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Abstract

We compare the asymptotic covariance matrix of the ML estima-

tor in a nonlinear measurement error model to the asymptotic covari-

ance matrices of the CS and SQS estimators studied in Kukush et al

(2002). For small measurement error variances they are equal up to

the order of the measurement error variance and thus nearly equally

efficient.
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1 Introduction

Kukush, Schneeweiss, and Wolf (2002), thereafter KSW, study the relative

efficiency of three estimators in a nonlinear model of the exponential family

f(y|x) = exp{yξ − C(ξ)

ϕ
+ c(y, ϕ)} (1)

where ξ = ξ(x, β) is a known function of the covariate X at the point x with

an unknown parameter vector β. The variable X is measured with errors:

W = X + σuU, U ∼ N(0, 1), σuU being the measurement error.

The naive estimator, which simply substitutes W for X in the original

model and then uses Maximum Likelihood, is inconsistent.

Two, quite different, consistent estimators can be constructed when σu is

known. The Corrected Score (CS) estimator starts from the likelihood score

function ψ(y, x; β, ϕ) of the model and corrects it by constructing a corrected

score function ψc(y, w; β, ϕ) such that

E ψc(Y,W ; β, ϕ|Y,X) = ψ(Y,X; β, ϕ).

The estimator β̂CS (together with ϕ̂CS) is then the solution to the equation

n∑
i=1

ψc(yi, wi; β̂CS, ϕ̂CS) = 0,

where (yi, wi), i = 1, . . . , n, is a sample of observations.

The Structural Quasi Score (SQS) estimator uses the distribution of X,

which here is assumed to be a Gaussian distribution. The SQS procedure is
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based on the conditional mean and variance functions of Y given W :

E(Y |W ) = m(W ; β, ϕ)

V (Y |W ) = v(W ; β, ϕ),

from which a quasi score function for β and ϕ, is constructed, where the

β-part is of the form

ψ∗(y, w; β, ϕ) =
y − m

v

∂m

∂β
.

The estimator is then the solution to the equation

n∑
i=1

ψ∗(yi, wi; β̂SQS, ϕ̂SQS) = 0

together with a second equation for ϕ̂.

Both consistent estimators are asymptotically normally distributed with

asymptotic covariance matrices ΣCS and ΣSQS, respectively. It is not known

whether ΣCS − ΣSQS is positive (semi)definite in general, i.e., whether β̂SQS

is more efficient than β̂CS, although this may be expected and has been

proved in the special case of the Poisson model, see Shklyar and Schneeweiss

(2002). However, KSW were able to show that for small measurement error

variances σ2
u, both estimators are nearly equally efficient. More precisely:

their covariance matrices differ only by a term of order σ4
u as σ2

u → 0 :

ΣCS − ΣSQS = O(σ4
u).
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In the earlier paper, the ML estimator, being far more complicated than

the CS and SQS estimators, was completely ignored and was not investi-

gated. The purpose of the present paper is to fill this gap and to study the

efficiency of ML relative to CS and SQS.

Of course, on general grounds, ML is more efficient than CS and SQS.

However, it turns out that for small σ2
u the ML estimator is approximately

as efficient as the two other estimators:

ΣML = ΣSQS + O(σ4
u) = ΣCS + O(σ4

u).

The proof of this proposition rests on heavy algebra. Here we concentrate

on the algebra only and leave aside all questions of a rigorous justification of

the various algebraic manipulations. Generally speaking, the functions C and

ξ should be smooth and should be regular in the sense that all expectations

that arise in the course of the arguments exist and that differentiation and

forming of expectations are interchangeable. In KSW, exact conditions for

this to hold were given for the SQS and CS estimators. The corresponding

conditions for the ML estimator should be quite similar. But we do not go

into these details.

In the next section, we state the model and derive its likelihood. Sec-

tion 3 gives an expansion of the model density in terms of powers of the

measurement error variance σ2
u, Section 4 does the same for the integrand of

the information matrix, and Sections 5 and 6 evaluate the various terms of

this expansion, where it can be seen how the normality assumptions of the
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model are utilized. Section 7 has the main result; it presents an asymptotic

expression for small σ2
u of the covariance matrix of the ML estimator of β

and thereby proves the approximate efficiency of SQS (and CS) for small

σ2
u. Section 8 extends this result to the case of unknown nuisance parameters,

which have to be estimated along with the parameter vector β of interest.

