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Abstract This paper proposes a novel explanation for the context dependency of individual 

choices in two-player games. Context dependency refers to the well-established phenomenon 

that a player, when choosing from a given opportunity set created by the other player’s strategy, 

chooses differently in different situations because of different alternatives to the other player’s 

strategy. The utility model used to explain this kind of context dependency incorporates a 

preference for net-loss reciprocation. Net-loss reciprocation means that a player’s willingness to 

impose a net loss (i.e., loss minus gain) on the other player increases in the net loss that he or 

she derives from the other player’s strategy. I show that net-loss reciprocation together with the 

method for calculating net losses developed in this paper explains the context dependencies in 

individual behaviour that have been documented in a number of experimental studies, whereas 

existing models of intention-based reciprocity fail to explain all the evidence. 
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1 Introduction 

 

This paper studies the context dependency of individual choices in two-player games. Consider 

the following basic decision problem faced by each player: Choosing an outcome of the game 

from the opportunity set created by the other player’s strategy. Context dependency holds if a 

player’s choice from a fixed opportunity set of this kind is not constant across situations, but 

varies with the alternative strategies at the other’s disposal. Examples are provided below. They 

show that context dependency may occur both in the context of negative reciprocity 

(punishment for unkind behaviour) and positive reciprocity (reward for kind behaviour). While 

experimental evidence suggests an important role for context dependency in negative 

reciprocity, experimental studies of positive reciprocity have not established strong context 

dependency.1 In this paper, I propose a new behavioural theory called net-loss reciprocation 

that can explain these apparently contradictory findings. 

A new theory is called for because existing theories struggle to explain context dependency. 

According to outcome-based theories of behaviour, players are motivated by a single preference 

ordering on outcomes, which directly rules out any context dependency.2 Existing theories that 

are not outcome-based also fail to explain all the evidence.3 From an economic point of view, 

context dependency is important because it impacts the possibility of reaching (materially) 

efficient outcomes in strategic interactions. Context dependency strongly influences the 

occurrence of punishment, which in itself harms efficiency, but may improve the overall 

efficiency of the interaction.4 Positive reciprocity, which promotes efficient behaviour like trust 

                                                      

1 See Brandts and Solá (2001) and Falk et al (2003) for evidence on negative reciprocity and Dufwenberg 

and Gneezy (2000), Charness and Rabin (2002), McCabe et al (2003), Cox (2004), Servatka and Vadovic 

(2009) and Cox et al (2010) for evidence on positive reciprocity. 

2 Outcome-based theories leave open the possibility that several outcomes are most preferred in a given 

opportunity set. This can rationalise isolated instances of context dependency, but can hardly be regarded 

as a systematic explanation for their prevalence. Outcome-based theories include Fehr and Schmidt 

(1999) and Charness and Rabin (2002). 

3 Below, I focus on the intention-based models of reciprocity by Dufwenberg and Kirchsteiger (2004) and 

Falk and Fischbacher (2006). 

4 The efficiency-promoting role of punishment has been extensively studied in the context of public good 

games (Fehr and Gächter, 2000). The evidence on whether punishment opportunities promote overall 

material efficiency in these games is mixed. 
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in trading relationships, appears less affected by context dependency. Yet, it is interesting to 

explore the mechanisms behind this, which also sheds light on robustness. 

Net-loss reciprocation builds on two key concepts: Firstly, the loss and gain that players 

derive from the other player’s strategy. Secondly, the loss and gain that players themselves 

impose on the other through their own choice from the feasible set given the other’s strategy. 

Net-loss reciprocation means that players’ willingness to pay for increasing the net loss imposed 

on the other increases in the net loss derived from the other’s strategy.5 Net losses are simply 

losses minus gains, where the two need not count for the same. Net-loss reciprocation is 

consistent with an intuitive notion of reciprocity, according to which people’s kindness to others 

increases in these others’ kindness to them. More importantly, net-loss reciprocation can explain 

context dependency because players may derive different net losses from two strategies creating 

the same opportunity set because of different alternatives at the other’s disposal. As a result, 

their preferences on the same opportunity set may differ. 

For an illustration of context dependency in the domain of negative reciprocity, consider the 

ultimatum mini games studied by Falk et al (2003). In all of them, the proposer can make a 

fixed offer of dividing the surplus, namely, “8 for the proposer, 2 for the responder”, and one 

alternative offer that varies. The responder can accept or reject any offer. Consider two such 

games: One where the alternative is “5 for both” and one where it is “2 for the proposer, 8 for 

the responder”. Since the opportunity sets after the fixed offer are the same, we have context 

dependency if responders are more likely to reject the fixed offer in one game than the other. 

Falk et al (2003) report significantly more rejection in the first game. 

For an illustration in the context of positive reciprocity, consider the trust games studied by 

Dufwenberg and Gneezy (2000). In all of them, the second mover can share 20 between himself 

and the first mover in the event of trust, while the games differ regarding the outcome in case of 

no trust. Consider two games: One where the no-trust outcome is “4 for the first mover, 0 for 

the second mover” and one where it is “16 for the first mover, 0 for the second mover”. Since 

sharing opportunities are identical, we have context dependency if second movers share the 20 

differentially in the two games. Despite the fact that the no-trust outcomes differ considerably, 

Dufwenberg and Gneezy (2000) report no significant difference in sharing. 

                                                      

5 This willingness to pay may be negative or positive. 
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Below, I put forward a utility model incorporating net-loss reciprocation to explain these and 

other experimental findings. I now sketch the basic features of the calculus of losses and gains 

underlying the model. I focus on the loss and gain that a player derives from the other player’s 

strategy. Analogous procedures are used for determining the loss and gain imposed on the other. 

A player’s loss from some strategy of the other player (called henceforth the “status quo”) is 

composed of his material loss and his fairness loss. The player derives a material loss whenever 

there is an alternative strategy of the other under which the player could have earned more than 

what he can maximally earn under the status quo. Moreover, the player derives a fairness loss, 

which he adds to his material loss, if his forgone earnings (that make up his material loss) derive 

from outcomes that are fairer than the fairness of the status quo. The intuition is that the player 

in this case feels an entitlement (“fairness claim”) to his forgone earnings, which causes him to 

feel an additional loss. Since his fairness loss is added to his material loss, his total loss then 

exceeds his material loss. Fairness is measured by a function that ranks the outcomes of the 

game according to their fairness and incorporates considerations of material efficiency and a 

concern for the less well-off player. 

For an illustration, consider the two ultimatum mini games discussed above. If the alternative 

to the status quo offer “8 for the proposer, 2 for the responder” is “5 for both”, responders derive 

both a material loss (of 3) and a fairness loss, while their loss is limited to their material loss (of 

6) if the alternative is “2 for the proposer, 8 for the responder”. Intuitively, “5 for both” is fairer 

than the status quo for containing the same payoff sum, but a lower minimal payoff, whereas “2 

for the proposer, 8 for the responder” is only as fair. Moreover, I show below that the sum of the 

material and fairness loss in the first game can exceed the higher material loss in the second 

game. This (together with the fact that there is no gain from the status quo) implies a higher net 

loss from the status quo in the first game, which explains responders’ higher willingness to 

impose a net loss on proposers by rejecting the status quo more often. 

Likewise, a player’s gain from the status quo is composed of his material gain and his fairness 

gain. The player derives a material gain whenever he can earn more under the status quo than 

what he can maximally earn under some alternative. Moreover, the player derives a fairness 

gain, which is added to his material gain, if the earnings that make up his material gain derive 

from outcomes that are less fair than the fairness of the alternative. The intuition is that in the 

converse scenario, where the outcomes creating his material gain are fairer than the alternative, 
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the player feels an entitlement to his material gain (“well deserved”), which causes him to feel 

no gain based on fairness considerations. 

For an illustration, consider the two trust games introduced before. Recall that the games 

differ regarding the no-trust outcome: No trust entails “4 for the first, 0 for the second mover” in 

the first game and “16 for the first, 0 for the second mover” in the second game. In each case, 

second movers suffer no loss from being trusted, and their material gain is the same (namely, 

20) because they can earn up to 20 after trust, but earn zero after no trust. Moreover, their 

fairness gain is zero in both cases because there is no outcome after trust that is less fair than 

either no trust outcome, which means that second movers feel entitled to their additional earning 

possibilities after trust. Even the outcome “0 for the first, 20 for the second mover”, which 

second movers can implement after trust, is not less fair than either no-trust outcome because it 

contains a larger total payoff and the same minimal payoff. As a result, second movers derive 

the same (negative) net loss from trust in each case, which explains why Dufwenberg and 

Gneezy (2000) detect no context dependency across the two situations.6 

In contrast, existing models of social preferences struggle to account for context 

dependencies. Outcome-based models like the inequality aversion model of Fehr and Schmidt 

(1999) or the model of Charness and Rabin (2002), which combines a taste for material 

efficiency with generosity towards those who are least well-off, build on the idea that strategic 

behaviour derives from a single ranking of the outcomes of the interaction. For this reason, 

these models cannot provide a systematic explanation of context dependency.7 

Such an explanation can in principle be provided by intention-based models of reciprocity 

making use of psychological game theory.8 Most widely used are Dufwenberg and Kirchsteiger 

(2004), who build on Rabin (1993), and Falk and Fischbacher (2006). One key feature of these 

models is their reliance on players’ second-order beliefs, i.e., their beliefs about the other 

player’s belief about their own choice of strategy. Thus, when faced with some strategy of the 

other player, players consult their second-order belief, which together with the strategy of the 

                                                      

6 Of course, an insignificant treatment effect can have other reasons such as too few observations. 

7 Context dependency can only arise from several most preferred outcomes in the fixed opportunity set. 

8 Psychological games were first defined and analysed by Geanakoplos, Pearce and Stacchetti (1989). A 

framework for dynamic psychological games is provided by Battigalli and Dufwenberg (2009). 
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other pins down a unique outcome of the game, which serves to represent the other’s strategy. 

