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Abstract

Agreement can be regarded as a special case of association and not

the other way round. Virtually in all life or social science researches,

subjects are being classified into categories by raters, interviewers or ob-

servers and both association and agreement measures can be obtained

from the results of this researchers. The distinction between association

and agreement for a given data is that, for two responses to be perfectly

associated we require that we can predict the category of one response

from the category of the other response, while for two response to agree,

they must fall into the identical category. Which hence mean, once there

is agreement between the two responses, association has already exist,

however, strong association may exist between the two responses without

any strong agreement. Many approaches have been proposed by various

authors for measuring each of these measures. In this work, we present

some up till date development on these measures statistics.

keywords: Agreement, association, raters, kappa, loglinear, latent-class.

1 Introduction

Measures of association reflect the strength of the predictable relationship be-
tween the ratings of the two observers or raters. Measures of agreement pertain
to the extent to which they classify a given subject identically into the same
category. As such, agreement is a special case of association. If agreement ex-
ists between two observers, association also will definitely exist, but there can
be strong association without strong agreement. For example, if in an ordinal
scale, rater 1 consistently rates subjects one level higher than rater 2, then the
strength of agreement is weak even though the association is strong. In social
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and life sciences, scores furnished by multiple observers on one or more targets,
experiments and so on, are often used in various research. These ratings or
scores are often subject to measurement error. Many research designs in stud-
ies of observer reliability give rise to categorical data via nominal scales (e.g.,
states of mental health such as normal, neurosis, and depression) or ordinal
scales (e.g., stages of disease such as mild, moderate, and severe). In the nor-
mal situations, each of the observers classifies each subject once into exactly one
category, taken from a fixed set of I categories. Many authors have discussed
on these measures among which are Goodman and Kruskal (1954), Kendall and
Stuart (1961, 1979), Somer(1962), Cohen (1960), Fleiss et al. (1969), Landis
and Koch (1977a,b), Davies and Fleish (1982), Banerjee et al. (1999), Tan-
ner and Young (1985a,b), Aickin (1990), Uebersax and Grove (1990), Agresti
(1988, 1992), Agresti and lang (1993), Williamson and Manatunga (1997) and
Barnhart and Williamson (2002), just but to mention a few.

In this paper we present some of the development so far achieved on these two
measures as given by different authors and also to show with the aid of empirical
example that agreement is a subset of association.

In section two and three we have the measures of association and agreement
respectively. And in section four we present empirical examples on some of
these measures that can handled I > 2 categories with general discussion of
possible conclusion.

2 Measures of association

Association measures reflects the strength of the predictable relationship be-
tween the ratings of the two observers or raters. There are many indices that
characterize the association between the row and column classifications of any
I×I contingency table. If two observers or raters separately classify n subjects
on I point scale, the resulting data can be summarized in the I×I table of ob-
served proportions shown below: In this case πii′ is the proportion of subjects

Table 2.1: I×I table of observed proportion.

Obs1/Obs2 1 2 . . . I total
1 π11 π12 . . . π1I π1+

2 π21 π22 . . . π2I π2+

...
...

...
...

...
I πI1 πI2 . . . πII πI+

total π+1 π+2 . . . π+I 1

classified into category i by observer 1 and into category i′ by observer 2.
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2.1 Basic measures of association

2.1.1 P coefficient

Kendall and Stuart (1961) proposed a coefficient of contingency due to Pearson
denoted by

P = { χ2

n + χ2
} 1

2 (2.1)

where χ2 is the Pearson chi-square statistics for independence. This P coeffi-
cient ranges from 0 (for complete independence) to an upper limit of ( I−1

I )
1
2

(for perfect agreement) between the two observers. So the upper limit of this
coefficient depends on the number of categories in the measurement scale.

2.1.2 T coefficient

In order to avoid this undesirable scale-dependency property of P above Tschuprow
proposed an alternative function of χ2 for I×I table, which is given in Kendall
and Stuart (1961) as

T = { χ2

n(I − 1)
} 1

2 (2.2)

T ranges from 0 (for complete independence) to +1 (for perfect agreement)
between the two observers. In the situation in which each of the two observers
makes separate dichotomous judgements on n subjects, the resulting data can
be summarized in the 2×2 table of observed proportions below: Thus, the

Table 2.2: 2×2 table of observed proportion.

Obs1/Obs2 0 1 total
0 π11 π12 π1+

1 π21 π22 π2+

total π+1 π+2 1

relationship between the classifications of two observers can be characterized in
terms of a contingency table measure of association.

2.1.3 Yule’s Q coefficient

Kendall and Stuart (1961) also proposed a well known measure of association
introduced by Yule (1900, 1912) in honor of Bulgarian statistician Quetelet,
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named Yule’s Q denoted by

Q =
π11π22 − π12π21

π11π22 + π12π21
, (2.3)

which ranges between -1 and +1 and has the following properties:

Q =

⎧⎨⎩
+1 if π12π21 = 0 i.e π12 or π21 = 0 (and π11, π22 > 0)
0 if π11π22 = π12π21, i.e observers are independent

−1 if π11π22 = 0, i.e π11 or π22 = 0 (and π12, π21 > 0)
(2.4)

2.1.4 φ coefficient

Kendall and Stuart also proposed the φ coefficient denoted by

φ =
π11π22 − π12π21

π1+π+1 + π2+π+2
= {χ2

n
} 1

2 , (2.5)

where χ2 is the usual Pearson chi-square statistics for a 2×2 table. The φ

coefficient ranges between -1 and +1 and the following properties:

φ =

⎧⎨⎩
+1 if π12 = π21, (and π12 < π11, π22) i.e perfect agreement

0 if π11π22 = π12π21, i.e observers are independent

−1 if π11 = π22, (and π11 < π12, π21) i.e complete disagreement

(2.6)

Both Q and φ measure the strength of the association between the classifications
by the two observers. φ is not only a measure of association, but also a measure
of agreement, since it reflects the extent to which the data cluster on the main
diagonal of the table.

2.1.5 Gamma statistic

Another measure of association is the gamma statistic which was proposed by
Goodman and Kruskal (1954). Given that the pair is untied on both variables,

πc

πc+πd
is the probability of concordance and πd

πc+πd
is the probability of discor-

dance. The difference between these probabilities is

γ =
πc − πd

πc + πd
(2.7)

which is called gamma. The γ coefficient ranges between -1 and +1 and has the
following properties:

γ =

⎧⎨⎩
+1 if πd = 0
0 if πc = Πd

−1 if πc = 0
(2.8)
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The probability of concordance and discordance πc and πd, that is, the proba-
bility that a pair of observations is concordant or discordant respectively, can
be shown to be

πc = 2
I−1∑
i=1

J−1∑
j=1

πij

⎛⎝∑
k>i

∑
l>j

πkl

⎞⎠ (2.9)

πd = 2
I−1∑
i=1

J−1∑
j=1

πij

⎛⎝∑
k>i

∑
l≤j

πkl

⎞⎠ (2.10)

The factor 2 occurs in these formulas because the first observation could be in
cell (i, j) and the second in cell (k, l), or vice versa. We can see that πc and
πd are sums of products of sums of probabilities, and can be written using the
exp− log notation in the Appendix (Forthofer and Koch, 1973; and Bergsma,
1997).

Also the probabilities of a tie on the variables involve say, A, B, and both A
and B are

πt,A =
∑

i

(πi+)2 πt,B =
∑

j

(π+j)2 πt,AB =
∑
ij

π2
ij (2.11)

2.1.6 Somer’s-d statistic

Somer(1962) also proposed another statistic for measuring association which is
similar to gamma, but for which the pairs untied on one variable (1 − πt,A) or
(1− πt,B) rather than on both variables (πc + πd). The population value of the
statistic is given as

ΔBA =
πc − πd

1 − πt,A
(2.12)

This expression is the difference between the proportions of concordant and
discordance pairs out of the pairs that are untied on A. This is an asymmetry
measure intended for use when B is a response variable.

2.1.7 Kendall’s tau-b and tau

Kendall (1945) proposed another statistic called Kendall’s tau-b which is given
as

τb =
πc − πd√

(1 − πt,A)(1 − πt,B)
(2.13)

If there are no ties, the common value of gamma, Somers’d, and Kendall’s tau-b
is

τ = πc − πd (2.14)

This measure is refers to as Kendall’s tau and originally introduced for contin-
uous variables.
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2.1.8 Association coefficient for nominal scales

Kendall and Stuart (1979) proposed another measure of association mainly for
nominal scales. let V(Y) denote a measure of variation for the marginal dis-
tribution {π+1, ..., π+I} of the response Y, and let V (Y |i) denote this measure
computed for the conditional distribution {π1|i, ..., πI|i} of Y at the ith setting
of an explanatory variable X. A proportional reduction in variation measure,
has form

V (Y ) − E[V (Y |X)]
V (Y )

(2.15)

where E[V (Y |X)] is the expectation of the conditional variation taken with re-
spect to the distribution of X. When X is a categorical variable having marginal
distribution {π1+, ..., πI+}, E[V (Y |X)] =

∑
i πi+V (Y |i).