Section 9 has some concluding remarks.

2 The model and its likelihood

We start from model (1) which specifies the conditional density (with respect

to a fixed σ-finite measure on the Borel σ-field of R) of a response variable

Y given the covariate X. The density belongs to an exponential family with

canonical parameter ξ, which depends on X and the parameter vector β to

be estimated. For simplicity, the dispersion parameter ϕ is assumed to be

known. In Section 8 we will analyse the model without assuming ϕ known.

The variable X is assumed to be normally distributed:

X ∼ N(μ, σ2)

with parameters μ and σ2, which, for simplicity, are assumed to be known.

(They can easily be estimated from the data wi if σ2
u is known.) In the end

(Section 8) we will drop this assumption. X is unobservable (latent). Instead

we observe the variable W , which is X together with an additive measurement
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error:

W = X + σuU, (2)

where U ∼ N(0, 1) and U is independent of (X,Y ). σu is assumed to be

known.

The joint density of the observable variables (Y,W ) equals

ρ(y, w; β) =
1

2πσ

∫
exp{yξ∗ − C(ξ∗)

ϕ
+ c(y, ϕ) − (w − μ − σuu)2

2σ2
− u2

2
} du, (3)

where here ξ∗ := ξ(w−σuu, β). This is the likelihood function of β given one

observation (y, w). The ML estimator of β is found by maximizing

n∑
i=1

log ρ(yi, wi; β) (4)

with respect to β, where (yi, wi), i = 1, . . . , n , is an i.i.d. sample. Because

of the integral in (3) the maximization of (4) may be prohibitively difficult.

Therefore other estimation techniques have been proposed, which are

simpler to carry out. Among these the Structural Quasi Score (SQS) method

is most prominent, see KSW. It only uses the conditional mean and variance

of Y given W and not the complete likelihood.

Nevertheless, we can still evaluate the asymptotic covariance matrix of

the ML estimator, at least for small σ2
u, and compare it to the asymptotic

covariance of the SQS estimator. This is the purpose of the present paper.

The asymptotic covariance matrix ΣML of the ML estimator of β is the
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inverse of the information matrix Iβ, and this is given by

Iβ = E
ρβ(Y,W ; β) ρt

β(Y,W ; β)

ρ2(Y,W ; β)
, (5)

where ρβ := ∂ρ
∂β

, and t is the transposition sign.

Note on Notation: In the sequel we will generally omit the arguments in

the various functions. Thus ρ stands for ρ(Y,W ; β), and C stands for C(ξ). As

to the function ξ, we let ξ := ξ(W,β), i.e. we replace X by W in the function

ξ. In some places, e.g. in (1), we take ξ as a function of X rather than of W .

We then write ξ := ξ(X, β) and C = C(ξ). The derivatives of C with respect

to ξ are denoted by primes. Partial derivatives of ξ and functions of ξ with

respect to the first or second argument of ξ are denoted by the corresponding

subscripts, x or β, respectively. Note that ξβ is column a vector.

As usual, a variable like x will be written in capitals to denote the

random variable X or in small letters to denote a realization of X. The

expectation sign E is understood to operate on the whole term following the

sign, so that brackets will not be necessary, terms being separated by + or –

signs.

Remember that in an exponential family

C
′
= E(Y |X), ϕC

′′
= V (Y |X), ϕ2C

′′′
= E[(Y − C

′
)3|X] (6)
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3 Expansion of the model density ρ

for small σ2
u

The sign ≈ always denotes equality up to terms of order σ2
u. We have

ξ∗ = ξ(w − σuu, β) ≈ ξ − ξxσuu +
1

2
ξxxσ

2
uu

2 (7)

and

C(ξ∗) ≈ C + C ′(−ξxσuu +
1

2
ξxxσ

2
uu

2) +
C ′′

2
(ξxσuu)2

= C − C ′ξxσuu + (C ′ξxx + C ′′ξ2
x)

σ2
u

2
u2. (8)

Denote the exponent in (3) by M . Then using (7) and (8), we have

M ≈ yϕ−1(ξ − ξxσuu +
1

2
ξxxσ

2
uu

2) + c(y, ϕ)

−ϕ−1[C − C ′ξxσuu + (C ′ξxx + C ′′ξ2
x)

σ2
u

2
u2]

