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  Rustless translation  
     Abstract :  ATP binding cassette proteins are a large and 

diverse family of molecular machines and include trans-

membrane transporter, chromosome maintenance and 

DNA repair proteins, and translation factors. However, the 

function of the ABCE1, the only member of subfamily E 

of ABC proteins, remained mysterious for over a decade, 

even though it is perhaps the most conserved ABC protein 

in eukaryotes and archaea. Recent results have now 

identified ABCE1 as the ribosome-recycling factor of 

eukaryotes and archaea. Thus, two iron-sulfur clusters  –  

the hallmark feature of ABCE1  –  help catalyze an integral 

step of the translational cycle at the core of the protein 

synthesis machinery.  
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  Introduction 
 In this article, I review a decade of research on life ’ s perhaps 

most central ATP binding cassette (ABC) enzyme: ABCE1. 

ABCE1 [also known as RNase-L inhibitor (Rli1) and host 

protein 68 kDa (HP68)] is the only member of subfamily E 

of ABC proteins, an otherwise large and diverse family of 

energy-converting molecular machines or switches. When 

I started my own laboratory in 2001, very little was known 

about this protein and its only function was a role in inter-

fering with RNase-L activity (hence it is known as RNase-L 

inhibitor, Rli1) in the innate immune system (Bisbal et al. , 

1995 ). Shortly after, ABCE1 was found also as a 68 kDa 

host protein (named HP68 then) that was implicated in 

the assembly of immature capsids of human immunode-

ficiency virus (Zimmerman et al. , 2002 ). However, ABCE1 

is exceptionally conserved in evolution and must have 

a central, yet to be discovered function in the cell physi-

ology of all eukaryotes and archaeal that goes beyond 

its relatively narrow role in RNase-L inhibition and HIV 

capsid assembly. Because of its difficult biochemistry and 

lack of identified substrates, this function remained mys-

terious for more than a decade. In the past years, however, 

with contributions from many laboratories (see below for 

references and details) ABCE1 emerged as a new transla-

tion factor and its substrate turned out to be the ribosome.  

  ABC enzymes: versatile molecular 
machines or switches 
 ABC enzymes include transmembrane channels and 

transporters such as cystic fibrosis transmembrane regu-

lator (a gated chloride channel) or multidrug resistance 

protein (a pump for lipophilic small molecules), struc-

tural maintenance of chromosome proteins (e.g., the 

sister chromatid cohesion complex), DNA repair enzymes 

(e.g., Rad50, MutS/MSH or UvrA), and several translation 

factors (e.g., eEF3 or GCN20). For an overview see, for 

example, Holland et al.  (2003) . 

 Although ABC enzymes are very diverse with respect 

to their biological function and architecture, a central 

structural and mechanistic feature is widely conserved: 

they posses two nucleotide-binding domains (NBDs), 

either in the form of a homodimer, a heterodimer, or a 

tandem cassette on a single polypeptide chain (Figure  1  A). 

During my postdoctoral work on the DNA repair enzyme 

Rad50, we unraveled a central aspect how ABC proteins 

function and showed that ABC type NBDs sandwich two 

ATP molecules in the NBD:NBD interface (Hopfner et al. , 

2000 ). ATP is recognized by Walker A and B motifs from 

one NBD, and by the ABC characteristic  ‘ signature ’  motif 

(or  ‘ C ’  motif) from the opposing NBD, and vice versa. ATP 

binding promotes NBD-NBD engagement and ATP-hydrol-

ysis promotes disengagement of the two NBDs (Figure 

1B). This conformational switch is the  ‘ engine ’  of ABC 

enzymes. 

 Research by many colleagues and ourselves extended 

this analysis to complete ABC proteins (e.g., Lamers et al. , 

2000 ; Obmolova et al. , 2000 ; Locher et al. , 2002 ; Andersen 

et al. , 2006 ; Dawson and Locher , 2006 ; Lammens et al. , 
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2011 ; Lim et al. , 2011 ), and there is now a good under-

standing of the principal architecture and ATP-dependent 

structural dynamics of a variety of ABC proteins (Figure 

1A). A pair of NDBs undergoes conformational cycles 

by ATP driven engagement and disengagement, which 

impacts on the structure and substrate binding properties 

of the NBDs and its function-specific associated domains. 

The latter are, for example, DNA binding or nuclease 

domains in DNA repair enzymes, or transmembrane 

domains (TMDs) in ABC transporters, where the confor-

mational cycles pump specific ligands across membranes. 

 However, there are still open questions for many ABC 

systems, in particular allosteric regulation of the ATPase 

by ligand binding or the question whether both ATP mol-

ecules in the NBD-NBD sandwich are hydrolyzed simulta-

neously or rather sequentially (Figure 1B). ABCE1, apart 
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 Figure 1    ABC protein architectures. 

 (A) Exemplary architectures of ABC proteins. ABCE1 has two nucleotide-binding domains (NBD1 and 2) along with helix-loop-helix (HLH), 

iron-sulfur cluster (FeS) and hinge domains. The DNA mismatch repair protein MutS forms a dimer where ATP dependent conformational 

changes of NBDs regulate mismatch binding by DNA binding domains (DBD with grey DNA). ATP binding to the Rad50 DNA double-strand 

break repair ABC protein regulates the Mre11 nuclease dimer. Conformational changes of NBDs in ABC transporters drive solute transport 

through transmembrane domains (TMDs). (B) ATP dependent engagement-disengagement of the two NDBs in ABC proteins: ATP binds to 

Walker A/B (A/B) motifs of one NDB and the signature (S) motif of the opposing NBD. The functional cycle might involve hybrid states 

where only one ATP binding site is engaged (bracketed).    
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from its emerging exciting biology, also revealed interest-

ing new insights into allosteric regulation and sequential 

ATP binding and hydrolysis.  

