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Abstract

We compare the asymptotic covariance matrix of the M L estima-
tor in a nonlinear measurement error model to the asymptotic covari-
ance matrices of the C'S and SQS estimators studied in Kukush et al
(2002). For small measurement error variances they are equal up to
the order of the measurement error variance and thus nearly equally

efficient.
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1 Introduction

Kukush, Schneeweiss, and Wolf (2002), thereafter KSW, study the relative

efficiency of three estimators in a nonlinear model of the exponential family

+cly, )} (1)

_ ¥ CE
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where £ = £(x, 3) is a known function of the covariate X at the point = with
an unknown parameter vector 3. The variable X is measured with errors:
W=X+o,U, U~ N(0,1),0,U being the measurement error.

The naive estimator, which simply substitutes W for X in the original
model and then uses Maximum Likelihood, is inconsistent.

Two, quite different, consistent estimators can be constructed when o, is
known. The Corrected Score (C'S) estimator starts from the likelihood score
function ¥ (y, z; 3, ¢) of the model and corrects it by constructing a corrected

score function ¥.(y, w; B, ¢) such that
E (Y, W 8,0, X) =Y, X: 8, ¢0).

The estimator Bcg (together with @cg) is then the solution to the equation
> ey, wii Bes, Bes) =0,
i=1
where (y;,w;), i =1,...,n, is a sample of observations.
The Structural Quasi Score (SQS) estimator uses the distribution of X,

which here is assumed to be a Gaussian distribution. The SQS procedure is



based on the conditional mean and variance functions of Y given W:

EY W) =m(W:j,¢)

VYIW) =v(W; 8, ),

from which a quasi score function for § and ¢, is constructed, where the

(G-part is of the form

_y—m Om

V*(y,w; B, ) = T

The estimator is then the solution to the equation
n

Z V™ (Yi, wis Bsqs: Psqs) = 0
i=1

together with a second equation for .

Both consistent estimators are asymptotically normally distributed with
asymptotic covariance matrices Xcg and Yggg, respectively. It is not known
whether Y¢g — Xg¢s is positive (semi)definite in general, i.e., whether BSQS
is more efficient than BCS7 although this may be expected and has been
proved in the special case of the Poisson model, see Shklyar and Schneeweiss
(2002). However, KSW were able to show that for small measurement error
variances o2, both estimators are nearly equally efficient. More precisely:

their covariance matrices differ only by a term of order o as 02 — 0 :

ZC’S — ZSQS = 0(0'4).

u



In the earlier paper, the M L estimator, being far more complicated than
the C'S and SQS estimators, was completely ignored and was not investi-
gated. The purpose of the present paper is to fill this gap and to study the
efficiency of ML relative to C'S and S@S.

Of course, on general grounds, M L is more efficient than C'S and SQ.S.
However, it turns out that for small o2 the ML estimator is approximately

as efficient as the two other estimators:
EML = ZSQS —|— O(O‘ﬁ) = ZC’S —I— O(O‘ﬁ)

The proof of this proposition rests on heavy algebra. Here we concentrate
on the algebra only and leave aside all questions of a rigorous justification of
the various algebraic manipulations. Generally speaking, the functions C' and
¢ should be smooth and should be regular in the sense that all expectations
that arise in the course of the arguments exist and that differentiation and
forming of expectations are interchangeable. In KSW, exact conditions for
this to hold were given for the SQ.S and C'S estimators. The corresponding
conditions for the ML estimator should be quite similar. But we do not go
into these details.

In the next section, we state the model and derive its likelihood. Sec-
tion 3 gives an expansion of the model density in terms of powers of the
measurement error variance o2, Section 4 does the same for the integrand of
the information matrix, and Sections 5 and 6 evaluate the various terms of

this expansion, where it can be seen how the normality assumptions of the



model are utilized. Section 7 has the main result; it presents an asymptotic
expression for small 62 of the covariance matrix of the ML estimator of (3
and thereby proves the approximate efficiency of SQS (and CS) for small
02. Section 8 extends this result to the case of unknown nuisance parameters,
which have to be estimated along with the parameter vector [ of interest.

Section 9 has some concluding remarks.

2 The model and its likelihood

We start from model (1) which specifies the conditional density (with respect
to a fixed o-finite measure on the Borel o-field of R) of a response variable
Y given the covariate X. The density belongs to an exponential family with
canonical parameter &, which depends on X and the parameter vector 3 to
be estimated. For simplicity, the dispersion parameter ¢ is assumed to be
known. In Section 8 we will analyse the model without assuming ¢ known.

