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ABSTRACT

Parameter estimates of logistic and Cox regression models are biased for finite samples. In a
simulation study we investigated for both models the behaviour of the bias in relation to sample size
and further parameters. In the case of a dichotomous explanatory variable x the magnitude of the bias
is strongly influenced by the baseline risk defined by the constants of the models and the risk resulting
for the high risk group. To conduct a direct comparison of the bias of the two models analyses were
based on the same simulated data. Overall, the bias of the two models appear to be similar, however,

the Cox model has less bias in situations where the baseline risk is high.

1. INTRODUCTION
Logistic regression and Cox regression are frequently used for analyzing study data in
medical research. Both methods analyze the relation of time dependent events to other
influencing variables. The logistic model describes the event probability in a distinct
observation time window and the Cox model the instantaneous event probability at a given
time point both in dependence on explanatory variables. For the logistic regression the
individual binary information "event occurred: yes or no" is used whereas the Cox regression
considers the individual time till the event occurs. In general the method for estimating the

parameters is based on the likelihood or partial likelihood, respectively. It is well known that



the estimates of both Maximum-Likelihood (ML) methods are only asymptotically unbiased
which results in a bias for finite samples (1, 2, 3). A more or less relevant bias is present
especially for small samples (4, 5), which is the case for many epidemiological and clinical
studies, the bias could be relevant for parameter estimation, but a clear rule for a threshold for
sample size cannot be found in the literature, as the size and direction of the bias does not rely
on this issue alone. The bias of ML-estimates is directed away from zero which means that
the expectation of the estimate is always larger in absolute value than the true parameter (2,
3). However, results of a systematic observation of this relations of the single regression
methods have not been published.

Comparisons between logistic regression and Cox regression models describing the
occurrence of a dichotomous event in a distinct observation time interval were mainly related
to the similarity of the parameter estimates for the same explanatory variable deriving from
the different methods (6, 7, 8, 10). The bias of the parameter estimates was not investigated in
these papers. The most consistent finding was that the estimates are nearly identical in the
case of a rare event and a short observation time interval. Green and Symons (8) gave a short
overview for the theoretical reasons of this. Increasing event probability or/and increasing
observation time interval led to increasing difference of the estimates. Peduzzi et al. (7)
examined a binary explanatory variable x in the models and suggested that the agreement
between the estimates depends on the baseline event probability and to some extend on the
probability ratio of x=1 and x=0. Ingram and Kleinman (6) discussed the influence of non-
exponential survival times and non-proportional hazards as strengthening effects for the
difference. They also found that sample size had no or only little effect on the difference of
the estimates independent of the event probability (6). No considerations concerning a
possible difference of the bias of the two methods have been made. Annesi et al. (9) found
that the asymptotic relative efficiency of logistic regression model and Cox regression model
is very close to 1 unless the event probability is increasing. They concluded that the Cox

model is superior to the logistic model mainly when analyzing longitudinal data.

In this paper, the amount of small sample bias in dependence on the data situation is
investigated for both the logistic and the Cox regression model. The influence of different
parameters on the bias is investigated for the single regression methods and the two
approaches are compared with regard to bias and variance of the parameter estimates by

means of simulation.



2. RELATIONS BETWEEN THE LOGISTIC AND THE COX REGRESSION MODEL
The model for the logistic regression describes the dependence of the odds of an event on
explanatory variables X with parameters 3. Let Y the binary response variable indicating the
occurrence of an event in a distinct time interval ranging from 0 to ¢, and let o the constant

defining the risk in the case of all x;,=0 than the relation is given by

PY =1|X,t,) _ la+BY)

1-P(Y =1| X.t.) O

whereas the Cox regression models the hazard of an event depending on explanatory variables

X:
h(t) = ho (1) %) @)

Here, the response variable is given as the time till the event occurs, which is commonly
called ‘survival time’. The baseline hazard hy(t), which is characterized by the underlying
baseline survival time distribution defining the risk in the case of all x;=0, is unspecified in the
Cox regression model. Although we were only interested in the bias of the parameter estimate
of the explanatory variable X the parameters specifying the survival time distribution are
needed to describe the behaviour of this bias as we will show below.

