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1 Introduction

Extreme value theory has been one of the most quickly developing area of mathematical
statistics in the last decades. The methods, based on the Fisher-Tippett theorem about
the possible limits of normalized maxima of iid random variables is now routinely applied
in very different branches of areas from financial mathematics to environmetrics, from
reliability to internet traffic.

This theorem states that the possible limit distributions of
M, = max {(X; —a,)/by: i =1,...n} (1)

and the the so-called generalized extreme value (GEV) distribution functions (cdf) coin-
cide. This class of the possible (nondegenerate) limit distributions of (1) can be given by
the Jenkinson-von Mises representation (2)

[ exp{-(14E) ) e
He(x) _{ exp{—exp{—z}} : ifE=0 (2)

for 1 + £x > 0, where £ is the so-called shape parameter. In practice location- and scale
parameters (denoted by u and o, respectively) are also included in the model. For a
review of both the theory and methods see Embrecths et al [4].

As the conditions which ensure the convergence to a GEV distribution are rather
mild for absolutely continuous, iid observations, it is common practice to assume the
asymptotics to hold and estimate the parameters of the limiting distribution H in (2) if
one has practically a data set like block maxima of random variables (similar to (1)). In
most cases some graphical methods, like Q-Q plots, are used for model validation. These
are rather subjective, formal tests based on the plot are rarely applied. The typical
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goodness-of-fit procedures, like Kolmogorov-Smirnov statistics do not have distribution-
free limits in case of estimated parameters and are not worked out for this case. We give
simulated critical values for the case under consideration, but the method itself is not a
strong one.

However, if one intends to be more cautious with his approach, may indeed wish to
test if there is an asymptotic distribution of the normalized maxima (which is necessarily
of the form (2)), i.e. is the MDA condition satistifed. This problem is tackled in a paper
by Dietrich et al [3].

In Section 2 we summarize the available tests for checking if the distribution of the
sample is indeed that of a GEV. A specific test, developed exactly for this problem was
originally presented in Zempléni [10], see also Kotz and Nadarajah [6]. Now we propose
also an alternative version to it as well as a modified Anderson-Darling test, adapted to
the problems, where the emphasis is on the fit for one of the tails of the distribution.

We also compare the performances of the above tests to the classical Anderson-Darling,
Kolmogorov-Smirnov and Cramér-von Mises tests, where the parameter estimation has
also to be taken into account.

Another important approach to extreme-value analysis is, where the values higher
than a given threshold are applied for inference. In this case the so-called generalized
Pareto distribution (GPD) is the possible limit. This case is considered in Section 3.

In several financial applications, the risk is traditionally measured by a high quantile,
the so-called Value-at-Risk (VaR). Backtesting the estimators of this value is a common
practice. However, the VaR does not give information about the actual loss which can
occur if the VaR is exceeded. This amount is called the expected shortfall, which can
also be estimated (using the fact that it is related to the GPD). We deal with its tests in
Section 4.

2 Generalized Extreme Value distributions

2.1 Specific tests

The Anderson-Darling test for goodness-of-fit is based on the test statistics (not denoting
the dependence on the parameters)
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where F,, is the cdf of the sample and F is the cdf which is to be fitted. A% can be
computed - based on the probability integral transform - as
A= —n =) (20 — 1) (log(z:) + log(1 — zn41-43)) /m (4)
i=1

where z; = F(z(;)), the d.f. evaluated at the i element of the ordered sample.

On the other hand, in most of the cases only one of the tails is important (maximum
for enviromental or insurance data, minimum for financial time series or in reliability),
so we propose the following test

s [ (Bule) - F@)
# ] S ®)

for the case of maximum and with F(z) in the place of (1 — F'(z)) for minimum. The
advantage of (5) in comparison to (3) is that its sensitivity is concentrated to discrepancies
at the relevant tail of the distribution. The statistics B? can also be computed easily as
the following formula shows.

