

On Reasoning on Time and Location on the Web

François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, Stephanie Spranger

Institute for Computer Science, University of Munich

PPSWR, Dec. 08, 2003 Mumbai

Temporal Reasoning: A motivating Example

Example: web-based appointment scheduling

Three businessmen (one in London, one in Athens, and one in Tokyo) plan a *phone conference* to take place in the *week after Easter*.

- temporal primitives in various time granularities
- calendar systems and time zones
- sociocultural temporal notions

Locational Reasoning: A motivating Example

Example: web-based information service

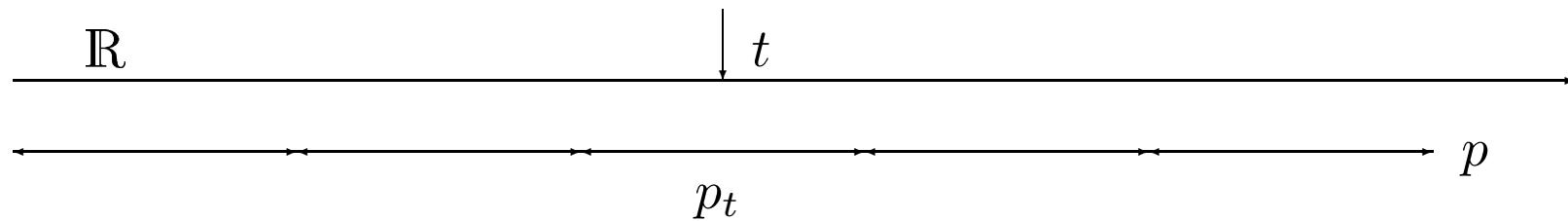
Where is an *open* pharmacy in *downtown Munich*?

- locational primitives of various location granularities
- means of transportation and topological aspects
- related temporal context

Motivation

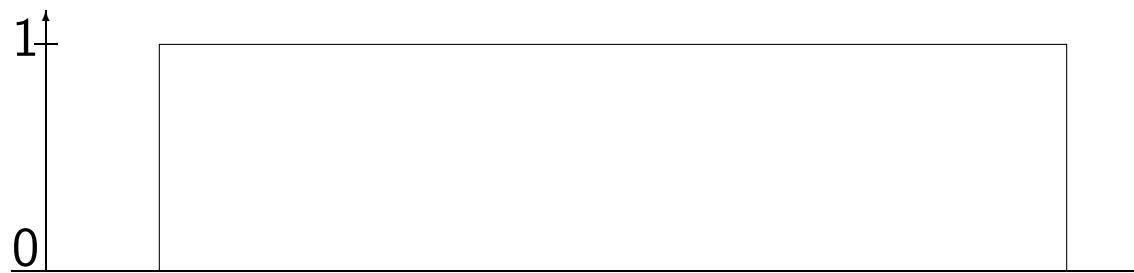
- observation
 - temporal data (time points, time intervals, durations specified in different granularities of various calendars) can be found (implicitly or explicitly) all over the Web
 - locational data frequently interwoven with temporal data
 - Semantic Web and advanced Web applications like adaptive Web systems and mobile computing
 - heterogeneity of the Web
 - internationalization and localization efforts on the Web
- essential building block for the Web: query and transformation languages like the W3C recommendations XQuery and XSLT, and the logic-based language Xcerpt (ongoing research project)

Proposal

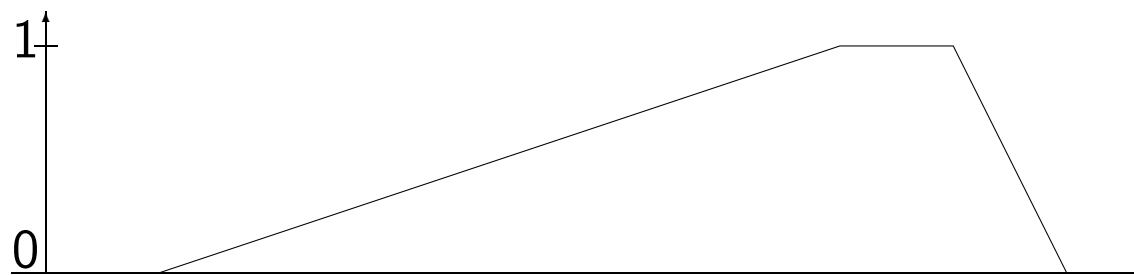

⇒ **Web languages, especially query and transformation languages, lack temporal as well as locational types and reasoning capabilities**