The bias of the estimate of the parameters B and 6 will be investigated, respectively. Is x a

dichotomous covariable and is t, the length of the observation time than 3 is given by

PY =1|x=1L¢,)
P(Y=0|x=L¢,)

-1
8 PY =1]x=0,,)
P(Y=0|x=0,.)

B =1og(OR) (3)

in the logistic regression model, which is equal to the log odds ratio (OR) and in the Cox

regression model O is

6 = log{m

h(tx = 0)} = log(HR) 4),



which is equal to the log of the hazard ratio (HR).

To conduct a direct comparison of the bias of the two regression methods both analyses were
done for the same sample data. Data simulated by survival time simulation models can be
transformed into a dataset suitable for logistic regression if as a restriction censoring only at
the end of the observation time window is allowed. For this, the binary censoring variable
indicating whether a observed survival time ended with an event or not is used as the binary
response variable for the logistic regression model. The true parameters of the logistic model
can be calculated using the parameters of the survival time simulation model and the
equations for risk for a distinct observation time or distinct time point, respectively, of the
logistic and the Cox model (see appendix I). Equating the risk formulae and solving for the
parameters of the logistic model gives exact relations between the logistic and the Cox
parameters. However, this relations hold only true if the observation time length was the same

for all individuals.

3. SIMULATION STUDY

We wanted to compare the performance of the covariable parameters estimates when the
regression methods are applied to sample datasets. For this, the true underlying parameter
values determining the covariable values in the dataset have to be known. Therefore we used
simulation models to produce the datasets. For each constellation of true parameters and
sample size 10,000 datasets were simulated and analyzed. To keep models simple we
included only one binary covariable x ~ B(1, 0.5) for which the bias was investigated.

Data for the logistic regression were simulated by using the logistic model as a parameter for
a Bernoulli distribution resulting in a dichotomous response variable y indicating whether an

event occurred or not.

~B(1 with p= _omplafr)_ 5
y (Lp) 1+exp(a+[3x) (5)

The intercept o determines the baseline risk Po(Y=1/X=0) and B is the parameter for the
covariable x.
For the Cox regression the survival time data ¢ were simulated by the inverse of the survival

time distribution function referring to the Cox model applied in the regression analysis. The



event probability is replaced by a uniformly distributed random number z with a value range
from O to 1 (11). The distribution function also determines the baseline risk and baseline
hazard of the Cox model, respectively. To evaluate a possible influence of the chosen survival
time distribution we used three different of them: the exponential (6), the Weibull (7), and the
Gompertz (8) distribution.

The simulation models for the survival times are, respectively:

- log(1-z)
(Exponential) = Wp(ﬁx) (6)
1
(Weibull) (= ~logli=2) |7 (7)
K exp(n X )
1 & log(l—z)
(Gompertz) =3 log(l _Tp(vx)J (8)

Here A, ¥ and v, T and 0 determine the baseline risk and 6, M, v are the parameters for the
covariable, respectively. A distinct observation time window was defined for censoring of the
survival time data. No further censoring was simulated to allow also the application of logistic
regression.

The intercept and the survival time distribution parameters were selected that the baseline risk
Po(Y=1|X=0) was approximately between 0.2 and 0.8 for the logistic simulation models and
0.07 and 0.88 for the Cox simulation models. Additionally the covariable parameter was
varied resulting in a range for risk P;(Y=1|X=1) of 0.08 to 0.92 for logistic models and of
0.03 to 0.97 for the Cox models. Further variations of the parameters for the logistic
simulation model to extend the range for risk P; led to an increase of simulated data sets
where the regression analysis did not converge. For the direct comparison of the bias of the
logistic and the Cox regression the variation of the parameters was restricted to the risk range
that was suitable for the logistic simulation models. To get an impression of the relative effect

of these parameters compared to the variation of sample size, this parameter was varied in an



interval between 100 and 500, for which a relevant sample size dependent bias has been

reported (5).