B> =n/2 - (2i—1)log(l - z013)/n— Y _ 2zi/n. (6)
i=1 =1
The slightly more complicated form of (6) in comparison to (4) is due to the fact that
A? is the sum of B? and the analogous statistics suggested for minimum, and the cross
products vanish for this sum, while they are present in B2.

Another test, proposed in [10] is based on the stability property of the GEV distribu-
tions, (de Haan, [5]): for any m € N there exist a, by, such that

F(z) = F™(amz + bp,) (7)
for all x € R.

The original test statistics was defined in [10] as the minimal value of
h(a,b) = max | F,(z) — F*(az +b) | .

Its motivation is (7) applied to the case m = 2. In order to find the optimal parameters
a,b a computer-intensive method was needed. The aim of this procedure was to find an
alternative method to maximum likelihood, which works well also for the cases £ < —1,
when in general there is no ML estimator (see Smith, [8]). The power of this test, for
which the critical values are based on a distribution-free estimator of the test statistics
(see also [6]), has already been presented in [10].

Here we consider an alternative, more in accordance with the other tests in this paper:
we plug in the maximum likelihood estimator and calculate h(a,b) as the test statistics,
since the cases & < —1 rarely occur in practice.

For all these statistics we give the simulated critical values in the following subsection.
In the sequel we investigate the power of these goodness-of-fit tests for several alternatives.



Table 1: Critical values for B2 in case of known parameters

Probability level/ n 100 200 | 400 800 | 1600
0.5 0.373 | 0.376 | 0.375 | 0.374 | 0.382
0.9 0.998 | 1.012 | 0.996 | 0.989 | 1.025
0.95 1.312 | 1.323 | 1.298 | 1.288 | 1.307
0.99 2.083 | 2.108 | 2.054 | 2.066 | 2.135

2.2 Limit distributions, critical values

In order to obtain critical values, one may simulate the finite sample distribution of the
test statistics under the nullhypothesis, or alternatively, for large samples the asymptotic
distribution may be used. To accomplish this latter task, one can use the methods,
presented in Stephens, [9]. First we note that in the case of known parameters, the
limit distribution of B2 is [, K?(z)dz, where K is a mean-zero Gaussian process with
covariance structure

st—sVt

cov(K(s),K(t)) = a—sa-0

(8)
Similarly, for A we have the following result:

lim sup Vit | Fy(2) = Fi{ana +b2) = sup | G(0) — 205GV | (9
where G denotes the Brownian Bridge over [0, 1].

(8) and (9) allow for the simulation of the critical values, but one is interested in the
finite sample properties as well, so we have rather simulated the values of the statistics
under the nullhypothesis for different sample sizes n. The results confirm earlier obser-
vations with respect of the statistics A2 about its quick convergence to the asymptotic
distribution. In Table 1 we present the critical values of B? for different sample sizes the
number of repetitions in all the simulations was 50000).

For the more realistic case, when the parameters are estimated, one can apply the
method in [1], which is based on calculating first the modified covariance structures of the
Gaussian process in (8) and then the characteristic function of its integral. As a last step,
the critical values can be got by approximating this distribution by a weighted sum of iid
x-squared distributions. As this procedure is tedious and it results in an approximation
as well, we preferred simply to simulate the critical values of our statistics. These values
are given in Tables 2 and 3.

In Tables 4 and 5 we present the critical values of B? for different sample sizes for the
case when £ = 0.5 and £ = 0.2, and £ = —0.2 and £ = —0.6, respectively.

The estimation of the parameters has been done by the maximum likelihood method,
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Table 2: Critical values for A2 in case of estimated parameters, £ = 0.5 and £ = 0.2

Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.271 | 0.277 | 0.279 | 0.282 | 0.284 || 0.271 | 0.278 | 0.280 | 0.284 | 0.285
0.9 0.474 | 0.487 | 0.494 | 0.499 | 0.506 || 0.474 | 0.489 | 0.497 | 0.504 | 0.508
0.95 0.555 | 0.572 | 0.584 | 0.590 | 0.598 || 0.556 | 0.576 | 0.583 | 0.595 | 0.595
0.99 0.769 | 0.773 | 0.796 | 0.797 | 0.839 || 0.742 | 0.781 | 0.796 | 0.801 | 0.812
Table 3: Critical values for A2 in case of estimated parameters, £ = —0.2 and £ = —0.6
Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.285 | 0.290 | 0.293 | 0.297 | 0.300 || 0.341 | 0.325 | 0.325 | 0.326 | 0.330
0.9 0.505 | 0.516 | 0.529 | 0.532 | 0.538 || 0.858 | 0.603 | 0.594 | 0.595 | 0.606
0.95 0.597 | 0.608 | 0.624 | 0.630 | 0.639 || 1.148 | 0.727 | 0.706 | 0.712 | 0.720
0.99 0.839 | 0.824 | 0.844 | 0.857 | 0.865 || 1.905 | 1.095 | 0.984 | 0.979 | 0.987

Table 4: Critical values for B2 in case of estimated parameters, £ = 0.5 and £ = 0.2

Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.138 | 0.140 | 0.142 | 0.143 | 0.144 || 0.137 | 0.140 | 0.141 | 0.142 | 0.142
0.9 0.256 | 0.261 | 0.264 | 0.270 | 0.271 || 0.250 | 0.258 | 0.263 | 0.265 | 0.267
0.95 0.307 | 0.311 | 0.317 | 0.323 | 0.324 || 0.297 | 0.308 | 0.312 | 0.316 | 0.320
0.99 0.433 | 0.437 | 0.446 | 0.451 | 0.466 || 0.407 | 0.427 | 0.429 | 0.432 | 0.435
Table 5: Critical values for B2 in case of estimated parameters, £ = —0.2 and £ = —0.6
Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.143 | 0.144 | 0.146 | 0.148 | 0.149 || 0.179 | 0.166 | 0.165 | 0.166 | 0.167
0.9 0.263 | 0.269 | 0.276 | 0.278 | 0.284 || 0.613 | 0.321 | 0.317 | 0.321 | 0.323
0.95 0.313 | 0.320 | 0.331 | 0.333 | 0.340 || 0.812 | 0.390 | 0.383 | 0.385 | 0.389
0.99 0.444 | 0.442 | 0.459 | 0.460 | 0.472




Table 6: Critical values for h,, in case of estimated parameters, £ = 0.5 and & = 0.2

Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.832 | 0.866 | 0.896 | 0.910 | 0.920 || 0.832 | 0.865 | 0.896 | 0.910 | 0.924
0.9 1.200 | 1.200 | 1.224 | 1.237 | 1.250 || 1.152 | 1.191 | 1.224 | 1.237 | 1.254
0.95 1.272 | 1.318 | 1.329 | 1.344 | 1.362 || 1.272 | 1.304 | 1.329 | 1.352 | 1.362
0.99 1.600 | 1.573 | 1.581 | 1.564 | 1.611 || 1.528 | 1.556 | 1.576 | 1.587 | 1.582
Table 7: Critical values for h,, in case of estimated parameters, £ = —0.2 and £ = —0.6
Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.808 | 0.874 | 0.900 | 0.920 | 0.935 || 0.832 | 0.880 | 0.909 | 0.928 | 0.946
0.9 1.128 | 1.200 | 1.231 | 1.258 | 1.268 || 1.200 | 1.257 | 1.241 | 1.270 | 1.288
0.95 1.248 | 1.312 | 1.351 | 1.366 | 1.378 || 1.312 | 1.344 | 1.361 | 1.385 | 1.397
0.99 1.528 | 1.556 | 1.5696 | 1.592 | 1.610 || 1.608 | 1.683 | 1.624 | 1.622 | 1.638

known to possess the usual regularity properties for £ > —0.5 and being superefficient for
the case —1 > & > —0.5 (Smith, [8]).

Next we give the critical values for the h-test. In Tables 6 and 7 we present the critical
values of h for different sample sizes for the case when ¢ = 0.5 and £ = 0.2, and £ = —0.2
and ¢ = —0.6, respectively.