In contrast, my approach does not rely on second-order beliefs, but represents the other’s 

strategy and its alternatives by the entire sets of feasible outcomes that these strategies create. 

Consequently, my approach is more amenable to empirical testing using standard experimental 

data as it does not require measurement of higher-order beliefs.9 

Regarding predictions, both models assert that players’ willingness to be kind to the other 

increases in the kindness of the other’s status quo strategy, which is similar in spirit to net-loss 

reciprocation. Problems arise in the conceptualisation of kindness. For instance, in Dufwenberg 

and Kirchsteiger (2004), if the outcome representing the status quo gives the player more (less) 

than half of what he maximally and minimally stands to earn under the alternatives, the status 

quo is perceived as kind (unkind). Thus, this approach limits itself to comparing earnings 

without allowing for players’ sense of entitlement to these earnings. The evidence from the 

ultimatum mini games makes clear that such a sense of entitlement may override material 

considerations. 

Also, reliance on second-order beliefs may lead to unintuitive predictions because it uses 

players’ (likely) reaction to the strategy of the other as a means to assess the strategy’s kindness. 

Yet, if players react to some strategy that they in fact perceive as unkind in a self-serving 

manner and more generously to some alternative they perceive as kind, they may end up with 

more own payoff when faced with the former, from which Dufwenberg and Kirchsteiger (2004) 

would conclude that the first strategy is kinder. This problem is also shared by Falk and 

Fischbacher (2006). When discussing applications, I explain in more detail this and other 

difficulties encountered by the two models, whose basic building blocks are laid out in more 

detail in Appendix B. All in all, net-loss reciprocation can account for larger parts of the 

evidence than either model of intention-based reciprocity. 

At first blush, the model of net-loss reciprocation introduced in this paper could be thought of 

as a model of loss aversion (Kahnemann and Tversky, 1979; Shalev 2000; Köszegi and Rabin, 

2006). While I allow for the possibility that “losses loom larger than gains”, which is the 

cornerstone of this literature, there are important differences. Loss aversion builds on the idea 

that the consequences of decisions are evaluated relative to some (deterministic or stochastic) 

                                                      

9 Dhaene and Bouckaert (2010) investigate the performance of the model of Dufwenberg and Kirchsteiger 

(2004) using measured second-order beliefs in a setting unrelated to context dependency. 
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reference point. If the utility of a consequence exceeds (falls short of) the reference point, 

individuals perceive a gain (loss). Loss aversion therefore presupposes some baseline utility 

attached to consequences from which losses and gains can be calculated. This is where net-loss 

reciprocation steps in, which is best described as a theory about how sensations of loss and gain 

derived from the other’s behaviour act as a source of (social) preferences and hence as a source 

of baseline utility attached to the different outcomes of the game.10 

That said, the utility model proposed below is qualitative in the sense that the details of the 

utility function up to the net-loss reciprocation property are left open. There is also no 

equilibrium analysis, which is refrained from because it is not needed to explain the phenomena 

this paper sets out to explain.11 Indeed, the context dependencies addressed below relate to the 

behaviour of players who have certainty about the other player’s strategy because they are 

second movers in sequential games where each player has one move. As a result, these players’ 

beliefs are pinned down by the game’s information structure, and a notion of best response is 

enough to explain their choices.12 Regarding best responses, I take no stance on which 

specification of utility consistent with net-loss reciprocation is most appropriate. There are 

several plausible ways of incorporating net-loss reciprocation into a full-fledged utility model.13 

Comparing the relative performance of these modelling options is left for future work. The 

substantive question addressed in this paper is: Can the net-loss reciprocation property of 

preferences together with my method for calculating losses and gains explain the context 

dependencies (or absences thereof) observed in experiments? The answer is largely affirmative. 

                                                      

10 In this sense, loss aversion is orthogonal to net-loss reciprocation. Shalev (2000) studies loss aversion 

in games. 

11 Cox et al (2008) propose a non-equilibrium model of reciprocity in sequential games. However, it is not 

suited to studying context dependency. 

12 Of course, net-loss reciprocation could also be used to explain the behaviour of first movers with the 

added complication that their beliefs about the other‘s strategy are unobservable. These beliefs could be 

measured experimentally. However, there are to the best of my knowledge no economic experiments 

documenting context dependencies in the behaviour of players who must form beliefs about others. 

13 E.g., players could be willing to sacrifice own payoff to match the net loss they impose on the other to 

the net loss imposed on them. Players could also be endowed with some baseline preferences on 

outcomes whose degree of altruism decreases in the net loss they derive from the other (although this 

specification does not perfectly fit the definition of net-loss reciprocation given below). 
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The remainder of this paper is structured as follows: I first show how to calculate the net loss 

that a player derives from the other player’s strategy, which is followed by the method for 

calculating the net loss that the player himself imposes on the other as well as the utility model 

incorporating net-loss reciprocation. I then show how this qualitative model can account for 

context dependency in a number of well-known experimental studies and compare its 

performance to intention-based models of reciprocity. All proofs are in Appendix A. Appendix 

C contains a generalisation of my approach to 3n   players including Nature. 

 

 

2 Losses and Gains From the Other Player’s Strategy 

 

I limit attention to finite-horizon two-player (i, j) multi-stage games with observable past 

actions.14 A player’s inactivity at a stage is modelled by the respective action set being 

singleton. Let H be the set of non-terminal histories of the game. Player i’s pure strategy i is S  

assigns to each history h H  an action available to i at h.15 I restrict attention to pure strategies. 

The set of pure strategy profiles is i jS S S  . Outcomes  i jπ π ,π  of the game are two-

dimensional vectors of material payoffs. The function 2π S   is the outcome function and 

  Π π s : s S   the set of attainable outcomes in the game. Moreover, the set of attainable 

outcomes or opportunity set for player i given that player j plays strategy j js S  is given by 

  Π js

i j i iπ s ,s : s S   with Π Πjs  . 

I first define player i’s loss from j js S . Player i’s overall loss is derived from a more basic 

notion, namely, his loss from js  relative to a particular alternative j js S . I also refer to js  as 

the status quo and to js  as the alternative. The basic idea is the following: Player i suffers a loss 

from js  relative to js  only if he can earn more given js  than what he can maximally earn 

given js . Or, more formally and with a slight abuse of notation, let Π j js s
 be the set of 

outcomes in Π js
 that yield i a higher payoff than his highest attainable payoff in Π js

. A 

necessary condition for i suffering a loss is then that Π j js s
 is non-empty. The magnitude of his 

loss is determined by considering the different outcomes in Π j js s
. For each Π j js sπ  

, i 

                                                      

14 I refer to i as “he” and j as “she”. 

15 Action sets are assumed to be finite. 
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calculates both his material loss, which is the amount by which his payoff from π  exceeds his 

maximal payoff in Π js
, and his fairness loss, which tracks the extent to which π  is fairer than 

the fairest outcomes in Π js
. 

While i’s material loss is guaranteed to be positive by the definition of Π j js s
, π  may or may 

not be fairer than the fairest outcomes in Π js
. If π  is not fairer, i perceives no fairness loss 

because he then has no fairness claim to π  even though he could have earned more from it than 

what he can maximally earn given js . His loss is then limited to his material loss. In contrast, if 

π  is fairer than the fairest outcomes in Π js
, i suffers a fairness loss because he now has a 

fairness claim to his additional earnings from π . All in all, i’s loss from js  relative to a 

particular Π j js sπ  
 is the weighted sum of his material and fairness loss, while his loss from 

js  relative to js  at large is his maximal loss from js  relative to the outcomes in Π j js s
. 

I now put more formal structure on these ideas. As stated above, Π js
 is the set of attainable 

outcomes given js . The set Π js

i  is the set of payoffs to player i contained in Π js
. Its maximal 

element is Πj js s

i iπ max . Furthermore,  Π Πj j j js s s s

i iπ : π π    
 is the set of attainable 

outcomes given js  that yield i more payoff than what he can maximally earn given js . Fairness 

is measured by a fairness function, isoquants of which are called fairness curves: 

 

DEFINITION 1 The fairness function 2f :    is given by 

 

     2i jf π α π π α π     

 

where  i jπ min π ,π  and  0 1α , . 

 

For an interpretation of the parameter α , consider the polar cases 1α  and 0α : If 1α , 

fairness boils down to material efficiency meaning that for any two outcomes π  and π  we have 

   f π f π   if and only if i j i jπ π π π    . In contrast, if 0α  , we have    f π f π   if and 

only if  π π . For fairness to increase in this case, the player with less payoff must receive 

more.16 In general, the lower α , the smaller (larger) the relative weight attached to efficiency 

(equality) considerations in fairness assessments. Yet, it is not equality per se that enters the 

                                                      

16 The second case is reminiscent of a Rawlsian (or max-min) social welfare function. The first case has a 

utilitarian flavour. 
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fairness function, but the payoff of the less well-off player. It is this payoff that must increase 

for fairness to increase. If equality as such mattered, we could also reduce the payoff of the 

better-off player for fairness to increase.17 

Player i derives a fairness loss from js  relative to Π j js sπ  
 if and only if π  lies on a higher 

fairness curve than the highest fairness curve reached in Π js
. Moreover, i’s fairness loss 

increases in the extent to which the fairness of π  exceeds the maximal fairness in Π js
. To 

formalise this idea, let  
Π

j
s j

s

π
f max f π


  be the highest fairness level attained in Π js

. The 

fairness gap between π  and Π js
 can then be expressed as   js

f π f .18 This lead to 

 

DEFINITION 2 Player i’s loss from strategy j js S  relative to strategy j js S  is given by 

 

 

 
      Π

1 0 if Π

0 otherwise

j j j j
s sj j

s s s s

i iπ
i j j

max β π π β max f π f ,

l s ,s





          






  

 

 

with  0 1β , . Moreover, i’s loss from js  is given by    
j ji j s S i j jl s max l s ,s   . 

