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Abstract

Differential item functioning (DIF) indicates the violation of the invariance assumption
for instance in models based on item response theory (IRT). For item-wise DIF analysis
using IRT, a common metric for the item parameters of the groups that are to be compared
(e.g. for the reference and the focal group) is necessary. In the Rasch model, therefore,
the same linear restriction is imposed in both groups. Items in the restriction are termed
the anchor items. ldeally, these items are DIF-free to avoid artificially augmented false
alarm rates. However, the question how DIF-free anchor items are selected appropriately
is still a major challenge. Furthermore, various authors point out the lack of new anchor
selection strategies and the lack of a comprehensive study especially for dichotomous IRT
models. This article reviews existing anchor selection strategies that do not require any
knowledge prior to DIF analysis, offers a straightforward notation and proposes three
new anchor selection strategies. An extensive simulation study is conducted to compare
the performance of the anchor selection strategies. The results show that an appropriate
anchor selection is crucial for suitable item-wise DIF analysis. The newly suggested anchor
selection strategies outperform the existing strategies and can reliably locate a suitable
anchor when the sample sizes are large enough.

Keywords: Rasch model, differential item functioning (DIF), anchor selection, anchor class,
uniform DIF, measurement invariance.
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1. Introduction

Differential item functioning (DIF) is present if test-takers from different groups — such as
male and female test-takers — display different probabilities of solving an item even if they
have the same latent trait. In this case, the test results no longer represent the ability alone
and the groups of test-takers cannot be compared in an objective, fair way.

Various methods have been suggested to analyze item-wise DIF (see Millsap and Everson
1993, for an overview). DIF tests based on item response theory (IRT) such as the item-wise
Wald test (see, e.g., Glas and Verhelst 1995) rely on the comparison of the estimated item
parameters of the underlying IRT model. For this purpose, anchor methods are employed to
place the estimated item parameters onto a common scale.

Previous studies showed that a careful consideration of the anchor method is crucial for
suitable DIF analysis: If the anchor contains DIF items, which is referred to as contamination
(see, e.g., Finch 2005; Woods 2009; Wang, Shih, and Sun 2012), the construction of a common
scale for the item parameters may fail and seriously increased false alarm rates can result (see,
e.g., Wang and Yeh 2003; Wang 2004; Wang and Su 2004; Finch 2005; Stark, Chernyshenko,
and Drasgow 2006; Woods 2009; Kopf, Zeileis, and Strobl 2013). Thus, items truly free of
DIF may appear to have DIF and jeopardize the results of the DIF analysis as well as the
associated investigation of the causes of DIF (Jodoin and Gierl 2001). One alternative to
reduce the risk of a contaminated anchor is to employ a short anchor that should be easier
to find from the set of DIF-free items. However, the statistical power to detect DIF increases
with the length of the (DIF-free) anchor (Thissen, Steinberg, and Wainer 1988; Wang and
Yeh 2003; Wang 2004; Shih and Wang 2009; Woods 2009; Kopf et al. 2013).

In the literature, one can find both methods that do and methods that do not require an
explicit anchor selection. While at first sight it may seem that methods that do not require
an anchor selection strategy have an advantage, it has been shown that there are situations
where these methods are not suitable for DIF detection. The all-other anchor method, for
example, uses all items except for the currently studied item as anchor (see, e.g., Cohen, Kim,
and Wollack 1996; Kim and Cohen 1998) and, thus, requires no anchor selection strategy.
However, the method was shown to be inadvisable for DIF detection when the test contains
DIF items that favor one group (Wang and Yeh 2003; Wang 2004). Excluding DIF items
from the anchor by using iterative steps does not solve the problem when the test contains
many DIF items (Wang et al. 2012). In practice, there is usually no prior knowledge about
the exact composition of the DIF effects and, thus, it is advisable to use an anchor method
that relies on an explicit anchor selection strategy such as an anchor of the constant length of
four items (used, e.g., by Thissen et al. 1988; Wang 2004; Shih and Wang 2009). An anchor
selection strategy then guides the decision which particular items are used as anchor items.

Several anchor selection strategies have already been proposed, some of which rely on prior
knowledge of a set of DIF-free items or on the advice of content experts, while others are based
on preliminary item analysis (for an overview see Woods 2009). Here, only those strategies
that do not require any information prior to data analysis, such as the knowledge of certain
DIF-free items, will be reviewed and presented in a straightforward notation in Section 3.2.
The reason for excluding strategies that require prior knowledge about DIF-free items from
this review is that in practical testing situations sets of truly DIF-free items are most likely
unknown (as opposed to simulation analysis, where the true DIF pattern is known) and even
the judgment of content experts is unreliable (for a literature overview where this approach
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fails see Frederickx, Tuerlinckx, De Boeck, and Magis 2010). New suggestions of anchor
selection strategies are often only compared to few alternative strategies or in situations of
only a limited range of the sample size and “have not been exhaustively compared for the
dichotomous case” (Gonzalez-Betanzos and Abad 2012, p. 2). Therefore, in this article, we
systematically evaluate the performance of the existing anchor selection strategies for DIF
analysis in the Rasch model by conducting an extensive simulation study.

Furthermore, we assess the appropriateness of the anchor selection strategies to find a suitable
short anchor (of four anchor items) and also their ability to select a suitable longer anchor,
which “is a challenging question for researchers and practitioners” (Wang et al. 2012, p. 19).
For practical research, recommendations how anchor items can be found appropriately are still
required (Lopez Rivas, Stark, and Chernyshenko 2009, p. 252). We also provide guidelines
how to choose anchor items when no prior knowledge of DIF-free items is at hand.

In addition to the existing strategies, new developments of anchor selection strategies have
also been encouraged (Wang et al. 2012, p. 19). Therefore, we also suggest three new anchor
selection strategies. The new anchor selection strategies are implemented and the results show
an improvement of the classification accuracy in the analysis of DIF.

The article is organized as follows. The technical aspects of the anchoring process in the
Rasch model are introduced in the next section. Details of the anchor classes and of the
existing as well as of the newly suggested anchor selection strategies are given in Section 3.
The simulation design is addressed in Section 4 and the results are discussed in Section 5. A
concluding summary and practical recommendations are presented in Section 6.

