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Abstract This paper proposes a novel explanation for the context dependency of individual
choices in two-player games. Context dependency refers to the well-established phenomenon
that a player, when choosing from a given opportunity set created by the other player’s strategy,
chooses differently in different situations because of different alternatives to the other player’s
strategy. The utility model used to explain this kind of context dependency incorporates a
preference for net-loss reciprocation. Net-loss reciprocation means that a player’s willingness to
impose a net loss (i.e., loss minus gain) on the other player increases in the net loss that he or
she derives from the other player’s strategy. I show that net-loss reciprocation together with the
method for calculating net losses developed in this paper explains the context dependencies in
individual behaviour that have been documented in a number of experimental studies, whereas

existing models of intention-based reciprocity fail to explain all the evidence.
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1 Introduction

This paper studies the context dependency of individual choices in two-player games. Consider
the following basic decision problem faced by each player: Choosing an outcome of the game
from the opportunity set created by the other player’s strategy. Context dependency holds if a
player’s choice from a fixed opportunity set of this kind is not constant across situations, but
varies with the alternative strategies at the other’s disposal. Examples are provided below. They
show that context dependency may occur both in the context of negative reciprocity
(punishment for unkind behaviour) and positive reciprocity (reward for kind behaviour). While
experimental evidence suggests an important role for context dependency in negative
reciprocity, experimental studies of positive reciprocity have not established strong context
dependency.' In this paper, I propose a new behavioural theory called net-loss reciprocation
that can explain these apparently contradictory findings.

A new theory is called for because existing theories struggle to explain context dependency.
According to outcome-based theories of behaviour, players are motivated by a single preference
ordering on outcomes, which directly rules out any context dependency.? Existing theories that
are not outcome-based also fail to explain all the evidence.’ From an economic point of view,
context dependency is important because it impacts the possibility of reaching (materially)
efficient outcomes in strategic interactions. Context dependency strongly influences the
occurrence of punishment, which in itself harms efficiency, but may improve the overall

efficiency of the interaction.® Positive reciprocity, which promotes efficient behaviour like trust

' See Brandts and Sola (2001) and Falk et al (2003) for evidence on negative reciprocity and Dufwenberg
and Gneezy (2000), Charness and Rabin (2002), McCabe et al (2003), Cox (2004), Servatka and Vadovic
(2009) and Cox et al (2010) for evidence on positive reciprocity.

% Outcome-based theories leave open the possibility that several outcomes are most preferred in a given
opportunity set. This can rationalise isolated instances of context dependency, but can hardly be regarded
as a systematic explanation for their prevalence. Outcome-based theories include Fehr and Schmidt
(1999) and Charness and Rabin (2002).

3 Below, I focus on the intention-based models of reciprocity by Dufwenberg and Kirchsteiger (2004) and
Falk and Fischbacher (2006).

* The efficiency-promoting role of punishment has been extensively studied in the context of public good
games (Fehr and Géchter, 2000). The evidence on whether punishment opportunities promote overall
material efficiency in these games is mixed.



in trading relationships, appears less affected by context dependency. Yet, it is interesting to
explore the mechanisms behind this, which also sheds light on robustness.

Net-loss reciprocation builds on two key concepts: Firstly, the loss and gain that players
derive from the other player’s strategy. Secondly, the loss and gain that players themselves
impose on the other through their own choice from the feasible set given the other’s strategy.
Net-loss reciprocation means that players’ willingness to pay for increasing the net loss imposed
on the other increases in the net loss derived from the other’s strategy.’ Net losses are simply
losses minus gains, where the two need not count for the same. Net-loss reciprocation is
consistent with an intuitive notion of reciprocity, according to which people’s kindness to others
increases in these others’ kindness to them. More importantly, net-loss reciprocation can explain
context dependency because players may derive different net losses from two strategies creating
the same opportunity set because of different alternatives at the other’s disposal. As a result,
their preferences on the same opportunity set may differ.

For an illustration of context dependency in the domain of negative reciprocity, consider the
ultimatum mini games studied by Falk et al (2003). In all of them, the proposer can make a
fixed offer of dividing the surplus, namely, “8 for the proposer, 2 for the responder”, and one
alternative offer that varies. The responder can accept or reject any offer. Consider two such
games: One where the alternative is “5 for both” and one where it is “2 for the proposer, 8 for
the responder”. Since the opportunity sets after the fixed offer are the same, we have context
dependency if responders are more likely to reject the fixed offer in one game than the other.
Falk et al (2003) report significantly more rejection in the first game.

For an illustration in the context of positive reciprocity, consider the trust games studied by
Dufwenberg and Gneezy (2000). In all of them, the second mover can share 20 between himself
and the first mover in the event of trust, while the games differ regarding the outcome in case of
no trust. Consider two games: One where the no-trust outcome is “4 for the first mover, 0 for
the second mover” and one where it is “16 for the first mover, 0 for the second mover”. Since
sharing opportunities are identical, we have context dependency if second movers share the 20
differentially in the two games. Despite the fact that the no-trust outcomes differ considerably,

Dufwenberg and Gneezy (2000) report no significant difference in sharing.

> This willingness to pay may be negative or positive.



Below, I put forward a utility model incorporating net-loss reciprocation to explain these and
other experimental findings. I now sketch the basic features of the calculus of losses and gains
underlying the model. I focus on the loss and gain that a player derives from the other player’s
strategy. Analogous procedures are used for determining the loss and gain imposed on the other.

A player’s loss from some strategy of the other player (called henceforth the “status quo”) is
composed of his material loss and his fairness loss. The player derives a material loss whenever
there is an alternative strategy of the other under which the player could have earned more than
what he can maximally earn under the status quo. Moreover, the player derives a fairness loss,
which he adds to his material loss, if his forgone earnings (that make up his material loss) derive
from outcomes that are fairer than the fairness of the status quo. The intuition is that the player
in this case feels an entitlement (“fairness claim”) to his forgone earnings, which causes him to
feel an additional loss. Since his fairness loss is added to his material loss, his total loss then
exceeds his material loss. Fairness is measured by a function that ranks the outcomes of the
game according to their fairness and incorporates considerations of material efficiency and a
concern for the less well-off player.

For an illustration, consider the two ultimatum mini games discussed above. If the alternative
to the status quo offer “8 for the proposer, 2 for the responder” is “5 for both”, responders derive
both a material loss (of 3) and a fairness loss, while their loss is limited to their material loss (of
6) if the alternative is “2 for the proposer, 8 for the responder”. Intuitively, “5 for both” is fairer
than the status quo for containing the same payoff sum, but a lower minimal payoff, whereas ‘2
for the proposer, 8 for the responder” is only as fair. Moreover, I show below that the sum of the
material and fairness loss in the first game can exceed the higher material loss in the second
game. This (together with the fact that there is no gain from the status quo) implies a higher net
loss from the status quo in the first game, which explains responders’ higher willingness to
impose a net loss on proposers by rejecting the status quo more often.

Likewise, a player’s gain from the status quo is composed of his material gain and his fairness
gain. The player derives a material gain whenever he can earn more under the status quo than
what he can maximally earn under some alternative. Moreover, the player derives a fairness
gain, which is added to his material gain, if the earnings that make up his material gain derive
from outcomes that are /ess fair than the fairness of the alternative. The intuition is that in the

converse scenario, where the outcomes creating his material gain are fairer than the alternative,



the player feels an entitlement to his material gain (“well deserved”), which causes him to feel
no gain based on fairness considerations.

For an illustration, consider the two trust games introduced before. Recall that the games
differ regarding the no-trust outcome: No trust entails “4 for the first, 0 for the second mover” in
the first game and “16 for the first, 0 for the second mover” in the second game. In each case,
second movers suffer no loss from being trusted, and their material gain is the same (namely,
20) because they can earn up to 20 after trust, but earn zero after no trust. Moreover, their
fairness gain is zero in both cases because there is no outcome after trust that is less fair than
either no trust outcome, which means that second movers feel entitled to their additional earning
possibilities after trust. Even the outcome “0 for the first, 20 for the second mover”, which
second movers can implement after trust, is not less fair than either no-trust outcome because it
contains a larger total payoff and the same minimal payoff. As a result, second movers derive
the same (negative) net loss from trust in each case, which explains why Dufwenberg and
Gneezy (2000) detect no context dependency across the two situations.’

In contrast, existing models of social preferences struggle to account for context
dependencies. Outcome-based models like the inequality aversion model of Fehr and Schmidt
(1999) or the model of Charness and Rabin (2002), which combines a taste for material
efficiency with generosity towards those who are least well-off, build on the idea that strategic
behaviour derives from a single ranking of the outcomes of the interaction. For this reason,
these models cannot provide a systematic explanation of context dependency.’

Such an explanation can in principle be provided by intention-based models of reciprocity
making use of psychological game theory.® Most widely used are Dufwenberg and Kirchsteiger
(2004), who build on Rabin (1993), and Falk and Fischbacher (2006). One key feature of these
models is their reliance on players’ second-order beliefs, i.e., their beliefs about the other
player’s belief about their own choice of strategy. Thus, when faced with some strategy of the

other player, players consult their second-order belief, which together with the strategy of the

% Of course, an insignificant treatment effect can have other reasons such as too few observations.
7 Context dependency can only arise from several most preferred outcomes in the fixed opportunity set.

