ARCHIVES OF MATHEMATICS

ARCHIV DER MATHEMATIK

ARCHIVES MATHÉMATIQUES

Herausgegeben in Verbindung mit dem Mathematischen Forschungsinstitut in Oberwolfach von H. Kneser und W. Süss

Beirat: G. Bol, E. Bompiani, P. ten Bruggencate, J. Dieudonné, Ch. Ehresmann, H. Görtler, H. Hadwiger, H. Hopf, W. Magnus, T. Nagell, Chr. Pauc, J. Radon, K. Reidemeister, J. A. Schouten, H. Seifert, E. Sperner, E. Stiefel

Redaktion: H. BILHARZ

VOL.3 · 1952

Inhalt - Contents - Sommaire

ATKINSON, F. V.: Über die Nullstellen gewisser extremaler Polynome	83
Aumann, G.: Integralerweiterungen mittels Normen	441
Aumann, G.: Zur Spiegelungsinvarianz des Lebesgueschen Maßes	360
BARNER, M.: Zur projektiven Differentialgeometrie der konjugierten Netze im vierdimensionalen Raum	409
Barner, M.: Zur projektiven Differentialgeometrie der Kurven des n-dimensionalen Raumes	171
Bilharz, H.: Bemerkung zur genäherten Quadratur	251
Bol, G.: Zur projektiven Differentialgeometrie der Kurven in der Ebene und im Raum	163
BOMPIANI, E.: Sulle connessioni affini non-posizionali	183
BUCERIUS, H.: Zur Theorie der linearen Gleichungen (Auszug)	103
Burau, W.: Grundmannigfaltigkeiten, ihre Dualitätstheorie und Fundamentalkorrelationen	130
Burger, E.: Über die Einzigkeit der Cayley-Zahlen. Bemerkung zu einer Arbeit von	100
L. A. Skorniakov	298
CASSELS, J. W. S.: Über einen Perronschen Satz	10
COLLATZ, L.: Aufgaben monotoner Art	366
Debrunner, H.: Translative Zerlegungsgleichheit von Würfeln	479
Dieudonné, J.: Sur un Théorème de Smulian	436
DIXMIER, J.: Remarques sur les applications	290
Ehlers, G.: Über schwach singuläre Stellen linearer Differentialgleichungssysteme	266
Epheser, H. und Stallmann, F.: Konforme Abbildung eines Parallelstreifens mit Halb- kreiskerbe	276
Fabricius-Bjerre, Fr.: Note on a theorem of G. Bol	31
Fusa, C.: Alcune proprietà dei sistemi lineari di curve piane algebriche	465
GERICKE, H.: Äquivalenz des Satzes von Hajos mit einer Vermutung von Minkowski	34
Gericke, H.: Algebraische Betrachtungen zu den Aristotelischen Syllogismen	421
GÖRTLER, H.: Zur laminaren Grenzschicht am schiebenden Zylinder, Teil I	216
GRÖBNER, W.: Über das arithmetische Geschlecht einer algebraischen Mannigfaltigkeit	351
GROTEMEYER, KP.: Die Integralsätze der affinen Flächentheorie	38
GROTEMEYER, KP.: Eine kennzeichnende Eigenschaft der Affinsphären	307
Hadwiger, H.: Additive Funktionale k-dimensionaler Eikörper I	470
Hadwiger, H.: Translationsinvariante, additive und schwachstetige Polyederfunktionale	387
Hadwiger, H.: Über zwei quadratische Distanzintegrale für Eikörper	142

