)  Eq. (8) and Eq. (10) based on the true model are applied}. In the last row mean numbers of experimental 
replications which produce equivalent denoising effects are given.   
 
As is evident from the last row in Table 2, spatial filtering is quite effective and can replace 

on average 4-8 replications of experiments in the SNR region investigated. The improvement 
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between σM1 and σM2 is mainly due to Eq. (10) which reduces blurring between anatomically 

separated regions.  

 
An application of the filter to very recent low SNR data is partially presented in Fig. 6. The 

experiment was performed by members of a group guided by P.Narayana [33]. The data were 

achieved by a 1.5 T scanner, with a b value of b=1000 sec/mm2 , the voxel size is 1x1x1 mm3 

. The data cover a volume of 256x256x28 slices.  The gradients applied are {[0,.526,-.851], 

[0,-.526,-.851], [.526,-.851,0], [.526,.851,0], [-.851,0,.526] and  [-.851,0,-.526]}, only one 

replication for b=0 and b>0 is available up to now. The local SNR of the data is partially very 

low, the spatial mean SNR is approximately 3SNR ≈ . To avoid the introduction of 

approximation artifacts the three dimensional filter was applied to the DWIs in the version 

based on Eq. (4), k=3 and α=2. Rician heteroscedastic variance and the bias correction are 

included. The FA maps in Fig. 6 demonstrate the high efficiency of the filter for isotropic 

grids even at very low SNR. The structures in the right panels are essentially in agreement 

with anatomic knowledge. It is evident from the Figures that the results could not have been 

achieved by a direct nonlinear smoothing of the raw FA maps, shown in the left panels. Also, 

an enormous bias would be the result of such a strategy.   

 

 

The present investigation is still somewhat preliminary. More test results are desirable. As Eq. 

(8) and Eq. (10) improve filtering of different features in DWI data an investigation of their 

specific properties would be interesting. Also the effectiveness of Eq. (10) without any model 

knowledge remains to be tested. Further, is the bias correction a critical point. When the mean 

value estimate is below the -in practice- unknown true value, due to small non  representative 

noisy samples in the filter windows, the bias correction can underestimate the true signal 

appreciably. Convenient strategies are to be worked out. 
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Fig. 6: Axial FA-maps of the data with isotropic voxels (see text),  voxel volume=1x1x1 mm3. Left panels,  FA 
of raw data, right panels, FA based on smoothed DWIs, the filter process is performed with heteroscedastic 
Rician variance and bias correction and Eq. (4).   
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