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Abstract. We discuss two-sample global permutation tests for sets of multivariate ordi-
nal data in possibly high-dimensional setups, motivated by the analysis of data collected
by means of the World Health Organisation’s International Classification of Functioning,
Disability and Health. The tests do not require any modelling of the multivariate de-
pendence structure. Specifically, we consider testing for marginal inhomogeneity and
direction-independent marginal order. Max-T test statistics are known to lead to good
power against alternatives with few strong individual effects. We propose test statistics
that can be seen as their counterparts for alternatives with many weak individual effects.
Permutation tests are valid only if the two multivariate distributions are identical under the
null hypothesis. By means of simulations, we examine the practical impact of violations
of this exchangeability condition. Our simulations suggest that theoretically invalid per-
mutation tests can still be ‘practically valid’. In particular, they suggest that the degree of
the permutation procedure’s failure may be considered as a function of the difference in
group-specific covariance matrices, the proportion between group sizes, the number of
variables in the set, the test statistic used, and the number of levels per variable.
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1. Introduction

Two-group comparisons of multivariate ordinal data constitute an important problem
in statistical practice. The present work has primarily been motivated by the need for
methodology that adequately addresses such problems with data collected by means of
the International Classification of Functioning, Disability and Health (ICF) (World Health
Organisation, 2001; Ustün et al., 2003). The ICF was endorsed by the 54th World Health
Assembly in 2001 with the aim of providing a unified classification framework that allows
for the description of functioning and disability both across health conditions and for
specific health conditions such as depression, obesity, and stroke. Going beyond a purely
biomedical approach, it takes into account individual, social, and environmental aspects
of functioning and disability. The ICF comprises over 1400 health-related ordinally scaled
items called ICF categories. ICF core sets are health condition-specific selections from
the overall pool of ICF categories, defined by health experts (e.g. physicians and physio-
therapists) at international ICF consensus conferences. ICF core sets thus facilitate the
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implementation of the ICF in clinical practice and research (Stucki and Grimby, 2004).
Each ICF category belongs to one of the four sets below, the so-called ICF components:

(b) body functions (coded with b, e.g. b144: ‘memory functions’),
(s) body structures (coded with s, e.g. s410: ‘structure of cardiovascular system’),
(d) activities and participation (coded with d, e.g. d640: ‘doing housework’),
(e) environmental factors (coded with e, e.g. e310: ‘immediate family’).

The coding scheme for ICF categories in b, s, and d is 0 (no impairment), 1 (mild impair-
ment), 2 (moderate impairment), 3 (severe impairment), and 4 (complete impairment).
The coding scheme for ICF categories in e is -4 (complete barrier), -3 (severe barrier), -2
(moderate barrier), -1 (mild barrier), 0 (neither barrier nor facilitator), 1 (mild facilitator),
2 (moderate facilitator), 3 (severe facilitator), and 4 (complete facilitator), yet this scale is
usually coarsened to just five levels in practice. ICF categories in the sets b, s, d, and e can
in turn be divided further into more specific sets called ICF chapters (e.g. the ICF category
‘memory functions’ (b144) belongs to the ICF chapter ‘mental functions’ (b1)), resulting
in a tree structure with different levels of detail.

We consider data from a multicentre study based on the ICF core set for stroke which
comprises p = 130 ICF categories (Geyh et al., 2004). (For the complete list and informa-
tion on the ICF chapters involved see online supplement A.) Fig. 1 sketches its three-level
tree structure; the most detailed fourth level considering an individual ICF category as a
set with cardinality 1 is omitted for ease of visualisation. The dataset includes n = 104
patients after first stroke of which n1 = 46 underwent rehabilitation in Asian countries
and n2 = 58 in European countries. (For more information on the dataset see Section 6.)
The question of interest is whether and, most notably, where stroke patients from Asian
versus European countries differ in their 130-dimensional ICF pattern. Besides that, two-
group comparisons of ICF patterns have been the major objective of numerous other ICF
studies conducted worldwide (Holper et al., 2010; Herrmann et al., 2011; Tschiesner et al.,
2011). As all 191 member states of the World Health Organisation (WHO) have agreed to
use the ICF in clinical practice and research and many have already started, it is expected
by the WHO that the number of such ICF studies will rapidly increase over the years to
come. Since, from the statistical viewpoint, they pose comparable challenges, our ICF
stroke study shall be considered as an example.

A typical way to tackle such two-group problems is to conduct a univariate test for
each ICF category (e.g. Pearson chi-squared test) and then adjust the univariate p-values
for multiplicity such that the Familywise Error Rate (FWER) is controlled at the prespeci-
fied level α (e.g. using the Bonferroni procedure or the less conservative procedures of
Holm (1979), Hochberg (1988), or Hommel (1988)). While it is simple to use, this ap-
proach has potentially low power in the complex data situation we consider, both because
the multiplicity penalty becomes rather severe when p is large and because it ignores the
obvious dependence between many ICF categories (e.g. ‘memory functions’ (b144) and
‘attention functions’ (b140)). Power and interpretability could be enhanced if we were
able to exploit the prior information on the datas’ structure inferentially. For instance,
it may be worthwhile and meaningful to perform the statistical analysis at the broader
level of ICF chapters or components. In our ICF example, the Bonferroni penalty would
thereby decrease from 130 to 24 and 4, respectively. Alternatively, recent advances in si-
multaneous inference have made it possible to use the entire tree structure inferentially
(Meinshausen, 2008; Goeman and Solari, 2010; Goeman and Finos, 2012). In both cases,
the multiplicity adjustment procedure rests upon the availability of a suitable test that
provides set-specific p-values. The construction of such global tests is intricate in itself
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and becomes particularly challenging when the data are multivariate ordinal. For illus-
tration, let us consider the ICF component ‘body functions’ (b). Provided that all 41 ICF
categories included can take five distinct values, the two 41-way contingency tables which
cross-classify the n1 = 46 and n2 = 58 multivariate observations have 541 ≈ 4.55×1028 cells;
they are thus very sparse, which does not allow us to consider the full multivariate struc-
ture. This shows that test statistics based on the maximum likelihood will be impossible to
compute because the maximum likelihood relies on the joint distribution. The situation
does not substantially improve if the multivariate ordinal data are dichotomised, aside
from the fact that dichotomisation usually results in a loss of information. Another way to
reduce the number of parameters involved may be to treat the multivariate ordinal data as
multivariate normal. However, normality seems rather questionable in the scenarios we
consider, and even if it is assumed, test statistics that take into account the covariances be-
tween variables will still not be computable when the data are high-dimensional, such as
Hotelling’s T 2 which requires the (p×p) sample covariance matrix to be inverted. For this
reason, in the case of multivariate normal data, simple test statistics that dispense with
the covariances between variables have become popular (Chung and Fraser, 1958; Acker-
mann and Strimmer, 2009). The case of multivariate non-normal data has so far received
only little attention in the literature. In this paper we use previous results of Agresti and
Klingenberg (2005) and Klingenberg et al. (2009) to construct tests based on such simple
test statistics for the case of multivariate ordinal data, with the aim to make multiplicity
adjustment procedures for structured hypotheses applicable to ICF-based problems.