Heffter, L.: Gleichmäßige, Differenzierbarkeit einer Funktion und Stetigkeit ihrer Ableitung in einem Bereich	257
Heinhold, J.: Zur Konstruktion involutorischer Kerne	15
HOPF, H. und Voss, K., Ein Satz aus der Flächentheorie im Großen	187
Kanold, HJ.: Einige Bemerkungen über befreundete Zahlen	282
KASCH, F.: Ein Satz über den Endomorphismenring eines Vektorraums	434
KLINGENBERG, W.: Über die 2-dimensionalen Flächen im 4-dimensionalen projektiven Raum	154
KNESER, H.: Konvexe Räume	198
Krull, W.: Bemerkungen zur Theorie des Hilbertschen Raumes	114
Krull, W.: Halbgeordnete Gruppen und asymptotische Größenordnung	1
KRUPPA, E.: Zum Dualitätsprinzip in der Differentialgeometrie dritter Ordnung	401
Levi, F. W.: Über zwei Sätze von Herrn Besicovitch	125
Locher-Ernst, L.: Wie viele regelmäßige Polyeder gibt es?	193
LORENZEN, P.: Über den Mengenbegriff in der Topologie	377
Nagell, T.: Bemerkung über die Diophantische Gleichung $u^2-Dv^2=C$	8
Nitsche, J.: Bestimmung der Flächen, deren Bogenelement negativer Krümmung als Quadratsumme zweier Pfaffscher Formen gegeben ist	50
Nitsche, Johannes und Joachim: Das zweite Randwertproblem der Differentialgleichung $\Delta u = e^u$	460
Ostrowski, A.: Two Explicit Formulae for the Distribution Function of the Sums of n Uniformly Distributed Independent Variables	451
Peyerimhoff, A.: Über einen Satz von Herrn Kogbetliantz aus der Theorie der absoluten Cesäroschen Summierbarkeit	262
PFLANZ, E.: Über die Beschleunigung der Konvergenz langam konvergenter unendlicher Reihen	24
Pickert, G.: Bemerkungen über Galois-Verbindungen	285
PICKERT, G.: Nichtkommutative cartesische Gruppen	33.5
RAJAGOPAL, C. T.: Two One-Sided Tauberian Theorems	10/8
Reeb, G.: Remarques sur l'existence de mouvements périodiques de certains systèmes dynamiques	76
RITTER, R.: Über gewisse Zwischenintegrale der Biegungsgleichung spezieller Flächen	39/5
RÖHRL, H.: Zur Theorie der Faberschen Entwicklungen auf geschlossenen Riemannschen	30.0
Flächen	93
ROQUETTE, P.: Über die Automorphismengruppe eines algebraischen Funktionenkörpers	34:3
Rund, H.: Die Hamiltonsche Funktion bei allgemeinen dynamischen Systemen	2017
Rund, H.: Zur Begründung der Differentialgeometrie der Minkowskischen Räume	610
SCHERK, P.: Convex bodies off center	30/3
Schneidt, M.: Über die endlichen Gleichungen einer Fläche, deren sphärisches Bild gegeben ist	7(0
Schönhardt, E.: Über die Projektion von Vektoren auf Kurven und eine gewisse Kurventrans-	
formation	31-4
Seibert, P.: Flächenbau und Wertverteilung einiger Funktionen, die aus harmonischen Maßen entspringen	8:7

Vol. 111, 1952	mnait			VII
STALLMANN, F., s. Epheser, H				276
STRUBECKER, K.: Äquiforme Geo	ometrie der isotropen Ebene			145
Süss, W.: Affine Differentialgeon	netrie von Kurvenpaaren in	n Raum		137
Süss, W.: Über Kennzeichnunger MEYER				311
TAUTZ, G. L.: Bemerkungen zu m ferentialgleichungen I, II		O I		361
TAUTZ, G. L.: Zum Umkehrungs	problem bei elliptischen D	Differentialgleich	ungen, I	232
TAUTZ, G. L.: Zum Umkehrungs	problem bei elliptischen D	Differentialgleicht	ungen, II	239
VIETORIS, L.: Ein einfacher Bewe	eis des Vierscheitelsatzes der	ebenen Kurven		304
Voss, K.: s. Hopf, H				187
WAGNER, K.: Bemerkungen zur	Dimension des Durchschnit	tts von Punktr	nengen	79
WITT, E.: Über einen Satz von	Ostrowski			334
Wunderlich, W.: Über die L -T	orsen der Flächen 2. Klasse			44
Zulauf, A.: Zur additiven Zerfä	llung natürlicher Zahlen in	Primzahlen und	Quadrate	327

BERICHTIGUNG

S. 92 Z. 10 v. o. lies Windungssorten statt Windungsorte S. 312 Z. 17 v. o. lies $\binom{n}{k}$ p_k statt p_k

Titelbild:

Geh. Hofrat Professor Dr. Lothar Heffter, Freiburg i. Br. (Geb. 11. VI. 1862, Köslin i. Pommern)

Ein Satz über den Endomorphismenring eines Vektorraums

Von Friedrich Kasch in Göttingen

Die Tatsache, daß ein Ring & einfach ist, kann auch folgendermaßen ausgesprochen werden: Betrachtet man & als Modul mit sich selbst als Links- und als Rechtsoperatorenbereich, so ist & irreduzibel. Durch diese Formulierung wird die Frage nahegelegt, ob & irreduzibel bleibt, wenn man den Operatorenbereich etwa auf einer Seite einschränkt. Daß dies der Fall ist, soll im folgenden gezeigt werden.

Bekanntlich ist jeder einfache Ring mit Minimal- oder Maximalbedingung zu einem dichten Ring — was das ist, wird unten erklärt — von linearen Abbildungen eines geeigneten Vektorraums isomorph. Wir werden daher einen Satz über den Endomorphismenring eines Vektorraums beweisen, der eine Antwort auf die anfangs gestellte Frage enthält.

Sei Ω ein Vektorraum nicht notwendig endlicher Dimension über einem beliebigen Schiefkörper H als Linksskalarenkörper und $\mathfrak E$ der volle Endomorphismenring von Ω/H . Ist $e \in \mathfrak E$ und $\omega \in \Omega$, so sei ωe das Bild von ω bei der Abbildung e; die Abbildungen aus $\mathfrak E$ denken wir uns also durch Multiplikation von rechts auf die Elemente aus Ω ausgeübt.

Ein Unterring $\mathfrak D$ von $\mathfrak E$ heißt n-fach transitiv, wenn es zu je n beliebigen über H linear unabhängigen Elementen $\omega_1, \ \omega_2, \ \ldots, \ \omega_n \in \Omega$ und beliebigen Elementen $\alpha_1, \ \alpha_2, \ \ldots, \ \alpha_n \in \Omega$ in $\mathfrak D$ eine Abbildung $\mathfrak D$ gibt, für die $\omega_i \mathfrak D = \alpha_i, \ (i=1,2,\ldots,n)$ ist. Ist $\mathfrak D$ für jedes $n=1,2,3,\ldots$ n-fach transitiv, so heißt $\mathfrak D$ dicht; in der Tat ist $\mathfrak D$ dicht im Sinne der schwachen Topologie.

Wir beginnen mit einer Verallgemeinerung des Satzes, daß jeder zweifach transitive Ring dicht ist. Der folgende Beweis schließt sich an den von Jacobson an, doch führt er, unserer Absicht entsprechend, unmittelbar zum Ziel.

Satz 1: Ein einfach transitiver Modul $\Re \subseteq \Im$ mit einem zweifach transitiven Ring \Im als Rechtsoperatorenbereich ist dicht.

Der Beweis erfolgt durch Induktion, wobei der Induktionsbeginn nach Voraussetzung erfüllt ist. Der \mathfrak{D} -Rechtsmodul \mathfrak{R} sei also bereits (n-1)-fach transitiv und es seien $\omega_1, \ldots, \omega_n$ über H linear unabhängige und $\alpha_1, \ldots, \alpha_n$ beliebige Elemente aus Ω . Nach Voraussetzung existiert eine Abbildung $\mathfrak{q} \in \mathfrak{R}$ mit

$$(\omega_1, \ldots, \omega_{n-2}, \omega_{n-1}) \mathfrak{q} = (0, \ldots, 0, \omega_{n-1}).$$

¹⁾ N. JACOBSON, Structure theory of simple rings without finitesness assumptions, Trans. Amer. Math. Soc. 57, 288 (1945).