 

Thus, i assesses his loss from js  relative to js  by considering the set Π j js s
. For each outcome 

Π j js sπ  
, he determines the weighted sum of his material loss 0js

i iπ π   and his fairness loss 

  0js
max f π f , . The weighting is provided by the parameter β : If 1β  , i’s loss coincides 

with his material loss. Conversely, if 0β  , i only pays heed to his fairness loss. Player i’s loss 

from js  relative to js  is the maximal sum of this kind with respect to all outcomes in Π j js s
, 

while his loss from js  at large is his maximal loss relative to all alternatives in jS . 

I next address player i’s gain from js . Relative to a particular js , i derives a gain only if 

Π j js s 
, the set of feasible outcomes under js  that give him more payoff than what he can 

                                                      

17 That said, it would also be possible to use a notion of fairness where equality per se mattered. The 

present specification is mainly preferred for analytical convenience. A rigorous comparison of different 

fairness specifications is left for future work. 

18 The two terms can be thought of as the unique payoffs to i yielding the fairness levels  f π  and js
f , 

respectively, assuming that all other players earn the same. This reading of the fairness gap is invariant to 

rescalings of the fairness function. 
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maximally earn under js , is non-empty. Regarding the magnitude of his gain, fairness curves 

again play a central role. Player i derives a fairness gain from a given Π j js sπ  
 if and only if 

π  lies on a lower fairness curve than the highest curve reached in Π js
. The intuition is that if π  

lay on the same or a higher curve, i would consider his material gain from π  to be well-

deserved for contributing to no decrease in fairness. This would lead him to feel no fairness 

gain, and his gain would be limited to his material gain. These considerations motivate 

 

DEFINITION 3 Player i’s gain from strategy j js S  relative to strategy j js S  is given by 

 

 

 
      Π

1 0 if Π

0 otherwise

j j j j
s sj j

s s s s

i iπ
i j j

max β π π β max f f π ,

g s ,s





          




  

  

 

 

with  0 1β , . Moreover, i’s gain from js  is given by    
j ji j s S i j jg s max g s ,s   . 

 

Thus, to assess his gain from js  relative to js , i determines for each Π j js sπ  
 the weighted 

sum of his material gain 0js

i iπ π 
 and his fairness gain   0js

max f f π ,
. Crucially, for 

the fairness gain to be positive, π  must be less fair than what is maximally achievable given js . 

If π  were more fair, i would feel entitled to his material gain and perceive no fairness gain.19 

I assume that the same parameters α  and β  are used in the calculation of gains and losses. I 

allow for asymmetries between the two in defining net losses: 

 

DEFINITION 4 Player i’s net loss from strategy j js S  is given by 

 

      i j i j i jnl s l s γg s  

 

with  0 1γ , . 

 

The case 1γ   allows for the possibility that “losses loom larger than gains”, which is a key 

                                                      

19 Hence, the expression “fairness gain” does not refer to an increase in fairness, but to a sensation of gain 

based on fairness considerations. 
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assumption in the literature on loss aversion (Kahnemann and Tversky, 1979; Köszegi and 

Rabin, 2006). Yet, as discussed in the Introduction, this paper is not about loss aversion as 

understood by that literature. 

The following is immediate: 

 

LEMMA 1 If  j jS s , we have   0i jnl s  . 

 

The lemma addresses the case where j is passive. If j has only one strategy, Π j js s
 and Π j js s 

 

are empty for all j js S , which implies   0i jl s   and   0i jg s   and therefore   0i jnl s  . 

 

 

3 Reciprocating the Other Player’s Strategy 

 

Given the strategy js  of player j, player i must choose an outcome from the opportunity set Π js
 

created by js . In this section, I define a preference for net-loss reciprocation to explain this 

choice. Net-loss reciprocation means that i’s willingness to pay for increasing the net loss that 

he imposes on j increases in his own net loss from j’s strategy. 

I first define the net loss imposed on j. Let Π jscπ   be the outcome chosen by i and let 

Π js c   Π js c
j jπ : π π   and  Π Πj js c s c

j jπ : π π     be the outcomes in Π js
 yielding j 

more and less payoff than cπ , respectively. This leads to 

 

DEFINITION 5 Player j’s loss from Π jscπ   is 

 

 
        Π

1 0 if Π
Π

0 otherwise

j
s cj

j

s cc c
j jπsc

j

max β π π β max f π f π ,

l π ,





          



 

 

Moreover, j’s gain from cπ  is 

 

 

 
        Π

1 0 if Π
Π

0 otherwise

j
s cj

j

s cc c
j jπsc

j

max β π π β max f π f π ,

g π ,





          



 

 

Finally, j’s net loss from cπ  is 
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     Π Π Πj j js s sc c c

j j jnl π , l π , γg π ,  . 

 

The procedure for calculating j’s loss and gain from cπ  is analogous to calculating i’s loss and 

gain from js . In particular, cπ  takes the role of Π js
 and the alternative outcomes Π jsπ  the 

roles of the different Π js
. I also assume that the same parameters α , β  and γ  are used. 

I now turn to player i’s preferences governing his choice from Π js
: 

 

ASSUMPTION 1 Player i’s preferences on the outcomes in Π js
 are represented by 

 

        Π js

i j i j i ju π ,s v π r nl π , ,nl s   

 

where v :    and 2r :    are continuous and 0idv dπ   as well as 2 0j ir nl nl    . 

 

Thus, given js , i’s utility from Π jsπ  is additively separable into the utility from his own 

payoff and a reciprocation term that depends on the net loss that π  imposes on j as well as the 

net loss that i himself derives from js . The marginal utility of i’s own payoff is always positive. 

Moreover, j iWTP r nl dv dπ   , which is i’s willingness to pay for increasing the net loss 

imposed on j, increases in i’s net loss from js , where WTP  itself may be negative or positive. 

Whenever j jnl nl  , we therefore have     0j i j i ir nl ,nl r nl ,nl nl      , which means that 

the impact of an increase in i’s net loss from js  is such that for any two outcomes that differ in 

terms of the net loss that they impose on j the utility advantage (disadvantage) of the outcome 

imposing the larger net loss becomes larger (smaller).20 

Furthermore, I follow McFadden (1974) and McKelvey and Palfrey (1995, 1996) in making 

 

ASSUMPTION 2 The probability of player i choosing outcome Π jsπ  is given by 

 

     Πs jj i j i jπ
Pr π ,s exp u π ,s exp u π ,s


        


. 

 

                                                      

20 An example is  2

i i j i
u π nl nl   . The partial derivative of    2 2

j i j i
nl nl nl nl     with respect to 

inl  is    2 2j i j inl nl nl nl    , which is positive if and only if j jnl nl  . 
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As explained by Goeree et al (2008), this quantal response structure can be justified by 

disturbances on individual decision making reflecting the effects of unobservables such as mood 

or perceptual variations. According to this interpretation,  i ju π ,s  corresponds to the average 

utility attached to Π jsπ  with each player realising a mean-zero perturbation of  i ju π ,s .21 

Perturbations are assumed i.i.d. across outcomes and players.22 Assumption 2 implies that every 

player chooses every available outcome with positive probability. This helps in interpreting 

experimental data, where typically not all subjects facing a given opportunity set ̂  choose the 

same outcome. In this context, context dependency refers to a statistically significant shift in the 

empirical choice distribution on ̂  for two strategies js  and js  satisfying ˆj js s     . 

Using Assumption 2, we can explain this shift if we can show a corresponding shift in the 

theoretical choice distributions. I draw extensively on this method in the following section. 

I conclude this section by the following lemma, which is useful in what follows: 

 

LEMMA 2 Consider any pair of strategies j j js ,s S   with ˆj js s      where ̂  is a fixed 

set of outcomes and let  Pr π  and  Pr π  denote the probabilities of player i choosing a given 

ˆ  when faced with js  and js , respectively. Suppose that    i j i jnl s nl s . We then have  

 

   Pr π Pr π  

 

for all ˆ . Suppose next that    i j i jnl s nl s  . We then have 

 

       Pr π Pr π Pr π Pr π     

 

for all ˆ    such that    ˆ ˆ, ,j jnl nl     . 

 

                                                      

21 In this setup, the choice of scale for utilities is not without loss of generality. In particular, 

multiplication of all utilities by some constant 1c   makes players likelier to choose the options yielding 

them the highest utility. For this reason, quantal response models contain a scaling parameter λ  intended 

to capture the degree of players’ “rationality”, i.e., their likelihood of choosing their most preferred 

options. Since the level of λ  does not affect the conclusions drawn below, I set λ  to 1. 

22 Moreover, in order to generate the assumed logit structure, the perturbations must take a particular 

stochastic form. See Goeree et al (2008) for details. 
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Thus, if i is faced with two strategies creating the same opportunity set ̂  for him and from 

which he derives the same net loss, his probability of choosing any given outcome in ̂  is the 

same across the two situations. If he does not derive the same net loss, his choice probability 

possesses the monotone likelihood ratio property for outcomes that can be ordered according to 

the net loss imposed on j. For any such pair, there is a relative shift in probability mass towards 

the outcome imposing the higher net loss in the situation where i derives the higher net loss. 

 

 

4 Applications 

 

In this section, I show that net loss reciprocation can explain the context dependency that has 

been documented in a number of experimental studies. Each piece of evidence considered lends 

additional structure to the model: Firstly, the evidence from The Hidden Cost of Control 

suggests that material factors are not irrelevant in the calculation of losses and gains ( 0β ). 