2. Model and notation

In this section, the model and notation are introduced along with some technical statistical
details about the anchoring process: (1) how parameter estimates under certain restrictions
can be obtained and (2) how the associated item-wise parameter differences between a focal
and reference group can be assessed given a selection of anchor items. In our discussion we
focus on the Rasch model but the underlying ideas can also be applied to other related IRT
models.

Based on the resulting item-wise tests, the subsequent sections will then discuss how the tests
can be combined employing a wide range of classes of anchors and different strategies for
selecting the anchor items.

2.1. Model estimation and scale indeterminacy

To fix notation, we employ the Rasch model with item parameter vector 8 = (B1,...,8:) ' €
R* (where k denotes the number of items in the test). It is usually estimated using the
conditional maximum likelihood (CML) approach, due to its unique statistical properties,
its widespread application (Wang 2004) and the fact that it does not rely on the person
parameters (Molenaar 1995).

To overcome the scale indeterminacy (Fischer 1995) of the item parameters 3, one linear
restriction is typically imposed on them. Hence, only k — 1 parameters can be freely esti-
mated and the remaining one parameter is determined by the restriction. Commonly-used
approaches restrict a set A C {1,...,k} of one or more or all item parameters to sum to
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zero Y . 4 B = 0 (Eggen and Verhelst 2006). These types of restrictions can be equivalently
represented by a vector a indicating the items that should sum to zero, i.e., 25:1 agfBe = 0.
For example, if the first and second item parameter should sum to zero, the set is A = {1,2}
with associated indicator vector a = (1,1,0,0,0,...)T.

Conveniently, the item parameter estimates 5 under any such restriction can be easily obtained
from any other set of parameter estimates B fulfilling another restriction. Hence, without loss
of generality we employ the restriction 5; = 0 for the initial CML parameter estimates and
also obtain the corresponding covariance matrix \//z;r(ﬁ) which consequently has zero entries
in the first row and in the first column. To obtain any other restriction of the sum type
above, the item parameter estimates B and corresponding covariance matrix estimate can be
obtained as follows:

B = AB (1)

Var() = AVar(B)AT, (2)

where A = [}, — ﬁlk -a' is the contrast matrix corresponding to the indicator vector a
=1

with Ij, denoting the identity matrix and 1, = (1,1,...,1)" a vector of one entries of length k.

To emphasize that the parameter estimates 8 depend on the set of restricted item parameters,
we sometimes employ the notation 5(A) in the following (although the dependence on A is
mostly suppressed).

2.2. Item-wise parameter differences

In DIF analysis using IRT models, groups are to be compared regarding their item parameters.
We focus here on the situation of item-wise comparisons between two groups (reference and
focal). In order to establish a common scale for the item parameters the same linear restriction

Y BI=0 (g€ {ref,foc}) (3)

le A

has to be imposed on the item parameters in both groups (Glas and Verhelst 1995). Thus, A
is the set of anchor items employed to align the scales between the two groups g.

More specifically, to assess differences between the two groups for the j-th item parameter 3;
(j =1,...,k), the following steps are carried out:

1. Obtain the intial CML estimates 39 in both groups ¢ (i.e., using the restriction Biq =0).

2. Based on the same set of anchor items A, compute 39 = 39 (A) and corresponding
Var(59) using Equations 1 and 2 so that Equation 3 holds in both groups g.

3. Carry out an item-wise Wald test (see, e.g., Glas and Verhelst 1995) for the j-th item
with test statistic t; = t;(A) given by

fref of Qref 2f
/8}9 . ﬁjoc B;e _ ﬁjoc

Var(B = )/ Var(30) -+ Var(5),

tj =

(4)

Either the test statistic ¢; or the associated p-value p; can then be employed as a DIF index
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because under the null hypothesis of no DIF the item parameters from both groups should
be equal: Bff = B;“.

Note that this item-wise Wald test is applied to the CML estimates (as in Glas and Ver-
helst 1995) and not the joint maximum likelihood (JML) estimates (as in Lord 1980). The
inconsistency of the JML estimates leads to highly inflated false alarm rates (McLaughlin
and Drasgow 1987; Lim and Drasgow 1990). In case other IRT models are regarded, the
recent work of Woods, Cai, and Wang (2012) showed that an improved version of the Wald
test, termed Wald-1 (see Paek and Han 2013, and the references therein), also displayed well-
controlled false alarm rates if the anchor items were DIF-free. Since the Wald-1 test also
requires anchor items, it can in principle be combined with the anchor methods discussed
here as well.

3. Anchor methods

Under this null hypothesis of equality between all item parameters, in principle any set of
items could be chosen for the anchor A. However, under the alternative that some of the k
item parameters are actually affected by DIF, the results of the analysis strongly depend on
the choice of the anchor items, as previous studies illustrated. If the anchor contains at least
one DIF item, it is referred to as contaminated (see, e.g., Finch 2005; Woods 2009; Wang
et al. 2012). The scales may then be artificially shifted apart and the false alarm rates of the
DIF tests may be seriously inflated (see, e.g., Wang and Yeh 2003, Wang 2004, Wang and Su
2004, Finch 2005, Stark et al. 2006, Woods 2009). Instructive examples that illustrate the
artificial scale shift are provided by Wang (2004) and Kopf et al. (2013).

For distinguishing between the different approaches, we employ a framework for anchor meth-
ods previously used in Kopf et al. (2013) where the anchor class determines characteristics
of the anchor methods, such as a predefined anchor length, and the anchor selection strategy
guides the decision which items are used as anchor items. The combination of an anchor class
together with an anchor selection strategy is then termed an anchor method. Different anchor
classes are now briefly reviewed.

3.1. Anchor classes

The constant anchor class consists of an anchor with a predefined, constant length. Usually,
it is claimed that a constant anchor of four items assures sufficient power (cf. e.g., Shih and
Wang 2009; Wang et al. 2012). An anchor selection strategy is needed to guide the decision
which items are used as anchor items. The all-other anchor class uses all items except for
the currently studied item as anchor and the equal-mean difficulty anchor class uses all items
as anchor (see, e.g., Wang 2004, and the references therein). These latter two anchor classes
do not require an additional anchor selection strategy. Furthermore, iterative anchor classes
build the anchor in an iterative manner. The iterative backward class (used, e.g., by Drasgow
1987; Candell and Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina 2002) starts with all
other items as anchor and excludes DIF items from the anchor, whereas the iterative forward
anchor class starts with a single anchor item and then, iteratively, includes items in the anchor
(Kopf et al. 2013). The latter anchor class also requires an explicit anchor selection strategy.