Sind ω_{n-1} und $\omega_n q$ linear unabhängig, so sei $c \in \mathfrak{D}$ mit

$$\omega_{n-1} \mathfrak{c} = \omega_{n-1}, \quad \omega_n \mathfrak{q} \mathfrak{c} = 0.$$

Wir setzen dann q $c = q^*$, $\omega_n = \omega^*$ und $\alpha_n = \alpha^*$. Ist hingegen ω_n q = h ω_{n-1} mit $h \in H$, so sei $q = q^*$, $\omega_n - h$ $\omega_{n-1} = \omega^*$ und $\alpha_n - h$ $\alpha_{n-1} = \alpha^*$. Dann ist in beiden Fällen

$$(\omega_1, \ldots, \omega_{n-2}, \omega_{n-1}, \omega^*) \mathfrak{q}^* = (0, \ldots, 0, \omega_{n-1}, 0).$$

Ferner seien $r \in \Re$ und $b \in \mathfrak{D}$ mit

$$(\omega_1 \ldots, \omega_{n-2}, \omega^*) \mathfrak{r} = (\alpha_1, \ldots, \alpha_{n-2}, \alpha^*), \quad \omega_{n-1} \mathfrak{d} = \alpha_{n-1} - \omega_{n-1} \mathfrak{r}.$$

Dann ist

$$(\omega_1, \ldots, \omega_{n-1}, \omega^*) (q^* \mathfrak{d} + \mathfrak{r}) = (\alpha_1, \ldots, \alpha_{n-1}, \alpha^*)$$

und folglich wie behauptet

$$(\omega_1, \ldots, \omega_{n-1}, \omega_n) (\mathfrak{q}^* \mathfrak{d} + \mathfrak{r}) = (\alpha_1, \ldots, \alpha_{n-1}, \alpha_n).$$

Wir kommen nun zur Formulierung des angekündigten Satzes.

Satz 2: Seien $\mathfrak A$ ein einfach und $\mathfrak D$ ein zweifach transitiver Ring von linearen Abbildungen des Vektorraums Ω/H . Dann ist jeder von Null verschiedene $\mathfrak A$ -Links- und $\mathfrak D$ -Rechtsmodul aus dem vollen Endomorphismenring $\mathfrak E$ von Ω/H dicht.

Zum Beweis von Satz 2 genügt es auf Grund von Satz 1 nur zu zeigen, daß der durch eine von Null verschiedene Abbildung $e \in \mathfrak{E}$ erzeugte \mathfrak{A} -Links- und \mathfrak{D} -Rechtsmodul \mathfrak{R} einfach transitiv ist. Wegen $e \neq 0$ gibt es ein Element $\eta \in \Omega$ mit $\eta e = \gamma \neq 0$. Ist $\omega \neq 0$ ein beliebiges Element aus Ω , so gibt es, da \mathfrak{A} einfach transitiv ist, eine Abbildung $\mathfrak{A} \in \mathfrak{A}$ mit $\omega \mathfrak{A} = \eta$. Dann ist $\omega \mathfrak{A} e = \gamma$ und hieraus folgt wegen der einfachen Transitivität von \mathfrak{D} die von \mathfrak{R} . Damit ist Satz 2 bewiesen.

Es sollen nun noch einige Folgerungen aus Satz 2 angegeben werden.

Ist Ω ein Vektorraum endlicher Dimension über H, so stimmt jeder dichte Modul von linearen Abbildungen mit dem vollen Endomorphismenring von Ω/H überein. Daher erhält man aus Satz 1

Folgerung 1: Ist Ω ein Vektorraum endlicher Dimension über H, $\mathfrak E$ der volle Endomorphismenring von Ω/H und $\mathfrak A$ ein einfach transitiver Unterring von $\mathfrak E$, dann ist $\mathfrak E$ als $\mathfrak A$ -Links- und $\mathfrak E$ -Rechtsmodul irreduzibel.

Sei nun $\Omega=K$ insbesondere ein Schiefkörper, dann ist der durch die Elemente von K selbst als Rechtsmultiplikatoren von K erzeugte Endomorphismenring K_r offenbar einfach transitiv. Man erhält dann also

Folgerung 2: Ist K ein Schiefkörper endlichen Ranges über H und betrachtet man K als Vektorraum mit H als Linksskalarenkörper, so ist der volle Endomorphismenring \mathfrak{E} von K/H als K_r -Links- und \mathfrak{E} -Rechtsmodul irreduzibel.