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Abstract

Dependence modelling and estimation is a key issue in the assessment of portfolio
risk. When measuring extreme risk in terms of the Value-at-Risk, the multivariate
normal model with linear correlation as its natural dependence measure is by no
means an ideal model. We suggest a large class of models and a new dependence
function which allows us to capture the complete extreme dependence structure of
a portfolio. We also present a simple nonparametric estimation procedure. To show
our new method at work we apply it to a financial data set of zero coupon swap

rates and estimate the extreme dependence in the data.

JEL Classifications: C15, C52.
Keywords: Risk management, extreme risk assessment, multivariate models, dependence

function.

1 Risk management for extreme risk

According to the Capital Adequacy Directive of the Basel Committee the risk capital of
a bank must be sufficient to cover losses on the bank’s trading portfolio over a 10-day
holding period with a probability of 99%, a measure usually referred to as Value-at-Risk
(VaR).

Estimation of a portfolio VaR faces two different problems: firstly, a time series struc-
ture of the portfolio value may affect the estimation of the VaR over a 10-day holding
period, and, secondly, the underlying portfolio may consist of a large number of different
instruments, whose multivariate dependence structure can introduce serious errors, when

not modelled correctly.



Time series or serial dependence is not an issue of the present paper and we refer to
Kliippelberg (2004) and McNeil and Frey (2000) for discussions on this important aspect
in VaR modelling and estimation.

We are interested here in the influence of the multivariate dependence within the port-
folio. We first recall that under the condition that the portfolio P/L follows a multivariate
normal distribution and if there is no serial dependence, the VaR(«,T) that corresponds
to the a-quantile and holding period T (the Basel Committee requires o = 0.01 and

T = 10 days) is given by
VaR(a, T) = z40VT ,

where z, is the a-quantile of the standard normal distribution. The portfolio P/L standard
deviation o is calculated by the square root of its variance
n
o? = Z w?o? + Z WW;0,0;pij (1.1)
i=1 i#j
where the portfolio consists of n different instruments with nominal amount w; invested
into asset i. The standard deviation of asset i is given by o; and the pairwise correlation

coeflicients are p;; (i,7 =1,...,n).

Definition 1.1 For two random variables X and Y their correlation is defined as

_ cov(X,Y)
Vvar(X) var(Y)’

p(X,Y)
where cov(X,Y) = E((X — EX)(Y — EY)) is the covariance of X and Y, and var(X)

and var(Y') are the variances of X and Y, respectively.

Correlation measures linear dependence: we have |p(X,Y)| = 1 if and only if YV =
aX + b with probability 1 for a € R\ {0} and b € R. Furthermore, correlation is invariant
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under strictly increasing linear transformations; i.e. for o,y € R\ {0} and 3,6 € R

plaX + B,7Y +6) = sign(ay) p(X,Y).

Also for high-dimensional models correlation is easy to handle. For random (column)
vectors X,Y € R™ we denote by cov(X,Y) = E((X — EX)(Y — EY)T) the covariance

matrix of X and Y. Then for m x n matrices A, B and vectors a,b € R™ we calculate

cov(AX +a, BY +b) = Acov(X,Y) BT,

where BT denotes the transpose of the matrix B. From this it follows for w € R”

var(w! X) = w’cov(X, X)w,

which is exactly formula (1.1) above. The popularity of correlation is also based on the
fact that it is very easy to calculate and estimate. It is a natural dependence measure
for elliptical distributions such as the multivariate normal or ¢ distributions. Multivari-
ate portfolios, however, are quite often not elliptically distributed, and there may be a
more complex dependence structure than linear dependence. Indeed, data may be uncor-
related, i.e. with correlation 0, but still may be highly dependent. In the context of risk
management, when measuring extreme risk as the Value-at-Risk does, measuring depen-
dence by correlation may be grossly misleading. For a very readable article about different
dependence measures, their limitations and pitfalls we refer to Embrechts, McNeil and
Straumann (2002).