The variable X is assumed to be normally distributed:
X ~ N(u,0?)

with parameters p and o2, which, for simplicity, are assumed to be known.
(They can easily be estimated from the data w; if o2 is known.) In the end
(Section 8) we will drop this assumption. X is unobservable (latent). Instead

we observe the variable W, which is X together with an additive measurement



€eIrror:
W =X + 0,0, (2)

where U ~ N(0,1) and U is independent of (X,Y). o, is assumed to be
known.

The joint density of the observable variables (Y, W) equals
2

¥ = C(e) (w1 — ouu)
A

plawi9) = - [ eanf ~ ) du, (3

where here £* := £(w — o,u, 3). This is the likelihood function of 3 given one

observation (y,w). The ML estimator of § is found by maximizing

> log p(yi,wis ) (4)

with respect to 3, where (y;,w;), i =1,...,n, isan i.i.d. sample. Because
of the integral in (3) the maximization of (4) may be prohibitively difficult.

Therefore other estimation techniques have been proposed, which are
simpler to carry out. Among these the Structural Quasi Score (S@.S) method
is most prominent, see KSW. It only uses the conditional mean and variance
of Y given W and not the complete likelihood.

Nevertheless, we can still evaluate the asymptotic covariance matrix of

2

u?

the ML estimator, at least for small ¢-, and compare it to the asymptotic
covariance of the SQ)S estimator. This is the purpose of the present paper.

The asymptotic covariance matrix Yy, of the M L estimator of (3 is the



inverse of the information matrix /3, and this is given by

ps(Y,W; B) pi(Y, W5 B)
P2 (Y, W; 3) ’

Is=E

where pg 1= g—g, and ¢ is the transposition sign.

Note on Notation: In the sequel we will generally omit the arguments in
the various functions. Thus p stands for p(Y, W; 3), and C stands for C(§). As
to the function &, we let & := (W, 3), i.e. we replace X by W in the function
€. In some places, e.g. in (1), we take £ as a function of X rather than of W.
We then write £ := £(X, 8) and C' = C(€). The derivatives of C' with respect
to £ are denoted by primes. Partial derivatives of £ and functions of £ with
respect to the first or second argument of £ are denoted by the corresponding
subscripts, x or (3, respectively. Note that g is column a vector.

As usual, a variable like x will be written in capitals to denote the
random variable X or in small letters to denote a realization of X. The
expectation sign F is understood to operate on the whole term following the
sign, so that brackets will not be necessary, terms being separated by + or —
signs.

Remember that in an exponential family

C' =E(Y|X), ¢C" =V(Y|X), ¢’C" =E[(Y - T)*X] (6)



3 Expansion of the model density p
for small o>

The sign ~ always denotes equality up to terms of order o2. We have
* 1 2 2
& =&w—ouu,f)~E—Eou+ iémauu

and

"

1 c
C(é*) ~ C + O/(_fxguu + 551:&:0-3”2) + 7(£zauu)2
2
= O = 0G0+ (C' + C"E) 02

Denote the exponent in (3) by M. Then using (7) and (8), we have

_ 1
M~y (€ = Gowu + S&aonu’) + oy, ¢)
2
—¢7![C = OG0t + (C'éar + C"€) 20
R R R T
202 o2 202 2
2 2
.= A+ Bo,u+ D%u2 — %
with
A = —1 C (’LU - ILL)2
= o (Y€ — )+C(ya90)—72
B = —p(y-C&+V
_ 1
D = 2 1[(y - C,)gxx - CU&%] - ;7
where

(10)

(11)

(12)



and therefore

u? 2
M = e Texp(Boyu+ D%u?)

2

AT [1 + Boyu + (D + B?)%u?).

Q

Finally,

1 M
= — d
p 27?0/6 “

2
/ “F[L+ Boyu+ (D + BY) Zfldu

Q

27m \ 2T

— ra[l + (D + BQ)?“]

(13)

4 Expansion of the integrand of the informa-

tion matrix

First note, see (9), that

Ag =y —C"&s.