The bias is defined as the mean deviation of the estimate from the true parameter. For a
specific parameter constellation £=10,000 simulated datasets were analyzed. So, the bias of a

parameter [ of a covariable x in the logistic model is estimated as
1 &
biaSLog :%Z(ﬁz_ﬁ) )
i=1

and correspondingly for 0, 1, and v in the Cox model.
Bias estimates of logistic regression and Cox regression, both based on the same 10,000
datasets, were compared by calculating the difference of the percentage values (PBD:

percentage bias difference):

bias bias . _
PBD:[ ﬂ“’g - C;’“ eij-IOO (10)

and correspondingly for the estimates of the Weibull (biascox-wei, M) and Gompertz (biascox.
gom, V) distributed data.

To get an impression whether the estimates from logistic regression or those from Cox
regression are closer to there true parameter values for a distinct set of true parameters, the
mean difference of the absolute deviation found in the analyses of a single dataset was

calculated (APED: absolute percentage error difference):

APEDz%i("B"ﬂ_’Ba— é"Q_QU-loo (11)

where & denotes the number of datasets (10,000). Correspondingly this was done for the
parameter estimates of the Cox-regression for the Weibull (1) and Gompertz (v) distributed
data. Saying it simple, APED measures which of the two estimates on an average lies closer

to its true parameter value



4. RESULTS
We plotted the bias in dependence of P;(Y=1|X=1) because o plot using the true parameter
values on the horizontal axis was not suitable to show the relations and symmetry of the bias
behaviour of the different models.
Fixing all parameters except of the explanatory variable parameter, the resulting bias of the
logistic regression models, when plotted versus the risk P;(Y=1|X=1), produces a curve
shown in Fig. 1a. The bias is monotone increasing with increasing risk P;. Around P;=0.5 the
increase is small but towards values closer to 0 or 1 the bias becomes very large, respectively.
The point of intersection of the bias graph with the horizontal axis bias=0 is determined by the
intercept parameter, e.g. the baseline risk.
A point symmetry regarding the bias estimate for P;=0.5 is found for the bias of the logistic
regression.
Variation of the main model parameters leaves the shape of the bias graph unchanged, but the
whole curve is shifted vertically downwards with increasing baseline risk (Fig. 1a). This also
results in a horizontal shift of the point of intersection of the bias curve with the axis bias=0.
In an interval of ‘moderate’ P; (0.15 to 0.85) the percentage bias of logistic regression varies
only little but towards 'extremer' values (<0.15 and >0.85) a strong increase of the bias is
present (Fig. 1b). The boundaries of this different behaviour move towards ‘extremer’ risks
with increasing sample size. The point symmetry of the graph of the absolute bias results in a
further symmetry when looking at the percentage bias: the combined graphs of
complementary baseline risks (Fig. 1b: 0.27 and 0.73) are symmetrical to the vertical axis at
P1=0.5. Another interesting fact is that if sample size and baseline risk are constant the
smallest percentage bias is found near an risk P; that is complementary to the true baseline
risk.
As the bias is decreasing with increasing sample size, the bias curve is shifted closer towards
the axis bias=0 for higher sample sizes (Fig. 2).
The main facts mentioned so far are also true for the bias of parameter estimates in the Cox
regression except of the point symmetry which is not found for the latter (Fig. 3a). The strong
decrease of bias for small P; is similar to that for logistic regression parameters but the
increase at high P; starts not till much extremer values. As a consequence, when comparing
two complementary baseline risks, the bias estimates of the different risks P; for the higher

baseline risk are all smaller than for the corresponding baseline risk less than 0.5 (Fig. 3b).



Different survival time distributions have no effect on the bias: the percentage values are
identical if the distribution parameters resulted in a corresponding baseline risk in the

different models.

The percentage bias of logistic regression is always higher than the corresponding bias of the
Cox regression, however, for small P, the difference is almost zero (Fig. 4). The difference of
the percentage bias’s is increasing with increasing risk P; and is decreasing with increasing
sample size. However, even for a sample size of n=100 the percentage bias’s of both
regression methods as well as the absolute difference of the percentage bias’s do not exceed
6% when looking at moderate risks P; only.