We turn to a measure for tail dependence, which relates large values of the compo-
nents of a portfolio. In the bivariate context, consider random variables X and Y with

marginal distribution functions G x and Gy and (generalized) inverses G% and G5 . For



any distribution function G its generalized inverse or quantile function is defined as
G (t)=inflzreR|G(zx) >t}, 0<t<l.
If G is strictly increasing, then G~ coincides with the usual inverse of G.
Definition 1.2 The upper tail dependence coefficient of (X,Y") is defined by
pu=lm P(Y > Gy (u) | X > Gy (u)), (1.2)

provided the limit exists. If py € (0,1], then X and Y are called asymptotically dependent

in the upper tail, if py = 0, they are called asymptotically upper tail independent.

For some situations, this measure may be an appropriate extreme dependence measure;
this is true, in particular, when the bivariate distribution is symmetric; see Example 2.8.
However, py is not a very informative measure for asymmetric models since the extreme
dependence around the 45 degree line does not reveal much about what happens elsewhere;
see Example 2.9. As a remedy we suggest an extension of the upper tail dependence
coefficient to a function of the angle, which measures extreme dependence in any direction
in the first quadrant of R?. Its derivation is based on multivariate extreme value theory
and we indicate this relationship in Section 2. We shall, however, refrain ourselves from
a precise derivation and rather refer to Hsing, Kliippelberg and Kuhn (2003) for details.
We also want to emphasize that one-dimensional extreme value theory has been applied
successfully to risk management problems; see Embrechts (2000). We remark further that
one-dimensional extreme value theory has meanwhile reached a consolidated state; we refer
to Embrechts, Kliippelberg and Mikosch (1997) or Coles (2001) as standard references.
We shall illustrate our results by a direct application to a real data set. The complete
data set we investigated consists of returns (daily differences) of Annually Compounded
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Figure 1.3 Example of data: time series of swap rates with maturities 270 days, 5 years and 7 years.

Zero Coupon Swap Rates with different maturities (between 7 days and 30 years) and
different currencies (EUR, USD and GBP).

Each of the time series consists of 257 daily returns during the year 2001. In an
exploratory data analysis we investigated first each single time series; typical examples
are plotted in Figure 1.3. Plots of the autocorrelation functions of the single time series,
their moduli and squares exhibited no significant serial dependence structure; hence we
assume the data being iid. Moreover, the histograms and a tail analysis showed that the
marginals are well modelled (at least in the tails) by a two-sided exponential distribution.

In this paper we illustrate our methods and models on swap rates in EUR currency
only. The first column of Figure 1.4 shows scatter plots of different combinations of swap
rates. We have estimated the mean, variance and correlation of the data in each scatter
plot. The second column shows simulated normal data with the same estimated parame-
ters. Recall that for risk assessment we are particularly interested in the left lower corner.
None of the normal models seems to be able to capture the dependence structure in this
area.

After introducing a new dependence function in Section 2 we shall present some ex-
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Figure 1.4 Upper row: Scatter plot of data of Figure 1.3, 270-day vs. 5-year (left plot), 270-day vs.
7-year (middle plot) and 5-year vs. 7-year EUR swap (right plot).
Lower row: Scatter plot of simulated 3-variate normal distribution with mean and variance of the data

in the upper row.

amples including the bivariate normal, where we show that it exhibits no dependence in
the far-out tails, no matter in which direction we go, thus extending the well-known result
along the diagonal.

In Section 3 we introduce a simple nonparametric estimation procedure of the depen-
dence function. We show its performance in various simulation examples and plots. Finally,
we investigate some of our swap rate data in more detail and estimate the dependence
function. We also show various plots to visualise our results.

Our findings in the whole data set with all maturities and all the different currencies



can be summarized as follows: for swap rates in the same currency a high dependence
for similar maturities, and a low dependence between very different maturities. Between
different currencies we observed only very little dependence except for similarly long
maturities, where we detected some moderate dependence. For plots and more details on

these effects we refer to Kuhn (2002).

2 Measuring extreme dependence

Although the upper tail dependence coefficient and its functional extension we are aim-
ing at can be defined for random vectors of any dimension, we restrict ourselves in our
presentation to the bivariate case. For a general treatment in any dimension we refer to
Hsing et al. (2003).