Therefore, by (13),

€A

2
pp = 2—[90_1(y — C")¢{1 + (D + B2 } + (Dp + 2336)7”]
o

and

[\D|§w

ps P W=+ pH(y = CND + B)E + Dy + 2BB;)

p 1+ (D + B2)%

0.2
~ o '(y—C"¢s+ (D +2BBg)%
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Finally, the integrand of the information matrix is

pﬁptﬁ 2 nop ot Oa
o (y = )& + oG (14)
with
G = 'y — O")[(Dg + 2BBg)&g]s, (15)

where the subscript S denotes the symmetrization operator:

A, = A+ At
5 Evaluation of (G

We first evaluate the derivatives of B and D from (10) and (11):

QDBB = _(y - Cl)ﬁx,@ + ngzéﬁ

(,DDg = (y - C,)fzzﬁ - C”@xwgﬂ + 2£x£zﬂ) - Cl”&zfﬁ

Consequently,

p(Dp+2BBjs) = C"(2688V — &aals — 26aba) — C"'E:6s

+(y = C") (Eawp — 207 C"E565 — 2V Eup)
+207 1 (y — C') &b (16)

Substitution (16) in (15) we get

P*G = 2y — O")[C"(26:6685V — Eunbsbls — Eu(€unbh)s) — CEEpED]

H(y — O [~2(Eplh)sV + (Eauplly)s — 47 C"E2E5EL]

+2§071(y - C/)3§Z<£xﬂ§é)8’ (17)
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6 Expansion of E(Y — C')*h

As can be seen from (17), G consists of terms of the form (Y — C")*h, k=
1,2,3, where h is a function of W. The same is true for the other term in
the integrand of the information matrix, see (14). We therefore investigate
the expectation of these terms for alternative values of k and expand them
in terms of powers of o2. However, it is only for & = 2 that we need an
expansion up to the order of o2. For k =1 and 3 we only need to know the
first term in the expansion.

We first expand &:
— — — 0'2

where £ := £(X, 3) etc.; see the note on notation at the end of Section 2. It
follows that
— /=2 0_5

2
0"~ T 4T (€0l + 83U + TG

2
. 1

Now, with £ =1,
__ —y — = o2 —I1=2 52
E(Y —-Chh = ElY - C - C"(€,0,U +€,,2U%) - C"€, 3 U7
*[E+Ex0uU+Em§U2].
Due to (6), E(Y — C'|X) = 0, and as U is independent of X and Y and

U~ N(0,1), we thus have

E(Y — C"Yh = O(c?). (19)
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In a similar way we can now treat the case k = 2. Using (18) and (6),

we first get

2 — 122

E(Y — C"?h ~ EeC'h + %E(@”Em +20"Eh). (20)

We need to express this result as a function of the observable W rather than
the latent X. For this remember that because of (2) and the joint normality

of X and U we have

0,2

X=W-— “— (W — )+ 7N,

o2+ o2

2 2
2: 0,0

o2+ o2

Y

where N is a standard Gaussian variable independent of W, see KSW. Up

to the order of o2 we have

2 2
O, . Ou

0%+ o2

[\V]

and consequently, with V' from (12),
X~W —0o2V +7N.

For any function ¢g (with some regularity properties) we therefore have, be-

2

u?

cause of T2 ~ o
1
Eg(X) = Elg(W) + ¢ (W)(rN = oyV) + 59" (W) N7
or, for short, with g := g(X) and g := g(W),

% (21)

Eg=~ Eg+ E(—2¢'V + g");
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This can be simplified by using the following lemma, which is proved in the

appendix, see also KSW, equation (100).

Lemma
For any function f(W) (with some regularity properties) and for V' from

(12) we have
T o g
Ef(Ww)v =(1+ ;)Ef (W).
Applying this lemma to (21), we get

— ~ 0-’3, 7
Eg=~ Eg— 7Eg : (22)

In this way we can transform expectations of functions of X into expectations
of functions of W.

We can apply this result to (20) and obtain
E(Y —C')h =~ EoC"h + %ﬁE[—gp(Oﬂh)m + @C" hyy + 2C"E2N).
With
(C"R)az = C"hy + C" (285 + Eush) + CHER
we finally have

E(YY —C)?h =~ @EC"h

2
+%E[20”2§§h — 9C" (265hy + Eash) — pCWVER](23)
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Now for the case k = 3. Here we need only the first term of the expansion.

Using (18) an (6), we have
E(Y —C")h=@*EC" 1+ O(c2).