¥ Psychological games were first defined and analysed by Geanakoplos, Pearce and Stacchetti (1989). A
framework for dynamic psychological games is provided by Battigalli and Dufwenberg (2009).



other pins down a unique outcome of the game, which serves to represent the other’s strategy.
In contrast, my approach does not rely on second-order beliefs, but represents the other’s
strategy and its alternatives by the entire sets of feasible outcomes that these strategies create.
Consequently, my approach is more amenable to empirical testing using standard experimental
data as it does not require measurement of higher-order beliefs.”

Regarding predictions, both models assert that players’ willingness to be kind to the other
increases in the kindness of the other’s status quo strategy, which is similar in spirit to net-loss
reciprocation. Problems arise in the conceptualisation of kindness. For instance, in Dufwenberg
and Kirchsteiger (2004), if the outcome representing the status quo gives the player more (less)
than half of what he maximally and minimally stands to earn under the alternatives, the status
quo is perceived as kind (unkind). Thus, this approach limits itself to comparing earnings
without allowing for players’ sense of entitlement to these earnings. The evidence from the
ultimatum mini games makes clear that such a sense of entitlement may override material
considerations.

Also, reliance on second-order beliefs may lead to unintuitive predictions because it uses
players’ (likely) reaction to the strategy of the other as a means to assess the strategy’s kindness.
Yet, if players react to some strategy that they in fact perceive as unkind in a self-serving
manner and more generously to some alternative they perceive as kind, they may end up with
more own payoff when faced with the former, from which Dufwenberg and Kirchsteiger (2004)
would conclude that the first strategy is kinder. This problem is also shared by Falk and
Fischbacher (2006). When discussing applications, I explain in more detail this and other
difficulties encountered by the two models, whose basic building blocks are laid out in more
detail in Appendix B. All in all, net-loss reciprocation can account for larger parts of the
evidence than either model of intention-based reciprocity.

At first blush, the model of net-loss reciprocation introduced in this paper could be thought of
as a model of loss aversion (Kahnemann and Tversky, 1979; Shalev 2000; K&szegi and Rabin,
2006). While I allow for the possibility that “losses loom larger than gains”, which is the
cornerstone of this literature, there are important differences. Loss aversion builds on the idea

that the consequences of decisions are evaluated relative to some (deterministic or stochastic)

? Dhaene and Bouckaert (2010) investigate the performance of the model of Dufwenberg and Kirchsteiger
(2004) using measured second-order beliefs in a setting unrelated to context dependency.



reference point. If the utility of a consequence exceeds (falls short of) the reference point,
individuals perceive a gain (loss). Loss aversion therefore presupposes some baseline utility
attached to consequences from which losses and gains can be calculated. This is where net-loss
reciprocation steps in, which is best described as a theory about how sensations of loss and gain
derived from the other’s behaviour act as a source of (social) preferences and hence as a source
of baseline utility attached to the different outcomes of the game. '’

That said, the utility model proposed below is qualitative in the sense that the details of the
utility function up to the net-loss reciprocation property are left open. There is also no
equilibrium analysis, which is refrained from because it is not needed to explain the phenomena
this paper sets out to explain.'' Indeed, the context dependencies addressed below relate to the
behaviour of players who have certainty about the other player’s strategy because they are
second movers in sequential games where each player has one move. As a result, these players’
beliefs are pinned down by the game’s information structure, and a notion of best response is
enough to explain their choices.'”” Regarding best responses, I take no stance on which
specification of utility consistent with net-loss reciprocation is most appropriate. There are
several plausible ways of incorporating net-loss reciprocation into a full-fledged utility model."
Comparing the relative performance of these modelling options is left for future work. The
substantive question addressed in this paper is: Can the net-loss reciprocation property of
preferences together with my method for calculating losses and gains explain the context

dependencies (or absences thereof) observed in experiments? The answer is largely affirmative.

' In this sense, loss aversion is orthogonal to net-loss reciprocation. Shalev (2000) studies loss aversion
in games.

"' Cox et al (2008) propose a non-equilibrium model of reciprocity in sequential games. However, it is not
suited to studying context dependency.

12 Of course, net-loss reciprocation could also be used to explain the behaviour of first movers with the
added complication that their beliefs about the other‘s strategy are unobservable. These beliefs could be
measured experimentally. However, there are to the best of my knowledge no economic experiments
documenting context dependencies in the behaviour of players who must form beliefs about others.

" E.g., players could be willing to sacrifice own payoff to match the net loss they impose on the other to
the net loss imposed on them. Players could also be endowed with some baseline preferences on
outcomes whose degree of altruism decreases in the net loss they derive from the other (although this
specification does not perfectly fit the definition of net-loss reciprocation given below).



The remainder of this paper is structured as follows: I first show how to calculate the net loss
that a player derives from the other player’s strategy, which is followed by the method for
calculating the net loss that the player himself imposes on the other as well as the utility model
incorporating net-loss reciprocation. I then show how this qualitative model can account for
context dependency in a number of well-known experimental studies and compare its
performance to intention-based models of reciprocity. All proofs are in Appendix A. Appendix

C contains a generalisation of my approach to n >3 players including Nature.

2 Losses and Gains From the Other Player’s Strategy

I limit attention to finite-horizon two-player (i, j) multi-stage games with observable past
actions.'* A player’s inactivity at a stage is modelled by the respective action set being
singleton. Let H be the set of non-terminal histories of the game. Player i’s pure strategy s, € S,
assigns to each history # € H an action available to i at 4." I restrict attention to pure strategies.
The set of pure strategy profiles is §=3, xS,. Outcomes 7r=(7rl.,7rj) of the game are two-
dimensional vectors of material payoffs. The function 7:S — R’ is the outcome function and
= {n(s) :se8S } the set of attainable outcomes in the game. Moreover, the set of attainable
outcomes or opportunity set for player i given that player j plays strategy s, €S, is given by
" ={7z'(si,sj): s; eSi} with TV < 1I.

[ first define player i’s loss from s, € S, . Player i’s overall loss is derived from a more basic
notion, namely, his loss from s, relative to a particular alternative §, €S, . I also refer to s, as
the status quo and to §; as the alternative. The basic idea is the following: Player i suffers a loss

from s, relative to §; only if he can earn more given §; than what he can maximally earn

8§:>8;

given s,. Or, more formally and with a slight abuse of notation, let IT”" be the set of
outcomes in 11" that yield i a higher payoff than his highest attainable payoff in I . A
necessary condition for i suffering a loss is then that ™ s non-empty. The magnitude of his

loss is determined by considering the different outcomes in 11" . For each well”™™, i

1 refer to i as “he” and j as “she”.

15 Action sets are assumed to be finite.



calculates both his material loss, which is the amount by which his payoff from 7 exceeds his
maximal payoff in II", and his fairness loss, which tracks the extent to which 7z is fairer than
the fairest outcomes in IT% .

While i’s material loss is guaranteed to be positive by the definition of n", x may or may
not be fairer than the fairest outcomes in IT” . If 7 is not fairer, i perceives no fairness loss
because he then has no fairness claim to 7 even though he could have earned more from it than
what he can maximally earn given s, . His loss is then limited to his material loss. In contrast, if
7 is fairer than the fairest outcomes in IT" , i suffers a fairness loss because he now has a
fairness claim to his additional earnings from z. All in all, /’s loss from s, relative to a
particular 7 € 17" is the weighted sum of his material and fairness loss, while his loss from
s; relative to s, at large is his maximal loss from s, relative to the outcomes in =,

I now put more formal structure on these ideas. As stated above, IT" is the set of attainable
outcomes given s, . The set I}’ is the set of payoffs to player i contained in IT" . Its maximal
element is 7 = maxI1’ . Furthermore, 11" ={7reH§" cm > } is the set of attainable
outcomes given §; that yield i more payoff than what he can maximally earn given s, . Fairness

is measured by a fairness function, isoquants of which are called fairness curves:
DEFINITION 1 The fairness function f :R* - R is given by

f(z)= a(nl. +7tj)/2+(1—a)g

where 7 = min{ni,n/.} and a €[0,1].

For an interpretation of the parameter o, consider the polar cases a=1 and a=0:If a=1,
fairness boils down to material efficiency meaning that for any two outcomes # and 7 we have
f(n) > f(ir') ifand only if x, + 7, >7, + ;. In contrast, if a =0, we have f(n) > f(ﬁ) if and
only if = >z . For fairness to increase in this case, the player with less payoff must receive
more.'® In general, the lower «, the smaller (larger) the relative weight attached to efficiency

(equality) considerations in fairness assessments. Yet, it is not equality per se that enters the

'® The second case is reminiscent of a Rawlsian (or max-min) social welfare function. The first case has a
utilitarian flavour.



fairness function, but the payoff of the less well-off player. It is this payoff that must increase
for fairness to increase. If equality as such mattered, we could also reduce the payoff of the
better-off player for fairness to increase.'’