2.1.9 Concentration coefficient

Goodman and Kruskal (1954) proposed another coefficient for measuring asso-
ciation in a contingency table called τ , which can be used for tables on nominal
scales based on what described in section (2.1.8). Let

V (Y ) =
∑

j

π+j(1 − π+j) = 1 −
∑

π2
+j .

This gives the probability that two independent observations from the marginal
distribution of Y falls in different categories. The conditional variation in row i
is then

V (Y |i) = 1 −
∑

π2
j|i.

The average conditional variation for an I×J table with joint probabilities {πij}
is

E[V (Y |X)] = 1 −
∑

i

πi+

∑
j

π2
j|i = 1 −

∑
π2

ij/πi+.

Therefore, the proportional reduction in variation is Goodman and Kruskal’s
tau

τ =

∑
ij π2

ij/πi+ −∑
π2

+j

1 −∑
π2

+j

(2.16)

which is also called the concentration coefficient. 0 ≤ τ ≤ 1.

2.1.10 Uncertainty coefficient

Another alternative measure to (2.16) called uncertainty coefficient was also
proposed by Theil (1970), which is denoted as U below

U =

∑
ij πij log(πij/(πi+π+j))∑

j π+j log(π+j)
(2.17)
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The measures of τ and U are well defined when more than one π+j > 0. Also
0 ≤ U ≤ 1. τ = U = 0 implies independence of the two variables X and Y and
τ = U = 1 means no conditional variation.

2.1.11 Pearson’s correlation coefficient

A useful measure of association for two interval level variables when these vari-
ables are linearly related is Pearson’s correlation coefficient denoted by ρ, which
is defined as

ρ =
cov(A,B)

σAσB
=

E(AB) − E(A)E(B)
σAσB

(2.18)

Let πij be the cell probability for cell (i, j). The E(A) =
∑

i aiπi+ and E(B) =∑
j bjπ+j , where ai and bj are scores of categories I of A and J of B respectively.

Also let E(AB) =
∑

i

∑
j aibjπij . Therefore, ρ is a sum of products of sums of

products of sums of probabilities.

2.1.12 Odds Ratio

Another measure of association is called the Odds Ratio. Given a 2 × 2 contin-
gency table of the form in table 2 above, the probability of success is π11 in row
1 and π21 in row 2. Within row 1 and row 2, the odds of successes denoted by
α are defined to be

α1 =
π11

π1+ − π11
=

π11

π12
(2.19)

α2 =
π21

π2+ − π21
=

π21

π22
(2.20)

respectively. The odds α are nonnegative with value greater than 1.0 when a
success is more likely than a failure. When odds α = 4.0, a success is four times
as likely as a failure. In either row, the success probability is the function of the
odds, this can be obtained by making π (probability of success) the subject of
formula in each of the above equations, that is,

π =
α

α + 1
(2.21)

The ratio of odds from the two rows,

θ =
α1

α2
=

π11
π12
π21
π22

=
π11π22

π12π21
(2.22)

is called the Odds ratio. The θ coefficient ranges between 0 and ∞ and has the
following properties:

θ =

⎧⎨⎩
+1 if π11π22 = π12π21 i.e α1 = α2

> 1 and < ∞ if π11π22 > π12π21 i.e α1 > α2

> 0 and < 1 if π11π22 < π12π21 i.e α1 < α2

(2.23)

Values of θ farther from 1.0 in given direction represent stronger levels of asso-
ciation.
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3 Measures of Agreement

Agreement is a special case of association which reflects the extent to which
observers classify a given subject identically into the same category. In order
to assess the psychometric integrity of different ratings we compute interrraters
reliability and/ or interrater agreement.

Interrater reliability coefficients reveal the similarity or consistency of the pat-
tern of responses, or the rank-ordering of responses between two or more raters
(or two or more rating sources), independent of the level or magnitude of those
ratings. For example, let us consider the following table, One can observe from

Table 3.1: Ratings of three subjects by three raters.

subject Rater 1 Rater 2 Rater 3
1 5 6 2
2 3 4 2
3 1 2 1

the table that all the raters were consistent in their ratings, rater 2 maintained
his leading ratings followed by rater 1 and rater 3 respectively.
Interrater agreement on the other hand is to measure the degree that ratings
are similar in level or magnitude. It pertains to the extent to which the raters
classify a given subject identically into the same category. Kozlowski and Hat-
trup (1992) noted that an interrater agreement index is designed to ”reference
the interchangeability among raters; it addresses the extent to which raters
make essentially the same ratings”. Thus, theoretically, obtaining high levels
of agreement should be more difficult than obtaining high levels of reliability
or consistency. Also consider the table below, From Table 3.2 one can observe

Table 3.2: Ratings of three subjects by three raters.

subject Rater 1 Rater 2 Rater 3
1 5 5 3
2 3 3 2
3 1 1 1

that the ratings are similar compare to Table 3.1.
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3.1 Basic measures of Agreement

3.1.1 Cohen’s Kappa coefficient:

Cohen (1960) proposed a standardized coefficient of raw agreement for nominal
scales in terms of the proportion of the subjects classified into the same category
by the two observers, which is estimated as

πo =
I∑

i=1

πii (3.1)

and under the baseline constraints of complete independence between ratings
by the two observers,which is the expected agreement proportion estimated as

πe =
I∑

i=1

πi.π.i (3.2)

The Kappa statistic can now be estimated by

k̂c =
π̂o − π̂e

1 − π̂e
(3.3)

where π̂o and π̂e are as defined above.
Early approaches to this problem have focused on the observed proportion of
agreement (Goodman and Kruskal 1954), thus suggesting that chance agreement
can be ignored. Later Cohen’s kappa was introduced for measuring nominal
scale chance-corrected agreement. Scott (1955) defined πe using the underlying
assumption that the distribution of proportions over the I categories for the
population is known, and is equal for the two raters. Therefore if the two raters
are interchangeable, in the sense that the marginal distributions are identical,
then Cohen’s and Scott’s measures are equivalent because Cohen’s kappa is an
extension of Scott’s index of chance-corrected measure. To determine whether
k̂ differs significantly from zero, one could use the asymptotic variance formulae
given by Fleiss et al. (1969) for the general I×I tables. For large n, Fleiss et
al.’s formulae is practically equivalent to the exact variance derived by Everitt
(1968) based on the central hypergeometric distribution. Under the hypothesis
of only chance agreement, the estimated large-sample variance of k̂ is given by

v̂aro(k̂c) =
πe + π2

e −∑I
i=1 πi.π.i(πi. + π.i)

n(1 − πe)2
. (3.4)

Assuming that
k̂√

v̂aro(k̂)
(3.5)

follows a normal distribution, one can test the hypothesis of chance agreement
by reference to the standard normal distribution. In the context of reliability
studies, however, this test of hypothesis is of little interest, since generally the
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raters are trained to be reliable. In this case, a lower bound on kappa is more
appropriate. This requires estimating the nonnull variance of k̂, for which Fleiss
et al. provided an approximate asymptotic expression, given by:

v̂ar(k̂) =
1

n(1 − πe)2

(
I∑

i=1

πii{1 − (πi. + π.i)(1 − k̂)}2 + (1 − k̂)2
)

×
⎛⎝ I∑

i�=i′
πii′(πi. + π.i′)2 − {k̂ − πe(1 − k̂)}2

⎞⎠ . (3.6)

Fleiss (1971) proposed a generalization of Cohen’s kappa statistic to the mea-
surement of agreement among a constant number of raters (say, K). Each of
the n subjects are related by K (> 2) raters independently into one of m mu-
tually exclusive and exhaustive nominal categories. This formulation applies
to the case of different sets of raters (that is random ratings) for each subject.
The motivated example is a study in which each of 30 patients was rated by 6
psychiatrists (selected randomly from a total pool of 43 psychiatrists) into one
of five categories.

Let kij be the number of raters who assigned the ith subject to the jth category
i = 1, 2, ..., n, j = 1, 2, ...,m and define

πj =
1

Kn

n∑
i=1

Kij (3.7)

πj is the proportion of all assignments which were to the jth category. The
chance corrected measure of overall agreement proposed by Fleiss (1971) is
given by

k̂ =

∑n
i=1

∑m
j=1 K2

ij − Kn{1 + (K − 1)
∑m

j=1 π2
j }

nK(K − 1)(1 −∑m
j=1 π2

j )
(3.8)

Under the null hypothesis of no agreement beyond chance, the K assignments
on one subject are multinomial variables with probabilities π1, π2, ..., πm. Using
this Fleiss (1971) obtained an approximate asymptotic variance of k̂ under the
hypothesis of no agreement beyond chance:

varok̂ = A

{∑m
j=1 π2

j − (2K − 3)(
∑m

j=1 π2
j )2 + 2(K − 2)

∑m
j=1 π3

j

(1 −∑m
j=1 π2

j )2

}
(3.9)

where
A =

2
nK(K − 1)

.