Suppose (X;,Y:)i=1. » is a sequence of iid vectors and (X,Y’) is a generic random
vector with the same distribution function G(z,y) = P(X < z,Y < y) for (z,y) € R?

with continuous marginals. For n € N define the vector of componentwise maxima

M, = ( max X;, max Y;).

i=1,.n i=1,..n
As a first goal we want to describe the behaviour of M, for large n.

It is a standard approach in extreme value theory to first transform the marginals
to some appropriate common distribution and then model the dependence structure sep-
arately. As copulas have become a fairly standard notion for modelling dependence we
follow this approach and transform the marginal distributions G x and Gy to uniform
(0,1). Then we have a bivariate uniform distribution, which is called a copula and is given

for 0 < u,v <1 by



For more details on copulas and dependence structures in general we refer to Joe (1997); for
applications of copulas in risk management see Embrechts, Lindskog and McNeil (2001).
The transformation of the marginals to uniforms is illustrated in Figure 2.1.

Under weak regularity conditions on G(z,y) we obtain

1 1
lim P (max Gx(X;) <1+ —Inu, max Gy(Y;) <1+ —lnv)
n 7

n—oo i=1,...,n =1,....,n n

= exp(—A(—Inu,—1nv))) = C(u,v).
Such a copula is called extreme copula and satisfies for all ¢ > 0
Ctu,v) =C(u',v"), 0<uv<l.

C'(u,v) has various integral representations. The Pickands’ representation yields an ex-
treme event intensity measure (we write a A b = min(a,b) and a V b = max(a, b)):

Az,y) = lim nP (GX(X) >1- % or Gy (Y) >1— 9) (2.1)

n—oo n

/2 x y
= V d(dh) .
/0 <1VCot9 1\/tan9> (d0)

® is a finite measure on (0, 7/2) satisfying

/2 /2
/ (1/\tan9)<I>(d6):/ (1 A cot 0) B(d6) = 1.

The definition of A as a limit of n X success probability is a version of the classical limit
theorem of Poisson. For large n the measure A can be interpreted as the mean number

of data in a strip near the upper and right boundary of the uniform distribution; see

Figure 2.1. We also recall some properties of tanf = Colt 5 = %: tan0 = 0, tan@ is
increasing in 6 € (0,7/2) and limy_ /2 tanf = co. Then cot @ is its reflection on the 45
degree line, corresponding to 6 = w/4. Moreover, tann/4 = cot /4 = 1. Finally, arctan
is the inverse function of tan.

The fact that A(x,y) = xA(1, y/x) motivates the following definition.
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Figure 2.1 Left plot: Illustration of the intensity measure A as defined in equation (2.1) by simulated
data for X and Y Fréchet distributed with distribution functions Gx () = Gy (z) = exp(—1/x) for z > 0.
Then A measures the strip near the upper and right boundary of the uniform distribution on the left.

Right plot: In the original data this corresponds to the indicated region of large data points.

Definition 2.2 For any random vector (X,Y") such that (2.1) holds we define the depen-
dence function as

() =A(l,cotf), 0<0<m/2.

Note that (+) is a function of the angle § only and measures dependence in any direction
of the positive quadrant of a bivariate distribution. The following result shows that (-)
allows us to approximate for large x; and y; the probability for X or Y to become large.

We write a(x) ~ b(z) as x — xq for lim,_,,, a(x)/b(x) = 1.

Proposition 2.3 Let (X,Y) be a random vector. If x1,y1 — oo such that P(X >

x1)/P(Y > 1) — tan@, the following quotient converges for all 6 € (0,7/2),

P(X >z orY > )
P(X>$1)
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then the limit defines the dependence function 1(0).