The paper is structured as follows. In Section 2 we define and discuss the global hy-
potheses of interest: inhomogeneity and, as a special case, direction-independent stochas-
tic order between the ordinal variables’ marginal distributions. Joint distributions are left
unspecified. In Section 3 we propose simple test statistics that are sensitive towards the
alternative hypotheses from Section 2. In this context we will see that, under working in-
dependence between variables, the test statistic of Klingenberg et al. (2009) reduces to the
sum of univariate Cochran-Armitage trend test statistics, providing important insight into
its power properties. For inference, we focus on the popular permutation procedure. The
latter is known to be valid only if the two multivariate distributions are identical under
the null hypothesis, which is not the case under the null hypothesis we consider. We ad-
dress this issue in Section 4 and discuss the ‘null dilemma’ that arises when no superior
inference method is available. In Section 5 we examine, by means of simulations, the per-
mutation procedure’s robustness properties under theoretically unfavourable conditions.
In Section 6 we analyse the ICF core set data for stroke patients and illustrate the practical
benefits of the proposed methodology.

Figure 1. Tree-structure of the ICF core set for stroke. Sets on the same level do not overlap.
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2. Global hypotheses about marginal distributions

2.1. Marginal Inhomogeneity (MI)
We address the situation in which two independent groups of sizes n1 and n2, n1+n2 = n,
shall be compared based on p-dimensional ordinal data vectors, with all p ordinal vari-
ables having the same number c ≥ 2 of levels. Suppose that the ni multivariate observa-

tions in group i form an i.i.d. sample of a (p×1) random vectorXi =
(
Xi 1, ..., Xi p

)> which
has a multivariate multinomial distribution Πi with unknown dependence structure, i =
1,2. Let πi (v1, ..., vp ) denote the joint probability P (Xi 1 = v1, ..., Xi p = vp ) for an entire
pattern in group i , where vk ∈ {1, ...,c}, k = 1, ..., p. Unless further specified when the two

groups are considered different, it seems natural to test the null hypothesis H0 :X1
d=X2

against the alternative H1 : X1
d
6=X2, where ‘

d=’ means equality in distribution. H0 (i.e.
π1(v1, ..., vp ) = π2(v1, ..., vp ) for all cp possible sequences (v1, ..., vp ) ∈ {1, ...,c}p ) is referred
to as Identical Joint Distribution (IJD), and H1 (i.e. π1(v1, . . . , vp ) 6=π2(v1, ..., vp ) for at least
one (v1, ..., vp ) ∈ {1, ...,c}p ) as Non-Identical Joint Distribution (NJD). However, because
confirmation of NJD is little informative as to why it has been confirmed, in most ICF stud-
ies it seems preferable to test the one-way multinomial distributions Πi k = {πi k (v)}c

v=1
of the random variables Xi k , with πi k (v) denoting the marginal probability P (Xi k = v),
v ∈ {1, ...,c}. The associated hypotheses are

H m
0 :

p⋂
k=1

H0k =
p⋂

k=1
{X1k

d= X2k }, (1)

H m
1 :

p⋃
k=1

H1k =
p⋃

k=1
{X1k

d
6= X2k }, (2)

where the intersection null hypothesis H m
0 in Eq. 1 (i.e. {π1k (v)}c

v=1 = {π2k (v)}c
v=1 simulta-

neously for all k) is referred to as Simultaneous Marginal Homogeneity (SMH), and H m
1 in

Eq. 2 (i.e. {π1k (v)}c
v=1 6= {π2k (v)}c

v=1 for at least one k) as Marginal Inhomogeneity (MI). For
c = 2, this problem was tackled by Agresti and Klingenberg (2005). Evidently, IJD ⇒ SMH
(i.e. IJD is more restrictive than SMH). For p = 1, IJD and SMH are equivalent. We come
back to the distinction between both null hypotheses and its importance in permutation-
based inference in Section 4.

2.2. Marginal Order (MO)
As in our ICF stroke study, it is the primary aim in many other ICF studies to detect MI.
In some instances, however, the information provided under MI may be too unspecific
and the research question may focus on special cases of MI. In the ICF context, the most
important special case of MI is marginal stochastic order. The random variables X1k and
X2k are stochastically ordered if either (i) P (X1k ≤ v) ≥ P (X2k ≤ v), written X1k ¹ X2k ,
or (ii) P (X1k ≤ v) ≤ P (X2k ≤ v), written X1k º X2k , for all v ∈ {1, ...,c}. Without loss of
generality, if the inequality in (i) is strict for at least one v , X1k and X2k are said to be
stochastically strictly ordered, written X1k ≺ X2k . Let the narrower alternative be

H̃ m
1 :

p⋃
k=1

H̃1k =
p⋃

k=1
{{X1k ≺ X2k }∪ {X1k Â X2k }} , (3)

where {X1k ≺ X2k } and {X1k Â X2k } are mutually exclusive for all k. Under H̃ m
1 in Eq. 3,

we thus have either P (X1k ≤ v) > P (X2k ≤ v) or P (X1k ≤ v) < P (X2k ≤ v) for at least one
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k and v , and we shall refer to this two-sided alternative as Marginal Order (MO), noting
that MO ⇒ MI. The one-sided counterpart (i.e.

⋃p
k=1{X1k ≺ X2k }) was tackled by Klingen-

berg et al. (2009), motivated by the statistical analysis of ordinally scaled adverse effects
data from toxicity studies. Here it is plausible to assume that, for all adverse effects, there
is equal or greater chance of observing severe effects (i.e. high levels) in the treatment
group (group 2) than in the placebo group (group 1). For ICF studies, a similar assumption
will be rarely plausible. In our particular ICF example, for instance, some body functions
may be more severely impaired among Asian patients than among European patients,
while the opposite holds for other functions. Because we are usually equally interested
in ‘X1k ≺ X2k ’ and ‘X1k Â X2k ’ contributions to set effects, it is sensible to consider the
direction-independent stochastic order alternative MO. Compared to MI, it is the more
appropriate choice if we wish to explicitly take into account the natural ordering of the c
levels. If this is not essential in the application at hand, it seems reasonable to choose MI
which is broader in the sense that it includes but is not restricted to stochastically ordered
one-way multinomial distributions. Given that the problems ‘SMH against MI’ and ‘SMH
against MO’ are closely related and similarly widespread in ICF-based applications, both
are discussed in the present paper, and the former is exemplified in Section 6.