Secondly, the evidence from Trust implies that gains are not fully discounted when calculating 

net losses ( 0γ  ). Thirdly, the evidence from Ultimatum Bargaining rules out a purely 

efficiency-oriented notion of fairness and provides an upper bound for the importance of 

material factors (    1 2 1α β β    and 0 5β . ). Finally, the evidence from Lost Wallets 

pinpoints the fairness parameter α  to equal    1 2 2 2β β  . 

Discussing each piece of evidence in turn, I also address the problems faced by the reciprocity 

models of Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) in accounting 

for these experimental results. Recall that both models make use of players’ second-order 

beliefs, i.e., their beliefs about the other player’s belief about their own choice of strategy. As 

the studies considered in this section do not measure these beliefs, I use the actual behaviour of 

experimental subjects as a “stand-in” for second-order beliefs. This is in keeping with the 

equilibrium spirit of these models, which requires beliefs to coincide with actual behaviour. 

Although both models rely on second-order beliefs, they differ in how they define the 

kindness of the other player’s strategy. Suppose that we want to evaluate the kindness of js  to 

player i. To do so, Dufwenberg and Kirchsteiger (2004) compare i’s expected payoff from js  

given his second-order belief to what he could have minimally and maximally earned under the 

alternatives given again his second-order belief. The strategy is viewed as kind (unkind) if it 
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gives i more (less) than half of what he could have minimally and maximally earned. In 

contrast, Falk and Fischbacher (2006) focus on the expected outcome implemented by js  given 

i’s second-order belief. If i earns more (less) than j under this outcome, js  is viewed as kind 

(unkind). The model also takes into account the alternatives available to j. For instance, if the 

outcome implemented by js  puts i ahead, this is only viewed as fully kind if there are 

alternatives under which i would have earned less. The intuition is that the kindness embodied 

by js  cannot be regarded as fully intentional otherwise. Appendix B contains a more detailed 

exposition of the two models. 

 

4.1 The Hidden Cost of Control 

 

Falk and Kosfeld (2006) study the reaction of agents (A) to a principal’s (P) decision to control 

their choice of how much productive effort to exert. Two of their treatments are directly relevant 

for us: In the control game (CG), the principal first decides whether to control the agent or not. 

If not controlled by the principal, the agent can exert any effort level  0 1 2 120e , , ,..., . Payoffs 

are given by 2e  for the principal and 120 e  for the agent. In contrast, if the principal has 

controlled the agent, effort is restricted to be at least ten, i.e.,  10 11 120e , ,..., , the mapping 

from effort to payoffs being the same as after no control. The second treatment is a dictator 

game (DG) that is identical to the subgame of CG after control. As a result, the agent (who takes 

the role of player i) chooses from     120 2 10 11 120e, e : e , ,...,   both in DG and after control 

in CG.23 We have 

 

PROPOSITION 1 Suppose that 0β  . The net loss that the agent derives from the principal is 

given by 0CG
Anl β  after control in CG and by 0DG CG

A Anl nl   in DG. The net loss that the 

agent imposes on the principal decreases in effort. Hence, average effort is higher in DG. 

 

The agent derives a net loss of zero in DG because the principal is passive in this treatment. 

After control in CG, the agent only derives a material loss (of 10) because control only rules out 

outcomes that are less fair than the outcomes attainable under control for being less efficient and 

                                                      

23 Recall that outcomes have the format  i jπ π ,π . 
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containing a smaller minimal payoff. Hence, for the agent to derive a loss from control, the 

weight on his material loss must not be zero ( 0β  ). Regarding the net loss that the agent 

imposes on the principal, a one-unit increase in effort decreases the principal’s material loss and 

increases her material gain. Fairness losses and gains do not counteract this: The principal’s 

fairness loss is non-increasing in effort. In fact, it decreases except for high effort, where the 

principal may not feel entitled to additional effort if her fairness notion leans toward a concern 

for the less well-off. Likewise, the principal’s fairness gain is non-decreasing in effort. It is zero 

for low effort levels, where the principal feels entitled to effort, but may increase for higher 

effort. As a result, as long as 0β  , the principal’s net loss unambiguously decreases in effort. 

Lemma 2 then implies that the effort distributions in the two situations possess the monotone 

likelihood ratio property, with probability mass shifting towards higher effort in the situation 

where agents derive the lower net loss. Consequently, average effort is predicted to be higher in 

DG. This matches the results of Falk and Kosfeld (2006), who report that average effort is 

significantly lower after control in CG. The agents in their experiment provide a mean effort of 

17.5 after control in CG, but of 28.7 in DG.24 

The reciprocity model of Dufwenberg and Kirchsteiger (2004), referred to as DK in what 

follows, struggles to account for these findings. Given that agents in CG exert more effort after 

no control than after control and exerting more effort means less payoff for agents themselves,25 

DK view control (somewhat counter-intuitively) as kind to agents. Consequently, they predict 

more effort, which is kinder to principals, after control in CG than in DG, where the principal is 

passive and hence neither kind nor unkind. Reliance on second-order beliefs has a perverse 

consequence here. From an intuitive viewpoint, it is clear agents are disgruntled at being 

controlled if the principal has had the choice of not controlling them. The effect of this 

disgruntlement, namely, that agents keep more money for themselves, is used by DK as 

“evidence” for the conclusion that they have no reason for being disgruntled. This confuses 

cause and effect of agents’ emotional response to the principal’s behaviour. My approach avoids 

this problem because it relies on agents’ opportunity sets given the principal’s strategy without 

taking into account their reaction to the latter. 

                                                      

24 Falk and Kosfeld (2006) also study other control levels. However, they implement no corresponding 

dictator games, which means that no foregone-option effects can be studied. 

25 Falk and Kosfeld (2006) report a mean effort after no control of 23.0. 
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The reciprocity model of Falk and Fischbacher (2006), denoted FF in what follows, runs into 

similar problems. Given that responders exert less effort after control in CG than in DG, agents 

view themselves as being put further ahead of principals in CG. Moreover, principals could 

have put agents less ahead in CG by not controlling them. As a result, control in CG is kinder, 

which is at odds with the fact that agents are kinder to principals in DG by exerting more effort. 

 

4.2 Trust 

 

McCabe et al (2003) study a simple trust game (TG) in which the first mover (FM) can either 

implement the no-trust outcome  20 20,  or trust the second mover (SM). If trusted by the first 

mover, the second mover can choose between  30 15,  and  25 25, . The first entry in each 

payoff vector denotes the payoff to the second mover, who takes the role of player i in what 

follows. The authors compare second mover behaviour in this game to behaviour in a dictator 

game (DG) in which the first mover is passive and the second mover has a choice between the 

same two outcomes as after trust in TG. We have 

 

PROPOSITION 2 Suppose that 0γ   and either 2 3α   or 0β  . The net loss that the second 

mover derives from trust in TG is     10 1 5 7 5 0TG
SMnl γ β β max . α,     , while his net loss 

in DG is 0DG TG
SM SMnl nl  . The net loss that the second mover imposes on the first mover is 

10FMnl γβ   if the second mover chooses  25 25,  and 10 7 5 7 5FM FMnl . α . αβ nl      if he 

chooses  30 15, . Thus, second movers are more likely to choose  25 25,  after trust in TG. 

 

We have 0DG
SMnl   because the first mover is passive in DG. As for TG, for the second 

mover’s net loss from trust to be negative, we must have 0γ   and either 2 3α   or 0β  . On 

the one hand, the gain from trust must not be fully discounted, which is guaranteed by 0γ  . 

Further, there are two ways for the gain from trust to be positive: Either we have 0β  , which 

ensures that the second mover puts positive weight on his material gain of 10. Or we have 

2 3α  , which means that fairness does not lean too much towards efficiency. In this case, the 

second mover perceives  30 15, , which he can implement after trust, as less fair than the no-

trust outcome  20 20,  because of the smaller minimal payoff. He then derives a fairness gain 

from trust, which makes his overall gain positive irrespective of β . 
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Furthermore, the second mover clearly imposes a lower net loss on the first mover by 

choosing  25 25, . Net-loss reciprocation implies that the second mover is more likely to choose 

 25 25,  instead of  30 15,  in TG because of his lower derived net loss This context 

dependency is confirmed by McCabe et al (2003), who report that second movers choose 

 25 25,  with a frequency of 0.65 after trust in TG and of only 0.33 in DG, this difference being 

significant.26 

 

4.3 Ultimatum Bargaining 

 

Falk et al (2003) study four binary ultimatum games in each of which the offer “2 for the 

responder, 8 for the proposer” is available to the proposer. The games differ regarding the 

second offer. In three, there exists a true alternative, namely, “5 for both”, “8 for the responder, 

2 for the proposer” and “0 for the responder, 10 for the proposer”, respectively. In the fourth, 

the proposer is effectively passive because the alternative offer is also “2 for the responder, 8 for 

the proposer”. Thus, letting the responder take the role of player i, acceptance of the alternative 

implements  5 5, ,  8 2, ,  0 10,  and  2 8, , respectively. In what follows, I refer to the four 

treatments by these outcomes. We have 

 

PROPOSITION 3 Suppose that    1 2 1α β β   , 0 0 5β .   and 0γ  . The net losses that 

the responder derives from “2 for the responder, 8 for the proposer” in the four treatments are 

given by 
 5 5

3 3 3
,

Rnl α αβ   , 
 8 2

6
,

Rnl β , 
 2 8

0
,

Rnl   and 
 0 10,

Rnl γβ  , respectively, where 

we have 
       5 5 8 2 2 8 0 10, , , ,

R R R Rnl nl nl nl   . The net loss that the responder imposes on the 

proposer by accepting “2 for the proposer, 8 for the responder” is Pnl  8γβ , while rejection 

imposes 2 3 6 3p pnl α β αβ nl      . We therefore have 
       5 5 8 2 2 8 0 10, , , ,

Pr Pr Pr Pr   , 

where xPr  denotes the rejection probability in treatment         5 5 8 2 2 8 0 10x , , , , , , , . 