Proof. From (2.1) we have for large 1,y and # = nGx(r;) and y = nGy(y;) as

n — oo (note that x,zq,y,y; depend on n):

1 _
P(X >ziorY >y1) ~ —A(nGx(x1),nGy(y1))

- T (. E2) - o (o (B)).
We set B
o= (G6)
and obtain the result. O

Corollary 2.4 (a) For X andY independent we calculate

P(X >z 0orY>y) P(X>x)+PY >y)
P(X>£L‘1) P(X>331)

— 1+ coth =: 1y(0)

for x1,y1 — oo such that P(Y > y,)/P(X > x1) — cot#.
(b) For X and Y completely dependent, i.e. X = g(Y) with probability 1 for some

increasing function g, we obtain

P(X >z 0orY >y) P(X>z)VPX>y)

— 1Vecotd =: 11(0)
for x1,y; — oo such that P(Y > y1)/P(X > x1) — cot 6.

(¢c) Furthermore,

Gi(0) < w(0) < wo(0), 0<0<m/2.
We normalize (-) to the interval [0, 1] as follows.

Definition 2.5 The normalised function

_ o(0) —(0)
Go(0) — n(0)

we call tail dependence function.

p(0) 0<0<m/2,
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Note that it describes the tail dependence of (X,Y) in any direction of the bivariate
distribution on the positive quadrant of R?.

By this definition we have p(#) € [0,1] for all 0 < 6 < 7/2, p(d) = 0 in case of
independence and p(f) = 1 in case of complete dependence. Consequently, p(f) being
close to 0/1 corresponds to weak/strong extreme dependence.

The function p(+) is invariant under monotone transformation of the marginal distri-

butions. We show this by calculating it as a function of the copula.

Proposition 2.6 Let (X,Y) be a random vector with marginal distribution functions G x
and Gy, which are continuous functions. Then G x(X) LU and Gy(Y) LV for uniform
random variables U and V' with the same dependence structure as (X,Y). Denote by
C(u,v) = P(U < u, V <w) the corresponding copula. We also relate the arguments by

Gx(z1) = u and Gy (y1) = v. Then, provided that the limits ezist,

B _ l1—u—v+C(u,v)
plf) = i, TE D

(1—u)/(1—v)—tan 6

0<0<m/2.

Proof.
i 1—P(X§:E1,Y§y1)
P(O) = B} 11}1900
aX(zl)/éy(yﬁ*“canG P(X > xl)
1 —
= lim M ‘
w,v—1 1 —u

(1-u)/(1—v)—tan O

Remark 2.7 Note also that the quantity p(7/4) is nothing but the (upper) tail depen-
dence coefficient py as defined in (1.2). Thus, the function p extends this notion from a

single direction, the 45 degree line corresponding to 6 = 7/4, to all directions in (0, 7/2).

This extension is illustrated by the following examples.
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Example 2.8 [Gumbel copulal
Let (X,Y) be a bivariate random vector with dependence structure given by a Gumbel

copula
C(u,v) = exp {— [(—Inu)’ + (= Inv)’] 1/6} , 0€][l,00). (2.3)

The dependence arises from . To calculate 1(0) we use the relationship of ¢ to its copula.
We use also the fact that for u,v — 1 we have

—Inv 1—w
~ — cot 6.
—Ilnwu 1—wu

Then by continuity of u* in « we obtain for u,v — 1 such that (1 —v)/(1 —u) — cot 6
—Inv\’ 5Y1/6
1+ ~ 1= u(1+(cot9) ) )

Using the I’'Hospital rule and the fact that u — 1, we obtain

1-C(u,v) = 1—exp|Ilnu

1 —C(u,v)

1/5
= (1 + (cot 0)5) :

and hence

1/6

~ 1+cotf — (1+ (cot6)°)

p(6) T cotd , 0<fO<m/2.

We also obtain the well-known upper tail dependence coefficient p; = p(m/4) = 2 — 2179

O

Our next example is a typical model to capture risk in the extremes. We write again

a Ab=min(a,b) and a V b = max(a,b).