Apart from k̂ statistic for measuring overall agreement, Fleiss (1971) also pro-
posed a statistic to measure the extent of agreement in assigning a subject to a
particular category. A measure of the beyond chance agreement in assignment
to category given by

k̂j =

∑n
i=1 K2

ij − Knπj{1 + (K − 1)πj}
nK(K − 1)πj(1 − πj)

(3.10)
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The measure of overall agreement k̂ is a weighted average of k̂j ’s, with the
corresponding weights πj(1 − πj). The approximate asymptotic variance of k̂j

under the null hypothesis of no agreement beyond chance is

varok̂j =
{1 + 2(K − 1)πj}2 + 2(K − 1)πj(1 − πj)

nK(K − 1)2πj(1 − πj)
(3.11)

Landis and Koch (1977a) have characterized different ranges of arbitrary val-
ues for kappa with respect to the degree of agreement they suggest and these
have become a standard in all the literatures,see below the the ranges of kappa
statistic with the respective strength of agreement:
There is a wide disagreement about the usefulness of kappa statistic to assess

Table 3.3: Range of kappa statistic with the respective strength of agreement.

Kappa statistic Strength of agreement
< 0.00 poor

0.00-0.20 slight
0.21-0.40 fair
0.41-0.60 moderate
0.61-0.80 substantial
0.81-1.00 almost perfect.

rater agreement (Maclure and Willett 1987 and 1988). At least, it can be said
that

• kappa statistic should not be viewed as the unequivocal standard or default
way to quantify agreement;

• one should be concerned about using a statistic that is the source of so
much controversy;

• one should consider alternatives and make an informed choice.

One can distinguish between two possible uses of kappa (Thompson and Walter
1988a and 1988b, Kraemer and Bloch 1988, Guggenmoos-Holzmann 1993),

(i) as a way to test rater independence, that is, as a test statistics, which in-
volves testing the null hypothesis that there is no more agreement than
might occur by chance given random guessing; that is, one makes a quali-
tative, ”yes or no” decision about whether raters are independent or not.
Kappa is appropriate for this purpose, although to know that raters are
not independent is not very informative; raters are dependent by defini-
tion, inasmuch as they are rating the same cases.

(ii) as a way to quantify the level of agreement, that is, as an effect-size measure,
which is the source of concern. Kappa’s calculation uses a term called the

11



proportion of chance (or expected) agreement. This is interpreted as the
proportion of times raters would agree by chance alone. However, the
term is relevant only under the conditions of statistical independent of
raters. Since raters are clearly not independent, the relevance of this
term, and its appropriateness as a correction to actual agreement levels,
is very questionable.

Thus, the common statement that kappa is a ”chance-corrected measure of
agreement” (Landis and Koch 1977b; Davies and Fleish 1982; Banerjee et al.
1999) is misleading. As a test statistic, kappa can verify that agreement ex-
ceeds chance levels. But as a measure of the level of agreement, kappa is not
”chance-corrected”; indeed, in the absence of some explicit model of rater deci-
sion making, it is by no means clear how chance affects the decisions of actual
raters and how one might correct for it. A better case for using kappa to
qualify rater agreement is that, under certain conditions, it approximates the
intra-class correlation. But this too is problematic in that (1) these conditions
are not always met, and (2) one could instead directly calculate the intra-class
correlation.

3.1.2 Weighted Kappa coefficient:

Cohen (1968) proposed a modified form of kappa called Weighted kappa which
allows for scales disagreement or partial credit. Often situations arise when
certain disagreements between two raters are more serious than others. For
example, in an agreement study of psychiatric diagnosis in the categories per-
sonality disorder, neurosis and psychosis, a clinician would likely consider a di-
agnostic disagreement between neurosis and psychosis to be more serious than
between neurosis and personality disorder. However, k̂ makes no such distinc-
tion, implicitly treating all disagreements equally. Weighted Kappa is defined
as

k̂w =
π∗

o − π∗
e

1 − π∗
e

(3.12)

where

π∗
o =

I∑
i=1

I∑
i′=1

wii′πii′ (3.13)

and

π∗
e =

I∑
i=1

I∑
i′=1

wii′πi.π.i′ (3.14)

where {wii′} is the weights, which in most cases 0 ≤ wii′ ≤ 1 for all i, i′, so that
π∗

o is a weighted observed proportion of agreement, and π∗
e is the corresponding

weighted proportion of agreement expected under the constraints of total inde-
pendence. Note that the Unweighted kappa is a special case of k̂w with wii′ = 1
for i = i′ and wii′ = 0 for i �= i′. Also if the I categories form an ordinal scale,

12



with the categories assigned the numerical values 1, 2, ..., I, and

wii′ = 1 − (i − i′)2

(I − 1)2
, (3.15)

then k̂w can be interpreted as an intra-class correlation coefficient for a two-way
ANOVA computed under the assumption that the n subjects and the two raters
are random samples from populations of subjects and raters, respectively (Fleiss
and Cohen, 1973).

Fleiss et al.(1969) calculated the unconditional large sample variance of weighted
kappa as

v̂ar(k̂w) =
1

n(1 − π∗
e)4

(
I∑

i=1

I∑
i′=1

πii′ [wii′(1 − π∗
e)

−(wi. + w.i′)(1 − π∗
o)]2

−(π∗
oπ∗

e − 2π∗
e + π∗

o)2) (3.16)

where

wi. =
I∑

i′=1

wii′π.i′ and w.i′ =
I∑

i=1

wii′πi.. (3.17)

Cicchetti (1972) recommended another weights as

wii′ = 1 − | i − i′ |
(I − 1)

, (3.18)

Cicchetti used these weights to test for the significance of observer agreement
through the Cicchetti test statistic Zc

Zc =
π∗

o − π∗
e

̂[var(π∗
o)]

1
2

(3.19)

where

̂[var(π∗
o)] =

1
n − 1

[
I∑

i=1

I∑
i′=1

w2
ii′πii′ − π∗2

o

]
(3.20)

Cohen (1968) has shown that under observed marginal symmetry, weighted
kappa k̂w is precisely equal to the product-moment correlation by choosing the
weights to be

wii′ = 1 − (i − i′)2, (3.21)

when the I categories are not only ordinal scale, but also assumed equal spaced
along some underlying continuum. Discrete numerical integers such as 1, 2, ..., I

can then be assigned to the respective classes (Barnhart and Williamson 2002).

Oden (1991) proposed a method to estimate a pooled kappa between two raters
when both raters rate the same set of pairs of the body like eyes. His method
assumes that the true left-eye and right-eye kappa values are equal and makes
use of the correlated data to estimate confidence intervals for the common kappa.
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The pooled kappa estimator is a weighted average of the kappas for the right
and left eyes. We define letters B and D as follow

B = (1 −
m∑

1=1

m∑
1=1

wijρi.ρ.j)k̂right + (1 −
m∑

1=1

m∑
1=1

wijλi.λ.j)k̂left

D = (1 −
m∑

1=1

m∑
1=1

wijρi.ρ.j) + (1 −
m∑

1=1

m∑
1=1

wijλi.λ.j)

so that the pool kappa will be the ratio of the two letters,

k̂pooled =
B

D
(3.22)

where ρij=proportion of patients whose right eye was rated i by rater 1 and j

by rater 2,
λij=proportion of patients whose left eye was rated i by rater 1 and j by rater
2,
wij=agreement weight that reflects the degree of agreement between raters 1
and 2 if they use rating i and j respectively for the same eye,
and

ρi., ρ.j , λi., λ.j

have their usual meanings. By applying the delta method, Oden obtained an
approximate standard error of the pool kappa estimator.

Schouten (1993) also proposed another alternative method for paired data sit-
uation. He noted that the Cohen (1968); Fleiss et al. (1969) weighted kappa
formula and its standard error can be used if the observed as well as the chance
agreement is averaged over the two sets of eyes and then substituted into the
formula for kappa. To this end, let each eye be diagnosed normal or abnormal,
and let each patient be categorized into one of the following four categories by
each rater:

R+L+: abnormality is present in both eyes

R+L-: Abnormality is present in the right eye but not in the left eye

R-L+: Abnormality is present in the left eye but not in the right eye

R-L-: Abnormality is absent in both eyes

The frequencies of the ratings can be presented as follows: Schouten (1993)

used the weighted kappa statistic to determine an overall agreement measure.
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Table 3.4: Binocular data frequencies and agreement weights.

Category rater 2
rater 1 R+L+ R+L- R-L+ R-L- Total
R+L+ n11(1.0) n12(0.5) n13(0.5) n14(0.0) n1.

R+L- n21(0.5) n22(1.0) n23(0.0) n24(0.5) n2.

R-L+ n31(0.5) n32(0.0) n33(1.0) n43(0.5) n3.

R-L- n41(0.0) n42(0.5) n43(0.5) n44(1.0) n4.