Player i derives a fairness loss from s, relative to 7 e """ if and only if 7 lies on a higher
fairness curve than the highest fairness curve reached in IT” . Moreover, i’s fairness loss
increases in the extent to which the fairness of 7 exceeds the maximal fairness in II” . To
formalise this idea, let /% = max ., f (7) be the highest fairness level attained in IT" . The

fairness gap between 7 and I1V can then be expressed as f()— f."* This lead to

DEFINITION 2 Player i’s loss from strategy s, € S, relative to strategy §, €S, is given by

§i>s
rell /77

max ; |:,B(7Ti _ﬁff)+(1—ﬂ)max{f(7z’)_f“/’oﬂ Y,

0 otherwise

with £ €[0,1]. Moreover, i’s loss from s, is given by /, (sj) =max; s |, (sj,§j) .

Thus, i assesses his loss from s, relative to §, by considering the set 1" . For each outcome
7eI1””" | he determines the weighted sum of his material loss 7, —7x,” >0 and his fairness loss
max{ f(z)=r" ,0} . The weighting is provided by the parameter S :If f =1, i’s loss coincides
with his material loss. Conversely, if f =0, i only pays heed to his fairness loss. Player i’s loss
from s, relative to §; is the maximal sum of this kind with respect to all outcomes in mn,
while his loss from s, at large is his maximal loss relative to all alternatives in S, .

I next address player i’s gain from s, . Relative to a particular §,, i derives a gain only if

I >§/, the set of feasible outcomes under s; that give him more payoff than what he can

' That said, it would also be possible to use a notion of fairness where equality per se mattered. The
present specification is mainly preferred for analytical convenience. A rigorous comparison of different
fairness specifications is left for future work.

'8 The two terms can be thought of as the unique payoffs to 7 yielding the fairness levels f (n) and [,
respectively, assuming that all other players earn the same. This reading of the fairness gap is invariant to
rescalings of the fairness function.



maximally earn under §,, is non-empty. Regarding the magnitude of his gain, fairness curves
again play a central role. Player i derives a fairness gain from a given 7 eII1” “% if and only if
7 lies on a lower fairness curve than the highest curve reached in I . The intuition is that if 7
lay on the same or a higher curve, i would consider his material gain from = to be well-
deserved for contributing to no decrease in fairness. This would lead him to feel no fairness

gain, and his gain would be limited to his material gain. These considerations motivate

DEFINITION 3 Player i’s gain from strategy s; € S, relative to strategy §, € S, is given by

max .., [,B(nl. _ﬁf/)ju(l—ﬁ)max{f@ _f(”)’oﬂ S 2

0 otherwise

with f€[0,1]. Moreover, i’s gain from s; is given by g, (sj) =max; s g (sj,Ej).

Thus, to assess his gain from s; relative to §j, i determines for each 7 eIl the weighted
sum of his material gain =, —Eff >0 and his fairness gain max{j_“gf -f (7[),0}. Crucially, for
the fairness gain to be positive, 7 must be /ess fair than what is maximally achievable given §, .
If 7 were more fair, i would feel entitled to his material gain and perceive no fairness gain.'’

I assume that the same parameters o and S are used in the calculation of gains and losses. |

allow for asymmetries between the two in defining net losses:

DEFINITION 4 Player i’s net loss from strategy s, € S, is given by

with ye [0,1] .

The case y<1 allows for the possibility that “losses loom larger than gains”, which is a key

' Hence, the expression “fairness gain” does not refer to an increase in fairness, but to a sensation of gain
based on fairness considerations.

10



assumption in the literature on loss aversion (Kahnemann and Tversky, 1979; Koszegi and
Rabin, 2006). Yet, as discussed in the Introduction, this paper is not about loss aversion as
understood by that literature.

The following is immediate:

LEMMA1If §; = {sj} , we have nl, (sj)z 0.

§:>s; K

The lemma addresses the case where j is passive. If j has only one strategy, I1”"" and IT"

>5j

are empty for all §, € S, which implies /, (Sj ) =0 and g, (sj ) =0 and therefore n/, (sj) =0.

3 Reciprocating the Other Player’s Strategy

Given the strategy s, of player j, player i must choose an outcome from the opportunity set >
created by s, . In this section, I define a preference for net-loss reciprocation to explain this
choice. Net-loss reciprocation means that i’s willingness to pay for increasing the net loss that
he imposes on j increases in his own net loss from j’s strategy.

I first define the net loss imposed on j. Let 7z° €II” be the outcome chosen by i and let

§.<c

= {neHS’ m; >7rj} and IT”

§:>C

I ={7reHS/ = <7r;} be the outcomes in I1” yielding j

more and less payoff than z°, respectively. This leads to

DEFINITION 5 Player ;s loss from z° e I1” is

rell/

l ( ) Hsf)— max .. [ﬁ(nj—7[5)+(1—ﬁ)max{f(n)_f(nc),oﬂ FIT 2 O
- _ 0 otherwise

Moreover, j’s gain from z° is

N Lo [/3 (75—, )+ (1= B)ymax{ 1 (z)- (nf),o}J I 2 2
gj(n N )_ 0 otherwise

Finally, j’s net loss from z° is

11



The procedure for calculating j’s loss and gain from z° is analogous to calculating i’s loss and
gain from s, . In particular, 7° takes the role of [T and the alternative outcomes 7 €I1” the
roles of the different II" . I also assume that the same parameters o, f and y are used.

I now turn to player #’s preferences governing his choice from I1" :

ASSUMPTION 1 Player i’s preferences on the outcomes in II” are represented by

u, (n,sj) = v(n,. ) + r(nlj (7[,1_[5-’ ),nl,. (sj ))
where v:R >R and r:R* >R are continuous and dv/dr, >0 as well as 8°r/onl onl, > 0.

Thus, given s;, i’s utility from meIl” is additively separable into the utility from his own
payoff and a reciprocation term that depends on the net loss that #7 imposes on j as well as the
net loss that / himself derives from s, . The marginal utility of i’s own payoff is always positive.
Moreover, WTP = ar/ onl; / dv/dr, , which is i’s willingness to pay for increasing the net loss
imposed on j, increases in i’s net loss from s, where WTP itself may be negative or positive.
Whenever nl; >nl,, we therefore have a[r(nlj’.,nli)—r(nl j,nl,.)] /anll. >0, which means that
the impact of an increase in i’s net loss from s, is such that for any two outcomes that differ in
terms of the net loss that they impose on j the utility advantage (disadvantage) of the outcome
imposing the larger net loss becomes larger (smaller).”

Furthermore, I follow McFadden (1974) and McKelvey and Palfrey (1995, 1996) in making

ASSUMPTION 2 The probability of player i choosing outcome 7 € IT” is given by

Pr(n,sj) =exp [ui (n’,s]. )]/Ziem exp [ui (ﬁ,sj )] .

* An example is u, =7, —(nl,. —nl[)2 . The partial derivative of —(nlj’. —nl, )2 +(nl,. —nl, )2 with respect to
nl, is Z(nlb; —nl, ) - 2(nlj - nll.) , which is positive if and only if nl} >nl, .

12



As explained by Goeree et al (2008), this quantal response structure can be justified by
disturbances on individual decision making reflecting the effects of unobservables such as mood
or perceptual variations. According to this interpretation, u, (n,s j) corresponds to the average
utility attached to 7 eIl” with each player realising a mean-zero perturbation of u,.(n',sj) 2
Perturbations are assumed i.i.d. across outcomes and players.”* Assumption 2 implies that every
player chooses every available outcome with positive probability. This helps in interpreting
experimental data, where typically not all subjects facing a given opportunity set I1 choose the
same outcome. In this context, context dependency refers to a statistically significant shift in the
empirical choice distribution on IT for two strategies s, and s’ satisfying ¥ =m" =11.
Using Assumption 2, we can explain this shift if we can show a corresponding shift in the

theoretical choice distributions. I draw extensively on this method in the following section.

I conclude this section by the following lemma, which is useful in what follows:
LEMMA 2 Consider any pair of strategies s;,s’ € S, with 1% =I1" =11 where I is a fixed
set of outcomes and let Pr(n) and Pr'(n) denote the probabilities of player i choosing a given
7 €TT when faced with s; and s’ , respectively. Suppose that n/, (s . ) =nl, (s; ) . We then have
Pr(z)=Pr'(x)
for all 7 € IT. Suppose next that nl, (s;) > nl, (s/.) . We then have

Pr'(n")/Pr(n’) > Pr'(n’)/Pr(n')

forall 7,7’ €I such that nl, (ﬁ’,f[) >nl, (ﬁ,ﬁ).

*! In this setup, the choice of scale for utilities is not without loss of generality. In particular,
multiplication of all utilities by some constant ¢ >1 makes players likelier to choose the options yielding
them the highest utility. For this reason, quantal response models contain a scaling parameter A intended

LT3

to capture the degree of players’ “rationality”, i.e., their likelihood of choosing their most preferred

options. Since the level of 4 does not affect the conclusions drawn below, I set 4 to 1.

> Moreover, in order to generate the assumed logit structure, the perturbations must take a particular
stochastic form. See Goeree et al (2008) for details.
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Thus, if i is faced with two strategies creating the same opportunity set I for him and from
which he derives the same net loss, his probability of choosing any given outcome in I1 is the
same across the two situations. If he does not derive the same net loss, his choice probability
possesses the monotone likelihood ratio property for outcomes that can be ordered according to
the net loss imposed on j. For any such pair, there is a relative shift in probability mass towards

the outcome imposing the higher net loss in the situation where i derives the higher net loss.