Example 2.9 [Asymmetric Pareto model]

For py,ps € (0,1) set p; =1 — p; and p, = 1 — py and consider the model

X=pmZiVpZy and Y =pZ; VP23
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with Zy, Z,, Z3 iid Pareto(1) distributed; i.e., P(Z; > x) = x~! for x > 1. Clearly,
the dependence between X and Y arises from the common component Z;. Hence the
dependence is stronger for larger values of py, po. We calculate the function p, and observe

first that by independence of the Z; for x — oo,

P(X>z) = 1=-PpZiVpZa<xz)=1—-P(pZ <z)P(pZ> < x)
D 1 1
- 1-(1-%) (1—&) ~ (B = .
x x x x

Consequently, we choose y = x tan §, which satisfies the conditions of Proposition 2.3 and

calculate similarly,

P(X>zorY >ztanf) = 1 - P(X <z,Y <z tanf)

_ 1—P<Z1§ﬁ/\xtang)P<Z2§_£)P<Z3§xt_an9>
D1 D2 D1 Po

1
~ ;(]h V po cot 8 + Py + Py cot 6)

which implies ¢(0) = 1 + cot — p; A pacot for 0 < 6 < w/2 and

p1 A pa cot 6

: A4
p(6) Theotd 0<6<m/2 (2.4)

We conclude with the multivariate normal distribution. It is well-known that for cor-
relation p < 1 the upper tail dependence coefficient is py = 0. We shall calculate the

dependence function for this important model.

Example 2.10 [Bivariate normal distribution]

Let X and Y be N(0,1) with distribution function ® and correlation p between X and
Y. Set ®(X) = U and ®(Y) = V, and relate the arguments as required in (2.2) by
®(z)=1-u~1—2/nand ®(y;) =1—v ~ 1—y/n. Then we set v = ucotd —cot § + 1

14



in order to meet the restrictions of Proposition 2.6; we even have here 1 —v = (1 —u) cot 6.

Now recall that (provided the limits exist for all 6 € (0,7/2)

l1—u—v+C(u,v)

T—wva-o "9

Note first that 1 —u > 1 — v if and only if cot§ < 1, i.e. > 7/4; so assume that this is

the case. Then

l—u—v+C(u,v)  (I—wu)cotd —u+C(u,1 — (1 —u)coth)
1—u B 1—u
— otf4 —u—i—C(u,ll—(l—u)cotH)'
—u

We want to use the I’Hospital rule and need the derivative of the copula:

1- 1 -
dC(u,1 —cot0(1 —u)) _ ﬁc(s,t) = +cot0%C(s,t) o=

du 88 t=1—(1—u) cot 0 t=1—(1—u) cot 0

— PU<u|V=1-(1—u)cot)+cotP(V <1—(1—u)cotf |U =u)
= P(O(X)<u|B(Y)=1—cotf(1—u))

+eot P(®(Y) < 1— (1—u)cotf | B(X) = u)
— P(X<ay|Y =y)+cot0P(Y <y | X =),

Now recall that for the bivariate normal distribution also the conditional distribution

X|Y =y is N(py1,1 — p?) and, analogously, Y| X = x; is N(pz1,1 — p?); in particular,

PX<z|Y=y) = @(M)

1—p?
PY <y |X=m) = &L L)
1—p?

From this we conclude by the 'Hospital rule (provided the limit on the right hand side

exists)

lim —u+ C(u,1 —cot (1 — u)) dC(u,1 —cot 6(1 — u))

u,v—1 1 — U u,v—>1 du

T1,Y1—00

15



where x; and y, are related to u and v as explained before. From this we obtain

. = I hn = Y1 L1
0) = lim Pl ——(1—p=— +cotfd | —— (1— —> )
p( ) xl,y1—>OO< ( /1_p2 < pm1)> ( /1_p2 onl ))

where we still have to evalute the right hand side. Recall that by asymptotic inversion,

for 1 — u — 0, which implies —In(1 — u) — oo,

) [ (1—u) v—21In(1 \/ —In(1 —u) o

(7 o (1—@) v —2In(1 —v) In((1 — u)cot 9)

This means that

) — 1—p — 1—p
0) = 1 o — t0P — = 0.
0 =l (P (y55) 0w (y/153))

As the normal copula is symmetric, we can reverse the roles of U and V' and obtain the
same result for 0 < 0 < 7/4.