This can again be transformed into an expression with observables by using

(22):
E(Y — C")3h = @*EC"h + O(c?). (24)
7 Expansion of I3 and Xy,

Using (19), (23), and (24), we can now expand %EG from (17) in terms of

2.
powers of o

02 — 03 " - "
?UEG ~ P IEE[C {_2<€w6§f3>sv+ (fmﬁ%)s - 490 10 fffﬂfﬁ}

+2C”/€x (590552)8] :

With the help of the lemma this can be simplified to
2

0-2 Y 1 — "
TLBG & =27 B[O (Garph)s + A6anSls} + 407 O, (25)

In a similar way we also expand the expectation of the first term on the
right-hand side of (14):

2
_ / — 1 Uu — 11
© QE(Y—C)Qgﬁgg ~ ¢ Y{EC sl + 53 E[2p7'C Qgggﬁgg

—C"{26,(£5Eh)x + Euabsls} — CWEREREE]}(26)
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Finally we find an expansion for the information matrix I, defined in (5).

According to (14), this is just the sum of (25) and (26).

Is~ o {EC"EsE]
% Bl2p 1 C"2E260} + C"((Eash)s + 46onln)
+C"(28:(€685)x + EuapEp)
+CWeZeaeh]}
= ¢S - FQ).
The asymptotic covariance matrix of BM 1, is then found to be
o2
ZML = go(Sfl + 77%971@571) + O(O’i)

Noting that
(aaph)s + 48an8ss = (§85)an + 26ansp
and
26, (£5€5)x + Ennbplh = 2(Eabslh)a — Eanbilh,

we see that X/, equals the expression for Yggg in (21) of KSW up to the

order of o2, i.e.:

ZML = ZSQS + O(O‘i)
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8 Nuisance parameters

Up to now we assumed the nuisance parameters ¢, u, and o2 to be known.
We shall now drop this assumption.

Let v := (¢, u,0?)" be the vector of the nuisance parameters and 6 :=
(8%, V")t the vector of all unknown parameters of the model. Suppose 6 is
estimated by Maximum Likelihood. The covariance matrix of 0 is then given
as the inverse of the information matrix of §, which can be decomposed in

the following way

I F
IOZ(F{J; Iy)?

where I3 is as in Section 7, I, is the information matrix of v:
I, = Ep~*pup,,

and
F = Ep~pgpl,.

By arguments as in the previous sections but without the need to compute
all the terms, it is seen that F' can be expanded as
2
o
F= FO + Fl—u.
2
In the error-free model (i.e., 02 = 0), the M L estimators of 3, , i, and o2 are

asymptotically independent. Thus, in this case, F' = 0, and therefore, in the
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error-ridden model, Fy = 0 and thus F' = O(02). In addition, in the error-free
model, Iz and I, are positive definite and so, in the error-ridden model, /3

and I, are also positive definite, at least for small o2. It then follows that

B ;! ~I;'FI
[0 b= ( _ﬁIlet[ﬂ—l 7 J1 ) + O(Ui)

Considering only the upper left corner of this matrix, we see that the covari-

ance matrix of BML is now given by
Sup =15+ O(od).
But according to our main result of the previous section,
I5' = Ssqs + O(ay).
Therefore we have again, even in the presence of nuisance parameters,

EML = ESQS —|— O(O’i)
9 Conclusion

In a measurement error model Maximum Likelihood (M L) methods are often
extremely difficult to apply. For this reason other estimation techniques that
are easier to apply and yet lead to consistent estimators have been proposed.
Among these Structural Quasi Score (SQ.S) and Corrected Score (C'S) meth-
ods are most prominent. These methods are, however, less efficient than M L.
Fortunately, it can be shown that for small error variances these three meth-
ods are almost equally efficient. This result is a further justification for the

use of the simpler methods in practical applications.
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ML and SQS, as far as these methods have been developed here, both
rely on the assumption that the latent covariate is normally distributed. De-
viations from normality lead to biased estimators, see Cheng and Schneeweiss
(2003). One can, however, modify the ML and SQS methods so that they
take into account a (finite) mixture of normal distributions instead of just
one normal distribution, for SQS see Cheng and Schneeweiss (2003). This
possibility renders these methods rather flexible in so far as any (continuous)
distribution can be approximated by a mixture of normals.

The near equal efficiency result was proved for a scalar covariate X (but
for a vector valued parameter [3). One should be able to prove the same result

for a vector of covariates each measured with measurement errors.

Appendix

Proof of the Lemma in Section 6

First note that W ~ N(u,02) with 02 = ¢% + o2. Therefore, with V'

from (12),

Ef(W)V = Bf(W)"ousd

o2 1 w— *<w_5)2
= O_gmﬂ'w ff('IU) o2 e dw’

which by partial integration is equal to
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(w—p)?

EfW)V =B g [ fw)e 7 dw

— GEf(W)

= (1+Z)Ef(W).
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