4 Applications

In this section, I show that net loss reciprocation can explain the context dependency that has
been documented in a number of experimental studies. Each piece of evidence considered lends
additional structure to the model: Firstly, the evidence from The Hidden Cost of Control
suggests that material factors are not irrelevant in the calculation of losses and gains (£ >0).
Secondly, the evidence from Trust implies that gains are not fully discounted when calculating
net losses (y>0). Thirdly, the evidence from Ultimatum Bargaining rules out a purely
efficiency-oriented notion of fairness and provides an upper bound for the importance of
material factors (a<(1-28)/(1-p) and B<0.5). Finally, the evidence from Lost Wallets
pinpoints the fairness parameter a to equal (1-28)/(2-2p).

Discussing each piece of evidence in turn, I also address the problems faced by the reciprocity
models of Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) in accounting
for these experimental results. Recall that both models make use of players’ second-order
beliefs, i.e., their beliefs about the other player’s belief about their own choice of strategy. As
the studies considered in this section do not measure these beliefs, I use the actual behaviour of
experimental subjects as a “stand-in” for second-order beliefs. This is in keeping with the
equilibrium spirit of these models, which requires beliefs to coincide with actual behaviour.

Although both models rely on second-order beliefs, they differ in how they define the
kindness of the other player’s strategy. Suppose that we want to evaluate the kindness of s; to
player i. To do so, Dufwenberg and Kirchsteiger (2004) compare i’s expected payoff from s,
given his second-order belief to what he could have minimally and maximally earned under the

alternatives given again his second-order belief. The strategy is viewed as kind (unkind) if it
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gives i more (less) than half of what he could have minimally and maximally earned. In
contrast, Falk and Fischbacher (2006) focus on the expected outcome implemented by s; given
i’s second-order belief. If i earns more (less) than j under this outcome, s; is viewed as kind
(unkind). The model also takes into account the alternatives available to j. For instance, if the
outcome implemented by s; puts i ahead, this is only viewed as fully kind if there are
alternatives under which i would have earned less. The intuition is that the kindness embodied
by s, cannot be regarded as fully intentional otherwise. Appendix B contains a more detailed

exposition of the two models.
4.1  The Hidden Cost of Control

Falk and Kosfeld (2006) study the reaction of agents (4) to a principal’s (P) decision to control
their choice of how much productive effort to exert. Two of their treatments are directly relevant
for us: In the control game (CG), the principal first decides whether to control the agent or not.
If not controlled by the principal, the agent can exert any effort level e e {0,1,2,...,120} . Payoffs
are given by 2e for the principal and 120—e for the agent. In contrast, if the principal has
controlled the agent, effort is restricted to be at least ten, i.e., e€ {10,1 1,...,120} , the mapping
from effort to payoffs being the same as after no control. The second treatment is a dictator
game (DG) that is identical to the subgame of CG after control. As a result, the agent (who takes
the role of player i) chooses from {(120 —e, 2e) Jee {10,1 1,...,120}} both in DG and after control
in CG.* We have

PROPOSITION 1 Suppose that > 0. The net loss that the agent derives from the principal is
given by nZ/(fG =108 after control in CG and by n/?° =0<nl{° in DG. The net loss that the

agent imposes on the principal decreases in effort. Hence, average effort is higher in DG.

The agent derives a net loss of zero in DG because the principal is passive in this treatment.
After control in CG, the agent only derives a material loss (of 10) because control only rules out

outcomes that are less fair than the outcomes attainable under control for being less efficient and

3 Recall that outcomes have the format 7 = (ni,n j) .
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containing a smaller minimal payoff. Hence, for the agent to derive a loss from control, the
weight on his material loss must not be zero (S >0). Regarding the net loss that the agent
imposes on the principal, a one-unit increase in effort decreases the principal’s material loss and
increases her material gain. Fairness losses and gains do not counteract this: The principal’s
fairness loss is non-increasing in effort. In fact, it decreases except for high effort, where the
principal may not feel entitled to additional effort if her fairness notion leans toward a concern
for the less well-off. Likewise, the principal’s fairness gain is non-decreasing in effort. It is zero
for low effort levels, where the principal feels entitled to effort, but may increase for higher
effort. As a result, as long as £ >0, the principal’s net loss unambiguously decreases in effort.

Lemma 2 then implies that the effort distributions in the two situations possess the monotone
likelihood ratio property, with probability mass shifting towards higher effort in the situation
where agents derive the lower net loss. Consequently, average effort is predicted to be higher in
DG. This matches the results of Falk and Kosfeld (2006), who report that average effort is
significantly lower after control in CG. The agents in their experiment provide a mean effort of
17.5 after control in CG, but of 28.7 in DG.**

The reciprocity model of Dufwenberg and Kirchsteiger (2004), referred to as DK in what
follows, struggles to account for these findings. Given that agents in CG exert more effort after
no control than after control and exerting more effort means less payoff for agents themselves,”
DK view control (somewhat counter-intuitively) as kind to agents. Consequently, they predict
more effort, which is kinder to principals, after control in CG than in DG, where the principal is
passive and hence neither kind nor unkind. Reliance on second-order beliefs has a perverse
consequence here. From an intuitive viewpoint, it is clear agents are disgruntled at being
controlled if the principal has had the choice of not controlling them. The effect of this
disgruntlement, namely, that agents keep more money for themselves, is used by DK as
“evidence” for the conclusion that they have no reason for being disgruntled. This confuses
cause and effect of agents’ emotional response to the principal’s behaviour. My approach avoids
this problem because it relies on agents’ opportunity sets given the principal’s strategy without

taking into account their reaction to the latter.

# Falk and Kosfeld (2006) also study other control levels. However, they implement no corresponding
dictator games, which means that no foregone-option effects can be studied.

** Falk and Kosfeld (2006) report a mean effort after no control of 23.0.
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The reciprocity model of Falk and Fischbacher (2006), denoted FF in what follows, runs into
similar problems. Given that responders exert less effort after control in CG than in DG, agents
view themselves as being put further ahead of principals in CG. Moreover, principals could
have put agents less ahead in CG by not controlling them. As a result, control in CG is kinder,

which is at odds with the fact that agents are kinder to principals in DG by exerting more effort.
4.2  Trust

McCabe et al (2003) study a simple trust game (7G) in which the first mover (FM) can either
implement the no-trust outcome (20,20) or trust the second mover (SM). If trusted by the first
mover, the second mover can choose between (30,15) and (25,25). The first entry in each
payoff vector denotes the payoff to the second mover, who takes the role of player i in what
follows. The authors compare second mover behaviour in this game to behaviour in a dictator
game (DG) in which the first mover is passive and the second mover has a choice between the

same two outcomes as after trust in 7G. We have

PROPOSITION 2 Suppose that y >0 and either a <2/3 or f>0. The net loss that the second
mover derives from trust in 7G is nli, = —y(,BlOJr(l—ﬁ)max{5—7.5a,0}) , while his net loss
in DG is nl)¢ =0>nll . The net loss that the second mover imposes on the first mover is
nlg, =—10yp if the second mover chooses (25,25) and nly,, =10—7.5a+7.5af > nl,, if he

chooses (30,15). Thus, second movers are more likely to choose (25,25) after trust in 7G.

We have nljo =0 because the first mover is passive in DG. As for TG, for the second
mover’s net loss from trust to be negative, we must have y >0 and either @ <2/3 or #>0.On
the one hand, the gain from trust must not be fully discounted, which is guaranteed by y>0.
Further, there are two ways for the gain from trust to be positive: Either we have £ >0, which
ensures that the second mover puts positive weight on his material gain of 10. Or we have
o <2/3, which means that fairness does not lean too much towards efficiency. In this case, the
second mover perceives (30,15) , which he can implement after trust, as less fair than the no-
trust outcome (20,20) because of the smaller minimal payoff. He then derives a fairness gain

from trust, which makes his overall gain positive irrespective of /.
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Furthermore, the second mover clearly imposes a lower net loss on the first mover by
choosing (25,25). Net-loss reciprocation implies that the second mover is more likely to choose
(25,25) instead of (30,15) in 7G because of his lower derived net loss This context
dependency is confirmed by McCabe et al (2003), who report that second movers choose
(25,25) with a frequency of 0.65 after trust in 7G and of only 0.33 in DG, this difference being

significant.*
4.3  Ultimatum Bargaining

Falk et al (2003) study four binary ultimatum games in each of which the offer “2 for the
responder, 8 for the proposer” is available to the proposer. The games differ regarding the
second offer. In three, there exists a true alternative, namely, “5 for both”, “8 for the responder,
2 for the proposer” and “0 for the responder, 10 for the proposer”, respectively. In the fourth,
the proposer is effectively passive because the alternative offer is also “2 for the responder, 8 for
the proposer”. Thus, letting the responder take the role of player i, acceptance of the alternative
implements (5,5) R (8,2), (0,10) and (2,8) , respectively. In what follows, I refer to the four

treatments by these outcomes. We have

PROPOSITION 3 Suppose that a < (1-28)/(1-f), 0<B<0.5 and y>0. The net losses that
the responder derives from “2 for the responder, 8 for the proposer” in the four treatments are
given by nl? =3-3a+308, nit =6p, ni?® =0 and nl"'") =—2yp, respectively, where
we have nll(f’s) > nlj(f’z) > nlﬁf’g) > nll(;)'lo) . The net loss that the responder imposes on the
proposer by accepting “2 for the proposer, 8 for the responder” is n/, = —8yf , while rejection
imposes nl, =2+3a+6p-30ff >nl,. We therefore have Pri) s prtd) s pp28) s pp010)]

where Pr* denotes the rejection probability in treatment x € {(5,5),(8,2),(2,8),(0,10)} .