−(w − μ)2

2σ2
+

(w − μ)σuu

σ2
− σ2

uu
2

2σ2
− u2

2

:= A + Bσuu + D
σ2

u

2
u2 − u2

2

with

A := ϕ−1(yξ − C) + c(y, ϕ) − (w − μ)2

2σ2
(9)

B := −ϕ−1(y − C ′)ξx + V (10)

D := ϕ−1[(y − C ′)ξxx − C ′′ξ2
x] −

1

σ2
, (11)

where

V :=
w − μ

σ2
, (12)
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and therefore

eM = eA−u2

2 exp(Bσuu + D σ2
u

2
u2)

≈ eA−u2

2 [1 + Bσuu + (D + B2)σ2
u

2
u2].

Finally,

ρ =
1

2πσ

∫
eMdu

≈ eA

√
2πσ

1√
2π

∫
e−

u2

2 [1 + Bσuu + (D + B2)
σ2

u

2
u2]du

=
eA

√
2πσ

[1 + (D + B2)
σ2

u

2
]. (13)

4 Expansion of the integrand of the informa-

tion matrix

First note, see (9), that

Aβ = ϕ−1(y − C ′)ξβ.

Therefore, by (13),

ρβ ≈ eA

√
2πσ

[ϕ−1(y − C ′)ξβ{1 + (D + B2)
σ2

u

2
} + (Dβ + 2BBβ)

σ2
u

2
]

and

ρβ

ρ
≈

ϕ−1(y − C ′)ξβ + [ϕ−1(y − C ′)(D + B2)ξβ + Dβ + 2BBβ]
σ2

u

2

1 + (D + B2)σ2
u

2

≈ ϕ−1(y − C ′)ξβ + (Dβ + 2BBβ)σ2
u

2



10

Finally, the integrand of the information matrix is

ρβρt
β

ρ2
≈ ϕ−2(y − C ′)2ξβξt

β +
σ2

u

2
G (14)

with

G := ϕ−1(y − C ′)[(Dβ + 2BBβ)ξt
β]s, (15)

where the subscript S denotes the symmetrization operator:

As := A + At

5 Evaluation of G

We first evaluate the derivatives of B and D from (10) and (11):

ϕBβ = −(y − C ′)ξxβ + C ′′ξxξβ

ϕDβ = (y − C ′)ξxxβ − C ′′(ξxxξβ + 2ξxξxβ) − C ′′′ξ2
xξβ

Consequently,

ϕ(Dβ + 2BBβ) = C ′′(2ξxξβV − ξxxξβ − 2ξxξxβ) − C ′′′ξ2
xξβ

+(y − C ′)(ξxxβ − 2ϕ−1C ′′ξ2
xξβ − 2V ξxβ)

+2ϕ−1(y − C ′)2ξxξxβ. (16)

Substitution (16) in (15) we get

ϕ2G = 2(y − C ′)[C ′′(2ξxξβξt
βV − ξxxξβξt

β − ξx(ξxβξt
β)s) − C ′′′ξ2

xξβξt
β]

+(y − C ′)2[−2(ξxβξt
β)sV + (ξxxβξt

β)s − 4ϕ−1C ′′ξ2
xξβξt

β]

+2ϕ−1(y − C ′)3ξx(ξxβξt
β)s. (17)
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6 Expansion of E(Y − C ′)kh

As can be seen from (17), G consists of terms of the form (Y − C ′)kh, k =

1, 2, 3, where h is a function of W . The same is true for the other term in

the integrand of the information matrix, see (14). We therefore investigate

the expectation of these terms for alternative values of k and expand them

in terms of powers of σ2
u. However, it is only for k = 2 that we need an

expansion up to the order of σ2
u. For k = 1 and 3 we only need to know the

first term in the expansion.