3. Global test statistics

3.1. Testing for MI
To test for MI in the case c = 2, Agresti and Klingenberg (2005) proposed a test statistic that
is a quadratic form in the vector of differences in sample means. We shall see below that
their test statistic can easily be generalised to the case c ≥ 2, even though in most practical
situations it will not be computable without additional assumptions on the covariance
structure between variables. Let ni k (v) be the number of subjects with observed level
v of the kth variable in group i , with respective sample proportion π̂i k (v) = ni k (v)

ni
. As

π̂i k (c) = 1−∑c−1
v=1 π̂i k (v), the truncated ((c−1)p×1) vector of marginal sample proportions

(i.e. sample means) for group i is π̂i =
(
π̂i 1(1), ..., π̂i 1(c −1), ......, π̂i p (1), ..., π̂i p (c −1)

)>. Let
d= π̂2 − π̂1 denote the vector of differences in marginal sample proportions with entries
dk (v) = π̂2k (v)− π̂1k (v). From basic multinomial theory it is known that E(d) = π2 −π1,
and that the ((c −1)p × (c −1)p) covariance matrix Cov(d)=Σ has the entries

Var(dk (v)) =
2∑

i=1

πi k (v) (1−πi k (v))

ni
, (4)

Cov(dk (v),dk (ṽ))v 6=ṽ =−
2∑

i=1

πi k (v)πi k (ṽ)

ni
, (5)

Cov(dk (v),dk̃ (ṽ))k 6=k̃ =
2∑

i=1

πi kk̃ (v, ṽ)−πi k (v)πi k̃ (ṽ)

ni
. (6)

A test statistic sensitive towards MI can now be constructed as the simple quadratic form
d>Σ̂−1d, with Σ̂ being the sample version of Σ. As becomes apparent from Eq. 4 and 5,
the variances and covariances within variables can easily be estimated from the sample
proportions π̂i k (v). Under the null hypothesis SMH, we can pool the data to obtain the
more efficient pooled estimator π̂0 with entries π̂0k (v) = n1k (v)+n2k (v)

n1+n2
. The covariances be-

tween variables from Eq. 6, however, depend on the two-way multinomial distributions
Πi kk̃ = {

πi kk̃ (v, ṽ)
}c

v,ṽ=1, where πi kk̃ (v, ṽ) = P (Xi k = v, Xi k̃ = ṽ), k 6= k̃. Their estimation
proves to be problematic. Firstly, when we pool the data for this purpose, we additionally
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assume that the two groups have the same
(p

2

)
two-way multinomial distributions under

the null hypothesis, which is more restrictive than SMH. This assumption was made by
Agresti and Klingenberg (2005), rendering their test statistic an analogue of Hotelling’s T 2

for multivariate binary data. Secondly, even pooled data usually lead to sparse two-way
contingency tables unless n is very large and/or c is small. A Hotelling-type approach
along the lines of Agresti and Klingenberg (2005) is therefore bound to fail in most ICF-
based applications. For instance, provided that c = 5 for all ICF categories in our ICF
stroke study, 8318 of the

(130
2

) = 8385 (5×5) tables have one or more empty cells, render-
ing numerous π0kk̃ (v, ṽ)s inestimable. As a result, we may obtain an estimate of Σ that
is not positive definite. To prevent this, it seems inevitable to considerably simplify the
covariance structure between variables. We prefer to assume independence, which re-
sults in an estimated covariance matrix Σ̂0 that is block-diagonal. The kth null-estimated
((c −1)× (c −1)) block and its inverse are given by Σ̂0k = n1+n2

n1n2

(
diag(π̂0k )− π̂0k π̂

>
0k

)
and

Σ̂−1
0k = n1n2

n1+n2

(
diag(π̂0k )−1 + π̂0k (c)−111>)

, respectively, where 1 is a ((c − 1)× 1) vector of
ones. Then, the quadratic form can be written as

S =
p∑

k=1
d>k Σ̂

−1
0kdk , (7)

which is the sum of variable-specific test statistics. It can readily be verified that the p
summands are equivalent to marginal Pearson chi-squared test statistics (of homogene-
ity), each with an asymptotic chi-squared null distribution with df = c − 1, so we shall
refer to S as chi-squared sum statistic. Under independence between variables, this chi-
squared sum statistic has an asymptotic chi-squared null distribution with df = p(c −1).
However, independence rarely holds and is particularly questionable in our context where
variables from the same set describe more similar aspects than variables from different
sets. As mentioned earlier, we will therefore turn our attention to null distributions de-
rived via the permutation procedure which accounts for the dependence between vari-
ables by resampling entire multivariate observations. See Section 4 for further details.

3.2. Testing for MO
To construct a test statistic that is sensitive towards MO, we can exploit the results from
Section 3.1. Let π̂′

i = (π̂i 1(1), . . . , π̂i 1(c), . . . . . . , π̂i p (1), . . . , π̂i p (c))> denote the non-truncated
(cp×1) vector of marginal sample proportions for group i , and be d′ = π̂′

2−π̂′
1. In order to

take into account the variables’ ordinal nature, we can multiply d′ with a (p × cp) matrix

U = diag
(
u>

1 , . . . ,u>
p

)
, where u>

k = (uk (1), . . . ,uk (c)) contains monotonically increasing

scores alloted to the c levels of the kth variable. This results in s=Ud′, which is the (p×1)
vector of mean score differences with covariance matrix Cov(s) = ∆ = UCov(d′)U>. It
is sensible to estimate Cov(d′) under SMH based on the pooled π̂′

0 and, eventually for
the same reasons outlined in Section 3.1, the assumption of independence between vari-
ables. Then, the estimated (p × p) covariance matrix ∆̂0 is block-diagonal, and the kth
null-estimated block is given by the scalar δ̂0k = u>

k Ĉov(d′k )uk . To test for the one-sided

counterpart of MO (i.e.
⋃p

k=1{X1k ≺ X2k }) in multivariate ordinal data, Klingenberg et al.

(2009) employed the test statistic S′ = p−11>∆̂
− 1

2
0 s= p−1 ∑p

k=1 δ̂
− 1

2
0k sk , which is equivalent

to the sum of variable-specific standardised mean score differences (up to the factor p−1).
Hence, in order to test for MO where stochastic order but not its direction is relevant, we
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propose to use the direction-independent test statistic

S̃′ =
p∑

k=1
δ̂−1

0k s2
k , (8)

which is the sum of squared variable-specific standardised mean score differences. As
with the chi-squared sum statistic S from Eq. 7, the p summands that form S′ and S̃′, re-
spectively, turn out to be well-known in the literature: a closer look at Klingenberg’s S′ re-
veals that, up to the factor p−1, it is equivalent to the sum of marginal Cochran-Armitage
(CA) trend test statistics (Cochran, 1954; Armitage, 1955), for any choice of scores. The
proof is given in Appendix A. Thus, our test statistic S̃′ is equivalent to the sum of squared
marginal CA test statistics, and we shall therefore refer to S̃′ as CA sum statistic. As the
marginal CA test statistic has an asymptotic standard normal null distribution, under in-
dependence, the CA sum statistic has a chi-squared null distribution with df = p.