Wang (2004), Wang and Yeh (2003) and Gonzélez-Betanzos and Abad (2012) compared the
all-other and the equal-mean difficulty anchor class to different versions of the constant anchor
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class regarding various IRT models. All methods from the constant anchor class were built
using prior knowledge about the set of DIF-free items to locate the anchor items. Methods
from the constant anchor class yielded well-controlled false alarm rates, whereas methods
from the all-other and the equal-mean difficulty anchor class displayed seriously inflated false
alarm rates when the direction of DIF was unbalanced (i.e. the DIF effects did not cancel out
between groups and one group was favored in the test) and it is doubtful whether the situation
of balanced DIF (i.e. no group has an advantage in the test) is met in practice (Wang and
Yeh 2003; Wang et al. 2012). This is of utmost importance for practical testing situations,
since items truly free of DIF display artificial DIF and may be eliminated by mistake.

Thus, all three studies showed that the direction of DIF has a major impact on the results
of the DIF analysis for the all-other and the equal-mean difficulty anchor class as opposed to
the constant anchor class based on DIF-free anchor items. Thus, the constant anchor class is
in principle able to yield appropriate results for the DIF analysis even if DIF is unbalanced.
However, since Wang and Yeh (2003), Wang (2004) and Gonzalez-Betanzos and Abad (2012)
used prior knowledge of the set of DIF-free items to select the constant anchor items, no
information is yet available on how well anchor selection strategies without prior knowledge
perform and “[f]urther research is needed to investigate how to locate anchor items correctly
and efficiently” (Wang and Yeh 2003, p. 496).

Another anchor class was recently suggested by Kopf et al. (2013). Instead of a predefined
anchor length, the iterative forward anchor class builds the anchor in a step-by-step procedure.
First, one anchor item is used for the initial DIF test. As long as the current anchor length is
shorter than the number of items currently not displaying statistically significant DIF (termed
the presumed DIF-free items in the following), one item is added to the current anchor and
DIF analysis is conducted using the new current anchor. The sequence which item is first
included and which items are added to the anchor is determined by an anchor selection
strategy. In a simulation study, the iterative forward anchor class and the constant anchor
class were combined with two different anchor selection strategies and compared to the all-
other class and the iterative backward anchor class. The iterative forward anchor class was
found to be superior since it yielded high hit rates and, simultaneously, low false alarm rates
for sufficiently large sample sizes in any studied condition of balanced or unbalanced DIF if
the number of significant threshold anchor selection strategy (see Section 3.2) was employed
(Kopf et al. 2013).

To assess the appropriateness of the anchor selection strategies in this article, we combine
them with the constant four anchor class and the iterative forward anchor class. The reason
for this is that both classes require an anchor selection strategy and it is claimed that they
assure sufficient power when the anchor selection works adequately. Furthermore, both classes
are structurally different. The constant four anchor class always includes four anchor items,
and, thus, leads to a short anchor, whereas the iterative forward class allows for a longer
anchor that is built in an iterative way. The all-other, the equal-mean difficulty and the
iterative backward class displayed seriously inflated false alarm rates when the direction of
DIF is unbalanced (Wang and Yeh 2003; Wang 2004; Gonzalez-Betanzos and Abad 2012;
Kopf et al. 2013), and are, thus, not considered as anchor classes in this article.

3.2. Anchor selection strategies

Anchor selection strategies determine a ranking order of candidate anchor items. We focus
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on those strategies that are based on preliminary item analysis since these strategies are most
common in practice. This approach has been referred to as the DIF-free-then-DIF strategy
by Wang et al. (2012) because auxiliary DIF tests are conducted to locate (ideally DIF-free)
anchor items before the final DIF tests are carried out.

Auziliary DIF tests

For each item j = 1,..., k, auxiliary DIF tests are conducted using step 1 to 3 in Section 2.2.
Typically, there are two alternative ways to conduct auxiliary DIF tests:

(I) The auxiliary DIF tests are conducted using all-other items {1, ..., k}\j as anchor. This
yields to one observed test statistic ¢;({1,...,k}\j) for every currently studied item j.

(IT) The auxiliary DIF tests are conducted using every other item ¢ # j as constant single
anchor. This results in (k — 1) test statistics per item ¢;({¢}) with the corresponding p-
values p;({¢}). Anchor selection strategies decide how all tests are aggregated to obtain
the ranking order of candidate anchor items. Note that the test statistics and p-values
display the following symmetry properties |t;({¢})| = |t¢({j})| and p;({¢}) = pe({j})
since the constant scale shift of one single anchor item is reflected in the test statistic
of the item currently investigated and vice versa. Even though the p-values represent a
monotone decreasing transformation of the absolute test statistics, the aggregations of
both measures may yield different ranking orders.

Rank-based approach

Anchor selection strategies use the information from the auxiliary DIF tests of type (I) or
of type (II) to define a criterion ¢; for each item j that ideally reflects how strong the item
is affected by DIF. All anchor selection strategies that are regarded in this article follow a
rank-based approach that was first suggested together with auxiliary tests of type (I) by
Woods (2009). The ranking order of candidate anchor items is defined by the ranks of the
criterion values rank (c¢;). The item displaying the lowest rank is the first candidate anchor
item, whereas the item corresponding to the highest rank is the last candidate anchor item.

The ranking order resulting from the anchor selection strategies is used within the anchor
classes to conduct the final DIF analysis. For the constant four anchor class, the items with
the lowest four ranks are selected as the final anchor set Ag,.. For the iterative forward
anchor class, items are selected into the anchor as long as the anchor is shorter than the
number of currently presumed DIF-free items. In this anchor class, anchor items are selected
in a step-by-step procedure following the ranking order that results from the anchor selection.
When the stopping criterion is reached, the final anchor set Ag,,, is found.

Final DIF analysis

The final DIF tests are carried out using the anchor set Ag,.. Since k — 1 parameters are
free in the estimation, only k& — 1 estimated standard errors result (Molenaar 1995), the k-th
standard error is determined by the restriction and, hence, only k — 1 tests can be carried
out. To overcome the problem that the classification of an item as a DIF or a DIF-free item is
intended for each of the k items, we classify the first final anchor item with the lowest rank to
be DIF-free — a decision that may be false if even the item with the lowest rank does indeed
have DIF, but in this case this would be noticeable in the final test results. Note that this
decision is by no means as drastic as testing only those items for DIF that have not been
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selected as anchor, as was done e.g. by Woods (2009), or as choosing the anchor items only
from the set of items that are known to be DIF-free in a simulation, as was done by Wang
and Yeh (2003) and Wang (2004) but cannot be done in any real study where the true DIF
and DIF-free items are unknown.