** The approaches of Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) can also
account for this. Under the former, trust gives the second mover more in expected terms than no trust,
which leads the second mover to view trust as kind, giving him an incentive to be kind to the first mover
by repaying trust. Under the latter, given that trust is not always reciprocated, trust puts the second mover
ahead of the first mover in expected terms. Moreover, the second mover would have earned less had he
not been trusted. As a result, the kindness embodied by trust is fully intentional.
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Crucially, Proposition 3 asserts that losses do not track material losses. The responder derives
the highest overall loss in treatment (5,5) , whereas his material loss is largest in (8,2) . To see
this, notice that “2 for the responder, 8 for the proposer” means a material loss of 6 for the
responder if the alternative has been “8 for the responder, 2 for the proposer”, but of only 3 if it
has been “5 for both”. The responder’s fairness loss is 3—3a in (5,5) , but is necessarily zero in
(8,2) because the outcome (8,2) is always as fair as the outcome (2,8) irrespective of . The
dissociation of losses from material losses is achieved by the fairness loss in (5,5) being
sufficiently large and fairness losses playing a sufficiently large role. Formally, nll(:’s) > nll(f‘z) is
equivalent to 3-3a+3af >68 < a<(1-28)/(1-p). This can only be satisfied by a>0 if
we have 1-24>0< £<0.5.

Further, we have nl}f‘g) =0 because the proposer is passive in (2,8) and nl&o’lo) =-2y5
because the responder derives no fairness gain in (0,10) . The reason is that he feels entitled to
“2 for the responder, 8 for the proposer” if the alternative is “O for the responder, 10 for the
proposer”. We have 6 > 0> -2y because of >0 and y>0.

All in all, since rejection of the fixed offer “2 for the responder, 8 for the proposer” imposes a
higher net loss on the proposer than acceptance, the responder is most likely to reject in (5,5) ,

second most likely in (8,2) etc. This is largely consistent with the results of Falk et al (2003),

who report the following rejection frequencies:
P =0.44> pr* =027 > P =0.18> Pr"" = 0.09,

these differences being statistically significant except for the last one. Although the last

difference has the right sign, my approach faces a difficulty here. The absence of a significant

difference would be explained by net-loss reciprocation if nl,(f‘g) =nl,(;)‘10). Since we have
nl}f’g) =0 because the proposer is passive in this treatment, whereas nl&o’lo) =2y , we would

have to assume either =0 or y=0 or both. Alternatively, if both y and £ are positive but
small, their product can be viewed as approximately zero. I return to this issue below.

In contrast, DK face difficulties in rationalising the difference between the treatments (5,5)
and (8,2). According to DK, the status quo offer “2 for the responder, 8 for the proposer” is
less kind in (8,2) than (5,5) for the following reason: In (5,5), the status quo is accepted with

a probability of 0.66 and the alternative for sure, which makes for a kindness of the status quo
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of k=0.66-2-0.5[5+0.66-2]=-1.84." In (8,2), the acceptance probabilities are 0.73 for
the status quo and 0.98 for the alternative. The fact that the status quo is accepted with a higher
probability tends to make the status quo kinder. However, what works in the opposite direction
is that responders could have earned more under the alternative. This second effect dominates
since we have k=0.73-2-0.5[0.98-8+0.73-2] =—3.72<-1.84. What DK do not take into
account is responders’ sense of entitlement, in particular, that they feel less entitled to their
forgone earnings in (8,2) because these forgone earnings derive from an outcome that is only
as fair as status quo. Such considerations are at the heart of my approach.

The basic model in FF also fails to explain the difference in responder behaviour between
(5,5) and (8,2). The reason is the binary nature of the intention factor (see Appendix B),
which simply asks whether or not responders could have earned more in expected terms than
under the status quo, which is the case in both treatments. Hence, the intention factor does not
capture the fairness difference between the two alternatives and the differential sense of
entitlement that this difference creates. The appendix in FF contains a richer version of their

model designed to address this problem.

4.4  Lost Wallets

Dufwenberg and Gneezy (2000) fail to establish context dependency in second-mover
behaviour in a series of trust games termed “Lost Wallet Games”. Their common feature is that
the second mover can split 20 units of payoff between himself and the first mover in the event
of trust. The games differ regarding the no-trust outcome, which, letting the second mover take
the role of player i, is given by (0, /) with f {4,7,10,13,16}. That is, the no-trust payoff for
the second mover is always zero, while the games differ with respect to the no-trust payoff for
the first mover. For simplicity, I focus on the polar cases f =4 and f =16 because the absence
of context dependency is most puzzling between them. I refer to the two treatments by the
respective no-trust outcome, namely (0,4) and (0,16) . Servatka and Vadovic (2009) draw on
the basic setup of Dufwenberg and Gneezy (2000), while varying the inequality of the no-trust

outcome. In their two treatments, the no-trust outcomes are given by (0,10) and (5,5). Like

" See Appendix B for a detailed exposition of the kindness function k.
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Dufwenberg and Gneezy (2000), they fail to establish a significant difference in return transfers,
i.e., there is again no context dependency.

Consistent with these empirical findings, we have

PROPOSITION 4 Suppose that we have either y>0, 0<£<0.5 and a=(1-28)/(2-2p) or
y>0, =0 and a>0.5 or y=0 The net loss that the second mover derives from the first
mover’s trust is nlggf) =—-20yp if the no-trust outcome is (0,4) and nlgl’“’) =-20y6 = nlggf) if it
is (0,16) . As a result, the repayment distributions do not differ between the two situations. If
the no-trust outcome is (0,10) , the net loss derived from trust is nlggjo) =-20yf , while it is

i) = —y(lS,B +(1- ﬂ)(max{S —10a,0})) =nl®"" if the no-trust outcome is (5.5) . Again, the

repayment distributions do not differ between the two situations.

In the first two cases, the second mover’s gain from trust is limited to his material gain of 20
because the no-trust outcomes (0,4) and (0,16) are not fairer than any outcome in the second
mover’s opportunity set after trust. Representing a payoff sum of less than 20, both no-trust
outcomes are less efficient than the outcomes available after trust. Moreover, the minimal
payoff is zero in each case, which is also the minimal payoff available after trust (if the second
mover shares nothing). As a result, the responder feels entitled to his material gain causing his
gain to be limited to the latter. As there is no loss from trust, the net loss is —20yf in each case.
For the same reasons, the second mover’s net loss is —20yf if the no-trust outcome is (0,10) .
Ifit is (5,5) , the second mover’s material gain from trust is 15. For nlg,s\f) =-20yp to hold, we
can impose y=0 meaning that gains are fully discounted. Alternatively, if y>0, we can let
=0 and a>0.5 meaning that the weight on material gains is zero, but the second mover
derives no fairness gain from trust. Indeed, if a > 0.5, the least fair outcome after trust, namely,
(20,0) , 1s at least as fair as (5,5) because efficiency receives sufficient weight in the fairness
function. Finally, if y>0 and g >0, the second mover must derive a positive fairness gain
from trust in (5,5) to offset his larger material gain in (0,10). This is the case if a<0.5
because fairness then leans towards a concern for the less well-off. In these conditions, we have
nl§y?) =—y(5-10a+104+100p) , which equals —20y8 if and only if a=(1-28)/(2-25).
This equality can only be satisfied by >0 if £<0.5. Also, given >0, a <0.5 as assumed.

Dufwenberg and Gneezy (2000) also implement a dictator treatment (DG) in which dictators
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face the same opportunity set as second movers after trust. The authors report no significant
difference in transfers between DG on the one hand and the treatments (0,4) and (0,16) on the
other. For net-loss reciprocation to explain this, we must have —20yf = nlSDAf =0. We can make
the equality hold by imposing either =0 or y =0. I return to this issue below.

Regarding the intention-based models, DK cannot account for there being no difference
between (0,10) and (5,5). The problem is that DK pick up on second movers’ differential
earnings from the no-trust outcome. Given that second movers behave in the same way after
trust, this yields the conclusion that trust is kinder in (0,10) because second movers gain more
from it in expected terms. My approach can navigate around this problem because second
movers’ higher material gain in (0,10) can be offset by a higher fairness gain in (5,5) .

In contrast, FF can explain most absences of treatment differences. Given that average
second-mover behaviour is the same, second movers view first movers as intending the same
expected outcome (putting them ahead of first movers) in all treatments. Moreover, first movers
could have treated second movers worse by not trusting them (except in DG). Hence, first
movers are equally kind to second movers in all treatments rationalising the absence of context
dependency. FF (like my approach) only struggle to explain behaviour in DG relative to the
other treatments because first movers are passive there, which should cause second movers to

share less.