Total n.1 n.2 n.3 n.4 n

He defined the agreement weights wij which are represented in parenthesis in
the table above as

wij =

⎧⎨⎩
1.0 for Complete agreement, i.e if the raters agreed on both eyes

0.5 for partial agreement, i.e if one agreed and one disagreed

0.0 for Complete disagreement, i.e if the raters disagreed on both eyes

(3.23)

The overall agreement measure is then defined to be

k̂w =
π∗∗

o − π∗∗
e

1 − π∗∗
e

(3.24)

where

π∗∗
o =

∑4
i=1

∑4
j=1 wijnij

n
(3.25)

and

π∗∗
e =

∑4
i=1

∑4
j=1 wijni.n.j

n2
(3.26)

The standard error can be calculated as Fleiss et al. (1969). This can be
extended for more than two raters by simply adjusting the agreement weights.
Shoukri et al. (1995) proposed another method of agreement measure when the
pairing situation is such that raters classify individuals blindly by two different
rating protocols into one of two categories, such as to establish the congruent
validity of the two rating protocols. For example, as stated by Banerjee et
al. (1999), consider two tests for routine diagnosis of paratuberculosis in cattle
animals which are the dot immunobinding assay (DIA) and the enzyme linked
immunosorbent assay (ELISA). Comparison of the results of these two tests
depends on the serum samples obtained from the cattle. One can then evaluate
the same serum sample using both tests, a procedure that clearly creates a
realistic ”matching”. Let

Xi =
{

1.0 if ith serum sample tested by DIA is positve.

0.0 if ith serum sample tested by DIA is negative.
(3.27)

and let

Yi =
{

1.0 if ith serum sample tested by ELISA is positve.

0.0 if ith serum sample tested by ELISA is negative.
(3.28)
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Let πkl (k, l = 0, 1) denote the probability that Xi = k and Yi = l. Then
π1 = π11 + π01 is the probability that a serum sample tested by ELISA is
positive, and π2 = π11 + π10 is the probability that the matched serum sample
tested by DIA is positive. Under this model, kappa reduces to the following
expression:

k =
2ρ{π1(1 − π1)π2(1 − π2)} 1

2

π1(1 − π1) + π2(1 − π2)
(3.29)

where ρ is the correlation coefficient between X and Y. As a result of this random
sample of n pairs of correlated binary responses, Shoukri et al. obtained the
maximum likelihood estimate of k as

k̂ =
2(t̄ − x̄ȳ)

ȳ(1 − x̄) + x̄(1 − ȳ)
(3.30)

where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi t̄ = 1

n

∑n
i=1 xiyi; the asymptotic

variance was also obtained for this corrected to the first order of approximation.
Using the large sample variance expression, one could test the hypothesis that
the two diagnostic tests are uncorrelated.

For more on weighted and unweighted Kappa see Barlow et al.(1991); Schouten
(1993); Shoukri et al. (1995); Donner et al. (1996); Banerjee et al. (1999),
Gonin et al. (2000), and Barnhart and Williamson (2002), Shoukri (2004).

3.1.3 Intraclass kappa

Intraclass kappa was defined for data consisting of blinded dichotomous ratings
on each of n subjects by two fixed raters. It is assumed that the ratings on
a subject are interchangeable; that is in the population of subjects, the two
ratings for each subject have a distribution that is invariant under permutations
of the raters to ensure that there is no rater bias (Scott (1955), Bloch and
Kraemer (1989), Donner and Eliasziw (1992),Banerjee et al. (1999), Barnhart
and Williamson (2002). Let Xij denote the rating for the ith subject by the
jth rater, i = 1, 2, ..., n, j = 1, 2. and for each subject i, let πi = P (Xij=1) be
the probability that the rating is a success. Over the population of subjects, let
E(πi) = Π, Π′ = 1 − Π and var(πi) = σ2

π. The intraclass kappa as defined by
Bloch and Kraemer (1989) is then

kI =
σ2

π

ΠΠ′ (3.31)

To obtain the estimator of intraclass kappa, let us consider the the following
table of probability model for joint responses with kappa coefficient explicitly
defined in its parametric structure.
Thus, the log-likelihood function is given by

log L(Π, kI \ n11, n12, n21, n22) = n11 log(π2 + kIΠΠ′) + (n12 + n21)

log{ΠΠ′(1 − kI)} + n22 log(π′2 + kIΠΠ′).
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Table 3.5: Underlying model for estimation of intraclass kappa

Xi1 Xi2 Observed frequency Expected Probability.
1 1 n11 π2 + kIΠΠ′

1 0 n12 ΠΠ′(1 − kI)
0 1 n21 ΠΠ′(1 − kI)
0 0 n22 π′2 + kIΠΠ′

The maximum likelihood estimators π̂ and k̂I for Π and kI are obtained as

π̂ =
2n11 + n12 + n21

2n
, (3.32)

and

k̂I =
4(n11n22 − n12n21) − (n12 − n21)2

(2n11 + n12 + n21)(2n22 + n12 + n21)
, (3.33)

with the estimated standard error for k̂I given by Block and Kraemer (1989)

SE(k̂I) = {1 − k̂I

n
[(1 − k̂I)(1 − 2k̂I) +

k̂I(2 − k̂I)
2π̂(1 − π̂)

]} 1
2 . (3.34)

and with this 100(1 − α)% = k̂I ± Z1−α
2
SE(k̂I) confidence interval can be

obtained for k̂I . This has reasonable properties only in a very large samples
that are not typical of of the size of the most interrater agreement studies.

Barnhart and Williamson (2002) considered intraclass kappa for measuring
agreement between two readings for a categorical response with I categories
if the two readings are replicated measurements. It assumes no bias because
the probability of a positive rating is the same for the two readings due to
replication, and it is given as

kIn =
∑I

i=1 πii −
∑I

i=1((πi+ + π+i)/2)2

1 −∑I
i=1((πi+ + π+i)/2)2

(3.35)

Donner and Eliasziw (1992) proposed a procedure based on chi-square goodness
of fit statistic to construct confidence interval for small samples. This was
done by equating the computed one degree of freedom chi-square statistic to
an appropriately selected critical value, and solving for the two roots of kappa.
The upper k̂U and the lower k̂L limits of 100(1−α)% confidence interval for k̂I

are obtained as

k̂L = (
1
9
y2
3 − 1

3
y2)

1
2 (cos

θ + 2π

3
+
√

3 sin
θ + 2π

3
) − 1

3
y3 (3.36)

k̂U = 2(
1
9
y2
3 − 1

3
y2)

1
2 cos

θ + 5π

3
− 1

3
y3, (3.37)

where π = 3.14159, θ = arccos V
W , V = 1

27y3
3 − 1

6 (y2y3 − 3y1),
W = (1

9y2
3 − 1

3y2)
1
2 ; and

y1 =
{n12 + n21 − 2nΠ̂(1 − Π̂)}2 + 4n2Π̂2(1 − Π̂)2

4nΠ̂2(1 − Π̂)2(χ2
1,1−α + n)

− 1, (3.38)
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y2 =
(n12 + n21)2 − 4nΠ̂(1 − Π̂){1 − 4Π̂(1 − Π̂)}χ2

1,1−α

4nΠ̂2(1 − Π̂)2(χ2
1,1−α + n)

− 1, (3.39)

y3 =
n12 + n21 + {1 − 2Π̂(1 − Π̂)}χ2

1,1−α

Π̂(1 − Π̂)(χ2
1,1−α + n)

− 1. (3.40)

Donner and Eliasziw (1992) also describe hypothesis-testing and sample size
calculations using this goodness of fit procedure. Donner and Eliasziw (1997)
has also extended the above to a case of three or more rating categories per
subject.

Barlow (1996) extended the intraclass kappa to accommodate subject-specific
covariates directly in the model. Although both raters have the same marginal
probability of classification, this probability is assumed to be a function of the
covariates. Barlow used a trinomial model obtained by collapsing the two discor-
dance cells in table 7 into a single cell. The ratings of each subject are placed in
one of three classification cells (both success,discordant, and both failure). Let
Yik be an indicator of the placement of subject i in cell k = 1, 2, 3. For example,
if for subject i both ratings were success, then yi1 = 1 and yi2 = yi3 = 0. Also
let Xi = (1,Xi1,Xi2, ...,Xip) be the vector of covariates for subject i. Assuming
a logit link function between the mean πi and the covariate vector Xi, that is,
log{ πi

(1−πi)
} = Xiβ, where β is the parameter vector to be estimated. Then the

multinomial likelihood is given by

L(β, kl | X,Y ) ∝
n∏

i=1

eXiβ

(1 + eXiβ)2
{eXiβ + kl}yi1{2(1 − kl)}yi2

×{e−Xiβ + kl}yi3 . (3.41)

This function is hard to maximize; however, Barlow noted that it is equivalent to
the likelihood of a conditional logistic regression model with a general relative
risk function r and one case (yik = 1) and two controls (yij = 0, j �= k)
defined for each subject. Specifically, the relative risk ri can be expressed as
ri = eziβ + wikl − (wi − 1)/3, where

zi =

⎧⎨⎩
Xi If Yi1 = 1,

0.0 if Yi2 = 1,

−Xi If Yi3 = 1.