In the following, first, the strategies that are built on auxiliary DIF tests of type (I) are re-
viewed. Second, selection strategies that rely on auxiliary DIF tests of type (II) are discussed.
Third, three new strategies are suggested at the end of the section that also rely on auxiliary
DIF tests of type (II). Note that the DIF tests mentioned in the next paragraphs are only
used as preliminary steps to assess the criterion values that determine the ranking order of
candidate anchor items.

All-other selection

The all-other selection strategy (AO-selection) was proposed by Woods (2009) as what she
called the rank-based strategy. For this strategy a predefined number of anchor items is
chosen according to the lowest ranks of the absolute DIF test statistics resulting from the
auxiliary DIF tests of type (I):

C?O = |tj({1’vk}\.7)| (5)

(Note that, originally, Woods (2009) suggested to use the ratios of the test statistics and
the degrees of freedom, that may vary across items if the items display a different number
of response categories. However, this is not discussed here since the responses are always
dichotomous in the Rasch model that we focus on here.)

The constant anchor method of 20% of the items based on the AO-selection was found to be
superior compared to the all-other anchor method in the majority of the simulated settings
and compared to the constant single anchor method based on the AO-selection (Woods 2009).
Nevertheless, the author claimed that “[a] study comparing the strategy proposed here to the
various other suggestions for empirically selecting anchors is needed” (Woods 2009, p. 53).

All-other purified selection

Recently, Wang et al. (2012) suggested a modification (here referred to as AOP-selection
for all-other purified selection) of the all-other anchor selection strategy proposed by Woods
(2009) by adding a scale purification procedure. First, auxiliary DIF tests of type (I) are
carried out. Similar to the iterative procedures (used, e.g., by Drasgow 1987; Candell and
Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina 2002), those items displaying DIF are
excluded from the set of anchor items and DIF tests are conducted using the new anchor set.
These steps are repeated until two successive steps reach the same results. In the next step,
DIF tests are conducted using the purified anchor A,.is.q- Here, the first anchor item obtains
no DIF test statistic, since only k£ — 1 test statistics are available, and is, thus, omitted in
the ranking of candidate anchor items. The criterion values of the remaining k — 1 items are
defined by

C]AOP = |tj (Apuriﬁed)" (6)

In a simulation study, Wang et al. (2012) found the modified AOP-selection to be superior to
the AO-selection since both methods displayed comparable results when DIF was balanced
but the AOP-selection yielded more often a DIF-free anchor set when DIF was unbalanced.
Still, there were conditions where the proportions of replications yielding a DIF-free anchor
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set were far away from 100%, e.g. 13% for the AO- and 17% for the AOP-selection when the
sample size was small (i.e. 250 observations in each group in their most difficult scenarios).

Number of significant threshold selection

An anchor selection strategy that is a simplified version of the proposition of Wang (2004)
is called number of significant threshold (NST) selection strategy here. Now, auxiliary DIF
tests of type (II) are carried out and the number of significant DIF tests defines the criterion

values
M= 3 1{p({}) <a} (7)

te{1,... k}\j

that is written as the number of p-values that do not exceed the threshold «, e.g. a = 0.05.
1 denotes the indicator function. Thus, the item displaying the least number of significant
DIF tests is chosen as the first anchor item. If more than one item displays the same number
of significant results, one of the corresponding items is selected randomly.

Originally, Wang (2004) suggested the next candidate (NC) modification: The item that was
selected by the NST-selection strategy functions as the current single anchor item and DIF
tests are again carried out (see Wang 2004, p. 249). The next candidate is then included in the
anchor if it displays “the least magnitude” (Wang 2004, p. 250) of (non-significant) DIF and
the steps are repeated until either the pre-defined anchor length is reached or the candidate
item displays significant DIF. Since Kopf et al. (2013) found the NST-selection superior to
the original NC-strategy, only the former is investigated in this article.

Mean test statistic selection

To reach an ideally pure set of anchor items, Shih and Wang (2009) introduced the following
anchor selection procedure: Every item is assigned the mean absolute DIF test statistic from
the auxiliary DIF tests of type (II)

A= S )l ®)

Le{1,....k}\j

We abbreviate this method MT-selection (for mean test statistic selection). Shih and Wang
(2009) found high rates of correctly locating one or four DIF-free anchor items when the
sample size was high (i.e. 1500 observations in each group in their most difficult scenarios).

Mean p-value selection

In addition to the existing approaches described above, we propose three new anchor selection
strategies. First, we suggest an idea similar to the MT-strategy of Shih and Wang (2009) (see
equation 8) that we abbreviate MP-strategy (for mean p-value selection). Instead of the
lowest mean absolute DIF test statistic, items are here chosen that display the highest mean
p-value from the auxiliary tests of type (II) and, thus, (for easier comparability with the
previous methods) the criterion is defined by negative mean p-values

AP = S (). ©)

Le{1,....k}\j

The next two suggestions were inspired by the threshold approach of the NST-selection (see
equation 7) where those items are chosen as anchor items that display the least number of
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significant DIF test results. Kopf et al. (2013) showed that this strategy was superior to the
AO-selection when the DIF direction was unbalanced. The major drawback using the NST-
selection was that it was strongly affected by the sample size. The reason for this is that the
selection is based on the decisions of statistical significance tests which are strongly influenced
by the sample size. Therefore, the next two newly suggested anchor selection strategies rely
on a different criterion and both methods assume — similar to the MT- and the MP-selection
— that the majority of items is DIF-free, an assumption that is often found in the construction
of anchor or DIF methods (see, e.g., Shih and Wang 2009; Magis and De Boeck 2011).