Note that the above calculation only covers the case, where z1/y; — 1. All other directions
x1/y1 — ¢ with ¢ € (0,1) or ¢ € (1,00) correspond to cotd — 0 and cotf — oo,

respectively, yielding also p(0) = p(7/4) = 0. a

Remark 2.11 For the upper tail dependence index, which corresponds to 6 = 7 /4, hence

u=v and x; = y; we find

) — 1—0p — 1—0p
4) = lim 20 | x4/ —— )| =20 | 214/ — | =0,
plm/) = < ' 1+p) ( 1 1+p)

for all p < 1 as is well-known; see e.g. Embrechts, et al. (2001, 2002).

3 Extreme dependence estimation

To assess extreme dependence in a data set we want to estimate the dependence function
p(+) on the positive quadrant. We use a nonparametric estimator as suggested in Hsing

16



et al. (2003) based on the empirical distribution function, which yields a simple nonpara-
metric estimator of ¢(-) and hence of p(-), Recall that the empirical distribution function

is given by

n

. ~ 1
G =P (X<z)=-)» I(X;<x), eR,
M) = PAX <) =5 <),
is the standard estimate for the distribution function Gx of iid data (/(A) denotes the
indicator function of the set A). The empirical distribution function can be rewritten in

terms of the rank of a random variable in the ordered sample and we write

~

Gy (Xi) = Po(X < X;) = %rank(Xi)

for any sample variable X; for v =1,... n.
We still have to explain one important issue of our estimation procedure. Recall from

(2.1), denoting by Gx(-) =1 — Gx(-),

Az, y) = nP(GX(X)>1—%or GY(Y)>1—%>
= nP(nGx(X)<zornGy(Y)<y)
= nP(n(Gx(X),Gy(Y)) € A) (3.5)

— Az,y).

By a continuity argument we can replace n € N by t € (0,00) and also replace in a

first step the probability measure P by its empirical counterpart ﬁn Then we obtain

Kt,n(x7y) = tﬁn (t (aX(X)vaY(Y» S A)

_ %Zl(t (Gx(X),Gy(Y)) € A).

Now estimate the two distribution tails by their empirical counterparts:

~

1 1 =
Gx(X;) = ERZ)( = —rank(—X;) and Gy(Y;):= 1RZY = lramk(—Y;).

n n n

17



Then setting € = t/n we obtain
Rn(d) = =S I(=(RY, RY) € A). (3.6)

i=1

This yields in combination with Definition 2.2 an estimator for the function p.

. 1+ cot 6 — A. (1, cot 6)
sne = ; )
Pen(f) 1 Acoté

(3.7)
where Kan(l, cot f) can be rewritten as
5ZI(RZ-X <e ' R <e™h,.
i=1

This estimator has good convergence properties: for appropriately small € and n — oo it
converges in probability and almost surely; see Hsing et al. (2003) and references therein.
Moreover, it has the advantage that it is only based on the ranks of our data. This
estimator can be smoothed in the usual way, for instance, by averaging it over a window
of size 2m + 1 for m € N, we call this smoothed estimator ﬁ(gﬁ)()

The middle column of Figure 3.1 visualizes the extreme dependence structure by means
of ranks. Plotted are the (1/R;* , 1/R}). Points on the axes correspond to independent ex-
treme points; all points in the open quadrant exhibit some extreme dependence structure.

Completely dependent points are to be found on the 45-degree line.

Example 3.2 [Gumbel copula: continuation of Example 2.8]

In Figure 3.1 we simulated the model (with exponential margins) for n = 10000 iid
observations of (X,Y’). We estimate the dependence function p(-) for this model. We stay
away from the boundaries § = 0 and 6 = 7/2, since in the numerator of (3.7) we have
the difference of two quantities which both tend to co as § — 0, and for 6 near 7/2

there is a lack of data. The three sets of plots on the three rows correspond to the cases:

18
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Figure 3.1 Left column: Plots of the data (X,Y), for Cx given in (2.3) with standard exponential
margins and p(w/4) = 0.3 (upper row), p(m/4) = 0.7 (middle row), p(7/4) = 0.9 (lower row).

Middle column: Plots of the ranks (1/RX , 1/RY).