It can be observed that the values in Tables 6 and 7 are just slightly higher than those
presented in [10] in spite of the non-tailored estimation procedure applied here, since
there a universal, shape-independent estimator was applied.

Finally, we give the critical values for the Kolmogorov-Smirnov test in the case of
estimated parameters. In Tables 8 and 9 we present the critical values of the K-S test for
different sample sizes for the case when £ = 0.5 and £ = 0.2, and £ = —0.2 and £ = —0.6,
respectively.

Table 8: Critical values of the K-S test in case of estimated parameters, & = 0.5 and
£§=0.2

Prob. / n 25 50 100 200 | 400 25 50 100 200 | 400
0.5 0.535 | 0.547 | 0.557 | 0.564 | 0.568 || 0.535 | 0.548 | 0.557 | 0.565 | 0.567
0.9 0.713 | 0.732 | 0.747 | 0.752 | 0.759 || 0.710 | 0.728 | 0.742 | 0.750 | 0.753
0.95 0.773 1 0.794 | 0.809 | 0.815 | 0.823 || 0.768 | 0.786 | 0.802 | 0.811 | 0.816
0.99 0.904 | 0.924 | 0.932 | 0.943 | 0.968 || 0.881 | 0.905 | 0.922 | 0.937 | 0.941




Table 9: Critical values for the K-S test in case of estimated parameters, £ = —0.2 and

£=-06

Prob. /n| 25| 50| 100| 200| 400 25| 50| 100| 200| 400
0.5 0.543 | 0.555 | 0.564 | 0.573 | 0.576 || 0.576 | 0.577 | 0.586 | 0.592 | 0.596
0.9 0.724 | 0.741 | 0.751 | 0.763 | 0.768 || 0.803 | 0.783 | 0.788 | 0.793 | 0.800
0.95 0.783 | 0.800 | 0.813 | 0.825 | 0.831 || 0.891 | 0.853 | 0.854 | 0.861 | 0.870
0.99 0.906 | 0.918 | 0.940 | 0.951 | 0.958 || 1.138 | 1.012 | 0.992 | 0.997 | 1.005

Table 10: Power of the test for samples at the level of 95%

Test / n | 100 | 200 | 400 | 100 | 200 | 400 | 100 | 200 | 400 || 50 | 100 | 200
Distr. NB(2,0.1) exponential normal uniform

B, 0.07 [ 0.29 [ 0.17 | 0.58 | 0.97 | 0.01 || 0.03 | 0.08 [ 0.12 || 0.61 | 0.98 1
A, 0.31[0.62]0.960.72]0.97| 1][0.14]0.21[0.34 | 0.72 [ 0.99 1
ha 0.67 [ 0.87 [ 0.99 | 0.75 | 0.91 | 0.99 || 0.08 [ 0.10 | 0.14 || 0.75 | 0.93 | 0.997

2.3 Power studies

We have compared the performance of the tests for some distributions, including a discrete
one: the rejection probabilities for negative binomial, exponential or normal samples are
given in Table 10. The critical values have been calculated by linear interpolation from
those given in the tables of the previous subsection (and analogously from similar tables
for the A test).

As the next step, we applied the new test to real data and their modifications. As a
basis, we took Hungarian water level data from the river Tisza, collected during the years
1901-2000. The station we use here is called Vasarosnamény, it is located upstream at
this river, which caused several major floodings in the last decade.

Not surprisingly, the original data is very well aproximated by the GEV distribution
(see Figure 1), so it is obviously accepted by any tests. However, if we start moving some
values to the observed maximum, thus step-by step increasing the deviation from the
GEYV distribution, then we can measure the sensitivity of the test to such departures. The
results are presented in Table 11. In the first three columns we consider no new estimates
(i.e. the original distribution, without re-estimating the parameters is considered). This
corresponds to a hypothetical question: when can we detect a change in the underlying
distribution? The next three columns give the results for the case, when the parameters
are always re-estimated for the samples. The results confirm our conjecture: the modified
test B2 is quicker in detecting the changes in the upper tail. Similar results can be
observed for the case when the largest value is increased by 10cm each step (in this case
the re-estimation is obligatory, since the increased values soon move out from the region,
where the density is positive). Figure 2 gives the Q-Q plot of GEV-fit for this modified
data, where the GEV-hypothesis was just rejected at the 95%-level by the B-test.