Mean test statistic threshold selection

Our second suggestion is the following: For every item the absolute mean of the test statistics
resulting from the auxiliary tests of type (II) is calculated and the resulting values are ordered.
The threshold for the MTT-selection (for mean test statistic threshold) is the (0.5 - k])-th
ordered value, which is indicated by the index in parenthesis, for an even number of items
or the next larger whole number in case of an odd number of items (indicated by the ceiling
function [ ]). The number of absolute test statistics exceeding this threshold determines the
criterion value:

A=Y > ([ Y s .0
Ce{1,... k}\j be{l, K3\ (0.5 k])

The items corresponding to the lowest number of test statistics above the threshold are chosen
as anchor items. Here, we follow an argumentation similar to the argumentation of Shih and
Wang (2009, p. 193). When the anchor item is DIF-free, which is assumed to be the case
for the majority of the items, the DIF tests work appropriately. On the other hand, if a DIF
item functions as the anchor, those items with the same direction of DIF display less DIF (or
even no DIF in the most indistinct situation when the magnitude of DIF is approximately
the same for the respective items), those items with the opposite direction of DIF display on
average their original magnitude of DIF plus the artificial magnitude of DIF of the anchor
item and the items truly free of DIF display on average the artificial DIF magnitude of the
anchor item.

Thus, those DIF tests where the anchor is truly DIF-free should display the least absolute
mean test statistics. Since the majority of items — i.e. at least 50% of all k items — is assumed to
be DIF-free, the ([0.5-k])-th mean test statistic should correspond to a DIF-free item. In order
to use the information of every single test statistic as opposed to the mere mean values, we
use the indicator function to provide the information whether the single test statistics exceed
the ([0.5 - k])-th ordered absolute mean test statistic. Furthermore, in case of unbalanced
DIF, the absolute mean test statistics may be very similar, when the DIF proportion is close
to 0.5. The binary decisions are assumed to yield more accurate classifications of the truly
DIF-free items. The selection strategy is designed for all directions of DIF and intended for all
sample sizes. In contrast to the MT-selection proposed by Shih and Wang (2009), we use the
absolute mean test statistics instead of the mean absolute test statistics. The reason for this
is that all item parameters vary slightly between reference and focal group due to sampling
fluctuation. These differences are expected to cancel out when the absolute values are taken
after the mean statistic and, hence, should yield a better threshold.
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Mean p-value threshold selection

In our third suggestion, similar to the MTT-selection in equation 10, the threshold of the
MPT-selection (for mean p-value threshold) relies again on auxiliary DIF tests of type (II).
Now, the ([0.5-k])-th ordered (from large to small) value of the mean of the resulting p-values
p;({¢}) is used as the threshold. The criterion value is defined by the number of tests per
item that yield p-values exceeding the threshold p-value

g"T=— > 1{p{) > ﬁ > pi{ey) . (11)
Le{1,....kH\J e{1,....k}\j ([0.5 . k-l)

In summary, the newly suggested methods are developed for balanced and unbalanced DIF
situations and should, thus, outperform not only the AO-selection that initiates with the
potentially biased DIF test results using the all-other method, but also the AOP-selection
that may not be able to exclude all DIF items from the anchor set when the proportion of
DIF items is high (Wang et al. 2012). In comparison with the NST-selection, which uses the
binary decisions of the significance tests (Woods 2009), the newly suggested methods should
be less affected by sample size. While the MT- and the MP-selection use mere mean values,
the MPT- and the MTT-selection use all individual test results and are, therefore, expected
to better distinguish between DIF and DIF-free anchor items. By employing a threshold,
the new methods should select those items as anchor that display little artificial DIF which
can be caused by contamination (see, e.g., Finch 2005; Woods 2009) or by random sampling
fluctuation (Kopf et al. 2013).

4. Simulation study

In order to evaluate the performance of the newly suggested anchor selection strategies, we
conducted an extensive simulation study in the free R system for statistical computing (R
Development Core Team 2011). Parts of the simulation design were inspired by the settings
used by Wang et al. (2012). Each setting from the simulation study is replicated 1000 times
to ensure reliable results.

4.1. Data generating processes

One replication corresponds to a data set that contains the information of the test including
the item responses, the group membership and the ability variable.

e Test characteristics
Here, we consider a test length of & = 40 items.
o IRT model

The responses follow the Rasch model

exp(6; — f;)

P (Ui =110:,8;) = ; +exp(6; — ;)

11
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with the difficulty parameters 8 = (-2.522, -1.902, -1.351, -1.092, -0.234, -0.317, 0.037,
0.268, -0.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, -1.152, -0.526, 1.104, 0.961, 1.314,
-2.198, -1.621, -0.761, -1.179, -0.610, -0.291, 0.067, 0.706, -2.713, 0.213, 0.116, 0.273,
0.840, 0.745, 1.485, -1.208, 0.189, 0.345, 0.962, 1.592) " used by Wang et al. (2012). The
first 45% of the items are simulated as the DIF items (see Section DIF proportion and
DIF magnitude below).

e Ability distribution

In the following simulation study, ability differences are simulated since this case is often
found to be more challenging for the methods than a situation where no ability differ-
ences are present (see, e.g., Penfield 2001). The ability parameters 6; follows a standard
normal distribution for the reference group 6** ~ N(0,1) and a normal distribution
with a lower mean for the focal group 6 ~ N(—1, 1) similar to Wang et al. (2012).

e DIF proportion and DIF magnitude

The proportion of simulated DIF items is set to 45% (this proportion was found e.g.
in the study of Allalouf, Hambleton, and Sireci 1999). We also considered lower propor-
tions %DIF € {0,0.1,0.2,0.3,0.4} which led to smaller differences between the methods
but qualitatively similar results.

For those items j affected by DIF, the magnitude of DIF as simulated is set to the
constant value of Apip = Bref — Broe = 0.6. This magnitude has previously been used in
DIF simulation studies (Swaminathan and Rogers 1990; Finch 2005; Wang et al. 2012)
and reflects a moderate effect size measured by Raju’s area (Raju 1988; Jodoin and
Gierl 2001).

4.2. Manipulated variables

In addition to the anchor selections investigated by Wang et al. (2012), namely the AO-
and the AOP-selection, five other anchor selection strategies and also the perfect selection of
DIF-free items that serves as a benchmark method are included (for a summary see Table 1).

e Sample size

The sample size is defined by the following pairs of reference and focal group sizes:
(n™f, nfec) € {(250,250), (500,250), (500,500), (750,500), (750, 750), ..., (1500, 1500)}.

e DIF direction

The sign of Apr is set consistent with the intended direction of DIF. The direction
of DIF is either balanced or unbalanced. In case of balanced DIF, the DIF items either
favor the focal or the reference group, and on average, no group has an advantage in
the test. In case of unbalanced DIF, all items favor the reference group.
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e Anchor methods

Anchor classes: All anchor selection strategies are combined with two anchor classes,
the constant four anchor class (abbreviated constant4) and the iterative forward class
(abbreviated forward).