5 Discussion

The examples considered in the preceding section are instructive with regard to the calibration

of the model. The preferred specification is

0<y<1,0<p<0.5 and a=(1-28)/(2-28)

which is well-supported by the experimental data considered in this paper. The interpretation is
that gains are not fully discounted in the calculation of net losses (0 <y <1) and that the weight
on material losses and gains is neither zero nor too large (0 < £ < 0.5). Given the restrictions on

[, the condition on o implies 0 <a<0.5 meaning that fairness leans towards a concern for

22



the less well-off.

Imposing >0 and y>0 fails to explain two pieces of evidence, namely, the treatment
(0,10) from Ultimatum Bargaining and DG from Lost Wallets. To account for them, the above
specification could be modified by setting y=0. This parameterisation, which implies that
gains are fully discounted, can account for all the evidence except that from 7rust. In particular,
the evidence from Lost Wallets is explained almost trivially by reducing net losses to zero in all
treatments. Effectively, this specification negates the importance of positive reciprocity by
asserting that people do not react to gains that they derive from others. Charness and Rabin
(2002) provide further evidence that positive reciprocity is a less important motivational force
than negative reciprocity.*®

All in all, this section has demonstrated that net-loss reciprocation in conjunction with the
method for calculating net losses developed in this paper can by and large account for the
existence or absence of context dependency in a number of experimental studies. I have also
shown that existing models of intention-based reciprocity face problems in explaining this
evidence comprehensively. This is particularly true for the model of Dufwenberg and
Kirchsteiger (2004), while at least the extended version of Falk and Fischbacher (2006)
performs relatively well. Yet, even in its extended form, the latter only captures players’ sense
of entitlement in an approximate, qualitative fashion. My approach allows to precisely quantify

this sense via fairness losses and gains.

6 Conclusion

This paper presents a qualitative preference model for two-player interactions building on the
idea of net-loss reciprocation. Net-loss reciprocation asserts that a player’s willingness to
impose net losses on the other increases in the net loss that he derives from the other player’s
strategy. The paper shows that net-loss reciprocation can account for the context dependencies
in individual behaviour (or absences thereof) that arise in a number of experimental studies.

The main difficulty faced by net-loss reciprocation relates to the status of positive reciprocity.

% In applications of loss aversion, it is often assumed for the sake of simplicity that only losses count
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In the light of the evidence considered in this paper, it is not clear whether players fully discount
any gain they derive from the other player’s strategy or whether they take this gains into account
leading them to become less willing to impose a net loss on the other. Apart from this, I find
conclusive evidence that both material and fairness considerations matter to the determination of
net losses, with fairness being somewhat more important. I also establish that a regard for the
less well-off as opposed to a pure concern for material efficiency plays an important role in
fairness assessments.

Given the relative success of my approach in explaining context dependency when compared
to existing models of intention-based reciprocity, the development of full-fledged utility models
incorporating net-loss reciprocation seems worthwhile. These models could be used to analyse
more general classes of games.”’ An advantage of such models compared to intention-based
models is their direct testability using standard experimental data as they do not rely on higher-

order beliefs.

¥ In Appendix C, an extension of the model to more players (including Nature) is proposed.
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Appendix A: Proofs

PROOF OF LEMMA 2

Let nl,(s})=nl and nl(s,)=nl,. Also, let nl,(x',11)=nl; and nl,(m,11)=nl,. The first part,

where nl, =nl], is immediate since we have

Pr( ) exp[ ( +r nl nl /Z exp[ +r(nl nl):|

and

Pr'( ) exp[ ( +r nl nl /Z exp[ +r(nl nl)}

forall 7 eIl by Assumptions 1 and 2.
Next, I show that Pr'(x")/Pr(z')> Pr'(x)/ Pr(z) < Pr'(z')/ P’ (x)> Pr(z')/ Pr(x) for all

z,x' eIl if nl}>nl; and nl; >nl;. By Assumption 2, we can express the second inequality as

exp[v(n’)].exp:r(nlj’.,nli')__ exp[v(n’)].exp:r(nlj'.,nll.)__
eXP[V(n):l-exp:r(nlj,nli’): > exp[v(n)]-exp :”(”lj,nl[)_ f=—

exp[r(nl},nl{)} exp [r(nlj'.,nl,. )]

>

exp[r(nlj,nli')} exp [r(nlj,nli )] .

Logarithmation of both sides yields

r(nl;,nli’) - r(nlj,nl,.') > r(nl;,nli) - r(nlj,nli ) ,

which holds by our assumptions on r(-).m

PROOF OF PROPOSITION 1

The principal is passive in DG. By Lemma 1, we have nl/”° =0. In CG, letting NC denote no
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control, we have I1V°¢ = {(120—@,2@) ree {019}} Thus, if not controlled, the agent can

earn more than what he can maximally earn if controlled. As a result, g¢“ =0 and

169 = Max__ vec [ﬂ(nA —110)+(1—ﬁ)max{f(7r)—fc,0}} )

where j_‘C is the highest fairness level attained in I1°. However, the fairness of the outcomes in
V¢ is below f€ because both efficiency and a concern for the less well-off mandate
increasing effort to 40. Consequently, we have /¢ = 10 =nl{" > 0.

Next, I show that the net loss that the agent imposes on the principal decreases in e. Suppose

that the agent chooses e=x € {10,...,1 19} . We then have 7° = (120 -X, Zx) ,
lp=max__ c.. [ﬁ(np —2x)+(1—ﬁ)max{f(n)—f(7r°’),oﬂ and
gp=max__ c. [ﬁ(2x—nP)+(l—ﬂ)max{f(n')—f(n“),Oﬂ

where T ={(120-¢,2¢):e€{x+1..,120}} and M ={(120-e¢,2¢):ee{10,...x~1}}. If

effort increases by one unit, i.e., if e= y=x+1, we have 7 = (120—x—1,2x + 2) implying
I, = max__ c.. [ﬂ(np —2x—2)+(1—,B)max{f(n)_f(nf'),o}} and
gp= max__c. [,B(2x+2—7rp)+(1—ﬂ)max{f(n)_f(nf’),O}J

where IT< ={(120-¢,2¢) :e€{x+2,..,120}} and I ={(120-e,2¢) - e €{10,....x}} .
Suppose first that x <40. We have f (n"') > f (n“') because both efficiency and a concern
for the less well-off point towards increasing effort. As a result, /,>1[, because the
maximisation for determining 7, takes place on the set I1“>*", which is a subset of the set 1<
used for establishing /, and £ >0. As for gains, the outcomes in 1 are less fair than 7z
because they represent effort further away from 40. The same holds for 1" and 7. As a
result, gains are limited to material gains, and we have g, > g, because 1 is a super-set of

I and #>0.Allinall, e=y imposes a smaller net loss on the principal than e = x.
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Suppose next that x >40. Regarding losses, if f (n"') > f (n") because the fairness function
leans towards efficiency, we have /, >/, for the same reasons as above. If f (nc')< f (n")
because the fairness function leans towards a concern for the less well off, the linear nature of
the fairness function implies that z¢ is fairer than all elements in I1°* and likewise for 7 and
1. As a result, losses are limited to material losses and we have /, >/, because I1“™ is a
super-set of 1" and f>0. As for gains, if f (nc')z f (n"), all outcomes in I1°*° are not
fairer than 7 and likewise for TI°* and #°', which implies that there are only material gains.
We have g}, > g, because I1°° is a super-set of I1°°° and #>0. For the same reason, we
have g, > g, if f (7[”’) <f (n") . Again, e=y imposes a smaller net loss on the principal.

Since the principal’s net loss decreases in effort, Lemma 2 together with n/$“ > nI?% implies
that the effort distribution in DG first-order stochastically dominates the distribution after

control in CG, which implies that average effort is higher in DG.m
PROOF OF PROPOSITION 2

. . . D .
Since first movers are passive in DG, we have nl SA? =0. In TG, second movers gain from trust

in material terms, which implies their loss is zero. Their gain is given by
géy = B10+ (1= B)(max{20-022.5-(1-a)15,0}) = B10+(1- B)max{5—7.54,0}

because (30,15) corresponds to a higher material and fairness gain than (25,25). We have
nll” = —y(ﬁlO +(1-B)max{5- 7.5a,0}) <0 because of our parameter assumptions.

I next show that the net loss imposed on first movers through (30,15) exceeds that imposed
through (25,25). First movers derive no loss from (25,25) and a material gain of 10. They
derive no fairness gain because (25,25) is superior from the viewpoint of both efficiency and a
concern for the less well off. As a result, n/,,, =—10y8 . From (30,15), first movers derive a

loss of
B10+(1-B)(25-a22.5—(1-a)15)= B10+(1- B)(10-7.5a) =10—7.50+7.5a
and no gain, which implies that nl;, =10—7.5a+7.50f > ni,,,. Lemma 2 together with
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nl¢ > nllj then implies that second movers are more likely to choose (25,25) in TG.m
PROOF OF PROPOSITION 3

I refer to the offer “2 for the responder, 8 for the proposer” as X and the alternative offer in a
given treatment as Y. We have IT" ={(2,8),(0,0)}. In (55), ™" ={(5,5)}. As a result,
responders derive no gain from X in this case and a material loss of 3. The highest fairness level

reached in 11" is f =a5+(1—-a)2, whereas f((5,5)) =5. As aresult,
nll? = p3+(1- p)(5-a5—(1-a)2)=3-3a+30p .