 

                                                      

26 The approaches of Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) can also 

account for this. Under the former, trust gives the second mover more in expected terms than no trust, 

which leads the second mover to view trust as kind, giving him an incentive to be kind to the first mover 

by repaying trust. Under the latter, given that trust is not always reciprocated, trust puts the second mover 

ahead of the first mover in expected terms. Moreover, the second mover would have earned less had he 

not been trusted. As a result, the kindness embodied by trust is fully intentional. 



19 

 

Crucially, Proposition 3 asserts that losses do not track material losses. The responder derives 

the highest overall loss in treatment  5 5, , whereas his material loss is largest in  8 2, . To see 

this, notice that “2 for the responder, 8 for the proposer” means a material loss of 6 for the 

responder if the alternative has been “8 for the responder, 2 for the proposer”, but of only 3 if it 

has been “5 for both”. The responder’s fairness loss is 3 3α  in  5 5, , but is necessarily zero in 

 8 2,  because the outcome  8 2,  is always as fair as the outcome  2 8,  irrespective of α . The 

dissociation of losses from material losses is achieved by the fairness loss in  5 5,  being 

sufficiently large and fairness losses playing a sufficiently large role. Formally, 
   5 5 8 2, ,

R Rnl nl  is 

equivalent to    3 3 3 6 1 2 1α αβ β α β β       . This can only be satisfied by 0α   if 

we have 1 2 0 0 5β β .    . 

Further, we have 
 2 8

0
,

Rnl   because the proposer is passive in  2 8,  and 
 0 10,

Rnl γβ   

because the responder derives no fairness gain in  0 10, . The reason is that he feels entitled to 

“2 for the responder, 8 for the proposer” if the alternative is “0 for the responder, 10 for the 

proposer”. We have 6 0 2β γβ    because of 0β   and 0γ  . 

All in all, since rejection of the fixed offer “2 for the responder, 8 for the proposer” imposes a 

higher net loss on the proposer than acceptance, the responder is most likely to reject in  5 5, , 

second most likely in  8 2,  etc. This is largely consistent with the results of Falk et al (2003), 

who report the following rejection frequencies: 

 

       5 5 8 2 2 8 0 10
0 44 0 27 0 18 0 09

, , , ,
Pr . Pr . Pr . Pr .       , 

 

these differences being statistically significant except for the last one. Although the last 

difference has the right sign, my approach faces a difficulty here. The absence of a significant 

difference would be explained by net-loss reciprocation if 
   2 8 0 10, ,

R Rnl nl . Since we have 

 2 8
0

,

Rnl   because the proposer is passive in this treatment, whereas 
 0 10,

Rnl γβ  , we would 

have to assume either 0β  or 0γ  or both. Alternatively, if both γ  and β  are positive but 

small, their product can be viewed as approximately zero. I return to this issue below. 

In contrast, DK face difficulties in rationalising the difference between the treatments  5 5,  

and  8 2, . According to DK, the status quo offer “2 for the responder, 8 for the proposer” is 

less kind in  8 2,  than  5 5,  for the following reason: In  5 5, , the status quo is accepted with 

a probability of 0 66.  and the alternative for sure, which makes for a kindness of the status quo 
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of  0.66 2 0.5 5 0.66 2 1.84k        .27 In  8 2, , the acceptance probabilities are 0 73.  for 

the status quo and 0 98.  for the alternative. The fact that the status quo is accepted with a higher 

probability tends to make the status quo kinder. However, what works in the opposite direction 

is that responders could have earned more under the alternative. This second effect dominates 

since we have  0.73 2 0.5 0.98 8 0.73 2 3.72 1.84k           . What DK do not take into 

account is responders’ sense of entitlement, in particular, that they feel less entitled to their 

forgone earnings in  8 2,  because these forgone earnings derive from an outcome that is only 

as fair as status quo. Such considerations are at the heart of my approach. 

The basic model in FF also fails to explain the difference in responder behaviour between 

 5 5,  and  8 2, . The reason is the binary nature of the intention factor (see Appendix B), 

which simply asks whether or not responders could have earned more in expected terms than 

under the status quo, which is the case in both treatments. Hence, the intention factor does not 

capture the fairness difference between the two alternatives and the differential sense of 

entitlement that this difference creates. The appendix in FF contains a richer version of their 

model designed to address this problem. 

 

4.4 Lost Wallets 

 

Dufwenberg and Gneezy (2000) fail to establish context dependency in second-mover 

behaviour in a series of trust games termed “Lost Wallet Games”. Their common feature is that 

the second mover can split 20 units of payoff between himself and the first mover in the event 

of trust. The games differ regarding the no-trust outcome, which, letting the second mover take 

the role of player i, is given by  0, f  with  4 7 10 13 16f , , , , . That is, the no-trust payoff for 

the second mover is always zero, while the games differ with respect to the no-trust payoff for 

the first mover. For simplicity, I focus on the polar cases 4f   and 16f   because the absence 

of context dependency is most puzzling between them. I refer to the two treatments by the 

respective no-trust outcome, namely  0 4,  and  0 16, . Servatka and Vadovic (2009) draw on 

the basic setup of Dufwenberg and Gneezy (2000), while varying the inequality of the no-trust 

outcome. In their two treatments, the no-trust outcomes are given by  0 10,  and  5 5, . Like 

                                                      

27 See Appendix B for a detailed exposition of the kindness function k. 
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Dufwenberg and Gneezy (2000), they fail to establish a significant difference in return transfers, 

i.e., there is again no context dependency. 

Consistent with these empirical findings, we have 

 

PROPOSITION 4 Suppose that we have either γ   , 0 5β .    and    1 2 2 2α β β    or 

γ   , β    and 5α .   or γ    The net loss that the second mover derives from the first 

mover’s trust is 
 0 4

0
,

SMnl γβ   if the no-trust outcome is  0 4,  and 
   0 16 0 4

0
, ,

SM SMnl γβ nl    if it 

is  0 16, . As a result, the repayment distributions do not differ between the two situations. If 

the no-trust outcome is  0 10, , the net loss derived from trust is 
 0 10

0
,

SMnl γβ  , while it is 

 5 5,

SMnl         0 10
1 5 10 0

,

SMγ β β max α, nl       if the no-trust outcome is  5 5, . Again, the 

repayment distributions do not differ between the two situations. 

 

In the first two cases, the second mover’s gain from trust is limited to his material gain of 20 

because the no-trust outcomes  0 4,  and  0 16,  are not fairer than any outcome in the second 

mover’s opportunity set after trust. Representing a payoff sum of less than 20, both no-trust 

outcomes are less efficient than the outcomes available after trust. Moreover, the minimal 

payoff is zero in each case, which is also the minimal payoff available after trust (if the second 

mover shares nothing). As a result, the responder feels entitled to his material gain causing his 

gain to be limited to the latter. As there is no loss from trust, the net loss is 0γβ  in each case. 

For the same reasons, the second mover’s net loss is 0γβ  if the no-trust outcome is  0 10, . 

If it is  5 5, , the second mover’s material gain from trust is 15. For 
 5 5

20
,

SMnl γβ   to hold, we 

can impose γ    meaning that gains are fully discounted. Alternatively, if γ   , we can let 

β    and 5α .   meaning that the weight on material gains is zero, but the second mover 

derives no fairness gain from trust. Indeed, if 5α .  , the least fair outcome after trust, namely, 

 20 0, , is at least as fair as  5 5,  because efficiency receives sufficient weight in the fairness 

function. Finally, if γ    and β   , the second mover must derive a positive fairness gain 

from trust in  5 5,  to offset his larger material gain in  0 10, . This is the case if α    

because fairness then leans towards a concern for the less well-off. In these conditions, we have 

   5 5
5 10 0 1

,

SMnl γ α β αβ      , which equals 0γβ  if and only if    1 2 2 2α β β   . 

This equality can only be satisfied by α    if 5β .  . Also, given β   , α    as assumed. 

Dufwenberg and Gneezy (2000) also implement a dictator treatment (DG) in which dictators 
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face the same opportunity set as second movers after trust. The authors report no significant 

difference in transfers between DG on the one hand and the treatments  0 4,  and  0 16,  on the 

other. For net-loss reciprocation to explain this, we must have 20 0DG
SMγβ nl   . We can make 

the equality hold by imposing either 0β  or 0γ . I return to this issue below. 

Regarding the intention-based models, DK cannot account for there being no difference 

between  0 10,  and  5 5, . The problem is that DK pick up on second movers’ differential 

earnings from the no-trust outcome. Given that second movers behave in the same way after 

trust, this yields the conclusion that trust is kinder in  0 10,  because second movers gain more 

from it in expected terms. My approach can navigate around this problem because second 

movers’ higher material gain in  0 10,  can be offset by a higher fairness gain in  5 5, . 

In contrast, FF can explain most absences of treatment differences. Given that average 

second-mover behaviour is the same, second movers view first movers as intending the same 

expected outcome (putting them ahead of first movers) in all treatments. Moreover, first movers 

could have treated second movers worse by not trusting them (except in DG). Hence, first 

movers are equally kind to second movers in all treatments rationalising the absence of context 

dependency. FF (like my approach) only struggle to explain behaviour in DG relative to the 

other treatments because first movers are passive there, which should cause second movers to 

share less. 