We first expand ξ:

ξ ≈ ξ + ξxσuU + ξxx

σ2
u

2
U2,

where ξ := ξ(X, β) etc.; see the note on notation at the end of Section 2. It

follows that

C ′ ≈ C
′
+ C

′′
(ξxσuU + ξxx

σ2
u

2
U2) + C

′′′
ξ

2

x

σ2
u

2
U2. (18)

Now, with k = 1,

E(Y − C ′)h ≈ E[Y − C
′ − C

′′
(ξxσuU + ξxx

σ2
u

2
U2) − C

′′′
ξ

2

x
σ2

u

2
U2]

∗[h + hxσuU + hxx
σ2

u

2
U2].

Due to (6), E(Y − C
′|X) = 0, and as U is independent of X and Y and

U ∼ N(0, 1), we thus have

E(Y − C ′)h = O(σ2
u). (19)
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In a similar way we can now treat the case k = 2. Using (18) and (6),

we first get

E(Y − C ′)2h ≈ EϕC
′′
h +

σ2
u

2
E(ϕC

′′
hxx + 2C

′′2
ξ

2

xh). (20)

We need to express this result as a function of the observable W rather than

the latent X. For this remember that because of (2) and the joint normality

of X and U we have

X = W − σ2
u

σ2 + σ2
u

(W − μ) + τN,

τ 2 =
σ2

uσ
2

σ2 + σ2
u

,

where N is a standard Gaussian variable independent of W , see KSW. Up

to the order of σ2
u we have

σ2
u

σ2 + σ2
u

≈ σ2
u

σ2

and consequently, with V from (12),

X ≈ W − σ2
uV + τN.

For any function g (with some regularity properties) we therefore have, be-

cause of τ 2 ≈ σ2
u,

Eg(X) ≈ E[g(W ) + g′(W )(τN − σ2
uV ) +

1

2
g′′(W )σ2

uN
2]

or, for short, with g := g(X) and g := g(W ),

Eg ≈ Eg + E(−2g′V + g′′)
σ2

u

2
. (21)
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This can be simplified by using the following lemma, which is proved in the

appendix, see also KSW, equation (100).

Lemma

For any function f(W ) (with some regularity properties) and for V from

(12) we have

Ef(W )V = (1 +
σ2

u

σ2
)Ef ′(W ).

Applying this lemma to (21), we get

Eg ≈ Eg − σ2
u

2
Eg′′. (22)

In this way we can transform expectations of functions of X into expectations

of functions of W .

We can apply this result to (20) and obtain

E(Y − C ′)2h ≈ EϕC ′′h +
σ2

u

2
E[−ϕ(C ′′h)xx + ϕC ′′hxx + 2C ′′2ξ2

xh].

With

(C ′′h)xx = C ′′hxx + C ′′′(2ξxhx + ξxxh) + C(4)ξ2
xh

we finally have

E(Y − C ′)2h ≈ ϕEC ′′h

+
σ2

u

2
E[2C ′′2ξ2

xh − ϕC ′′′(2ξxhx + ξxxh) − ϕC(4)ξ2
xh].(23)
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Now for the case k = 3. Here we need only the first term of the expansion.

Using (18) an (6), we have

E(Y − C ′)3h = ϕ2EC
′′′
h + O(σ2

u).

This can again be transformed into an expression with observables by using

(22):

E(Y − C ′)3h = ϕ2EC ′′′h + O(σ2
u). (24)

7 Expansion of Iβ and ΣML

Using (19), (23), and (24), we can now expand σ2
u

2
EG from (17) in terms of

powers of σ2
u:

σ2
u

2
EG ≈ ϕ−1σ2

u

2
E[C ′′{−2(ξxβξt

β)sV + (ξxxβξt
β)s − 4ϕ−1C ′′ξ2

xξβξt
β}

+2C ′′′ξx(ξxβξt
β)s].

With the help of the lemma this can be simplified to

σ2
u

2
EG ≈ −σ2

u

2
ϕ−1E[C ′′{(ξxxβξt

β)s + 4ξxβξt
xβ} + 4ϕ−1C ′′2ξ2

xξβξt
β]. (25)

In a similar way we also expand the expectation of the first term on the

right-hand side of (14):

ϕ−2E(Y − C ′)2ξβξt
β ≈ ϕ−1{EC ′′ξβξt

β +
σ2

u

2
E[2ϕ−1C ′′2ξ2

xξβξt
β

−C ′′′{2ξx(ξβξt
β)x + ξxxξβξt

β} − C(4)ξ2
xξβξt

β]}.(26)
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Finally we find an expansion for the information matrix Iβ, defined in (5).

According to (14), this is just the sum of (25) and (26).

Iβ ≈ ϕ−1{EC ′′ξβξt
β

−σ2
u

2
E[2ϕ−1C ′′2ξ2

xξβξt
β + C ′′((ξxxβξt

β)s + 4ξxβξt
xβ)

+C ′′′(2ξx(ξβξt
β)x + ξxxξβξt

β)

+C(4)ξ2
xξβξt

β]}

=: ϕ−1(S − σ2
u

2
Q).

The asymptotic covariance matrix of β̂ML is then found to be

ΣML = ϕ(S−1 +
σ2

u

2
S−1QS−1) + O(σ4

u).