In (8,2), we have I1"% ={(8,2)}, which implies a material loss from X of 6 and no gain.
Responders derive no fairness loss because (8,2) and (2,8) lie on the same fairness curve
irrespective of a . Consequently, nlg’z) =6/ . Since proposers are passive in (2,8), nlj(f'g) =0.
Finally, we have IT""* =@, but 1" = {(28)} in (0,10) meaning that responders derive no
loss from X and a material gain of 2. The highest fairness level reached in IT" is f =a5 . Since
o5+ (1 —a)2 > a5, responders feel entitled to their material gain. We thus have nl,(eo'lo) =-290.
From our parameter assumptions, it follows that nl,(:’s) > nl,(eg’z) > nl}(az,s) > nl}(eo,m) .

I now turn to net losses imposed on proposers. Since IT* = {(2,8),(0,0)} , proposers derive no
loss from acceptance. Their gain is limited to S8 because (2,8) is fairer than (0,0). All in all,
nl, = =8yp . Conversely, next to a material loss of 8 from rejection, proposers suffer a fairness
loss of f((2,8))—f((0,0)) =a5+(1-a)2=2+3a. As a result, their net loss is given by
nl!, = p8+(1- B)(2+3a)=2+3a+6f-3af >nl,. From nly™) >nld™) > ni®) > ni{™ and

Lemma 2, it then follows that pri9 s prd) 5 pp8) S p010) g

PROOF OF PROPOSITION 4

The opportunity set given trust is IT" ={(20—r,r):re{O,l,...,?.O}} where r is the amount
shared. Denoting no trust by N7, we have I = {(20—r,r) ‘re {0,1,...,19}} in both
treatments because all outcomes in I1" except (0,20) give the second mover more than the no-

trust outcome. The fairness associated with no trustis f =a2 in (0,4) and f=a8 in (0,16) ,
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while the fairness reached in I1"""" as a function of r €{0,1,...,19} is given by
f=a10+(1—a)min{r,20—r} >a8>a2,

which implies that gains are limited to material gains. Hence, we have gg?l’f) = gg(,)\’}(’) =20 and
nlgf) = nlgj(’) =—y$20 . By Lemma 2, the repayment distributions are then the same.

Next, we show that nlgjo) = nls\f). In (0,10), we have nlg?jo) =—yp20 for the same reasons
as before. Since the second mover derives no loss from trust, nlgjo) = nlgif) is trivially satisfied
if y=0 because all gains are then fully discounted.

Suppose instead that y >0, 0<<0.5 and a=(1-28)/(2—2p) and notice that the last two
conditions imply 0<a<0.5. In (5,5), we have 1" = {(20—r,r) ‘re {0,1,...,14}} . Given
that @ <0.5, the least fair outcome in 11", namely, (20,0) , 18 less fair than (5,5) , which

implies a positive fairness gain from trust. As the maximisation of material and fairness gains

points into the same direction, with (20,0) maximising both, we obtain
g5 = p15+(1- B)(5-a10) = 5-10a+108 +10af .
We then have
nl$y?) = nl®) < —p(5-10a+108 +10a8) = —yB20 = a = (1-28)/(2-25),
as assumed.
Finally, if y>0, =0 and a>0.5, the second mover disregards his material gains, but his

fairness gain from trust is zero in (5,5) because fairness leans towards efficiency. This implies

nls\;) =0= nlg}o) N |
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Appendix B: Intention-Based Models of Reciprocity

In this Appendix, I sketch the main features of the reciprocity models of Dufwenberg and
Kirchsteiger (2004) and Falk and Fischbacher (2006). I focus on how player i evaluates the
kindness of player j’s pure strategy s; . Conceptually, the kindness of s, plays the same role as
i’s net loss from s, in my model. Since i observes s, in the applications considered in this
paper, i need not form a belief about s,. At the same time, both approaches draw on what is
called i’s second-order belief, i.e., i’s belief about ;j’s belief about i’s own strategy. Both allow
this belief to refer to a behaviour strategy o, . I denote i’s second-order belief about o, by o, .
In this paper, I use for o, the empirically observed choices of players i. The justification is that
both models are equilibrium models and hence require beliefs to coincide with actual behaviour.

Dufwenberg and Kirchsteiger (2004) define

_ e
k(sj,ay.,.) =7, (sj,oy./.l. ) -7 (0'4./.,.)

where 7, (S/.,O'. ) is i’s expected payoff from ;’s strategy s, given his second-order belief o

iji iji °
i.e., the payoff to himself i thinks j intends him to receive, and 7, (%i) the payoff to himself i
views as “equitable” given o, . It is defined by

7

gji

(aw) = O.5-(maxsjesb/ 7T, (sj,a )+min;/es/ T, (s/.,am.)).
This formulation slightly simplifies the original model of Dufwenberg and Kirchsteiger (2004),
which is inconsequential in the examples considered here. The interpretation is that i feels
neutral about s; (k = 0) if he believes j intends him to receive half of what he maximally and
minimally stands to earn given j’s strategy set S; and his second-order belief o, and feels s,
is (un)kind whenever he receives more (less), to which correspond k>0 (k<0). A direct
implication is that the kindness of s, equals zero if j is passive. Player i responds to the
kindness of s, as follows: If s, is (un)kind, he is willing to increase the (un)kindness of his
own behaviour to j at some material payoff cost to himself.

The reciprocity model of Falk and Fischbacher (2006) differs from Dufwenberg and

Kirchsteiger (2004) in that distributional concerns directly influence kindness perceptions. The
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kindness of strategy s, €S, as perceived by player i is given by

k(sj,al.ﬂ)=[7r,.(sj,o;ﬂ)—ﬂj(sj,o;ﬂ)]-A(sj,O'[j[).

The first term is called the “outcome term”. It consists of the inequality associated with the

outcome 7r(s‘/.,0'. ) implemented by s, given i’s second-order belief. If ﬂ(sj,a!.ﬁ) puts player i

iji
ahead of (behind) /, i tends to view s; as (un)kind. At the same time, the outcome term does not
reflect the alternatives to s, that j has at her disposal. This is where the second term (the
“intention factor”) comes into play. It takes on either the value 1 or ¢ [0,1]. For example, if

7Z'(S./.,O'. ) puts i ahead of j, the intention factor equals 1 if the feasible set of outcomes given

iji

o, contains a payoff to i smaller than 7z, (s 120, ) and ¢ otherwise. The idea is that in the first

iji

case j could have treated i worse than giving him 72',.(.5' 0, ), whereas no such option was

i
available in the second case. As a result, i discounts his advantage 7, (sj,aijf)—ﬁj (Sj,O'I.ﬁ) >0
in the second case, but not in the first. The procedure for the case where ﬁ(sj,aw) puts i

behind is analogous.
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Appendix C: A General Model of Net-Loss Reciprocation

As before, I limit attention to finite-horizon multi-stage games. The set of players is / where
|I | =n2>3 and one of the players is Nature (denoted N). A player’s inactivity at a stage is
modelled by the respective action set being singleton. At every stage, players have certainty
about what happened at the previous stages, i.e., the non-terminal history up to that stage. Let H
be the set of non-terminal histories, which contains the empty history (or root of the game) & .
The pure strategy s, € S, of player i e/ assigns to each history he H an action q, € 4, (h)
available to i at 4, whereas i’s behaviour strategy o, € X, assigns to each history a probability
distribution on i’s available actions.’® The set of pure and behaviour strategy profiles are given
by S=]]_S and T=]]_Z, . respectively. Outcomes 7 of the game are (n-1)-
dimensional vectors of material payoffs.*' The function 7:§ — R"" is the outcome function. It
assigns to each pure strategy profile the payoff vector implemented by it. From ﬁ(s), we can
derive 7:X —R"", which assigns to each profile of behaviour strategies the implemented
vector of expected payoffs. I1= {7[(0) S Z} contains all feasible expected outcomes.™

Moreover, a few non-standard concepts are drawn on below. Firstly, S, (%)< S, is the set of
strategies of i that are consistent with history 4 € H in the following sense: If 7=, s, is part
of S,(h) if and only if it prescribes i’s actions contained in h. If h=@, we have S,(h)=S5,.
The set X, (h) is defined analogously: All actions in 2 must be prescribed with probability one
for o, €, (h). Secondly, s,(s,,h) €S, is the “update” of s, that coincides with s, except that it
prescribes i’s actions contained in 4 and likewise for o,(o,,h) where the actions in A are
prescribed with probability one. Finally, H (sl.)g H is the set of histories that are consistent
with s, in the sense that any he H with 7= isin H(s,) if and only if i’s actions contained
in h are also actions prescribed by s,. Moreover, @ e H (s,) forall s, €S,.

To illustrate the model, I draw on a simple delegation game, which is implemented

experimentally in Bartling and Fischbacher (2011). The game has four players:** One principal

30 All action sets are assumed finite.
3! Outcomes specify a payoff for each player except Nature.

32 Note that S = = since all pure strategy profiles are degenerate behaviour strategy profiles. As a result,
all pure strategy profiles are in the domain of = .

33 Strictly speaking, Nature is the fifth player, who is passive in this example.
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(player A), one agent (player B) and two passive recipients, one of whom is called player C. The
principal moves first. She can either implement a fair or unfair outcome directly or delegate this
choice to the agent. The fair outcome yields 5 units of payoff to all parties, while the unfair
outcome gives 9 units of payoff each to the principal and agent and 1 unit to each recipient. To
simplify things, the punishment opportunities of the recipients after A or A and B have made

their choice are left out of the picture.