 

 

5 Discussion 

 

The examples considered in the preceding section are instructive with regard to the calibration 

of the model. The preferred specification is 

 

0 1γ  , 0 0.5β   and    1 2 2 2α β β    

 

which is well-supported by the experimental data considered in this paper. The interpretation is 

that gains are not fully discounted in the calculation of net losses ( 0 1γ  ) and that the weight 

on material losses and gains is neither zero nor too large ( 0 0.5β  ). Given the restrictions on 

β , the condition on α  implies 0 α    meaning that fairness leans towards a concern for 



23 

 

the less well-off. 

Imposing 0β   and 0γ   fails to explain two pieces of evidence, namely, the treatment 

 0 10,  from Ultimatum Bargaining and DG from Lost Wallets. To account for them, the above 

specification could be modified by setting 0γ  . This parameterisation, which implies that 

gains are fully discounted, can account for all the evidence except that from Trust. In particular, 

the evidence from Lost Wallets is explained almost trivially by reducing net losses to zero in all 

treatments. Effectively, this specification negates the importance of positive reciprocity by 

asserting that people do not react to gains that they derive from others. Charness and Rabin 

(2002) provide further evidence that positive reciprocity is a less important motivational force 

than negative reciprocity.28 

All in all, this section has demonstrated that net-loss reciprocation in conjunction with the 

method for calculating net losses developed in this paper can by and large account for the 

existence or absence of context dependency in a number of experimental studies. I have also 

shown that existing models of intention-based reciprocity face problems in explaining this 

evidence comprehensively. This is particularly true for the model of Dufwenberg and 

Kirchsteiger (2004), while at least the extended version of Falk and Fischbacher (2006) 

performs relatively well. Yet, even in its extended form, the latter only captures players’ sense 

of entitlement in an approximate, qualitative fashion. My approach allows to precisely quantify 

this sense via fairness losses and gains. 

 

 

6 Conclusion 

 

This paper presents a qualitative preference model for two-player interactions building on the 

idea of net-loss reciprocation. Net-loss reciprocation asserts that a player’s willingness to 

impose net losses on the other increases in the net loss that he derives from the other player’s 

strategy. The paper shows that net-loss reciprocation can account for the context dependencies 

in individual behaviour (or absences thereof) that arise in a number of experimental studies. 

The main difficulty faced by net-loss reciprocation relates to the status of positive reciprocity. 

                                                      

28 In applications of loss aversion, it is often assumed for the sake of simplicity that only losses count 
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In the light of the evidence considered in this paper, it is not clear whether players fully discount 

any gain they derive from the other player’s strategy or whether they take this gains into account 

leading them to become less willing to impose a net loss on the other. Apart from this, I find 

conclusive evidence that both material and fairness considerations matter to the determination of 

net losses, with fairness being somewhat more important. I also establish that a regard for the 

less well-off as opposed to a pure concern for material efficiency plays an important role in 

fairness assessments. 

Given the relative success of my approach in explaining context dependency when compared 

to existing models of intention-based reciprocity, the development of full-fledged utility models 

incorporating net-loss reciprocation seems worthwhile. These models could be used to analyse 

more general classes of games.29 An advantage of such models compared to intention-based 

models is their direct testability using standard experimental data as they do not rely on higher-

order beliefs. 

                                                      

29 In Appendix C, an extension of the model to more players (including Nature) is proposed. 
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Appendix A: Proofs 

 

PROOF OF LEMMA 2 

 

Let  i j inl s nl   and  i j inl s nl . Also, let  Πj j
ˆnl π , nl   and  Πj j

ˆnl π , nl . The first part, 

where i inl nl , is immediate since we have 

 

         Π̂i j i i j iπ
Pr π exp v π r nl ,nl exp v π r nl ,nl


        


 

 

and 

 

         Π̂i j i i j iπ
Pr π exp v π r nl ,nl exp v π r nl ,nl


          


 

 

for all ˆ  by Assumptions 1 and 2. 

Next, I show that                Pr π Pr π Pr π Pr π Pr π Pr π Pr π Pr π           for all 

ˆ    if i inl nl   and j jnl nl  . By Assumption 2, we can express the second inequality as 

 
   
   

   
   

j i j i

j i j i

exp v π exp r nl ,nl exp v π exp r nl ,nl

exp v π exp r nl ,nl exp v π exp r nl ,nl

                   
              

 

 

 
 
 

 
 

j i j i

j i j i

exp r nl ,nl exp r nl ,nl

exp r nl ,nl exp r nl ,nl

        
      

. 

 

Logarithmation of both sides yields 

 

       j i j i j i j ir nl ,nl r nl ,nl r nl ,nl r nl ,nl      , 

 

which holds by our assumptions on  r  .■ 

 

PROOF OF PROPOSITION 1 

 

The principal is passive in DG. By Lemma 1, we have 0DG

Anl  . In CG, letting NC denote no 
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control, we have ΠNC C      120 2 0 1 9e, e : e , ,...,  . Thus, if not controlled, the agent can 

earn more than what he can maximally earn if controlled. As a result, 0CG
Ag   and 

 

      Π 110 1 0NC C

CG C
A Aπl max β π β max f π f ,

       , 

 

where Cf  is the highest fairness level attained in ΠC . However, the fairness of the outcomes in 

ΠNC C  is below Cf  because both efficiency and a concern for the less well-off mandate 

increasing effort to 40. Consequently, we have 0 0CG CG
A Al β nl    . 

Next, I show that the net loss that the agent imposes on the principal decreases in e. Suppose 

that the agent chooses  10 119e x ,...,  . We then have  120 2cπ x, x  , 

 

        Π 2 1 0C c

c
P Pπl max β π x β max f π f π ,

        and 

 

        Π 2 1 0C c

c
P Pπg max β x π β max f π f π ,

        

 

where     Π 120 2 1 120C c e, e : e x ,...,      and     Π 120 2 10 1C c e, e : e ,...,x     . If 

effort increases by one unit, i.e., if 1e y x   , we have  120 1 2 2cπ x , x
      implying 

 

        Π 2 2 1 0C c'

c
P Pπl max β π x β max f π f π ,




          and 

 

        Π 2 2 1 0C c'

c'
P Pπg max β x π β max f π f π ,

          

 

where     Π 120 2 2 120C c' e, e : e x ,...,      and     Π 120 2 10C c' e, e : e ,...,x    . 

Suppose first that 40x  . We have    c' cf π f π  because both efficiency and a concern 

for the less well-off point towards increasing effort. As a result, P Pl l  because the 

maximisation for determining Pl  takes place on the set ΠC c' , which is a subset of the set ΠC c  

used for establishing Pl  and 0β  . As for gains, the outcomes in ΠC c  are less fair than cπ  

because they represent effort further away from 40. The same holds for ΠC c'  and c'π . As a 

result, gains are limited to material gains, and we have P Pg g   because ΠC c'  is a super-set of 

ΠC c  and 0β  . All in all, e y  imposes a smaller net loss on the principal than e x . 
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Suppose next that 40x  . Regarding losses, if    c cf π f π   because the fairness function 

leans towards efficiency, we have P Pl l  for the same reasons as above. If    c cf π f π   

because the fairness function leans towards a concern for the less well off, the linear nature of 

the fairness function implies that cπ  is fairer than all elements in ΠC c  and likewise for c'π  and 

ΠC c' . As a result, losses are limited to material losses and we have P Pl l  because ΠC c  is a 

super-set of ΠC c'  and 0β  . As for gains, if    c cf π f π  , all outcomes in ΠC c  are not 

fairer than cπ  and likewise for ΠC c'  and c'π , which implies that there are only material gains. 

We have P Pg g   because ΠC c'  is a super-set of ΠC c  and 0β  . For the same reason, we 

have P Pg g   if    c cf π f π  . Again, e y  imposes a smaller net loss on the principal. 

Since the principal’s net loss decreases in effort, Lemma 2 together with CG DG
A Anl nl  implies 

that the effort distribution in DG first-order stochastically dominates the distribution after 

control in CG, which implies that average effort is higher in DG.■ 

 

PROOF OF PROPOSITION 2 

 

Since first movers are passive in DG, we have 0DG
SMnl  . In TG, second movers gain from trust 

in material terms, which implies their loss is zero. Their gain is given by 

 

TG
SMg           10 1 20 22 5 1 15 0 10 1 5 7 0β β max α . α , β β max α,           

 

because  30 15,  corresponds to a higher material and fairness gain than  25 25, . We have 

    10 1 5 7 5 0 0TG
SMnl γ β β max . α,       because of our parameter assumptions. 

I next show that the net loss imposed on first movers through  30 15,  exceeds that imposed 

through  25 25, . First movers derive no loss from  25 25,  and a material gain of 10 . They 

derive no fairness gain because  25 25,  is superior from the viewpoint of both efficiency and a 

concern for the less well off. As a result, 10FMnl γβ  . From  30 15, , first movers derive a 

loss of 

 

       10 1 25 22 5 1 15 10 1 10 7 5β β α . α β β . α         10 7 5 7 5. α . αβ    

 

and no gain, which implies that 10 7 5 7 5FM FMnl . α . αβ nl     . Lemma 2 together with 
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DG TG
SM SMnl nl  then implies that second movers are more likely to choose  25 25,  in TG.■ 

 

PROOF OF PROPOSITION 3 

 

I refer to the offer “2 for the responder, 8 for the proposer” as X and the alternative offer in a 

given treatment as Y. We have     Π 2 8 0 0X , , , . In  5 5, ,   Π 5 5Y X ,  . As a result, 

responders derive no gain from X in this case and a material loss of 3. The highest fairness level 

reached in ΠX  is  1 2f α α   , whereas   5 5 5f ,  . As a result, 

 

      5 5
3 1 5 1 2 3 3 3

,

Rnl β β α α α αβ         . 

 

In  8 2, , we have   Π 8 2Y X ,  , which implies a material loss from X of 6 and no gain. 