Temporal and Locational Type Systems with reasoning capabilities integrated into Web Languages

The computation engine: WebCal


- Web server for calendrical calculations
- supports different calendar systems with their particularities
- data structure: times are mapped to (poss. fuzzy) time interval (i.e. partitionings of the reference timeline)
- provides basic temporal operations over (poss. fuzzy) time intervals

WebCal: Partitionings



partitioning of the reference timeline according to calendar and clock systems
in terms of time granularities in the common manner

WebCal: Time Intervals

crisp interval: Dec. 8th2003

fuzzy interval: towards evening

WebCal: Operations over Time Intervals

- turning crisp intervals to fuzzy intervals
- usual set-theoretic operations
- usual interval relations, e.g. before, overlaps
- shifting, e.g. 3 months, 2 days
- within, e.g. 1st day within week, last day within year

Xcerpt: A Query Language for the Web

Xcerpt (currently developed and tested on web-based systems at the University of Munich):

- logic-based query and transformation language
- paradigms: SQL and logic programming
- uses instead of (a form of) pattern matching a (non-standard) form of unification, called simulation unification

Xcerpt plus temporal constructs and temporal reasoning capabilities:

- based on algebraic time model with time granularities
- temporal primitives (time point, time interval, duration) with temporal context and their respective temporal operations integrated into Xcerpt
- basic temporal computation of the operations is based on WebCal

Xcerpt: An Example Database Term

Assuming a movie program as an XML document. This XML document may look like as follows (in Xcerpt syntax):

```
cinema_program {  
    attributes { week { "[2003-06-19,2003-06-26]" } }  
    cinema {  
        attributes { name { "Leopold" } }  
        movie {  
            title { "Lampedusa" }  
            begin { "20:15" }  
            duration { "P90M" }  
            room { "1" }  
        }  
        movie {  
            title { "City of God" }  
            begin { "22:15" }  
            duration { "P135M" }  
            room { "2" }  
        }  
    }  
    cinema {  
        attributes { name { "Atlantis" } }  
        movie {  
            title { "City of God" }  
            begin { "21:00" }  
            duration { "P135M" }  
        }  
    }  
    ...  
}
```

Xcerpt: An Example Query

'Is there a show of "City of God" on 21st June 2003 that begins between 22:00 and 23:00? List the cinemas and the beginning times!'

```
LET
    calendar = gregorian;
    timezone = UTC + 1;
    granularity = minute;
    LET granularity = day IN var Week::TimeInterval END
    LET anchor = 2003-06-21 IN var Begin::TimePoint END
IN
CONSTRUCT
    results { result all { cinema {attributes
                                {name { var Name }
                                begin { var Begin } }
                                }
                                }
                                }
FROM
    cinema_program {{{
        attributes {{ week { var Week } } }
        cinema {{{
            attributes {{ name { var Name } } }
            movie {{{
                title { "City of God" }
                begin { var Begin }
            } }
            }
        } }
    } }
WHERE
    belongs_to(2003-06-21, Week),
    belongs_to(Begin, [2003-06-21T22:00, 2003-06-21T23:00]
END
```

Status of the Project

- Xcerpt: Simulation Unification [ICLP 2002], chaining, running prototype since 2002, www.xcerpt.org
- computing/reasoning engine WebCal
- temporal constructs and operations currently defined (in process: formalization of the type system)
- in process: integration of this type system into Xcerpt and its connection to WebCal
- applications (as test bed) currently investigated

Future Work

- static (and dynamic) type checking
- granularity and calendar aware constraint reasoning
- development of location type system and computation engine for locational reasoning