Anchor selections: Eight different anchor selection strategies (for a brief summary
see Table 1) are compared across the simulated settings: The AO-, AOP!-, NST- and
MT-selection as well as the newly suggested MP-, MTT- and MPT-selection and
the perfect-selection that serves as the benchmark condition: The perfect selection for
the four anchor class includes four randomly chosen DIF-free items. For the iterative
forward anchor class, a random ranking order that includes the DIF-free items first,
followed by the DIF items is handed to the procedure. The remaining steps of the
iterative procedure are carried out as usual. Thus, for the ‘perfect’ forward method, it
may happen that DIF items occur in the anchor because the length of the iteratively
selected anchor may exceed the length of the sequence of DIF-free items, which is not
the case for the perfect four anchor method.

Anchor methods: 16 anchor methods result from the combination of the eight anchor
selection strategies with the two anchor classes. Their names (constant4-AQ, constant4-
AOP, constant4-NST, constant4-MT, constant4-MP, constant4-MTT, constant4-MPT,
constant4-perfect, forward-AQO, forward-AOP, forward-NST, forward-MT, forward-MP,
forward-MTT, forward-MPT, forward-perfect) include the anchor class (constant4 or
forward) together with the abbreviation of the anchor selection.

4.3. Outcome variables

In order to evaluate whether the anchor selection strategies locate anchor items that allow
to correctly classify DIF and DIF-free items, the following outcome variables are recorded in
each of the 1000 replications of one simulated setting:

e False alarm rate

For a single replication the false alarm rate is defined as the proportion of DIF-free items
that are (erroneously) diagnosed with DIF in the final DIF test. The estimated false
alarm rate for each simulated setting is computed as the mean over all 1000 replications
and, hence, represents the type one error rate of the final DIF test.

e Hit rate

The hit rate for a single replication is computed as the proportion of DIF items that
are (correctly) diagnosed with DIF in the final DIF test. Analogously, the estimated hit
rate is again computed as the mean over all 1000 replications and, thus, corresponds to
the statistical power of the final DIF test.

'In case all items were excluded from the anchor in the initial step (which happened in only 2 out of 33,000
replications), here, one single anchor item was chosen using the AO-strategy. When the constant four anchor
class was combined with the AO-strategy, four anchor items were selected according to the lowest ranks of
the resulting DIF test statistics using the AO-selected anchor item. Similarly, when the iterative forward
anchor class was investigated, the ranking order was then built from the resulting DIF test statistics using the
AO-selected anchor item and the iterative procedure was conducted normally.

13



14 Anchor selection strategies for DIF analysis

Selection Description

AO The items are ranked according to the lowest absolute test statistics
L ({1, k)L

AOP Beginning with all other items as anchor, DIF items are iteratively excluded

from the anchor until the purified anchor set A,,.isa is reached; the items
are ranked according to the lowest absolute test statistics |t;(Apurisied)|-

NST The items are ranked according to the lowest number of significant test
statistics ¢;({¢}).

MT The items are ranked according to the lowest mean absolute test statistics
= 1t ({03)]
k—1 eef{1,... .k}\g 1" .

MP The items are ranked according to the largest mean p-values

1

1 refn,kp, Pi({€}).

MTT The items are ranked according to the smallest number of test statistics

tj({¢}) exceeding the ([0.5 - k])-th ordered absolute mean test statistic
’ﬁ Dotel, tj({ﬁ}))-

MPT The items are ranked according to the largest number of p-values p;({¢})
exceeding the ([0.5- k])-th ordered mean p-value 1; Deeq,. ey Pi({€})-

perfect The perfect ranking consists of randomly permuted DIF-free items followed
by randomly permuted DIF items.

Table 1: A short summary of the anchor selection strategies that are investigated in this
article.

5. Results

In the following, we restrict the presentation to the extreme condition where 45% of the items
display DIF. The reason for this is that large proportions of DIF items may indeed occur in
practical testing situations (examples can be found in Shih and Wang 2009, p. 186) and the
anchor selection strategies should be compared in a situation where the classification of DIF
and DIF-free items is rather challenging.

5.1. Anchor selection for the constant four anchor class

In this section, the anchor selection strategies combined with the constant anchor class are
regarded. Thus, four anchor items were selected by the respective strategy and the results of
the final DIF tests are discussed. Figure 1 contains the results of the false alarm rate (top
row) and the hit rate (bottom row) in case of 45% DIF items that did not systematically favor
one group (balanced DIF pattern, left column) or that systematically favored the reference
group (unbalanced DIF pattern, right column).

In the balanced condition, almost all anchor methods displayed false alarm rates holding the
5% level in the observed range of the sample size. The only exception was the method relying
on the NST-selection with the maximum observed false alarm rate of 0.09 that occurred at
the sample size of 750 observations in each group. The corresponding false alarm rate for the
NST-selection displayed an inversely u-shaped pattern that was also found and discussed in
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detail in the study of Kopf et al. (2013). The perfect selection was near the significance level,

while the remaining methods (except for the constant4-NST method) stayed below 0.05.

The method relying on the NST-strategy also displayed a lower hit rate compared to the other
anchor methods. All remaining anchor methods displayed a hit rate that increased with the
sample size. Surprisingly, the perfect anchor did not display a substantially higher hit rate.
In summary, four anchor items were selected appropriately in the balanced condition by all

anchor selections except for the NST-selection strategy in regions of medium sample sizes.

constant4-AO
constant4-AOP
constant4-NST
constant4-MT
constant4-MP
constant4-MTT
constant4-MPT

constant4—perfect

J

250, 500, 500, 750, 750, 1000,1000,1250,1250,1500,1500,
250 250 500 500 750 750 1000 1000 1250 1250 1500

| | | | | |
false alarm rate false alarm rate
balanced DIF pattern unbalanced: all items favor reference
o
g
£ N ;
<
<
o i
0
K
hit rate hit rate
balanced DIF pattern unbalanced: all items favor reference

1.0

0.8
L
S 06
=

0.4

0.2

250, 500, 500, 750, 750, 1000,1000,1250,1250,1500,1500,
250 250 500 500 750 750 1000 1000 1250 1250 1500

Figure 1: Balanced condition: 45% DIF items with no systematic advantage for one group;
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unbalanced condition: 45% DIF items favoring the reference group; sample size varied from
(250, 250) up to (1500, 1500); top row: false alarm rates; bottom row: hit rates.