The link between S′ and S̃′, respectively, and the CA test statistic deserves special at-
tention because it provides important information on which inferences may or may not
be drawn from a test result. The crux is that the CA test statistic is intended to test for
some suspected trend in the binomial proportions across the c ordered levels. Which par-
ticular trend the test statistic will be sensitive towards is determined by scores which are
in one-to-one correspondence with the scores uk (v) from above. For the CA sum statis-
tic S̃′, we suppose that the scores are uniform over all k (i.e. uk (v) = u(v)) and that they
increase or decrease monotonically. Note that uniform scores are not compulsory, but
they are a convenient choice in most applications. It is now easily verfied that MO is ful-
filled if there is some monotonic trend, that is, if either n2k (1)

n·k (1) ≤ n2k (2)
n·k (2) ≤ ·· · ≤ n2k (c)

n·k (c) with
n2k (1)
n·k (1) < n2k (c)

n·k (c) or n2k (1)
n·k (1) ≥ n2k (2)

n·k (2) ≥ ·· · ≥ n2k (c)
n·k (c) with n2k (1)

n·k (1) > n2k (c)
n·k (c) for at least one k, where

n·k (v) = n1k (v)+n2k (v). The reverse, however, is not true. A monotonic trend in the bi-
nomial proportions thus implies an alternative that is narrower than MO. Consequently,
because tests that rest upon the CA sum statistic S̃′ are essentially designed to detect such
monotonic trends, they may have low power to detect MO if there is no such trend. This
should be kept in mind whenever MO, perhaps unexpectedly, could not be confirmed.

Compared to the chi-squared sum statistic, the CA sum statistic will result in more
power when the suspected trend or its inverse is correct for all k for which H1k in Eq. 2
is fulfilled, but it is likely to result in considerably less power otherwise. In the case c = 2,
the two sum statistics S and S̃′ are equivalent for any choice of scores and will therefore
result in equally powerful tests. In the case c > 2, S and S̃′ are equivalent only if we use
the data-driven scores of Zheng et al. (2009) which, however, do not necessarily increase
or decrease monotonically.

3.3. Adopting the marginal perspective: sum and max-T statistics
We have presented the test statistics S and S̃′ as special cases of multivariate quadratic
forms, under the assumption that the variables be independent. This multivariate per-
spective is beneficial, particularly because it immediately clarifies why the independence
assumption will be difficult to circumvent in real-life applications where n is typically
small to moderate, p is moderate to large, and c > 2. Nevertheless, the fact that both S
and S̃′ have turned out to be composed of well-known traditional univariate test statis-
tics provokes to directly look at them from the less sophisticated yet popular marginal
perspective. This is in the spirit of Pesarin’s permutation-based Non-Parametric Combi-
nation (NPC) method (Pesarin, 2001) which combines marginal p-values through some
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well-chosen combination function into one test statistic for the entire set. Direct sum
statistics of the form

∑p
k=1 Tk (e.g. S) and

∑p
k=1 T 2

k (e.g. S̃′), where Tk is the kth marginal
test statistic, likewise fall into the NPC framework. We treat all Tk s on the same footing,
but different weights can in principle be incorporated when the variables are of different
importance. (The ICF category ‘heart functions’ (b410) might be considered more impor-
tant than the ICF category ‘voice functions’ (b310), for example.) A prominent counter-
concept to sum statistics are max-T statistics where the maximum over all (possibly trans-
formed) univariate test statistics in a set is assumed to adequately reflect the whole set’s
effect. The max-T enables a shortcut of the FWER-controlling closure test principle of
Marcus et al. (1976), rendering it useful when multiple tests are to be conducted at the
individual level (Westfall and Young, 1993). For the assessment of set effects, however, we
consider sum statistics more suitable, for two reasons. Firstly, they can be interpreted con-
veniently as the accumulated effect of variables over a whole set. Secondly, they generally
lead to more powerful tests in the presence of many weak or moderate individual effects.
To be able to perform such tests based on the proposed sum statistics, we still need their
distributions under the null hypothesis. For inferences to be valid, the latter should take
the multivariate dependence structure in the data into account, even if the sum statistics
do not so. Permutation-based null distributions can accomplish this, but only at the price
of an assumption that is rarely justified in practice. We address this issue in Section 4.

4. Permutation-based global inference about marginal distributions: the null
dilemma

In high-dimensional multivariate scenarios, permutation null distributions of test statis-
tics have become popular since, apart from being easy to calculate, they automatically
preserve the dependence structure in the data and yield exact level-α tests. The price to
pay in order for these appealing properties to be provided is that the multivariate obser-
vations must be exchangeable within and between groups under the null hypothesis (i.e.
the observations’ joint distribution must be invariant to group label permutation). In our
context, this condition is fulfilled under IJD, but not under SMH. Permutation tests for
MI or MO will thus not be valid unless the null hypothesis is IJD, where validity refers to
whether the type I error rate tends to the prespecified level α. In practice, however, IJD is
unrealistic or at least questionable. Perhaps the only scenario where it appears realistic
is that encountered in randomised studies, but most ICF studies are non-randomised. In
our ICF stroke study, for example, the dependence structure between the ICF categories
in the ICF chapter ‘attitudes’ (e4) is expected to be different for Asian and European pa-
tients, rendering IJD untenable. Whether we test SMH against MI or against MO, this in-
evitably leads to what we call here the ‘null dilemma’: we can either use the permutation
null distribution despite its deficiency under SMH, but then the test result must be inter-
preted carefully because it may be conservative or anticonservative, or we can attempt
to derive an alternative bootstrap null distribution, but bootstrap tests are only asymp-
totic level-α tests (Efron and Tibshirani, 1993) and usually come with their own problems,
especially when n < p (Troendle et al., 2004). Note that further options may exist in spe-
cific situations, yet the two mentioned are most common in statistical practice. Because
the permutation procedure is preferred whenever it appears applicable, it is desirable to
understand its robustness properties under SMH. Several authors have established con-
ditions under which permutation tests remain valid even under non-exchangeability, at
least in an asymptotic sense (Romano, 1990; Pollard and van der Laan, 2004; Huang et al.,
2006; Kaizar et al., 2011). For test statistics that rely on differences in sample mean vec-
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tors, Huang et al. (2006) compared the permutation distribution and true distribution in
terms of cumulants. Unless the cumulants are equal in the two multivariate distributions
to be compared, it turned out that the odd-order cumulants of the test statistic’s permuta-
tion and true distribution will be different in all possible situations, while the even-order
cumulants will be asymptotically equal if n1 = n2. In the multivariate normal case where
merely the first two cumulants (i.e. mean vector and covariance matrix) are non-zero,
the permutation and true distribution thus coincide asymptotically if n1 = n2, rendering
the permutation procedure asymptotically valid. In the multivariate ordinal case, how-
ever, there may be infinitely many non-zero cumulants. Hence, even if n1 = n2, here the
permutation procedure is invalid.