Noting that

(ξxxβξt
β)s + 4ξxβξt

xβ = (ξβξt
β)xx + 2ξxβξt

xβ

and

2ξx(ξβξt
β)x + ξxxξβξt

β = 2(ξxξβξt
β)x − ξxxξβξt

β,

we see that ΣML equals the expression for ΣSQS in (21) of KSW up to the

order of σ2
u, i.e.:

ΣML = ΣSQS + O(σ4
u).
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8 Nuisance parameters

Up to now we assumed the nuisance parameters ϕ, μ, and σ2 to be known.

We shall now drop this assumption.

Let ν := (ϕ, μ, σ2)t be the vector of the nuisance parameters and θ :=

(βt, νt)t the vector of all unknown parameters of the model. Suppose θ is

estimated by Maximum Likelihood. The covariance matrix of θ̂ is then given

as the inverse of the information matrix of θ, which can be decomposed in

the following way

Iθ =

(
Iβ F
F t Iν

)
,

where Iβ is as in Section 7, Iν is the information matrix of ν:

Iν = Eρ−2ρνρ
t
ν ,

and

F = Eρ−2ρβρt
ν .

By arguments as in the previous sections but without the need to compute

all the terms, it is seen that F can be expanded as

F ≈ F0 + F1
σ2

u

2
.

In the error-free model (i.e., σ2
u = 0), the ML estimators of β, ϕ, μ, and σ2 are

asymptotically independent. Thus, in this case, F = 0, and therefore, in the



17

error-ridden model, F0 = 0 and thus F = O(σ2
u). In addition, in the error-free

model, Iβ and Iν are positive definite and so, in the error-ridden model, Iβ

and Iν are also positive definite, at least for small σ2
u. It then follows that

I−1
θ =

(
I−1
β −I−1

β FI−1
ν

−I−1
ν F tI−1

β I−1
ν

)
+ O(σ4

u).

Considering only the upper left corner of this matrix, we see that the covari-

ance matrix of β̂ML is now given by

ΣML = I−1
β + O(σ4

u).

But according to our main result of the previous section,

I−1
β = ΣSQS + O(σ4

u).

Therefore we have again, even in the presence of nuisance parameters,

ΣML = ΣSQS + O(σ4
u).

9 Conclusion

In a measurement error model Maximum Likelihood (ML) methods are often

extremely difficult to apply. For this reason other estimation techniques that

are easier to apply and yet lead to consistent estimators have been proposed.

Among these Structural Quasi Score (SQS) and Corrected Score (CS) meth-

ods are most prominent. These methods are, however, less efficient than ML.

Fortunately, it can be shown that for small error variances these three meth-

ods are almost equally efficient. This result is a further justification for the

use of the simpler methods in practical applications.
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ML and SQS, as far as these methods have been developed here, both

rely on the assumption that the latent covariate is normally distributed. De-

viations from normality lead to biased estimators, see Cheng and Schneeweiss

(2003). One can, however, modify the ML and SQS methods so that they

take into account a (finite) mixture of normal distributions instead of just

one normal distribution, for SQS see Cheng and Schneeweiss (2003). This

possibility renders these methods rather flexible in so far as any (continuous)

distribution can be approximated by a mixture of normals.

The near equal efficiency result was proved for a scalar covariate X (but

for a vector valued parameter β). One should be able to prove the same result

for a vector of covariates each measured with measurement errors.

Appendix

Proof of the Lemma in Section 6 :

First note that W ∼ N(μ, σ2
w) with σ2

w = σ2 + σ2
u. Therefore, with V

from (12),

Ef(W )V = Ef(W )W−μ
σ2

w

σ2
w

σ2

= σ2
w

σ2
1√

2πσw

∫
f(w)w−μ

σ2
w

e
− (w−μ)2

2σ2
w dw,

which by partial integration is equal to
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Ef(W )V = σ2
w

σ2
1√

2πσw

∫
f ′(w)e

− (w−μ)2

2σ2
w dw

= σ2
w

σ2 Ef ′(W )

= (1 + σ2
u

σ2 )Ef ′(W ).
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