Responders derive no fairness loss because  8 2,  and  2 8,  lie on the same fairness curve 

irrespective of α . Consequently, 
 8 2

6
,

Rnl β . Since proposers are passive in  2 8, , 
 2 8

0
,

Rnl  . 

Finally, we have ΠY X  , but   Π 2 8X Y ,   in  0 10,  meaning that responders derive no 

loss from X and a material gain of 2. The highest fairness level reached in ΠY  is 5f α . Since 

 5 1 2 5α α α   , responders feel entitled to their material gain. We thus have 
 0 10,

Rnl γβ  . 

From our parameter assumptions, it follows that 
       5 5 8 2 2 8 0 10, , , ,

R R R Rnl nl nl nl   . 

I now turn to net losses imposed on proposers. Since     Π 2 8 0 0X , , , , proposers derive no 

loss from acceptance. Their gain is limited to 8β  because  2 8,  is fairer than  0 0, . All in all, 

Pnl  8γβ . Conversely, next to a material loss of 8 from rejection, proposers suffer a fairness 

loss of      2 8 0 0f , f ,   5 1 2 2 3α α α    . As a result, their net loss is given by 

  8 1 2 3 2 3 6 3p pnl β β α α β αβ nl          . From 
       5 5 8 2 2 8 0 10, , , ,

R R R Rnl nl nl nl    and 

Lemma 2, it then follows that 
       5 5 8 2 2 8 0 10, , , ,

Pr Pr Pr Pr   .■ 

 

PROOF OF PROPOSITION 4 

 

The opportunity set given trust is     Π 20 0 1 20T r ,r : r , ,...,    where r is the amount 

shared. Denoting no trust by NT, we have     Π 20 0 1 19T NT r ,r : r , ,...,     in both 

treatments because all outcomes in ΠT  except  0 20,  give the second mover more than the no-

trust outcome. The fairness associated with no trust is 2f α  in  0 4,  and 8f α  in  0 16, , 
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while the fairness reached in ΠT NT  as a function of  0 1 19r , ,...,  is given by 

 

   1 20 8 2f α α min r, r α α       , 

 

which implies that gains are limited to material gains. Hence, we have 
 0 4,

SMg   0 16,

SMg β   and 

   0 4 0 16, ,

SM SMnl nl γβ    . By Lemma 2, the repayment distributions are then the same. 

Next, we show that 
   0 10 5 5, ,

SM SMnl nl . In  0 10, , we have
 0 10,

SMnl γβ    for the same reasons 

as before. Since the second mover derives no loss from trust, 
   0 10 5 5, ,

SM SMnl nl  is trivially satisfied 

if γ    because all gains are then fully discounted. 

Suppose instead that γ   , 0 5β .    and    1 2 2 2α β β    and notice that the last two 

conditions imply 0 5α .   . In  5 5, , we have     Π 20 0 1 14T NT r ,r : r , ,...,    . Given 

that α   , the least fair outcome in ΠT NT , namely,  20 0, , is less fair than  5 5, , which 

implies a positive fairness gain from trust. As the maximisation of material and fairness gains 

points into the same direction, with  20 0,  maximising both, we obtain 

 

    5 5
15 1 5 10

,

SMg β β α     5 1 0 1α β αβ     . 

 

We then have 

 

         5 5 0 10
5 10 0 1 1 2 2 2

, ,

SM SMnl nl γ α β αβ γβ α β β             , 

 

as assumed. 

Finally, if γ   , 0β   and 0 5α . , the second mover disregards his material gains, but his 

fairness gain from trust is zero in  5 5,  because fairness leans towards efficiency. This implies 

   5 5 0 10
0

, ,

SM SMnl nl  .■ 
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Appendix B: Intention-Based Models of Reciprocity 

 

In this Appendix, I sketch the main features of the reciprocity models of Dufwenberg and 

Kirchsteiger (2004) and Falk and Fischbacher (2006). I focus on how player i evaluates the 

kindness of player j’s pure strategy js . Conceptually, the kindness of js  plays the same role as 

i’s net loss from js  in my model. Since i observes js  in the applications considered in this 

paper, i need not form a belief about js . At the same time, both approaches draw on what is 

called i’s second-order belief, i.e., i’s belief about j’s belief about i’s own strategy. Both allow 

this belief to refer to a behaviour strategy iσ . I denote i’s second-order belief about iσ  by ijiσ . 

In this paper, I use for ijiσ  the empirically observed choices of players i. The justification is that 

both models are equilibrium models and hence require beliefs to coincide with actual behaviour. 

Dufwenberg and Kirchsteiger (2004) define 

 

     , , e

j iji i j iji i ijik s s       

 

where  ,i j ijis   is i’s expected payoff from j’s strategy js  given his second-order belief ijiσ , 

i.e., the payoff to himself i thinks j intends him to receive, and  e

i iji   the payoff to himself i 

views as “equitable” given iji . It is defined by 

 

      0.5 max , min ,
j j j j

e

i iji s S i j iji s S i j ijis s         . 

 

This formulation slightly simplifies the original model of Dufwenberg and Kirchsteiger (2004), 

which is inconsequential in the examples considered here. The interpretation is that i feels 

neutral about js   0k  if he believes j intends him to receive half of what he maximally and 

minimally stands to earn given j’s strategy set jS  and his second-order belief iji  and feels js  

is (un)kind whenever he receives more (less), to which correspond 0k  0k . A direct 

implication is that the kindness of js  equals zero if j is passive. Player i responds to the 

kindness of js  as follows: If js  is (un)kind, he is willing to increase the (un)kindness of his 

own behaviour to j at some material payoff cost to himself. 

The reciprocity model of Falk and Fischbacher (2006) differs from Dufwenberg and 

Kirchsteiger (2004) in that distributional concerns directly influence kindness perceptions. The 
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kindness of strategy j js S  as perceived by player i is given by 

 

       , , , ,j iji i j iji j j iji j ijik s s s s          . 

 

The first term is called the “outcome term”. It consists of the inequality associated with the 

outcome  ,j ijis   implemented by js  given i’s second-order belief. If  ,j ijis   puts player i 

ahead of (behind) j, i tends to view js  as (un)kind. At the same time, the outcome term does not 

reflect the alternatives to js  that j has at her disposal. This is where the second term (the 

“intention factor”) comes into play. It takes on either the value 1 or  0,1  . For example, if 

 ,j ijis   puts i ahead of j, the intention factor equals 1 if the feasible set of outcomes given 

iji  contains a payoff to i smaller than  ,i j ijis   and   otherwise. The idea is that in the first 

case j could have treated i worse than giving him  ,i j ijis  , whereas no such option was 

available in the second case. As a result, i discounts his advantage    , , 0i j iji j j ijis s      

in the second case, but not in the first. The procedure for the case where  ,j ijis   puts i 

behind is analogous. 
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Appendix C: A General Model of Net-Loss Reciprocation 

 

As before, I limit attention to finite-horizon multi-stage games. The set of players is I where 

3I n   and one of the players is Nature (denoted N). A player’s inactivity at a stage is 

modelled by the respective action set being singleton. At every stage, players have certainty 

about what happened at the previous stages, i.e., the non-terminal history up to that stage. Let H 

be the set of non-terminal histories, which contains the empty history (or root of the game)  . 

The pure strategy i is S  of player i I  assigns to each history h H  an action  i ia A h  

available to i at h, whereas i’s behaviour strategy i i  assigns to each history a probability 

distribution on i’s available actions.30 The set of pure and behaviour strategy profiles are given 

by ii I
S S


  and ii I

   , respectively. Outcomes π  of the game are  1n  -

dimensional vectors of material payoffs.31 The function 1nπ S     is the outcome function. It 

assigns to each pure strategy profile the payoff vector implemented by it. From  π s


, we can 

derive 1Σ nπ   , which assigns to each profile of behaviour strategies the implemented 

vector of expected payoffs.   Π Σπ σ σ    contains all feasible expected outcomes.32 

Moreover, a few non-standard concepts are drawn on below. Firstly,  i iS h S  is the set of 

strategies of i that are consistent with history h H  in the following sense: If h  , is  is part 

of  iS h  if and only if it prescribes i’s actions contained in h . If h  , we have  i iS h S . 

The set  Σi h  is defined analogously: All actions in h  must be prescribed with probability one 

for  Σi iσ h . Secondly,  i i is s ,h S  is the “update” of is  that coincides with is  except that it 

prescribes i’s actions contained in h  and likewise for  i iσ σ ,h  where the actions in h  are 

prescribed with probability one. Finally,  iH s H  is the set of histories that are consistent 

with is  in the sense that any h H  with h   is in  iH s  if and only if i’s actions contained 

in h are also actions prescribed by is . Moreover,  iH s  for all i is S . 

To illustrate the model, I draw on a simple delegation game, which is implemented 

experimentally in Bartling and Fischbacher (2011). The game has four players:33 One principal 

                                                      

30 All action sets are assumed finite. 

31 Outcomes specify a payoff for each player except Nature. 

32 Note that ΣS   since all pure strategy profiles are degenerate behaviour strategy profiles. As a result, 

all pure strategy profiles are in the domain of π . 

33 Strictly speaking, Nature is the fifth player, who is passive in this example. 
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(player A), one agent (player B) and two passive recipients, one of whom is called player C. The 

principal moves first. She can either implement a fair or unfair outcome directly or delegate this 

choice to the agent. The fair outcome yields 5 units of payoff to all parties, while the unfair 

outcome gives 9 units of payoff each to the principal and agent and 1 unit to each recipient. To 

simplify things, the punishment opportunities of the recipients after A or A and B have made 

their choice are left out of the picture. 