While the validity constraints of permutation tests have been well studied on the theo-
retical side, it is unclear yet which impact they have on the practical side. In the simulation
experiments of Klingenberg et al. (2009), the permutation procedure remained applicable
under SMH, even for n1 6= n2. Kaizar et al. (2011), on the other hand, found scenarios un-
der SMH in which the max-T permutation test based on Fisher test statistics fails. More
systematic simulation experiments on this issue are presented in Section 5.

5. Robustness properties of the permutation procedure: a simulation study

5.1. Simulation setup
We conducted an extensive simulation study with the aim to better understand, for small
to moderate sample sizes, the behaviour of permutation tests under SMH, that is, in case
of violations of exchangeability. In particular, we considered tests based on the sum statis-
tics S and S̃′ (with equally spaced scores u(v) = v) as well as their max-T counterparts (i.e.
the maximum univariate chi-squared and squared CA test statistic). Systematic power
comparisons under MI without MO and/or MO were outside the scope of this study. Mul-
tivariate ordinal data were generated using the ‘mean mapping method’ from the R pack-
age orddata (Kaiser and Leisch, 2010), which is based on cutting multivariate normal
distributions at quantiles defined by the ordinal variables’ marginal distributions. (One
needs to specify p vectors of c marginal probabilities adding up to 1 and a positive semi-
definite (p × p) correlation matrix.) As a result of this technique, it was not possible to
examine the effect of non-exchangeability in cumulants of order higher than two.

We considered the set sizes p = {20,100} with c = 4 and the overall sample sizes n =
{20,40,60,80} which were split into (n1,n2) = {(10,10), (20,20), (30,30), (40,40)} (balanced
groups), (n1,n2) = {(8,12), (16,24), (26,34), (32,48)} (unbalanced groups), and (n1,n2) =
{(5,15), (12,28), (18,42), (24,56)} (very unbalanced groups). In order to reflect SMH, we set
the marginal probabilities to (0.25,0.25,0.25,0.25) for all variables in both groups. We gen-
erated (non-)exchangeability (in the second cumulant) by means of 14 pairs of uniform
correlation matrices: (ρ1,ρ2) = {(0,0), (0.25,0.25), (0.5,0.5), (0.75,0.75), (0,0.25), (0.25,0.5),
(0,0.5), (0.25,0.75), (0,0.75), (0.25,0), (0.5,0.25), (0.5,0), (0.75,0.25), (0.75,0)}, with ρi denot-
ing the correlation parameter in group i . Thus, the number of different combinations
of set sizes, group sizes, and correlation parameters was 2× 3× 4× 14 = 336. (Note that
for equal group sizes there is no difference between, for example, (ρ1,ρ2) = (0,0.25) and
(ρ1,ρ2) = (0.25,0). Such scenarios were not generated individually.) For each such param-
eter constellation, the type I error rate was estimated from 1000 datasets as the average
rejection rate of true null hypotheses. The test statistics’ permutation null distributions
were approximated based on 5000 permutation resamples, and the desired significance
level was α = 0.05. It is important to note that because the margins of the p one-way
tables are invariant to group label permutation, the respective type I error rates are to be



10 M. Jelizarow, A. Cieza and U. Mansmann

interpreted conditional upon the observed table margins. Furthermore, note that we used
mid-p-values (Lancester, 1961) to adjust for discreteness. Mid-p-values are calculated as
the proportion of resampled test statistics more extreme than the observed one plus half
(instead of all) of the proportion of resampled test statistics equal to the observed one.
While this approach does not guarantee type I error rate control, various numerical eval-
uations have shown that null mid-p-values tend to be more uniformly distributed than
ordinary null p-values (Hirji, 1991; Agresti, 2001; Klingenberg et al., 2009).

5.2. Simulation results
All simulation results are reported in detail in online supplement B. For the 336 parameter
constellations, the heat maps in Fig. 2 illustrate the deviations of the actual type I error
rate from the nominal type I error rate (α = 0.05) with the permutation null distribution
of the sum statistic S. Values < 0 indicate conservative behaviour (shown in violet) and
values > 0 anticonservative behaviour (shown in red). To spot possible biases (i.e. sys-
tematic fluctuations around the ideal value 0 (shown in white)) more easily, values out-
side the simulation margin of error of approximately ±1.38% are additionally highlighted.
For p = 20 (Fig. 2A), the actual type I error rate is close to the nominal one in the sce-
narios with balanced group sizes, regardless of whether under exchangeability (i.e. when
ρ1 = ρ2) or non-exchangeability (i.e. when ρ1 6= ρ2). For unbalanced and very unbalanced
group sizes, this applies only under exchangeability. Under non-exchangeability, it seems
crucial to distinguish which group the higher correlation is combined with: higher cor-
relation in the larger group (i.e. ρ1 < ρ2) entails conservative behaviour (the actual type
I error rate ranges from 0.025 to 0.054 for unbalanced and from 0.011 to 0.040 for very
unbalanced group sizes), whereas higher correlation in the smaller group (i.e. ρ1 > ρ2)
entails overly anticonservative behaviour (the actual type I error rate ranges from 0.051
to 0.081 for unbalanced and from 0.048 to 0.122 for very unbalanced group sizes). Per-
haps unexpectedly, the permutation procedure’s robustness properties seem not to vary
systematically with the overall sample size, as has already been observed by Kaizar et al.
(2011). For p = 100 (Fig. 2B), we come to basically the same conclusions, but the devia-
tions from the nominal type I error rate are partly considerably more pronounced than for
p = 20, which is readily visible from Fig. 2B. For very unbalanced group sizes, for example,
the actual type I error rate ranges from 0.005 to 0.040 when ρ1 < ρ2 and from 0.066 to 0.200
when ρ1 > ρ2. With the permutation null distribution of the sum statistic S̃′, we arrive at
very similar results throughout, which becomes evident when we compare the heat maps
in Fig. 3 with those in Fig. 2. When our sum statistics are employed, it thus seems that
the permutation procedure cannot be recommended under SMH unless it holds n1 = n2.
However, one should note that many scenarios in which the permutation procedure seri-
ously fails are unlikely to be encountered in practice (e.g. those with ρ1 = 0 and ρ2 = 0.75
or vice versa), while its failure in more realistic scenarios (e.g. those with ρ1 = 0.25 and
ρ2 = 0.5 or vice versa) seems to be less dramatic, in particular for moderately unbalanced
group sizes. Therefore, if potentially some more type I errors than desired do not pose
enormous problems in the application at hand and the group sizes are not exceedingly
unbalanced, we believe that the permutation procedure may still be used.