Cl1 Derived Net Losses

Player i’s net loss from strategy s, of player j consists of his loss minus gain from s; where the
two need not count for the same. Player i assesses his loss and gain by comparing the
opportunity set of outcomes created by s, to the opportunity sets created by ;’s alternative
strategies. In the example, suppose that C evaluates A’s decision to delegate. He then compares
the opportunity set created by A delegating to the opportunity sets created by A choosing the
fair and unfair outcome directly.

Defining such opportunity sets raises several modelling issues. Firstly, the question arises
which (if any) restrictions to place on the behaviour of third parties, i.e., on the other players
besides 7 and j. A’s decision to delegate is a case in point as its consequences depend on the
behaviour of B, who is the third party in the relationship between A and C. In what follows, I
assume that i considers the opportunity sets of expected outcomes created by s, and its

alternatives taking as given o, ; € Hk g X, , which is the profile of behaviour strategies of
2 € i,

7
all other players including Nature and can be interpreted as i’s belief about these players’
average behaviour. The idea is that 7, when assessing the opportunity sets created for him by s,
and its alternatives, has some sense of how third parties are likely to act, which affects his sense
of opportunity.** In the delegation example, B is expected to choose the unfair outcome after

delegation with a probability of 0.34 according to the beliefs measured by Bartling and

Fischbacher (2011). The opportunity set of expected outcomes created by delegation is therefore

3 Alternatively, o . could be interpreted as i’s belief about ;’s belief about the other players, i.e., i’s

—i,j

second-order belief.
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{(0.34-9+0.66-5,0.34-9+0.66-5,0.34-1+0.66-5,0.34-1+0.66 - 5)} = {(6.36,6.36,3.64,3.64)} ,

while A choosing the fair and unfair outcome directly entail {(5,5,5,5)} and {(9,9,1,1)},
respectively.” These opportunity sets are singleton because the punishment options are ignored.

A second issue is which perspective i adopts when assessing s, and its alternatives given
o_; ;- On the one hand, i could evaluate s, from an ex-ante perspective meaning that he simply
compares the opportunity set of expected outcomes created by s, to the opportunity sets created
by its alternatives taking as given o_; ;. On the other hand, he could adopt the perspective of
some history h=Q of the game and evaluate j’s updated strategy s, (sj,h) against its
alternatives in S, (h) taking as given o_, ; (a_i' j,h). The importance of such conditioning on
histories can be seen by considering a second example, namely, C’s evaluation of B choosing
the unfair outcome after delegation, the alternative being choosing the fair outcome. From an
ex-ante perspective, the opportunity sets of expected outcomes created by these two strategies
depend on the belief about A, i.e., about how likely A is to delegate in the first place. In the
most extreme scenario, where A is not believed ever to delegate, the two opportunity sets would
be the same implying C’s net loss from the two strategies is the same, namely, zero. This
dependence of the evaluation of B on the beliefs about A seems implausible. Intuitively, given
the information structure, C knows that B knows that A has delegated when B chooses the
unfair outcome and C wants to hold B to account for this knowledge. This consideration can be
captured if we condition on the history “A has delegated”, which means that the likelihood of
delegation is set to one. For this reason, I posit that / when evaluating s, adopts the perspective
of all histories in the set H (sj) , which is the set of histories consistent with s The idea is that
i restricts attention to histories not ruled out by s, which has intuitive appeal.*® Consequently, I
first define i’s loss and gain from s, for a given he H (sj) and then define i’s overall loss and

gain as his maximal history-contingent loss and gain with respect to H (S j) as a whole.

3> The first entry in payoff vectors refers to the payoff of A, the second to the payoff of B and the last two
to the payoffs of the recipients.

36 Limiting the conditioning to H (s j) is also required for making the definition of i’s loss and gain
consistent with the definition given above for a two-player setting, where there is no conditioning on
histories ruled out by s,. Consistency means that in any n-player game where the players in /| {i, Jj } are
passive, i’s loss and gain from any given s, is the same as his loss and gain from the corresponding s, in
the corresponding two-player game where the players in 7 {i, Ni } are omitted.

34



Finally, when adopting the perspective of some 4 e H (s j), the question arises if we should
restrict i’s own behaviour to be in S, () in establishing the opportunity sets created by s, and
its alternatives. Limiting i‘s behaviour to S, (h) appears not fully convincing because i aims to
assess the “elbow room” left for him by s, and its alternatives. From this angle, restricting
attention to S, (h) seems misguided. Intuitively, i holds j responsible for choosing s, rather
than its alternatives in S, (/) given that third parties behave according to o, ; (a_i‘ j,h), but
does not hold j responsible for ending up in /. Any part that j has played in bringing about /4 is
dealt with by considering the rest of H (sj) . Consequently, I define the opportunity set created
by s, from the perspective of 4 as {n(si,sj,a_i‘j (a_i’j,h)) s, € Si} and likewise for the
alternatives.

I now define player i’s loss and gain derived from s, € S, (the “status quo”) relative to some
alternative §, € S, without conditioning on histories. The sets 1" and 1" are the opportunity
sets of expected outcomes created by the two strategies. At this point, I only assume them to be
non-empty without worrying about their precise definition, which is history-dependent and
introduced later. I begin with losses. Analogous to before, let IT” be the expected payoffs to i
in 11", 7" = maxII; his maximal payoff given s, and ™ = {n ell” :z, > 7?;"} the set of
feasible outcomes given §; yielding i more payoff than 7, . Fairness is measured by a fairness

function:

DEFINITION C1 The fairness function f:R"" —R is given by
flr)=z+ad (m—x)/(n-1)

with 7 =min{z, :ie I\{N}} and a €[0,1].

We can now define i’s loss from s, relative to §;, which is isomorphic to the two-player

casc.

DEFINITION C2 Player i’s loss from strategy s, € S, relative to strategy §, € S, is given by
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s [ Bl o= Py ()T 0f] e

0 otherwise

where S € [0,1].

I next turn to player i’s gain from s, relative to §,, which is again isomorphic to the two-

player case.

DEFINITION C3 Player i’s gain from strategy s, € S; relative to strategy 5, €S, is given by

max_ | Blr ) )+ (= pymax{ 77 (m).0} |0 20

0 otherwise

where £ €[0,1].

I now address i’s loss and gain from s, at large. The two are established by considering all

histories consistent with s, which are collected in H (s/.) .

DEFINITION C4 From the perspective of history e H (s‘/.), player i’s loss and gain from

s, €S, given that the players in /1{i, j} follow o_, ;€% _; ; are given by

J

[ (sj,h) =max; g () [, (sj,ﬁj) and g; (sj,h) =max; g () & (sj,§j) , respectively,

J

where 1" :{n(si,S 0 (U_i, J-,h)): S; € S,»} and likewise for each IT” . Moreover, i’s overall

loss and gain from s, are given by

[, (sj) = maxheH(S/)li(s_/,h) and gi(s_/.) =max, ., )& (sj,h).

Thus, given o, ;, i assesses his loss and gain from s, history-wise by considering each element

*i,j’

in H (s j). Adopting the perspective of some such history, i determines his maximal loss and
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gain from s, relative to its alternatives in S, (h) taking as given o_; ].(a_l., j,h) 27 Player i’s
overall loss and gain from s, are given by his maximal history-contingent loss and gain with
respect to H (s j) .

As before, players react to the net loss imposed on them by others:

DEFINITION CS Player i’s net loss from strategy s, €S, is given by

with ye [0,1] .

C2  Imposed Net Losses and Preferences

Faced with some profile s_, of the other players’ strategies, player i must choose an outcome
from his opportunity set IT* ={7r(sl.,sﬂ.): s, eS[}. As before, let 7 eIl be the outcome
chosen by i and let IT*"*/ = {7[ ell™ .z, > nf} and I~/ = {n ell™ .z, < nf} contain the

outcomes in IT* yielding player j more and less payoff than z“, respectively. This leads to

DEFINITION C6 Player j’s loss from z° e [T is

Mmax__ s oc; |:ﬂ(777j _7[; ) + (1 —ﬁ)max{f(;r) _f(ﬂ'c),()}:| FI-7 = &
lj (n“,H‘“" ) =
0 otherwise

Moreover, j’s gain from z° e IT* is

B e R e
o _ 0 otherwise

Finally, j’s net loss from z° e IT™ is

*7S,(h) is guaranteed to include s, since / is taken from H (sj) .
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nl (2,11 ) =1, (z, 11 )= yg, (.11 ).
As for i’s preferences governing his choice from IT* , they are given by
ASSUMPTION C1 Player i’s preferences on the outcomes in IT°*~ are represented by

u,(m,s_;)=v(m)+ Zje[\{i,N}r(nlj (E’H&' ),nll. (sj))

where the continuous v.R —R and r:R> >R satisfy dv/dz, >0 and 82r/ onlonl, >0 for

every jel\{i,N}.

As a result, WTPzar/ﬁnlj /dv/ dr, , which is i’s willingness to pay for increasing any other

player j’s net loss, increases in the net loss that i himself derives from s, .
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