(3.42)

and

wi =

⎧⎨⎩
1 If Yi1 = 1,

−2 if Yi2 = 1,

1 If Yi3 = 1.

(3.43)

The additive risk function decomposes the risk into a part that incorporates the
covariate as a part that depends on the intraclass kappa, and an ”offset” that is
0 for concordant observations and 1 for disconcordant observations. The above
model can be fitted using any suitable software. In addition, in getting estimates
for kl and β, standard errors and Wald confidence intervals are obtained.
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In a situation where we have multiple trial of an experiment in different regions
or centers, in each of the center a reliability studies has to be conducted and this
will give rise to several independent kappa statistics which can be used to test for
homogeneity across the centers or regions, that is testing Ho : k1 = k2 = ...kN ,
where kh denoted the population kappa value for center h. Donner et al (1996)
proposed methods of testing homogeneity of N independent kappa of the in-
traclass form. Their underlying model assumed that N independent studies,
involving n =

∑N
h=1 nh subjects, have been completed, where each subject is

given a dichotomous rating (success-failure) by each of the two raters. In ad-
dition, it is assumed that the marginal probability (Πh) of classifying a subject
as success constant across raters in a particular study; but this probability may
varies across the N studies, which means there is no rater bias within the stud-
ies. The probabilities of joint responses within study h arise from a trinomial
model which can be obtained by collapsing the two discordant cells in table 7
into a single cell as follows:

π1h(kh) = Π2
h + Πh(1 − Πh)kh, (both successes).

π2h(kh) = 2Πh(1 − Πh)(1 − kh), (one success and one failure),

π3h(kh) = (1 − Πh)2 + Πh(1 − Πh)kh, (both failure).

These are the same expression as presented in table 7, with the exception of Πh

being study specific. For the hth study, maximum likelihood estimators for Πh

and kh are given by

Π̂h =
2n1h + n2h

2nh
, (3.44)

and
k̂h = 1 − n2h

(2nhΠ̂h(1 − Π̂h)
, (3.45)

where n1h is the number of subjects in study h who received success ratings
from both raters, n2h is the number who received one success and one failure
rating, n3h is the number who received failure ratings from both raters, and
nh = n1h + n2h + n3h. An overall measure of agreement among the studies is
estimated by computing a weighted average of the individual k̂h, yielding

k̂ =
∑N

h=1 nhΠ̂h(1 − Π̂h)k̂h∑N
h=1 nhΠ̂h(1 − Π̂h)

, (3.46)

To test Ho : k1 = k2 = ...kN , Donner et al. proposed a goodness of fit test using
the statistic

χ2
G =

N∑
h=1

3∑
l=1

{nlh − nhπ̂lh(k̂h)

nhπ̂lh(k̂h)
, (3.47)
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where π̂lh(k̂h) is obtained by replacing Πh by Π̂h and kh by k̂ in πlh(kh); l =
1, 2, 3; h = 1, 2, ..., N . χ2

G follows an approximate chi-square distribution with
N − 1 degrees of freedom, under the null hypothesis. (see Donner and Klair,
1996 for detail).

Donner et al. (1996) also proposed another method of testing Ho : k1 = k2 =
...kN using a large sample variance approach. The estimated large sample vari-
ance of k̂h (Bloch and Kraemer 1989), Fleiss and Davies 1982) is given by

︷︸︸︷
V ar(k̂h) =

1 − k̂h

nh
{(1 − k̂h)(1 − 2k̂h) +

k̂h(2 − k̂h)

2Π̂h(1 − Π̂h)
}. (3.48)

Let
Ŵh =

1︷︸︸︷
V ar(k̂h)

and

k̃ =
N∑

h=1

(Ŵhk̂h)/
N∑

h=1

(Ŵh),

an approximate test of Ho is obtained by referring

χ2
v =

N∑
h=1

Ŵh(k̂h − k̃)2

to the chi-square distribution with N − 1 degrees of freedom. The statistic χ2
v

is undefined if k̂h = 1 for any h. Unfortunately, this event can occur with fairly
high frequency in samples of small to moderate size. In contrast the goodness
of fit statistic, χ2

G, can be calculated except in the extreme boundary case of
k̂h = 1 for all h = 1, 2, ..., N , when a formal test of significance has no practical
value. Neither test statistic can be computed when Π̂h = 0 or 1 for any h, since
then k̂h is undefined. Based on Monte Carlo study, the authors found that the
two statistic have similar properties for large samples (nh > 100 for all h). But
for small sample sizes, clearly the goodness of fit statistic χ2

G is preferable.

3.1.4 τ statistic

Jolayemi (1986, 1990) proposed a statistic for agreement measure, that uses the
chi-square distribution. The statistic was initiated from the background of the
R2, the coefficient of determination, which is an index for the explained variabil-
ity of a regression model, which was then extended to the square contingency
table. The author proposed a theorem which was also proved that ”Consider a
I×I (square) contingency table obtained by classifying the same N subjects into
one of possible I outcomes by two raters. Then the Pearson Chi-square (X2)
statistic for independence is at most (I − 1)N . That is 0 ≤ X2 ≤ (I − 1)N .”
see Jolayemi (1990) for the proof of this theorem. He then proposed a statistic
for the measure of agreement, denoted by
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τ =
√

λ, −1 < τ < 1, (3.49)

where λ, which is an R2-type statistic (Jolayemi, 1986) is defined as

λ =
X2

max(X2)
(3.50)

and max(X2) has been proved to be (I − 1)N , see Jolayemi, (1990); Adejumo
et al. (2001). Thus,

λ =
X2

(I − 1)N
(3.51)

The advantage this statistic is having over Kappa is that by the nature of (λ =
τ2) one may make inference on τ also through λ which estimates the explained
variability exhibited by the configuration of the table as done in regression
analysis. The author also proposed some arbitrary division on the range of | τ |
with the respective strength of agreement, as Landis and Koch (1977a) has also
proposed for Cohen kappa statistic in Table 3.3, as in Table 3.6 below: And

Table 3.6: Range of | τ | statistic with the respective strength of agreement.

| τ | statistic Strength of agreement
0.00-0.20 poor
0.21-0.40 slight
0.41-0.60 moderate
0.61-0.80 substantial
0.81-1.00 almost perfect.

when τ < 0 the agreement is negative.

3.1.5 Tetrachoric correlation coefficient

As stated by Banerjee et al. (1999), there are situations where two raters
use different thresholds due to differences in their visual perception or decision
attitude. By ”threshold” we mean the value along the underlying continuum
above which raters regard abnormality as present. Furthermore, with such data,
the probability of misclassifying a case across the threshold is clearly dependent
on the true value of the underlying continuous variable; the more extreme the
value (the further away from a specified threshold), the smaller the probability
of misclassification. Since this is so for all the raters, their misclassification
probabilities cannot be independent. Therefore, kappa-type measures (weighted
and unweighted kappas, intraclass kappa) are inappropriate in such situations.

In a situation where the diagnosis is regarded as the dichotomization of an
underlying continuous variable that is unidimensional with a standard normal
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distribution, the Tetrachoric Correlation Coefficient (TCC) is an obvious choice
for estimating interrater agreement. TCC estimates specifically, the correlation
between the actual latent (un-observable) variables characterizing the raters’
probability of abnormal diagnosis, and is based on assuming bivariate normality
of the raters’ latent variables. Therefore, not only does the context under which
TCC is appropriate differ from that for kappa-type measures, but quantitatively
they estimate two different, albeit related entities (Kraemer 1997). Several
twin studies have used the TCC as a statistical measure of concordance among
monozygotic and dizygotic twins, with respect to certain dichotomized traits.

The TCC is obtained as the maximum likelihood estimate for the correlation
coefficient in the bivariate normal distribution,when only information in the
contingency table is available (Tallis 1962, Hamdan 1970).

The concordance correlation coefficients (CCC) was also proposed by Lin (1989,
1992) for measuring agreement when the variable of interest is continuous and
this agreement index was defined in the context of comparing two fixed ob-
servers. Lin (2000), King and Chinchilli (2001), Barnhart and Williamson
(2001) and Barnhart et al. (2002) later proposed another modified index of Lin
(1989,1992) that can take care of the multiple fixed observers or raters when
the rating scale is continuous. Also see Chinchinlli et al. (1996) for intraclass
correlation coefficients for interobserver reliability measure.