 

 

C1 Derived Net Losses 

 

Player i’s net loss from strategy js  of player j consists of his loss minus gain from js  where the 

two need not count for the same. Player i assesses his loss and gain by comparing the 

opportunity set of outcomes created by js  to the opportunity sets created by j’s alternative 

strategies. In the example, suppose that C evaluates A’s decision to delegate. He then compares 

the opportunity set created by A delegating to the opportunity sets created by A choosing the 

fair and unfair outcome directly. 

Defining such opportunity sets raises several modelling issues. Firstly, the question arises 

which (if any) restrictions to place on the behaviour of third parties, i.e., on the other players 

besides i and j. A’s decision to delegate is a case in point as its consequences depend on the 

behaviour of B, who is the third party in the relationship between A and C. In what follows, I 

assume that i considers the opportunity sets of expected outcomes created by js  and its 

alternatives taking as given 
 

Σi , j kk I\ i , j
σ 

 , which is the profile of behaviour strategies of 

all other players including Nature and can be interpreted as i’s belief about these players’ 

average behaviour. The idea is that i, when assessing the opportunity sets created for him by js  

and its alternatives, has some sense of how third parties are likely to act, which affects his sense 

of opportunity.34 In the delegation example, B is expected to choose the unfair outcome after 

delegation with a probability of 0.34 according to the beliefs measured by Bartling and 

Fischbacher (2011). The opportunity set of expected outcomes created by delegation is therefore 

 

                                                      

34 Alternatively, i , jσ  could be interpreted as i’s belief about j’s belief about the other players, i.e., i’s 

second-order belief. 
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     0 34 9 0 66 5 0 34 9 0 66 5 0 34 1 0 66 5 0 34 1 0 66 5 6 36 6 36 3 64 3 64. . , . . , . . , . . . , . , . , .             , 

 

while A choosing the fair and unfair outcome directly entail   5 5 5 5, , ,  and   9 9 1 1, , , , 

respectively.35 These opportunity sets are singleton because the punishment options are ignored. 

A second issue is which perspective i adopts when assessing js  and its alternatives given 

i , jσ . On the one hand, i could evaluate js  from an ex-ante perspective meaning that he simply 

compares the opportunity set of expected outcomes created by js  to the opportunity sets created 

by its alternatives taking as given i , jσ . On the other hand, he could adopt the perspective of 

some history h   of the game and evaluate j’s updated strategy  j js s ,h  against its 

alternatives in  jS h  taking as given  i , j i , jσ σ ,h  . The importance of such conditioning on 

histories can be seen by considering a second example, namely, C’s evaluation of B choosing 

the unfair outcome after delegation, the alternative being choosing the fair outcome. From an 

ex-ante perspective, the opportunity sets of expected outcomes created by these two strategies 

depend on the belief about A, i.e., about how likely A is to delegate in the first place. In the 

most extreme scenario, where A is not believed ever to delegate, the two opportunity sets would 

be the same implying C’s net loss from the two strategies is the same, namely, zero. This 

dependence of the evaluation of B on the beliefs about A seems implausible. Intuitively, given 

the information structure, C knows that B knows that A has delegated when B chooses the 

unfair outcome and C wants to hold B to account for this knowledge. This consideration can be 

captured if we condition on the history “A has delegated”, which means that the likelihood of 

delegation is set to one. For this reason, I posit that i when evaluating js  adopts the perspective 

of all histories in the set  jH s , which is the set of histories consistent with js . The idea is that 

i restricts attention to histories not ruled out by js , which has intuitive appeal.36 Consequently, I 

first define i’s loss and gain from js  for a given  jh H s  and then define i’s overall loss and 

gain as his maximal history-contingent loss and gain with respect to  jH s  as a whole.  

                                                      

35 The first entry in payoff vectors refers to the payoff of A, the second to the payoff of B and the last two 

to the payoffs of the recipients. 

36 Limiting the conditioning to  j
H s  is also required for making the definition of i’s loss and gain 

consistent with the definition given above for a two-player setting, where there is no conditioning on 

histories ruled out by js . Consistency means that in any n-player game where the players in  I \ i, j  are 

passive, i’s loss and gain from any given 
js  is the same as his loss and gain from the corresponding 

js  in 

the corresponding two-player game where the players in  I \ i, j  are omitted. 
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Finally, when adopting the perspective of some  jh H s , the question arises if we should 

restrict i’s own behaviour to be in  iS h  in establishing the opportunity sets created by js  and 

its alternatives. Limiting i‘s behaviour to  iS h  appears not fully convincing because i aims to 

assess the “elbow room” left for him by js  and its alternatives. From this angle, restricting 

attention to  iS h  seems misguided. Intuitively, i holds j responsible for choosing js  rather 

than its alternatives in  jS h  given that third parties behave according to  i , j i , jσ σ ,h  , but 

does not hold j responsible for ending up in h . Any part that j has played in bringing about h  is 

dealt with by considering the rest of  jH s . Consequently, I define the opportunity set created 

by js  from the perspective of h  as    i j i , j i , j i iπ s ,s ,σ σ ,h : s S    and likewise for the 

alternatives. 

I now define player i’s loss and gain derived from j js S  (the “status quo”) relative to some 

alternative j js S  without conditioning on histories. The sets Π js
 and Π js

 are the opportunity 

sets of expected outcomes created by the two strategies. At this point, I only assume them to be 

non-empty without worrying about their precise definition, which is history-dependent and 

introduced later. I begin with losses. Analogous to before, let Π js

i  be the expected payoffs to i 

in Π js
, Πj js s

i iπ max  his maximal payoff given js  and  Π Πj j j js s s s

i iπ : π π    
 the set of 

feasible outcomes given js  yielding i more payoff than js

iπ . Fairness is measured by a fairness 

function: 

 

DEFINITION C1 The fairness function 1nf :     is given by 

 

       1ii I\ N
f π π α π π n


     

 

with   iπ min π : i I \ N   and  0 1α , . 

 

We can now define i’s loss from js  relative to js , which is isomorphic to the two-player 

case. 

 

DEFINITION C2 Player i’s loss from strategy j js S  relative to strategy j js S  is given by 
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 
      Π

1 0 if Π

0 otherwise

j j j j
s sj j

s s s s

i iπ
i j j

max β π π β max f π f ,

l s ,s





          






  

 

 

where  0 1β , . 

 

I next turn to player i’s gain from js  relative to js , which is again isomorphic to the two-

player case. 

 

DEFINITION C3 Player i’s gain from strategy j js S  relative to strategy j js S  is given by 

 

 

 
      Π

1 0 if Π

0 otherwise

j j j j
s sj j

s s s s

i iπ
i j j

max β π π β max f f π ,

g s ,s





          




  

  

 

 

where  0 1β , . 

 

I now address i’s loss and gain from js  at large. The two are established by considering all 

histories consistent with js , which are collected in  jH s . 

 

DEFINITION C4 From the perspective of history  jh H s , player i’s loss and gain from 

j js S  given that the players in  I \ i, j  follow Σi , j i , jσ   are given by 

 

     
j j

i j i j js S h
l s ,h max l s ,s    and      

j j
i j i j js S h

g s ,h max g s ,s   , respectively, 

 

where    Π js

i j i , j i , j i iπ s ,s ,σ σ ,h : s S    and likewise for each Π js
. Moreover, i’s overall 

loss and gain from js  are given by 

 

     
j

i j i jh H s
l s max l s ,h


  and      

j
i j i jh H s

g s max g s ,h


 . 

 

Thus, given i , jσ , i assesses his loss and gain from js  history-wise by considering each element 

in  jH s . Adopting the perspective of some such history, i determines his maximal loss and 



37 

 

gain from js  relative to its alternatives in  jS h  taking as given  i , j i , jσ σ ,h  .37 Player i’s 

overall loss and gain from js  are given by his maximal history-contingent loss and gain with 

respect to  jH s . 

As before, players react to the net loss imposed on them by others: 

 

DEFINITION C5 Player i’s net loss from strategy j js S  is given by 

 

      i j i j i jnl s l s γg s  

 

with  0 1γ , . 

 

 

C2 Imposed Net Losses and Preferences 

 

Faced with some profile is  of the other players’ strategies, player i must choose an outcome 

from his opportunity set   Π is
i i i iπ s ,s : s S

  . As before, let Π  iscπ  be the outcome 

chosen by i and let  Π Πi is c, j s c
j jπ : π π      and  Π Πi is c, j s c

j jπ : π π      contain the 

outcomes in Π  is
 yielding player j more and less payoff than cπ , respectively. This leads to 

 

DEFINITION C6 Player j’s loss from Π iscπ   is 

 

 
        Π 1 0 if Π

Π
0 otherwise

i
s c , ji

i

s c , jc c
j jπ

sc
j

max β π π β max f π f π ,

l π ,









          



 

 

Moreover, j’s gain from Π iscπ   is 

 

 
        Π 1 0 if Π

Π
0 otherwise

i
s c , ji

i

s c, jc c
j jπ

sc
j

max β π π β max f π f π ,

g π ,









          



 

 

Finally, j’s net loss from Π iscπ   is 

 

                                                      

37  jS h  is guaranteed to include js  since h is taken from  jH s . 
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     Π Π Πi i is s sc c c

j j jnl π , l π , γg π ,    . 

 

As for i’s preferences governing his choice from Π  is
, they are given by 

 

ASSUMPTION C1 Player i’s preferences on the outcomes in Π  is
 are represented by 

 

          Π is

i i i j i jj I\ i ,N
u π ,s v π r nl π , ,nl s

 
   

 

where the continuous v :    and 2r :    satisfy 0idv dπ   and 2 0j ir nl nl     for 

every  j I \ i,N . 

 

As a result, j iWTP r nl dv dπ   , which is i’s willingness to pay for increasing any other 

player j’s net loss, increases in the net loss that i himself derives from js . 
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