QQ-plot
Vasarosnamény water level annual maxima

800

600

Observed values
cm

400

200

200 300 400 500 600 700 800 900

Model
cm

Figure 1: QQ plot of GEV fit to the Vasarosnamény data
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Figure 2: QQ plot of GEV fit to the modified Vésdrosnamény data (the maximal value
has been increased until it was rejected by the most powerful test)



Table 11: Number of changes needed for the different tests to reject the GEV hypothesis

at the level of 95%

Test | B2 | A2 |CvM | B2| A2 |CvM|B2|A2| CvM
r; — max, noest | z; — max, reest || max — max+i % 10, reest
k 9l 11| 25| 8] 11| 17[ 16 [ 19| 36

Table 12: Percentiles of samples rejected by the different tests at the level of 95%

window size: 25 window size: 50 window size: 75
Test || streamflow | water level || streamflow | water level || streamflow | water level
A-D 0 0 1 1 0 0
B 0 0 2 3 0 0
h 0 0 1 4 0 1

2.4 Applications to real data

Here we continue the analysis of the flood data, which was already introduced in the
previous subsection. Now we are mainly interested if the GEV can be accepted for
the annual maxima series for different stations even if we consider shorter sequences of
observation (useful for backtesting our procedures).

In Table 12 we give the results for windows 25, 50 and 75 years for the 6 stations over
the river Tisza. We see that in most cases the GEV distribution can be accepted. The
most sensitive are the two new tests.

3 Generalized Pareto Distributions

If one wants to use not only the block maxima, but all values that exceed a high threshold
u, the following characterisation of the possible limit distributions (as u — oo) give the
theoretical background. Under the same mild conditions which ensure the Fisher-Tippett
theorem, we have the following as the asymptotic distribution function of the excesses

£z -1/¢
P(X—u>z|X>u)zG’(z):1—<1+;)

for {z:2 >0 and (1+&z/0) > 0}. G is the so-called generalized Pareto distribution;
GPD, see [2] for example.

The same questions as in Section 2 are also appropriate here: if we can reject the
fit of the GPD family, then either the threshold » has not been chosen high enough, or
possibly the conditions of the Fisher-Tippett theorem are not fulfilled. In a recent paper
Choulakian and Stephens [1] investigate the goodness-of-fit tests for the GPD. They



Table 13: Critical values for B2 in case of estimated parameters, £ = 0.5 and £ = 0.2

Prob. / n 25 50 100 | 200 | 400 25 50 100 | 200 | 400
0.5 0.149 | 0.149 | 0.149 | 0.149 | 0.150 || 0.156 | 0.154 | 0.154 | 0.155 | 0.155
0.9 0.282 | 0.283 | 0.282 | 0.284 | 0.284 || 0.298 | 0.294 | 0.296 | 0.297 | 0.298
0.95 0.339 | 0.340 | 0.339 | 0.340 | 0.341 || 0.362 | 0.355 | 0.356 | 0.359 | 0.359
0.99 0.478 | 0.474 | 0.484 | 0.476 | 0.470 || 0.550 | 0.492 | 0.498 | 0.505 | 0.503
Table 14: Critical values for B2 in case of estimated parameters, £ = —0.2 and £ = —0.6
Prob. / n 25 50 100 | 200 | 400 50 100 | 200 | 400
0.5 0.176 | 0.169 | 0.170 | 0.170 | 0.171 || 0.214 | 0.199 | 0.198 | 0.197
0.9 0.380 | 0.333 | 0.331 | 0.335 | 0.339 || 0.585 | 0.411 | 0.406 | 0.405
0.95 0.584 | 0.406 | 0.401 | 0.406 | 0.411 || 0.994 | 0.504 | 0.496 | 0.496
0.99 0.563 | 0.585 | 0.566 | 0.583 | 0.580 || 1.453 | 0.753 | 0.710 | 0.710

apply the Anderson-Darling test, together with the Cramér-von Mises test and consider
the cases of both known and unknown parameters. They show that the Anderson-Darling
test outperforms the Cramér-von Mises test in detecting tail discrepancies.