3.1.6 Weighted least squares (WLS) method for correlated kappa

Barnhart and Williamson (2002) proposed an approach of testing the equality
of two different kappa statistics using weighted least squares (WLS) by Koch et
al. (1977) in order to determine the correlation between the two kappa statistics
for valid inference. Assuming there are four categorical readings Y11, Y12, Y21

and Y22 assessed on the same sets of N subjects. The first two readings (Y11 and
Y12) are obtained under one condition or method and the last two readings (Y21

and Y22) are also from the other condition or method. There are two different
readings obtained from two different raters (to assess interrater agreement) or
replicated readings by one rater (to assess intrarater agreement). Barnhart
and Williamson were able to compare these two agreement values to determine
whether or not the reproducibility between the two readings differs from method
to method as well as observing the correlation of the two agreement values.

Barnhart and Williamson (2002) were interested in testing the hypothesis of
equality of the two kappa statistics k̂1 (from method 1) and k̂2 (from method
2) obtained from the two bivariate marginal tables, that is, contingency table
Y11 × Y12 and table Y21 × Y22 with cell counts (collapsed cell probabilities)
yij++ (πij++) and y++kl (π++kl) respectively. Each of these kappa statistics
are obtained using the Appendix 1 of Koch et al. (1977), which presented k as
an explicit function of Π called the response function, in the the following form

k = F (Π) ≡ exp(A4) log(A3) exp(A2) log(A1)A0Π, (3.52)
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where Π = (Π1111,Π1112, . . . ,Π111j ,Π2111, . . . ,Πjj12, . . . ,Πjjjj) denote the J4×
1 vector of the cell probabilities for Y11 ×Y12 ×Y21 ×Y22 contingency table; and
A0, A1, A2, A3 and A4 are matrices defined in Appendix and the exponentiation
and logarithm are taken with respect to everything on the right hand side of
(3.52). The weighted least squares estimator for k is

k̂ = F (Π) ≡ exp(A4) log(A3) exp(A2) log(A1)A0P, (3.53)

where P is the vector of the cell proportions of the J × J × J × J table, which
estimate Π. Therefore the︷︸︸︷

Cov(k̂) =
(

∂F

∂P

)
V

(
∂F

∂P

)′
(3.54)

where V = (diag(P ) − PP ′)/N is the estimated covariance matrix for P and

∂F

∂P
= diag(B4)A4diag(B3)−1A3diag(B2)A2diag(B1)−1A1A0. (3.55)

where B1 = A1A0P , B2 = exp(A2) log(B1), B3 = A3B2 and B4 = exp(A4) log(B3).

Using (3.53) and (3.54), construct a Wald test for the hypothesis (Ho : k1 = k2)
by using Z − score

Z =
k̂1 − k̂2√

(var(k̂1) + var(k̂2) − 2Cov(k̂1, k̂2))
(3.56)

However, to compute (3.53) and (3.54) they used the matrices A0, A1, A2, A3

and A4 in the Appendix to obtain various kappa indices. See Appendix A.6 for
different matrices expressions for Cohen’s kappa, Weighted kappa and Intraclass
kappa as expressed by Barnhart and Williamson (2002).

3.2 Modelling in Agreement measure

Due to the wide disagreement about the usefulness of kappa statistic to assess
rater agreement and rather than using a single number to summarize agreement,
some authors have proposed modelling of the structure of agreement using log-
linear and latent class models.

3.2.1 Loglinear models

Tanner and Young (1985a) proposed a modelling structure of agreement for
nominal scales, by considering loglinear models to express agreement in terms
of components, such as chance agreement and beyond chance agreement. Using
the loglinear model approach one can display patterns of agreement among
several observers, or compare patterns of agreement when subjects are stratified
by values of a covariate. Assuming there are n subjects who are related by the
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same k raters (k ≥ 2) into I nominal categories, they express chance agreement,
or statistical independence of the ratings, using the following loglinear model
representation:

log(mij...l) = μ + λR1
i + λR2

j + ... + λRk

l , (3.57)

i, j, ...l = 1, 2, ...I

where mij...l is the expected cell count in the ij..lth cell of the joint k-dimensional
cross-classification of the ratings, μ is the overall effect, λRk

i is the effect due to
categorization by the kth rater in the cth category (k = 1, ...,K; c = 1, ..., I), and∑I

i=1 λR1
i = ... =

∑I
l=1 λRk

l = 0. A useful generalization of the independence
model incorporates agreement beyond chance in the following fashion:

log(mij...l) = μ + λR1
i + λR2

j + ... + λRk

l + δij...l, (3.58)

i, j, ...l = 1, 2, ...I

The additional term δij...l represents agreement beyond chance for the ij...lth
cell. To test a given hypothesis concerning the agreement structure, the param-
eters corresponding to the agreement component δij...l are assigned to specific
cells or groups of cells in the contingency table. The term δij...l can be defined
according to what type of agreement pattern is being investigated. For example,
to investigate homogeneous agreement among K = 2 raters, one would define
δij to be equal to

δij =
{

δ If i = j,

0 if i �= j,
(3.59)

On the other hand to investigate a possibly nonhomogeneous pattern of agree-
ment, that is differential agreement by response category, one would consider
δij = δiI(i = j), i, j = 1, 2, ..., I, where the indicator I(i = j) is defined as

I(i = j) =
{

1 If i = j,

0 if i �= j,
(3.60)

This approach addresses the higher-order agreement (k ≥ 2) as well as pairwise
agreement (Tanner and Young 1985a). The parameters then describe condi-
tional agreement. For instance, agreement between two raters for fixed ratings
by the other raters. The major advantage of this method is that it allows one to
model the structure of agreement rather than simply describing it with a single
summary measure. Graham (1995) extended Tanner and Young’s approach to
accommodate one or more categorical covariates in assessing agreement pattern
between two raters. The baseline for studying covariate effects is taken as the
conditional independence model, thus allowing covariate effects on agreement to
be studied independently of each other and of covariate effects on the marginal
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observer distributions. For example, the baseline model for two raters and a
categorical covariate X is given by

log(mij...l) = μ + λR1
i + λR2

j + λX
x + λR1X

ix + λR2X
jx ,

i, j, ...l = 1, 2, ...I (3.61)

where λR1
i ,λR2

j are as defined in equation (3.57), λX
x is the effect of the xth level

of the covariate X, and λRkX
ix (k = 1, 2) is the effect of the partial association

between the kth rater and the covariate X. Given the level of the covariate X, the
above model assumes independence between the two raters’ reports. Graham
uses this conditional independence model as the baseline from which to gauge
the strength of agreement. The beyond-chance agreement is modelled as follows:

log(mijx) = μ + λR1
i + λR2

j + λX
x + λR1X

ix + λR2X
jx

+δR1R2I(i = j) + δR1R2X
x I(i = j),

i, j, ...l = 1, 2, ...I (3.62)

where δR1R2I(i = j) represents overall beyond-chance agreement, and δR1R2X
x I(i =

j) represents additional chance-corrected agreement associated with the xth
level of the covariate X. Agresti (1988) and Tanner and Young (1985b) pro-
posed methods of modelling loglinear model for agreement and disagreement
pattern in an ordinal scale respectively. Magnitude as well as the direction of
disagreement in ordinal scale ratings is very important. The major advantage
of loglinear model framework over kappa liked statistics is that it provides nat-
ural way of modelling ”how” the chance-corrected frequencies differ across the
off-diagonal bands of the cross classification table. Agresti (1988) proposed a
model of agreement plus linear-by-linear association, which is the combination
of the model of Tanner and Young (1985a) and the uniform association model
of Goodman (1979) for bivariate cross-classifications of ordinal variables. The
model is

log(mij) = μ + λR1
i + λR2

j + βuivj + δij , i, j = 1, 2, ...I (3.63)

where

δij =
{

δ If i = j,

0 if i �= j,
(3.64)

u1 < u2 < ... < uI or v1 < v2 < ... < vI are fixed scores assigned to the response
categories, and μ, λR1

i , λR2
j and mij are as defined in equation (3.57).

3.2.2 Latent-class models

Latent-class models were also proposed by several authors to investigate inter-
rater agreement (Aickin 1990, Uebersax and Grove 1990, Agresti 1992, Agresti
and lang (1993),Williamson and Manatunga (1997), Banerjee et al. (1999)).
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These models express the joint distribution of ratings as a mixture of distri-
butions for classes of an unobserved (latent) variable. Each distribution in the
mixture applies to a cluster of subjects representing a separate class of a categor-
ical latent variable, those subjects being homogeneous in some sense. Agresti
(1992) described a basic latent-class model for interrater agreement data by
treating both the observed scale and the latent variable as discrete. Latent
class models focus less on agreement between the raters than on the agreement
of each rater with the ”true” rating.