Similarly, the heat maps in Fig. 4 now illustrate the results obtained with the permu-
tation null distribution of the max-T based on chi-squared test statistics. Remarkably,
here the permutation null distribution seems to remain ‘practically valid’ even under non-
exchangeability and unbalancedness, with nearly all deviations from the nominal type
I error rate lying within the simulation margin of error. In contrast to that, Fig. 5 sug-
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gests that the permutation null distribution of the max-T based on CA test statistics is
less robust. For very unbalanced group sizes, it is particularly prone to anticonservative
behaviour when the higher correlation is combined with the larger group: for p = 20 (Fig.
5A), the actual type I error rate ranges from 0.049 to 0.075 across the respective scenarios,
while its range for p = 100 (Fig. 5B) is from 0.046 to 0.085. Compared to the extent to
which permutation tests based on our sum statistics may fail, this appears almost negli-
gible. Nevertheless, max-T tests are not per se the better choice, especially when many
weak rather than few strong individual effects are expected in the set of interest.

In follow-up simulations, we repeated the complete study with c = 2 in order to see
whether the robustness properties identified above depend on the number of levels per
variable (see online supplement B). In the context of this paper, the case c = 2 is of rela-
tively little interest, but it is computationally convenient because here our sum statistics
and their max-T counterparts, respectively, are equivalent. Hence, it is sufficient to ex-
amine one sum and one max-T statistic. For the sum statistic, we find that the results are
similar to those in the case c = 4 (see Fig. 2 and 3). For the max-T statistic, the results
are similar to those for the CA-based max-T statistic in the case c = 4 (see Fig. 5). The
max-T permutation test based on chi-squared test statistics thus has different robustness
properties for c = 2 than for c = 4. We expect permutation tests that rest upon squared
CA test statistics to have similar robustness properties for any choice of c because, unlike
the chi-squared test statistic which has df = c −1, the squared CA test statistic has df = 1
independent of c.
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Figure 2. Actual minus nominal type I error rate with the permutation null distribution of S for A:
p = 20 and B: p = 100. Each heat map cell corresponds to one of the 336 simulation scenarios.
Simulation margin of error for α= 0.05: ±0.0138. Values outside the margin of error are marked:
diamonds indicate systematic conservativeness and crosses systematic anticonservativeness.
The colour scale is chosen such that a direct visual comparison of Fig. 2–5 is enabled.
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Figure 3. Actual minus nominal type I error rate with the permutation null distribution of S̃′ for A:
p = 20 and B: p = 100. Further annotations as explained in Fig. 2.
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Figure 4. Actual minus nominal type I error rate with the permutation null distribution of max-T
(chi-squared) for A: p = 20 and B: p = 100. Further annotations as explained in Fig. 2.
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Figure 5. Actual minus nominal type I error rate with the permutation null distribution of max-T
(CA) for A: p = 20 and B: p = 100. Further annotations as explained in Fig. 2.

6. Analysis of ICF core set data for stroke patients

6.1. Multiplicity adjustment for tree-structured hypotheses
In Sections 2–5 we have considered scenarios where one set is tested. As soon as multiple
sets are to be tested simultaneously, multiplicity adjustment procedures become relevant.
For the special case of tree-structured hypotheses such as depicted in Fig. 1, Meinshausen
(2008) introduced a simple ‘top-down’ multiple testing procedure which offers FWER con-
trol simultaneously over all tree levels. The procedure starts with testing the root set (i.e.
complete set) at level α. If the null hypothesis is rejected, it continues by testing the child
sets at the subsequent tree level and descends only into child sets of rejected null hy-
potheses. This means that child sets of sets whose null hypotheses could not be rejected
are not tested. Provided that an effect has been ascertained in the root set, Meinshausen’s
procedure thus tries to attribute this effect to more specific sets or even individual vari-
ables. Essentially, it thereby opens the door to a compromise between global and classical
multiple testing. For any set M that is tested in the top-down approach, the adjusted p-
value is the raw p-value multiplied by p/|M |, where |M | denotes the cardinality of M and
p is the cardinality of the root set (i.e. the p-value of the root set is unadjusted, whereas
univariate p-values receive the Bonferroni adjustment). Each tree level can thus be tested
at level α, even though the FWER is controlled simultaneously over all tree levels at level
α. Recently, Goeman and Solari (2010) and Goeman and Finos (2012) developed more
elaborate procedures for tree structures which are uniformly more powerful than that of
Meinshausen. For the sake of brevity and simplicity, their procedures are not considered
in the present paper. Computationally, when our proposed tests are used to test for set
effects, Meinshausen’s procedure seems to involve as many permutation rounds as there
are sets in the tree. However, p-values for an entire tree structure can be computed effi-
ciently based on one permutation round for the root set (i.e. from the resultant (p ×R)
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matrix that contains the p marginal test statistics for the R permutation resamples). This
is beneficial, in particular when extensive tree structures are studied.

As stated above, in Meinshausen’s procedure the multiplicity penalty for any tested
set M is p/|M |. Sets that comprise many variables will thus be easier to reject than sets
that comprise few variables. In some applications, such an implicit priorisation of large
sets may be inconvenient. In ICF-based applications, however, this is even desirable be-
cause it reflects the expert opinion based on which ICF core sets are composed. In the ICF
core set for stroke, the ICF components ‘body structures’ (s) and ‘environmental factors’
(e) receive the multiplicity penalties 130/5 and 130/33, which is plausible because social
and attitudinal aspects are considered more relevant for stroke patients than anatomi-
cal aspects (Geyh et al., 2004). (Otherwise, more than just five ICF categories describing
anatomical aspects would have been included by the health experts in the core set.) This
is different for patients suffering from ankylosing spondylitis, for example. In the respec-
tive ICF core set, the ICF components s and e therefore receive the multiplicity penalties
80/19 and 80/14 (Boonen et al., 2010).

6.2. Data description and methods
Our ICF-based dataset includes patients after first stroke from a multicentre study con-
ducted in post-acute rehabilitation facilities from 2004 to 2007. To recap: the ICF core set
for stroke based on which the data were collected comprises p = 130 ICF categories (listed
in online supplement A). Of the n = 104 patients n1 = 46 came from high-income Asian
countries (China, Malaysia, South Korea, Thailand) and n2 = 58 from European countries
(Austria, Germany, Italy, Norway, Sweden, Switzerland). At the time of data collection, all
patients were ≥ 50 years old and their Body Mass Index (BMI) was ≤ 30. The two groups
did not differ substantially in the distribution of sex, age, and BMI, rendering adjustment
for these typical confounders unnecessary. As has been recommended by Bostan et al.
(2012) for the five-level ordinal scale used in the ICF components b, s, and d, we coars-
ened both the five-level and the nine-level scale used in the ICF component e to c = 3
levels: the scheme 0 1 2 3 4 was coarsened to 0 1 1 2 2, whereas the scheme -4 -3 -2 -1 0 1 2
3 4 was coarsened to 2 2 2 2 1 0 0 0 0. This potentially reduces the number of variables for
which one or more levels could not be observed in both groups, which is an appreciable
side effect because such variables lead to degenerate Σ̂0k s. With the three-level scheme
this occurs only for the ICF category ‘blood pressure functions’ (b420) where the third
level (severe to complete impairment) has never been observed. We set the associated
univariate test statistic to zero. Less conservative strategies to handle the ICF category
b420 are to exclude it from the analysis or to treat it as binary; both led to the same con-
clusions as our strategy. For the comparison of Asian and European stroke patients with
respect to their ICF pattern, we contrasted five approaches (A1–A5) with each other:

(A1) We combined Meinshausen’s top-down procedure with our permutation test based
on the chi-squared sum statistic S. We approximated the permutation null distribu-
tion of S based on 10000 resamples. A complete enumeration of all 104!/(46!58!) ≈
7.96×1029 possible permutation resamples was too computationally intensive.