The increase of the mean difference of the percentage absolute deviations (APED) of the
single estimates with increasing risk P; depends on the baseline risk: higher baseline risk
results in a steeper slope (Fig. 5). For small baseline risks the increase is almost zero. At small
P, the mean absolute deviations for logistic regression estimates seem to be a little bit smaller
than those for Cox regression estimates.

Again, these findings are not changed when different survival time distributions are used for

the simulation of the data.

5. DISCUSSION

We conducted a simulation study to observe the behaviour of the bias of ML parameter
estimates in logistic regression and Cox regression in relation to sample size and the true
values for baseline risk and the explanatory variable parameter. The baseline risk for the
logistic model is characterized by the intercept and for the Cox model by the parameters of
the survival time distribution responsible for the baseline hazard.

To our knowledge, no results concerning a systematic comparison of the bias of the two
regression methods has been presented so far. Callas et al. (10) used a measure named
“percentage relative bias in point estimates”, but they observed the difference between the
point estimates of two logistic regression methods and the estimate of the Cox regression,
respectively.

Results presented here give rise to the presumption that the published differences found for
comparisons of the crude estimates of the both methods when analyzing the same explanatory
variables (6, 7, 8) are at least partly due to the different bias behaviour of the parameter

estimates in the different models.



From our simulations the following conclusions can be drawn.

In the case of a binary explanatory variable x the bias of the parameter estimates obtained
from the ML regression methods depends not only on the sample size but also on the baseline
risk and the risk P;(Y=1|X=1). The intensity of the influence of a single parameter on the bias
1s not independent from the other parameters. This relation is different for logistic regression
and Cox regression. In general a strong bias is present for extreme baseline risks and for
extreme risks P;(Y=1|X=1). With both regression methods a high bias of the covariable
parameter has to be expected if the number of events in the group only affected by the
baseline risk is small. For the logistic regression this is also true for the number of non-events

which results in the point symmetry of the bias curve.

The following limitations of our study should be considered. Of course, much higher values
for the percentage bias in logistic regression than presented here would be expected if small
sample sizes and extreme baseline risks would be combined as it was possible for the
simulated datasets for Cox regression. As we simulated the sample data by chance the case
with no events or no non-events for x=0 occurred more often for extremer baseline risks. In
this cases the logistic regression analysis did not converge and no estimate could be obtained,
e.g. this cases could not be included when estimating the bias. As an exclusion of these cases
would shift the bias estimate, we decided here to present no results for parameter
constellations where the converge criteria of the regression were not reached for at least
99.9% of the regarding 10,000 simulations.

Further research is required to investigate the association between the risk of continuous
covariables and the parameter bias as well as the influence of additional covariables on the

bias.

Despite these limitations the following practical implications can be made.

Although the higher power of the Cox regression allows to extend the interval of possible
risks that can be analyzed with small sample sizes when compared to logistic regression this
extent is combined with a strong increase in bias, especially for low baseline risks and low
Pi(Y=1]X=1).

To define situations when bias correction is required three factors have to be considered:
baseline risk, risk of the exposed (here risk P;(Y=1|X=1)), and sample size. Schaefer (5)

presented a bias correction method for logistic regression. He recommended to apply this



method to regression analyses if sample size is 200 or less and mentioned no further criteria.
However, as shown here, for small sample sizes the bias is rather small when the baseline risk
and the risk P1(Y=1|X=1) are moderate and bias correction methods might not be necessary.
However, also if the total number of events is high but the baseline risk is rather small this
would lead to strong bias. This means for logistic regression that, if the numbers of events or
non-events for the group characterized only by the intercept of the logistic model tend
towards zero, the estimates for all covariable parameters would be highly biased. In general
an extreme baseline risk and/or an extreme P;(Y=1|X=1) leads to a strong bias. For logistic
regression the boundaries between moderate and extreme risks are symmetrical shifted
towards zero and one, respectively, by increasing the sample size. This shift of the boundaries
1s not symmetrical for Cox regression parameters and is more pronounced towards zero as

even for small sample sizes a strong bias increase occurs only at very high risks.