For instance, suppose there are three different raters, namely R1, R2, R3, who
rate each of n subjects into I categories. The latent-class model assumes that
there is an unobserved categorical scale X, with L categories, such that subjects
in each category of X are homogeneous. Given the level of X and base on this
homogeneous, the joint ratings of R1, R2 and R3 are assumed to be statistically
independent. This is referred to as local independence. For a randomly selected
subject, let πijlk denote the probability of ratings (i, j, l) by raters (R1, R2, R3)
and categorization in class k of X. Also let mijlk be the expected frequencies for
the R1-R2-R3-X cross-classification. The observed data then constitute a three-
way marginal table of an unobserved four-way table. The latent-class model
corresponding to loglinear model (R1X, R2X, R3X) is the nonlinear model,
which fit can be used to estimate conditional probabilities of obtaining various
ratings by the raters, given the latent class, is of the form

log(mijl+) = μ + λR1
i + λR2

j + λR3
l + log{

L∑
k=1

exp(λX
k

+λR1X
ik + λR2X

jk + λR3X
lk )},

i, j, ...l = 1, 2, ...I (3.65)

In addition, estimates of the probabilities of membership in various latent classes,
conditional on a particular pattern of observed ratings, and use these to make
predictions about the latent class to which a particular subject belongs. It
seems, therefore the combination of loglinear and latent-class modelling should
be a useful strategy for studying agreement.

To fit latent-class models, one can use data augmentation techniques, such as
the EM algorithms. The E (expectation) step of the algorithm approximates
counts in the complete R1-R2-R3-X table using the observed R1-R2-R3 counts
and the working conditional distribution of X, given the observed ratings. The
M (maximization) step treats those approximate counts as data in the standard
iterative reweighted least-squares algorithm for fitting loglinear models. Alter-
natively, following Haberman (1988), one could adopt for the entire analysis a
scoring algorithm for fitting nonlinear models or a similar method for fitting
loglinear models with missing data.

In the case of ordinal scale, latent-class models that utilize the ordinality of
ordered categories (Bartholomew 1983) have also been applied to studies of
rater agreement. Agresti and Lang (1993) also proposed a model that treats
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the unobserved variable X as ordinal, and assumes a linear-by-linear association
between each classification and X, using scores for the observed scale as well as
for the latent classes. The model is of the form

log(mijlk) = μ + λR1
i + λR2

j + λR3
l + λX

k + βR1XλiXk

+βR2XλjXk + βR3XλlXk,

i, j, l = 1, 2, ...I (3.66)

where k = 1, 2, ..., L, the categories for X as defined before.

Qu et al. (1992,1995) proposed another approach that posit an underlying
continuous variable. so that instead of assuming a fixed set of classes for which
local independence applies, one could assume local independence at each level
of a continuous latent variable. Williamson and Manatunga (1997) extended
Qu et al. (1995) latent-variable models to analyze ordinal-scale ratings, with I
categories, arising from n subjects who are being assessed by K raters using D
different rating methods. Williamson and Manatunga (1997) obtained overall
agreement and subject-level agreement between the raters based on the marginal
and association parameter, using the generalized estimating equations approach
which allows for subject- and/ or rater-specific covariates to be included in the
model (Liag and Zeger 1986). This proposed approach can also be utilized
for obtaining estimates of intrarater correlations if the raters assesses the same
sample on two or more occasions, assuming enough time has passed between the
ratings to insure that the rater does not remember his or her previous ratings,
Banerjee et al. (1999).

More on agreement modelling shall be presented in the future work by consider-
ing some selected models that were originally designed for square tables which
can be used for modelling the ratings of a given number of subjects by two or
more raters. Also, we shall try to consider negative binomial as a substitute to
Poisson model when the resulted cross-classified table of ratings is sparse.

4 Empirical examples

In this section we present some working examples on measurement of both
association and agreement with some of the statistics reviewed in this paper
that could handled I×I contingency tables when I > 2. We selected the data in
such a way that both association and agreement are measured under nominal
and ordinal categorical scales. For nominal scales data, we used Goodman and
Kruskal’s τ and U coefficient for association while for ordinal scales data, we
used γ coefficient, Somers’ d coefficient and Kendal tau-b coefficient. However,
in the case of agreement irrespective of the categorical scale we used Cohen
kappa statistic kc and Intraclass kappa statistic kIn.
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4.1 Example 1.

Consider the data on journal citation among four statistical theory and methods
journals during 1987-1989 (Stigler, 1994; Agresti, 1996). The more often that
articles in a particular journal are cited, the more prestige that journal accrues.
For citations involving a pair of journals X and Y, view it as a ”victory” for X
if it is cited by Y and a ”defeat” for X if it is cites Y. The categories used are
BIOM=Biometrika , COMM=Communications in Statistics, JASA=Journal of
the American Statistical Association, JRSSB=Journal of the Royal Statistical
Society Series B.

Table 4.1: Cross-classification table of cited journal and citing journal of four
statistical theory and methods journals.

Category Cited journal
Citing journal BIOM COMM JASA JRSSB Total

BIOM 714 33 320 284 1351
COMM 730 425 513 276 1944
JASA 498 68 1072 325 1963
JRSSB 221 17 142 188 568
Total 2163 543 2047 1073 5826

Goodman and Kruskal′s τ = 0.07514195

U = 0.1878702

Cohen kappa = 0.2119863

Intraclass kappa = 0.1889034.

4.2 Example 2.

Consider the data obtained by two pathologists that assessed 27 patients twice
for the presence (Y) or absence (N) of dysplasia as presented by Baker et al.
(1991) and Barnhart et. al (2002). The categories used are 1 = NN (dysplasia
absence on both times), 2 = NY (dysplasia absence in the first time but presence
in the second time), 3 = Y N (dysplasia presence in the first time but absence
in the second time), 4 = Y Y (dysplasia presence on both times).
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Table 4.2: Cross-classification table of dysplasia assessment for 27 patients.

Category Pathologist 2
Pathologist 1 1 2 3 4 Total

1 9 4 1 6 20
2 0 1 0 0 1
3 0 0 0 0 0
4 1 1 0 4 6

Total 10 6 1 10 27

γ = 0.5000

Somers′ d = 0.7409

Kendal tau − b = 0.9617

Cohen kappa = 0.2419006

Intraclass kappa = 0.1789474.

4.3 Example 3.

Consider the following data taken from Agresti (1990). Letters A, B, C, D, and
E are the categorical scales used for the classification of the subjects by the two
raters.

Table 4.3: Cross-classification of 100 items by two raters

Category Rater 2
Rater 1 A B C D E Total

A 4 16 0 0 0 20
B 0 4 16 0 0 20
C 0 0 4 16 0 20
D 0 0 0 4 16 20
E 16 0 0 0 4 20

Total 20 20 20 20 20 100

Goodman and Kruskal′s τ = 0.6

U = 0.689082

Cohen kappa = −3.46944e − 017

Intraclass kappa = −3.469447e − 017.
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5 Summary results and Conclusion

5.1 Summary results

We present the summary of the examples results in the previous section for
association and agreement measure.
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From these results in Table 5.1, we observed that both association and agreement
may have very low values as we have in example 1. Association may be very
high while agreement will be small as we have in example 2. Also, as in example
3 there may be very strong association without any strong agreement because
the agreement value is less than zero. We used the a pair (path B and path E)
of the data given by Holmquist et al. (1967) that investigated the variability
in the classification of carcinoma in situ of the uterine cervix on 118 slides by
seven pathologists and we had very high values for the two measures. However,
a similar result with example 2 was recorded when we also used another data on
multiple sclerosis assessment as presented by (Basu et al. 1999). More analyzes
can be done for agreement under modelling as we have earlier mentioned in §
3.2 but we shall reserve these for the future work on modelling some special
models for agreement and some others.

5.2 Conclusion

We have already showed that measures of association and agreement statistics
are different from one another based on all the literatures presented in this
paper. We presented up till date measures under each of the measurements.
And we observed from the results of the working examples that agreement is
a subset of association, that is, agreement can be regarded as a special case
of association. When there is a strong or low agreement between two raters or
observers, strong or low association will also exits between them. However, there
may be strong association without any strong or low agreement, this can occur
if one rater consistently rates subjects one or more levels higher than the other
rater, then there will be a strong association between them, but the strength of
agreement will be very weak. Once there is an agreement between two raters
irrespective of the strength, or level, association will definitely exists also, but
strong association can exists with no strong agreement. Hence agreement can
be regarded as a subset of association.
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A Appendix

Most of the statistics reviewed under measures of association as well as agree-
ment can be expressed in exp−log notation (Forthofer and Koch, 1973; Bergsma,
1997 and Barnhart and Williamson (2002). Consider the fraction (π1+π2)/(π3+
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π4). In matrix notation, this expression is

π1 + π2

π3 + π4
= exp [log(π1 + π2) − log(π3 + π4)]

= exp

⎡⎢⎢⎣( 1 −1
)
log

(
1 1 0 0
0 0 1 1

)⎛⎜⎜⎝
π1

π2

π3

π4

⎞⎟⎟⎠
⎤⎥⎥⎦ .

In general, any product of strictly positive terms involves exponentiating the
sum of the logarithms of the terms.

A.1 Gamma statistic

γ =
πc − πd

πc + πd
(A.1)

So Gamma in exp− log format is

γ =
πc − πd

πc + πd

=
πc

πc + πd
− πd

πc + πd

= exp{πc − log(πc + πd)} − exp{πd − log(πc + πd)}

=
(

1 −1
)
exp

⎡⎣( 1 0 −1
0 1 −1

)
log

⎛⎝ 1 0
0 1
1 1

⎞⎠(
πc

πd

)⎤⎦ .