In the sequel we compare the B2-test from the previous section to the A-D test. An
analogue of the h-test may be based on the property that if the GPD fits to the excesses
of the sample from F, then the excesses of F? also belong to the GPD family with the
same &, but we do not elaborate this idea here.

In Tables 13 and 14 we present the critical values of B2 for different sample sizes for
the case when £ = 0.5 and £ = 0.2, and £ = —0.2 and £ = —0.6, respectively. There are
some irregular behaviour of the statistics to be observed in the case of £ = —0.6 for small
samples; that is why we omitted the values for n = 25.

We have applied both the A and the B-test to the flood data of the previous section.
Here we have observed a smaller difference in favour of B: in the same experiment as in

Subsection 3.3 (with re-estimation), i = 9 changes were needed for detecting the departure
from the GPD for B2, compared to i = 10 for A.

4 Expected shortfall

McNeil and Frey [7] investigate a model, where the GPD parameters are estimated from
the observations of the last n days. These methods lead to VaR (1 — a quantile) and
expected shortfall (E(X;1 — vy | X441 > v) estimators.

For the VaR, a simple permutation test is available for checking the hypothesis that
P(X;11 > v) = a (where v, is the estimator for VaR at level a based on days t,t —
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Table 15: Percentiles of samples rejected by the likelihood ratio test at different levels
Level | £=02|&=—-0.2]&£=-05
95% 10 20 40
99% 0 10 25

1,...t—n+1and X, is the observation on day ¢ + 1). The backtesting means that we
compare the observed frequency of the event {X;,; > v;} to a by a simple permutation
test (see [7], for example).

The estimation of the expected shortfall can also be based on the GPD, let us denote
the estimator by S; (For details see [7].) The backtesting is more complicated, since we
have non-identically distributed observed shortfalls. In McNeil and Frey a bootstrap test
is proposed.

We suggest another approach: the profile likelihood is widely applied to confidence
interval construction as well as testing hypotheses in the extreme-value setting, see for
example Coles [2]. The data used are the increments (X;1 — S¢)/oy (condition: {Xyyq >
v;}). Let us suppose the independence of these standardized increments and investigate
its distribution. The conditional distribution of X;,; on {X;;; > v;} can be considered
as GPD (we have a variable, but high threshold v;) so the standardization results again
in a GPD. However, here we have a three-parameter family of distributions instead of the
more usual two-parameter family:

F(z) =1~ (1+&@—p)/o)V* (10)

where z > p if £ > 0 and =z € [p,pu — /€] if £ < 0. This gives that there is no
local maximum of the likelihood function in p, but the absolute maximum is achieved for
fi = min z;. Plugging this estimator into the likelihood function, the other two parameters
o and £ can then be estimated on the usual way by maximum likelihood.

The likelihood ratio test can be constructed as follows: let us consider the maximum
of the log-likelihood function for different values of x (let us denote it by m,). Those
values of p can be accepted as plausible values, for which m, > m; — co/2, where ¢, is
the 1 — a-quantile of the x-squared distribution with one degrees of freedom.

In a simulation study we investigated the model, where the Var estimates are based
on a sequence of iid GPD observations. In case of a shortfall, the difference between the
actual estimator and the observed value is recorded. These differences are though not
independent, but due to the windows of size n they are in the worst case n-dependent
(in practice due to the rare event of shortfall it is very near to independence), so we may
hope for acceptable properties of the proposed test.

The results of the simulation study are given in Table 15. The results show that the
proportion of rejection is substantially higher for £ < 0 than for £ > 0.
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