(A2) See A1, however with the max-T permutation test based on chi-squared test statis-
tics to test any set considered in Meinshausen’s procedure.

(A3) We carried out the traditional univariate chi-squared test for each ICF category and
subsequently applied the Bonferroni-Holm procedure (Holm, 1979) to adjust for
multiplicity. This approach is rather simplistic, yet it is widely used.

(A4) See A3, however with the permutation null distribution (approximated based on



Global permutation tests for multivariate ordinal data 15

10000 resamples) which, unlike the asymptotic chi-squared null distribution used
in A3, respects the dependence between the individual test statistics.

(A5) We used the permutation-based ‘discrete Bonferroni method’ of Westfall and Troen-
dle (2008), again with 10000 resamples. This approach is similar to the popular max-
T -based stepdown approach of Westfall and Young (1993), with the crucial differ-
ence being that it provides FWER control under SMH, at the price of potentially less
power. Unlike A1–A4, this approach dispenses with mid-p-values.

Because, in this particular ICF example, it was of interest to detect MI rather than MO,
analogous approaches based on the CA sum statistic S̃′ or its max-T counterpart were
not taken into consideration. The results obtained with A1–A5 are summarised in Table 1
and discussed in Section 6.3. It should be emphasised that, unlike A1 and A2, A3–A5 do
not exploit the datas’ tree structure inferentially. However, we can exploit it ex post for
interpretation by treating the smallest adjusted p-value in a set as set-specific test.

6.3. Results
Fig. 6 shows, for the complete ICF core set, the permutation null distributions of the test
statistics S and max-T (chi-squared), together with their asymptotic null distributions
under the assumption of independence between the 130 ICF categories. Strictly speak-
ing, the permutation and asymptotic null distributions are not fully comparable because
the former are conditional on the observed table margins for each ICF category, whereas
the latter are unconditional distributions. Under independence, however, the conditional
and unconditional null distributions asymptotically behave similarly (or even the same
under certain conditions (Romano, 1990)). For this reason, because n = 104 is sufficiently
large, the comparison between the two null distributions in Fig. 6 provides reliable infor-
mation on how valid or invalid results based on the asymptotic null distributions would
be. As becomes evident from the figure, the asymptotic null distributions are inappropri-
ate in the present application. Regardless of which test statistic is chosen, we find that
the ICF core set is significant (i.e. MI is confirmed between the overall ICF pattern of
stroke patients from Asian and European countries). Table 1 now tells us which sets (i.e.
ICF components, chapters, and categories) this significant difference can be attributed to.
For clarity, it contains only the ICF components, chapters, and categories that have been
identified as significant by at least one of the five approaches A1–A5 described in Sec-
tion 6.2. We find that the results are fairly consistent across all approaches apart from A3.
Mostly owing to ignored dependencies between the ICF categories and thus between the
associated test statistics, A3 yields the most conservative conclusion with four significant
ICF categories: ‘structure of upper extremity’ (s730), ‘acquiring, keeping and terminat-
ing a job’ (d845), ‘products and technology for personal indoor and outdoor mobility and
transportation’ (e120), and ‘architecture and construction services, systems and policies’
(e515). The latter are also found to be significant by A1, A2, A4, and A5, together with the
ICF categories ‘structure of lower extremity’ (s750), ‘housing services, systems and poli-
cies’ (e525), and ‘associations and organisational services, systems and policies’ (e555).
For the ICF category ‘doing housework’ (d640), MI is revealed merely by A2, A4, and A5.
As displayed in Table 1, A1 which is based on the sum statistic S does not reject SMH
for the ICF chapter ‘domestic life’ (d6); Meinshausen’s procedure hence does not descend
further into individual ICF categories one of which is d640. This potential type II error
may be explained by the fact that A1 has different power properties than A2–A5. Con-
versely, it is solely A1 which detects MI for the ICF chapters ‘neuromusculoskeletal and
movement-related functions’ (b7) and ‘support and relationships’ (e3), whereas none of
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the nine and seven ICF categories contained is found to be marginally significant by nei-
ther of the approaches. Apparently, the ICF categories in b7 and e3 only jointly provide
evidence against SMH. This result indicates that A1 outperforms the other approaches in
the presence of many weak individual effects, as has been expected. Note that while it is
unlikely that A1, A2, and A4 are theoretically valid in the present application, we assume
that they are practically valid, for two reasons. Firstly, the group sizes are relatively weakly
unbalanced. Secondly, at the level of individual ICF categories, A1, A2, and A4 (which
do not guarantee FWER control under SMH) lead to nearly the same conclusions as A5
(which guarantees FWER control under SMH).

The fact that many of the differences we have found are in the environment suggests
that the kind of support people receive after stroke differs between Asian and European
countries, which in turn reflects that the two country groups differ in their health and so-
cial policies. This does not come as a surprise and supports the validity of our results.
The latter may now serve the WHO or other international organisations to uncover those
inequalities in health service provision that directly affect stroke patients. Information of
this kind may help policy makers to eliminate or reduce such inequalities and ultimately
to improve the quality of post-stroke rehabilitation services. The difference found in sup-
port and relationships is particularly noteworthy. Astin et al. (2008) reported that cardiac
patients are more frequently cared at home by their family in Asian than in European
countries where residential care is much more common. Both results put together form
a good basis for more detailed studies on the role of family and non-family relationships
in post-stroke rehabilitation. The differences we have found in body functions and struc-
tures require additional explanation. The question is whether they are due to different
evaluation approaches more than really due to differently affected body functions and
structures. Further studies are needed to answer this question.
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Figure 6. Grey areas show the permutation null distributions (approximated based on 10000
resamples) and superimposed black curves the asymptotic null distributions (assuming inde-
pendence) of the chi-squared sum statistic S and the max-T based on chi-squared test statistics
for the complete ICF core set. Dashed lines indicate critical values (0.95-quantiles) of the per-
mutation distributions. Filled triangles indicate observed values of S and max-T (chi-squared).
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Table 1. Multiplicity adjusted p-values for the ICF components, chapters, and categories that
have been identified as significant by at least one of the approaches A1–A5 (see Section 6.2 for
detailed explanations), with α= 0.05. Adjusted p-values > 0.05 are indicated by ‘–’.