16 Anchor selection strategies for DIF analysis

In the unbalanced condition, the anchor selections strongly differed regarding their ability
to select four anchor items that yielded appropriate final DIF tests. Both selections based
on auxiliary DIF tests of type (I) using all other items as anchor were not appropriate for
the unbalanced DIF condition: The AO-selection yielded a strongly augmented false alarm
rate that even increased with the sample size. The purified AOP-selection did not solve the
problem, even though the false alarm rate was less augmented. Similarly, the MT-selection
that was based on auxiliary DIF tests of type (II) with every other item as single anchor
displayed an increasing false alarm rate. The NST-selection, again, yielded an inversely u-
shaped pattern with a false alarm rate that exceeded the significance level when the sample
sizes were below 1500 observations in each group. In regions of small to medium sample sizes,
the newly suggested methods (the MP-, the MTT- and the MPT-selection) outperformed the
existing strategies. The MP-selection that chose the anchor items according to the largest
mean p-values (as opposed to the mean absolute test statistics in the MT-selection) yielded an
almost constant mean false alarm rate around 0.12 (as opposed to the higher and increasing
false alarm rate of the MT-selection). The MTT-selection yielded an almost constant false
alarm rate around 0.16. The MPT-selection reached the lowest false alarm rate that was
decreasing and well-controlled in regions of medium and large sample sizes. The perfect
selection was, again, near the significance level.

The hit rates in the unbalanced condition also strongly differed across the anchor selections.
The highest hit rate occurred for the perfect selection followed by the newly suggested anchor
selections: The MPT-selection that corresponded to the lowest false alarm rate also showed
the highest hit rate and was, thus, the best performing method to select four anchor items
empirically. The MP-selection displayed the second best result in the majority of the simulated
settings, followed by the MTT-selection. The existing anchor selections (the AO-, AOP-,
NST- and MT-selection) displayed far lower hit rates and are, thus, not recommended for the
DIF-free-then-DIF strategy. Only when 1500 observations were available in each group, the
NST-selection also yielded a low false alarm rate in combination with a high hit rate.

In summary, the MPT-selection outperformed the other suggestions in selecting four anchor
items by yielding a low false alarm rate while simultaneously achieving a high hit rate. The
newly suggested MP-selection yielded clearly better results than the MT-selection even though
both methods were structurally very similar and the MPT-selection outperformed the MTT-
selection. Thus, an anchor selection based on p-values instead of mean test statistics is
advisable for selecting an anchor of constant length four. As expected, the methods based
on threshold comparisons (MPT- and MTT-selection) improved the final DIF test results
compared to the corresponding strategies based on mere mean values (MP- and MT-selection).

5.2. Anchor selection for the iterative forward anchor class

In the next section, we investigate the combination of the anchor selection strategies with
the iterative forward anchor class that was designed to specify a longer anchor (Kopf et al.
2013). Similar to Section 5.1, Figure 2 includes the results for the false alarm rate (top row)
and the hit rate (bottom row) in case of 45% DIF items that did not systematically favor one
group (balanced DIF pattern, left column) or that systematically favored the reference group
(unbalanced DIF pattern, right column).

In case of balanced DIF, there was neither a visible difference in the false alarm rates nor in
the hit rates for any of the investigated methods. Again, all selections yielded test results
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Figure 2: Balanced condition: 45% DIF items with no systematic advantage for one group;
unbalanced condition: 45% DIF items favoring the reference group; sample size varied from
(250, 250) up to (1500, 1500); top row: false alarm rates; bottom row: hit rates.

similar to the iterative method based on the perfect anchor. Hence, all selection strategies
were advisable and the iterative forward anchor class was robust against the anchor selection
strategy employed in this case.

In contrast to this, the results of the final DIF tests varied notably with the anchor selection
strategies when DIF was unbalanced. The largest false alarm rates occurred for the AO-, AOP-
and also the MT-method that were again not suited to locate an anchor in the unbalanced
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18 Anchor selection strategies for DIF analysis

condition. Their false alarm rates even increased with the sample size. The NST-selection
was more appropriate in selecting the longer iterative anchor since it achieved a lower false
alarm rate in regions of medium to large sample sizes. The MP- and the MPT-selection
now yielded test results with very similar false alarm rates (with a slight advantage for the
threshold method) that also clearly exceeded the significance level. The lowest false alarm
rate among the empirical selection strategies occurred for the forward-MTT method. But
there is still room for improvement as the perfect anchor selection still displays test results
with a lower false alarm rate, especially in regions of small or medium sample sizes.

The hit rates of the unbalanced condition again increased with the sample size. Except for
the perfect forward method, the newly suggested forward-MTT method reached the highest
hit rate in the vast majority of the simulated settings. In regions of small sample sizes, it
was followed by the two other newly suggested methods (the forward-MP and the forward-
MPT method), whereas in regions of medium to large sample sizes, the forward-NST method
reached the second best hit rate. The remaining AO-, AOP- and MT-strategy displayed DIF
test results reaching unsatisfying hit rates.

In summary, the newly suggested MTT-selection outperformed the other empirical selection
strategies by yielding test results with a low false alarm rate and a high hit rate in any
regarded condition. Compared to the selection of an anchor of constant length four, where
the MPT-selection based on p-values reached the best final DIF test results, for the longer,
iteratively selected anchor the MTT-selection that is built on mean test statistics is advisable.
A detailed explanation for this finding will be given in the next section. Again, the methods
based on threshold comparisons (MPT- and MTT-selection) outperformed the corresponding
strategies based on mere mean values (MP- and MT-selection).

5.3. Comparison of the mean test statistic and mean p-value threshold
selection

To explain the fact that the MPT-selection yielded better results when it was combined with
the constant four anchor class, whereas the MTT-selection performed better combined with
the iterative forward anchor class, the ranking order of candidate anchor items is now regarded
in detail for one balanced and one unbalanced setting (again with 45% DIF items and 1000
observations in each group). Figure 3 contains the proportions of DIF items in the ranking
order of candidate anchor items. In the regarded setting, 22 items were DIF-free and, ideally,
the 22 lowest ranks (from left to the vertical line) should display low proportions of DIF items.