Most critical are the cases where a low baseline risk is present and parameters for protective
covariables are estimated. The case vice versa is only relevant for logistic regression.

However, the decision, whether a bias correction is suitable or not, should depend on the
ability of the considered correction method to give sufficient results especially in the cases of

extreme baseline risk or extreme P;(Y=1|X=1).

If there is no necessity for doing Cox regression because of other than type I censoring then
the additional effort for collecting survival times instead of the binary information ‘event: yes
or no’ might be not justified when working on low baseline risks or low risks P; for the
investigated covariables. Concerning the bias the advantages of Cox regression are most
pronounced when analyzing high baseline risks. Another advantage is that at high extreme

risks P parameters can be estimated with a rather small bias.

In summary, not only sample size is the main factor for the decision, whether a bias correction
is suitable in an analysis based on a logistic or Cox regression model or not, but also the
baseline risk and the risk for the exposed (here risk P;(Y=1|X=1)). Concerning the bias the
advantages of Cox regression compared to logistic regression are mainly in the case of high

baseline risks and/or extreme risks for the exposed.
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APPENDIX I
We used the exponential, the Weibull, and the Gompertz distribution for the simulation of
survival times. As a restriction censoring is only allowed at the end of the simulated
observation time window. The true parameters of the logistic model were calculated using the
parameters of the survival time simulation model and the equations for risk R for a distinct

observation time #, or distinct time point ., respectively, of the logistic and the Cox model.

Jfa+)

(Logistic) R(t,) = H@(TBX) (12)

(Cox: exponential) R(t,)=1- e(—ktz~ e(GX)) (13)

(Cox: Weibull) R(t,)=1- e(‘K ) (14)
T (1 lot) e(”)}

(Cox: Gompertz) R(t,)=1- 6{8 ( ) (15)

Equating (12) and (13) (or (12) and (14), or (12) and (15), respectively) for x=0 and is A (or X,
Y, or T, J, respectively) the parameter of the survival time model based on an exponential (or

Weibull, or Gompertz, respectively) distribution then the intercept of the logistic model, o, is

given by:
(Exponential) o= log(l _ e(—Mz))+ A, (16)
' a=lo l—e(_KtZ) +xt)
(Weibull) g z (17)
z(l_em))}
a=log l—e{8 —E(l—e(&z))
(Gompertz) 0 (18)

11



Analogous the parameter 3 of the binary covariable of the logistic model is calculated for the

case x=1 and substituting a by (16) (or (17) or (18), respectively). Here, the parameter 6 (or n

or v, respectively) of the survival time model has to be considered:

(6x)
1— e(—MZ- e ) o
(Exponential) p= log[l—e(—mz) +At, - (e( x) _1)
et (n)f))
l—e( Kt%’ e , ( )
(Welbull) B = log[ o . t;’ + Ktz . (e nx _1)

(Gompertz)

(19)

(20)
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Figure 1: Bias estimates of logistic regression parameter estimates for different true values of
the parameter of a binary explanatory variable x and different sample sizes plotted versus true
risk for x=1; graphs shown for two different baseline risks a) as absolute values and b) in

percent of the true parameter.
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Figure 2: Bias estimates of logistic regression parameter estimates for different true values of
the parameter of a binary explanatory variable x and sample size n=100 plotted versus true

risk for x=1; graphs shown are all for the same baseline risk.
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Figure 3: Bias estimates of Cox regression parameter estimates for different true values of the
parameter of a binary explanatory variable x and sample size n=100 plotted versus true risk
for x=1; graphs shown for two different baseline risks a) as absolute values and b) in percent

of the true parameter.
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Figure 4: Difference between the percentage biases (see equation 10) in logistic regression

and Cox regression of a binary explanatory variable x for identical baseline risks and risks for

x=1; estimates are shown for two sample sizes.
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parameter estimates for single samples (see equation 11) between logistic regression and Cox

regression; results are shown for =100 and different baseline risks and risks for x=1
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