A.2 Somer’s-d statistic

ΔBA =
πc − πd

1 − πt,A
(A.2)

So ΔBA in the ” exp− log ” notation is as follows:

ΔBA =
(

1 −1
)
exp

⎡⎢⎢⎣( 1 0 −1
0 1 −1

)
log

⎛⎝ 1 0 0 0
0 1 0 0
0 0 1 −1

⎞⎠
⎛⎜⎜⎝

πc

πd

1′π
πt,A

⎞⎟⎟⎠
⎤⎥⎥⎦

where 1′π =
∑

i πi = 1, (this is done so that a function of π is obtained; ′′1′′ is
not a function of π.

A.3 Kendall’s tau-b

τb =
πc − πd√

(1 − πt,A)(1 − πt,B)
(A.3)
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This statistic can also be written in exp− log way as

exp

⎡⎢⎢⎢⎢⎢⎣
(

1 0 − 1
2 − 1

2

0 1 − 1
2 − 1

2

)
log

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 1 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

πc

πd

1′π
πt,A

πt,B

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

A.4 Pearson’s correlation coefficient

ρ =
cov(A,B)

σAσB
=

E(AB) − E(A)E(B)
σAσB

(A.4)

This statistic in the exp− log notation, ρ is written as

ρA,B =
(

1 −1
)
exp

⎡⎢⎢⎢⎢⎢⎣
(

0 0 1 − 1
2 − 1

2

1 1 0 − 1
2 − 1

2

)
log

⎛⎜⎜⎜⎜⎜⎝
E(A)
E(B)

E(AB)
σ2

A

σ2
B

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
The variances of A and B can be written as(

σ2
A

σ2
B

)
=

(
E(A2) − (E(A))2

E(B2) − (E(B))2

)
=

( −1 1 0 0
0 0 −1 1

)
×

exp

⎡⎢⎢⎣
⎛⎜⎜⎝

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

⎞⎟⎟⎠ log

⎛⎜⎜⎝
E(A)
E(A2)
E(B)
E(B2)

⎞⎟⎟⎠
⎤⎥⎥⎦ .

Let πij be the cell probability for cell (i, j). The E(A) =
∑

i aiπi+ and E(B) =∑
j bjπ+j , where ai and bj are scores of categories I of A and J of B respectively.

Let Mr and Mc be such that M ′
rπ and M ′

rπ produce the row and column totals
respectively. Let a and a2 be the vectors with elements ai and a2

i respectively.
Also, let Dab be the diagonal matrix with element aibj on the main diagonal.
Then the expected values that are used are⎛⎜⎜⎜⎜⎜⎝

E(A)
E(A2)
E(B)
E(B2)
E(AB)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝

∑
i aiπi+∑
i a2

i πi+∑
j bjπ+j∑
j b2

jπ+j∑
ij aibjπij

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
a′M ′

r

a2′M ′
r

b′M ′
c

b2′M ′
c

1′D′
ab

⎞⎟⎟⎟⎟⎟⎠π.

Therefore, ρ is a sum of products of sums of products of sums of probabilities.
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A.5 Cohen’s kappa

For 2 × 2 contingency table, Cohen’s kappa in § 3.1.1 can be expressed in
exp− log notation and also to illustrate the matrix notation of matrices A0, A1,
A2, A3 and A4 mentioned in § 3.1.6 above Barnhart and Williamson (2002).
Cohen’ kappa was given as

k̂ =
∑I

i=1 πii −
∑I

i=1 πi.π.i

1 −∑I
i=1 πi.π.i

(A.5)

40



For 2 × 2 contingency table, this can be written as

k =
∑2

i=1 πii −
∑2

i=1 πi.π.i

1 −∑2
i=1 πi.π.i

=
(π11 + π22) − (π1+π+1 + π2+π+2)

1 − (π1+π+1 + π2+π+2)
= exp [log {(π11 + π22) − (π1+π+1 + π2+π+2)} − log {1 − (π1+π+1 + π2+π+2)}]

= exp
(

1 −1
)
log

( −1 −1 1 0
−1 −1 0 1

)⎛⎜⎜⎝
π1+π+1

π2+π+2

π11 + π22

1

⎞⎟⎟⎠

= exp
(

1 −1
)
log

( −1 −1 1 0
−1 −1 0 1

)
exp

⎛⎜⎜⎝
log(π1+π+1)
log(π2+π+2)

log(π11 + π22)
log(1)

⎞⎟⎟⎠

= exp
(

1 −1
)
log

( −1 −1 1 0
−1 −1 0 1

)
exp

⎛⎜⎜⎝
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎠

× log

⎛⎜⎜⎜⎜⎜⎜⎜⎝

π1+

π2+

π+1

π+2

π11 + π22

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= exp
(

1 −1
)
log

( −1 −1 1 0
−1 −1 0 1

)
exp

⎛⎜⎜⎝
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎠

× log

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

π11

π12

π21

π22

⎞⎟⎟⎠
= exp(A4)log(A3) exp(A2) log(A1)Π. (A.6)

Matrix A1 produces a vector with the row marginal, column marginal, diagonal
sum, and the total sum of the cell probabilities.
Matrix A2 produces a vector with four main quantities in the log scale of k.
Matrix A3 produces a vector of the numerator and denominator of k; and
Matrix A4 divides the numerator by the denominator to produce k.
This is just for a single kappa statistic using Cohen, this can also be done for
other kappa indices (Landis and Koch, 1977a).
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A.6 Response function F for various kappa indices

We present response function F in equation (3.52) for various kappa indices
when we need to estimate two different kappa statistics for Π based on the two
methods or conditions under consideration (Barnhart and Williamson (2002)).
Firstly, we present the general formulae for the matrices in equation (3.52).(

k1

k2

)
= F (Π) = exp(A4)log(A3) exp(A2) log(A1)A0Π

= exp
(

A44 0
0 A44

)
log

(
A33 0
0 A33

)
× exp

(
A22 0
0 A22

)
log

(
A11 0
0 A11

)
A0Π,

where A0 is a 2J2 × J4 matrix of the form

A0 =

⎛⎜⎜⎜⎜⎜⎜⎝
e′J2 0 . . . 0
0 e′J2 . . . 0
...

...
...

0 0 . . . e′J2

IJ2 IJ2 . . . IJ2

⎞⎟⎟⎟⎟⎟⎟⎠
and eJ is a J×1 vector of all ones, IJ is the J×J identity matrix with dimension
J , 0 is a matrix of all zeros with dimensions conforming to the other part of the
block matrices.

For each of the kappa indices, we have the following:

1. Cohen’s kappa coefficient :

A44 =
(

1 −1
)
,

A33 =
( −e′J 1 0

−e′J 0 1

)
,

A22 =
(

IJ IJ 0
0 0 I2

)
,

A11 =

⎛⎜⎜⎜⎜⎜⎜⎝
e′J 0 . . . 0
...

...
0 0 . . . e′J
IJ IJ . . . IJ

e′J e′J . . . e′J

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where A44 is 1 × 2 matrix, A33 is 2 × (J + 2), A22 is (J + 2) × (2J + 2),
A11 is (2J + 2) × J2 and IJ(j) is the jth row of the identity matrix IJ .

2. Weighted kappa coefficient :

A44 =
(

1 −1
)
,
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A33 =
( −w′ 1 0

−w′ 0 1

)
,

A22 =

⎛⎜⎜⎜⎜⎜⎜⎝
eJ 0 . . . 0 IJ 0
0 eJ . . . 0 IJ 0
...

...
...

...
0 0 . . . eJ IJ 0
0 0 . . . 0 0 I2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

A11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

e′J 0 . . . 0
...

...
...

...
0 0 . . . e′J
IJ IJ . . . IJ

W ′

e′J e′J . . . e′J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where W = (w11, w12, . . . , wJJ )′ is J2 × 1 vector of weights. A33 is 2 ×
(J2 + 2) matrix, A22 is (J2 + 2 × (2J + 2), A11 is (2J + 2) × J2 and A44

is as defined above.

3. Intraclass kappa coefficient : Using equation (3.35) we have,

A44 =
(

1 −1
)
,

A33 =
( −e′J 1 0

−e′J 0 1

)
,

A22 =
(

2IJ 0
0 I2

)
,

A11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e′
J+IJ (1)

2
IJ (1)

2 . . . IJ (1)
2

IJ (2)
2

e′
J+IJ (2)

2 . . . IJ (2)
2

...
...

...
...

IJ (J)
2

IJ (J)
2 . . .

e′
J+IJ (J)

2

IJ(1) IJ(2) . . . IJ(J)
e′J e′J . . . e′J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where A22 is (J + 2) × (J + 2) matrix, A11 is (J + 2) × J2, A33 and A44

are as defined above.
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