A1 A2 A3 A4 A5
Body functions (b) 0.017 – – – –

Neuromusculoskeletal and movement-related 0.004 – – – –
functions (b7)

Body structures (s) 0.000 0.005 0.014 0.013 0.008
Structures related to movement (s7) 0.000 0.009 0.014 0.013 0.008

Structure of shoulder region (s720) 0.032 0.032 – 0.031 –
Structure of upper extremity (s730) 0.013 0.013 0.014 0.013 0.008
Structure of lower extremity (s750) 0.046 0.046 – 0.043 0.038

Activities and participation (d) 0.028 0.013 0.020 0.000 0.011
Domestic life (d6) – 0.035 – 0.000 0.029

Doing housework (d640) – 0.000 – 0.000 0.029
Major life areas (d8) 0.003 0.010 0.020 0.025 0.011

Acquiring, keeping and terminating a job (d845) 0.026 0.026 0.020 0.025 0.011
Environmental factors (e) 0.000 0.011 0.022 0.013 0.011

Products and technology (e1) 0.002 0.015 0.022 0.013 0.011
Products and technology for personal use in – – – – 0.028
daily living (e115)
Products and technology for personal indoor 0.013 0.013 0.022 0.013 0.011
and outdoor mobility and transportation (e120)

Support and relationships (e3) 0.017 – – – –
Services, systems and policies (e5) 0.004 0.012 0.034 0.019 0.016

Architecture and construction services, systems 0.039 0.039 0.034 0.037 0.016
and policies (e515)
Housing services, systems and policies (e525) 0.020 0.020 – 0.019 0.030
Associations and organisational services, 0.026 0.026 – 0.025 0.027
systems and policies (e555)

7. Discussion and conclusion

Motivated by the need for statistical tools to analyse data collected by means of the ICF,
we have discussed two-sample permutation tests for sets of possibly high-dimensional
multivariate ordinal data. Specifically, we have addressed the closely related problems
‘SMH against MI’ (Eq. 1 and 2) and ‘SMH against MO’ (Eq. 1 and 3). While ICF-based data
have been our main motivation, the proposed tests can likewise be used to analyse items
in psychodiagnostic tests (e.g. structured into sets by the subdimension they describe),
side or adverse effects in drug safety or toxicity studies (e.g. structured into sets by means
of the Medical Dictionary for Regulatory Activities (MedDRA)), or single-nucleotide poly-
morphisms (SNPs) in genome-wide studies (e.g. structured into sets by genes).

To capture MI and MO, we have proposed sum statistics (Eq. 7 and 8), derived as multi-
variate test statistics under the assumption that the variables be independent. Under this
assumption, we have found that the test statistic of Klingenberg et al. (2009), which our
test statistic for MO is based on, is equivalent to the sum of univariate CA trend test statis-
tics. Given that the independence assumption is inevitable in most practical situations,
this equivalence argues for broader exploration of tests based on simple sum statistics
constructed from other traditional univariate test statistics for ordinal data. Compared
to tests based on max-T statistics, such tests usually have more power against alterna-
tives with many weak individual effects, which is an important class of alternatives in ICF-
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based applications and beyond. This is well known and has been reinforced in our power
studies (not shown). Regarding the tests proposed in this work, there is an additional
intuitive explanation why they are expected to be powerful against this class of alterna-
tives: both the Pearson chi-squared and CA test statistic, from which our sum statistics
are constructed, are score test statistics, and score test statistics operate under the null
hypothesis, resulting in good power against alternatives ‘close’ to the null hypothesis.

By means of simulations, we have explored the behaviour of our permutation tests
and their max-T counterparts under SMH, that is, in null scenarios where the multivariate
observations may be non-exchangeable across groups (Fig. 2–5). The motivation behind
has been that despite the theoretically well-founded criticism towards permutation-based
inference in such data scenarios, researchers commonly face the problem that no supe-
rior (e.g. bootstrap-based) inference methods exist. Of the bootstrap procedures we have
considered (not shown), none has proved to be a promising alternative to the permuta-
tion procedure. We have called this common situation ‘null dilemma’. As expected, our
simulations have suggested that how deficient the permutation procedure can become
depends on the difference in the group-specific covariance matrices, the proportion be-
tween the group sizes, and the number of variables in the set. It has come as an initially
unexpected observation, however, that the choice of the test statistic and the number of
levels per variable seem to play a crucial role as well. For instance, max-T permutation
tests have shown remarkable robustness properties under SMH, especially when the max-
T based on chi-squared test statistics is used and the number of levels is not too small (Fig.
4). Subject to our simulations, it can thus be concluded that theoretical invalidity does not
necessarily imply practical invalidity. It is unrealistic to expect simple and generally valid
guidelines, but we believe that systematic studies such as ours will help to establish some
useful practical recommendations regarding the use of permutation tests under SMH.

As the ICF is more and more used worldwide to collect data on functional limitations
and disabilities, the need for statistical tools tailored to such data will continue to rise.
Recently, this has been realised by other authors as well (Kalisch et al., 2010; Gertheiss
et al., 2011). The tests presented in this paper enable researchers to analyse ICF-based
data at different levels of detail (e.g. ICF components or ICF chapters). They are useful
by themselves and, in addition, can be fruitfully combined with available multiple testing
procedures for tree-structured hypotheses (Meinshausen, 2008; Goeman and Solari, 2010;
Goeman and Finos, 2012). However, the proposed methodology has its limitations and
can be improved in several directions. Firstly, it may be extended to scenarios in which
not all variables are measured on the same ordinal scale. This seems unproblematic if
the marginal test statistics maintain the same number of degrees of freedom, such as is
the case for the CA test statistic. When the chi-squared test statistic is used, some stan-
dardisation will be needed. Secondly, it is desirable to extend it to scenarios in which two
groups shall be compared after adjustment for covariates. In non-randomised ICF stud-
ies, for instance, the two groups to be compared often differ substantially with respect to
age and BMI, the major confounders in studies on human functioning and disability. To
avoid false positive results due to such confounders, it is of utmost importance to be able
to adjust for the them in the analysis. A simple way to achieve this is to apply the proposed
unadjusted tests in covariate-defined strata and subsequently correct for multiplicity over
the strata. However, such an approach usually becomes infeasible when there are several
potential confounders to adjust for, since the typical sample sizes are too small to con-
struct multivariate strata. Alternatively, the comprehensive theory on generalised linear
models may be exploited to form relevant sum statistics, yet their permutation null distri-
bution will require more assumptions than in the unadjusted case in order to be valid.
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A. Equivalence of Klingenberg’s test statistic and the sum of CA test statistics

Under the assumption of independence between variables, the test statistic of Klingen-

berg et al. (2009) is the sum statistic S′ = ∑p
k=1 δ̂

− 1
2

0k sk (divided by p). It is therefore suffi-
cient to show the equivalence in the univariate case. We refer to the notation introduced
in Section 3. For the kth component we obtain
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which is the most common form of the CA test statistic (Neuhäuser, 2010), equivalence of
S′ and the sum of CA test statistics follows directly.
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