In the balanced condition (Figure 3, top panel), the first items of the sequence of anchor
candidates — i.e. the items to the left of the vertical line — displayed low proportions of DIF
items over the simulation runs for both the MPT-selection (black bars) and the MTT-selection
(gray bars). In contrast to this, the items that were assigned the highest ranks — i.e. the items
to the right of the vertical line — displayed large proportions of DIF items. Thus, both anchor
selection strategies yielded appropriate ranking orders that clearly separated DIF and DIF-
free items: The first candidates displayed low proportions of DIF items, whereas the last
candidates displayed large proportions of DIF items as intended for all ranks above 22.

In the unbalanced condition (Figure 3, bottom panel), the separation of candidates with low
proportions of DIF items for the first ranks and high proportions for the last ranks was harder
for both methods. Now the first anchor candidates displayed higher proportions of DIF items.
Generally, the MTT-selection (gray) yielded lower DIF proportions for items up to the vertical
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Proportions of DIF items in the ranking order of candidate anchor items: balanced DIF pattern
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Figure 3: Top row: proportion of DIF items in the ranking order of anchor candidates in the
balanced condition: 45% DIF items with no systematic advantage for one group; bottom row:
proportion of DIF items in the ranking order of anchor candidates in the unbalanced condition:
45% DIF items favoring the reference group; sample size was set to 1000 observations in each

group.

line compared to the MPT-selection (black) and was, thus, better suited to locate a longer
anchor. However, when an anchor of constant length four was intended, only the first four
candidates were included in the anchor. The first four ranks selected by the MPT-selection
displayed lower proportions of DIF items items compared to the MTT-selection (see very left
of Figure 3, bottom panel). Thus, the MPT-selection was better suited to locate four anchor
items.

Now the question is addressed which of the methods — the constant4-MPT or the forward-
MTT method — can be considered as overall superior. Therefore, we review the results from
Section 5.1 and 5.2 together with information about the variation of the false alarm and the
hit rate (not shown).

In the balanced condition, both methods led to low false alarm rates that fluctuated less for
the constant4-MPT method, which should thus be preferred with respect to the false alarm
rate. In contrast to this, the forward-MTT method achieved a higher and simultaneously less
fluctuating hit rate and was, hence, superior regarding the hit rate. Only when the sample
size was large, the constant4-MPT method might have a slight advantage by yielding a lower
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and less fluctuating false alarm rate and a comparably high hit rate.

In the unbalanced condition, on one hand, the constant4-MPT method led to a lower false
alarm rate, especially when the sample size was small. On the other hand, the false alarm
rate of the forward-MTT method displayed far less fluctuation. It may be preferred in regions
of large sample sizes since the results were more reliable. Regarding the hit rate, the forward-
MTT method was superior since the hit rate was not only slightly higher but also, again, less
fluctuating.

In summary, the first anchor candidates were more likely found from the set of DIF-free
items by the MPT-selection, whereas the MTT-selection was better suited for longer anchors.
However, first results show that neither the constant4-MPT nor the forward-MTT method
was clearly superior in all settings regarding strictly smaller and less fluctuating false alarm
rates and higher and less fluctuating hit rates.

6. Discussion and practical recommendations

In this article, we introduced three new anchor selection strategies and compared them to
existing methods that do not rely on any prior knowledge of DIF-free items. Moreover,
we introduced a straightforward notation of the anchor selection strategies to facilitate the
implementation and the usage of the newly suggested anchor selection strategies. An extensive
simulation study was conducted to evaluate the performance of the anchor selection strategies
in combination with the constant four anchor class and the iterative forward anchor class.
The two anchor classes are structurally different, since the constant four anchor class always
uses a short anchor of constant length four, whereas the iterative forward class determines
the anchor length in an iterative way and usually yields a longer anchor.

Our analysis showed that the results of the DIF tests evaluated by means of the false alarm and
the hit rate strongly depended on the anchor selection strategies employed. This highlights
the importance of a suitable anchor selection strategy that allows the researcher to correctly
classify DIF and DIF-free items and to study the underlying causes of DIF (Jodoin and Gierl
2001). Consistent with previous results (see, e.g., Wang and Yeh 2003; Wang 2004; Gonzélez-
Betanzos and Abad 2012; Kopf et al. 2013), seriously inflated false alarm rates occurred if
the anchor selection did not work appropriately, especially when DIF was unbalanced. This
was the case for several existing anchor selection strategies. Anchor selections based on the
all-other anchor method (the AO- and the AOP-selection) are inadvisable, since the tests
were biased in the unbalanced DIF condition and even additional purification steps included
in the AOP-selection were not able to completely reduce the bias. Hence, we advise against
constructing new anchor selection strategies that use all other items as anchor. Unsatisfactory
results were also found for the MT-selection that is based on mean absolute test statistics
resulting from DIF tests for every item using every other item as single anchor. In the vast
majority of the simulated settings, the newly suggested anchor selection strategies based on
a threshold criterion clearly outperformed the existing suggestions.

Our results showed that the appropriateness of the anchor selection not only depended on the
sample size, the proportion of DIF items and the direction of DIF, but also on the intended
anchor length.

In case of the selection of a short anchor of constant length four, the MPT-selection out-
performed all other investigated empirical anchor selection strategies by yielding a low false
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alarm rate and simultaneously reaching a high hit rate in all regarded conditions. Thus, we
recommend to use the MPT-selection if a short constant anchor length is intended.

When the selection strategies were combined with the iterative forward anchor class, the newly
suggested MTT-selection reached the best results in the majority of the simulated settings
and is, thus, recommended for DIF analysis when the iterative forward anchor class is used,
as well as in general when a longer anchor length is intended.

Nevertheless, the benchmark method of the perfect anchor selection still reached lower false
alarm rates and higher hit rates in regions of small to medium sample sizes when DIF was
simulated unbalanced. Hence, new developments for anchor selection strategies that ideally
follow the threshold approach are needed to further improve the classification of DIF and
DIF-free items when the sample sizes are small. When the sample sizes are large, the newly
suggested constant4-MPT and the forward-MTT method reached satisfying results in our
simulation study. Future research may investigate the performance of these methods when
other IRT models or other DIF tests are used and may evaluate modifications of the iterative
anchor method.
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