Right column: Smoothed versions ’p\(fr)L(G) (solid line) overlaid with true function p(6).

p(m/4) = 0.3 (upper row), p(r/4) = 0.7 (middle row) and p(7/4) = 0.9 (lower row).
On each row the left plots contain a simulated sample of size 10000. The corresponding
ranks (1 JRX 1/ R}/), 1 <@ < n, are shown in the middle plots. The right plots show the
true functions p(f) in (2.4) (dashed line) overlaid with the smoothed version of p. ()
(solid line) based on the simulated sample. Note that p(m/4) is the upper tail dependence
coefficient, which is an appropriate and simple measure of extreme dependence for this
symmetric model. The level of dependence is manifested by the data scattered around the

diagonal. O
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Example 3.3 [Asymmetric Pareto model: continuation of Example 2.9]

In Figure 3.4 we simulated this model for n = 10000 iid observations of (X,Y"). The three
sets of plots on the three rows correspond to the cases: (p1, p2) = (0.7, 0.3), (p1, p2) =
(0.5, 0.5) and (p1, p2) = (0.2, 0.8). On each row the left plots contain a simulated sample
of size 10 000. The corresponding ranks (1/RZX, 1/RZY), 1 <7 < n, are shown in the middle
plots. The right plots show the true functions p(6) in (2.4) (dashed line) overlaid with the
smoothed version of p;,(¢) (solid line) based on the simulated sample.

In the first row of plots, p is larger for small 6 than for large 6; this is reflected by the
left plot in which the violation of independence can be seen to be more severe below the
diagonal. In the second row of plots, p is constant; which is reflected by having a portion
of extreme points lined up on the diagonal in the left plot. The third row of plots is the
converse situation to the first row, which is reflected by the pattern of extreme points
above the diagonal.

This is an example of a situation where the tail dependence coefficient does not convey
a good picture of extreme dependence, in that p(7/4) is not sufficient to describe the full

dependence structure of this model. O

Example 3.5 [Swap rate data]
Finally, we use the estimator p for the swap rate data described in Section 1. First we
show plots of p.,,(0) for 6 € (0,7/2), as defined in (3.7) We stay away from the boundaries
0 = 0 and 0 = 7/2, since in the numerator of (3.7) we have the difference of two quantities
which both tend to co as § — 0, and for 6 near 7/2 there is a lack of data.

In Figure 3.6 the tail dependence function is estimated for various combinations of

swap rates of different maturities with p.,(6;) (zigzag-line) and the smoothed version
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Figure 3.4 Left column: Plots of data (X,Y) from Example 3.3:
p1 = 0.7, po = 0.3 (upper row), p; = 0.5, p2 = 0.5 (middle row) and p; = 0.2, p» = 0.8 (lower row).
Middle column: Plots of the ranks (1/RX,1/RX).

Right column: Smoothed version of ;’7{65%(9) (solid line) overlaid with true function p(6).

i) (6;) (dashed line) for & = 0.06, m = 5 and 6; = 5557, 1 < < 200.
The upper row of plots exhibit some dependence for small  and again for large 6,
there is less dependence for 6 around /4. The middle row shows a similar dependence

structure. This is not so surprising from the chosen maturities. The third row of plots,

however, clearly shows high dependence for the whole range of 6. O
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data ranks 270-day vs. 5-year EUR swap
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Figure 3.6 Left column: Scatter plot of data of Figure 1.3, 270-day vs. 5-year (first row), 270-day vs.
7-year (middle row) and 5-year vs. 7-year EUR swap (lower row).
Middle column: Plots of ranks (1/R; j,1/R; ), 1 < j <k <3.

Right column: Smoothed version of ,5&5%(9) (solid line) overlaid with true function p(9) (zig-zag-line).
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4 Conclusion

We have introduced a new tail dependence function which is tailor made to assess the
extreme dependence structure in data. As it measures dependence in every direction it
is also able to measure extreme dependence for data with an assymmetric dependence
structure. We treat various examples, including the ubiquitous normal distribution as
well as an asymmetric heavy-tailed Pareto model. Moreover, our approach is based on
copulas and provides thus a general treatment for any dependence structure. In addition
to a small simulation study we also show our new dependence function at work for real

data and estimate extreme dependence for annually compounded zero coupon swap rates.
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