  A brief history of the early research 
on ABCE1 
 ABCE1 is a soluble, highly unique ABC protein consisting 

of an N-terminal domain with iron-sulfur (FeS) cluster 

binding sites and an NBD tandem cassette. It was described 

in 1995 as RNase-L inhibitor (RLI1) on the basis of its co-

immunoprecipitation with RNase-L and inhibitory effect 

on RNase-L mediated RNA degradation (Bisbal et al. , 1995 ). 

RNase-L is an interferon-dependent polysome-associated 

antiviral defense enzyme that is activated by 2 ′ -5 ′  oligoad-

enylates and degrades mRNA and single-stranded viral 

RNA in virus infected cells (Silverman , 2007 ), but also has 

a variety of additional functions (Chakrabarti et al. , 2011 ). 

In 2002, ABCE1 was found to be required for the assembly 

of immature HIV-1 capsids and it has been suggested that 

it accounts for the ATP dependence of the rather poorly 

understood capsid assembly process (Zimmerman et al. , 

2002 ). While these early results made ABCE1 an interest-

ing target for biomedical research and therapeutic inter-

vention, the cellular function of ABCE1 remained unclear. 

In particular, the 2 ′ -5′  -oligoadenylate synthetase/RNase-L 

antiviral defense pathway is only found in vertebrates, 

while ABCE1 is highly conserved in all archaea and eukar-

yotes although absent in bacteria (Kerr , 2004 ). The phy-

logenetic distribution suggested that ABCE1 is involved 

in a rather fundamental process in life that is conserved 

in archaea and eukaryotes, but mechanistically distinct 

in bacteria. In support of a core role in eukaryotic and 

archaeal cell physiology, ABCE1 turned out to be essen-

tial in all organisms tested (Dong et al. , 2004 ; Zhao et al. , 

2004 ; Coelho et al. , 2005 ; Karcher et al. , 2005 ; Kispal 

et al. , 2005 ; Yarunin et al. , 2005 ).     

 First insights into its core function emerged, when 

the Baillie, Dean, Hinnebusch, Leevers and Marygold labs 

found ABCE1 (Rli1p) to be involved in the assembly of the 

translation pre-initiation machinery, to interact with the 

translation initiation machinery and polysomes in yeast 

and to be important for translation and in worms, flies and 

vertebrates (Dong et al. , 2004 ; Zhao et al. , 2004 ; Coelho et 

al. , 2005 ; Chen et al. , 2006 ). At the same time, the Lill and 

Hurt labs found a functional link between the iron-sulfur 

clusters of ABCE1 and ribosome biogenesis (Kispal et al. , 

2005 ; Yarunin et al. , 2005 ) while we could crystallize and 

determine the crystal structure of the twin ABC cassette 

of archaeal ABCE1 bound to ADP (Karcher et al. , 2005 ) 

(Figure 2). Studies in flies then showed that ABCE1 (known 

as Pixie in Drosophila) binds the 40S ribosome in an ATP-

dependent manner and depletion leads to an increase in 

in empty 80S ribosomes (Andersen and Leevers , 2007 ). 

ABCE1 interacts with the translation initiation factor eIF3 

through the Hcr1 component in yeast (Dong et al. , 2004 ), 
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 Figure 2    Structure and ribosome interaction of ABCE1. 

 (A) Crystal structure of  Pyrococcus furiosus  ABCE1, shown as ribbon model. Magnesium-ADPs (magenta) and the two 4Fe-4S clusters 

(yellow-red) are highlighted. The two nucleotide binding sites are formed by opposing Walker A (A1 and A2) and signature (S1 and S2) 

motifs. (B) ABCE1 binds to the intersubunit cleft (SSU, small subunit; LSU, large subunit) of stalled ribosomes in an asymmetric conforma-

tion with a closed second ATP binding site. The asymmetric conformation could be induced by ATP at the closed second ATP binding site 

(as modeled here), but the role of nucleotides in each active site need to be addressed in future studies. While NBD2 and 1 predominantly 

interact with SSU and LSU, respectively, FeS binds the surveillance factor Pelota. ATP driven conformational changes in ABCE1 could directly 

split ribosomes or split ribosomes by modulating the conformation of Pelota.    
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and with eIF2 and eIF5 in vertebrates (Chen et al. , 2006 ). 

Hcr1 or eIF3 have additional functions, including also the 

coordination between termination and initiation, riboso-

mal subunit dissociation and rRNA maturation (Valasek 

et al. , 2001 ), which made the functional interpretation 

of these interactions difficult. Taken together, however, 

it became clear that ABCE1 functions in a ribosome-

associated process although its mechanism was still mys-

terious on the basis of the pleiotropic effects ranging from 

defects in ribosome biogenesis to translation.  

  Structure of ABCE1 
 While the biochemical mechanism of ABCE1 remained 

entirely unclear  –  for example the interacting partners 

found in yeast have no counterpart in archaea where 

ABCE1 also highly conserved  –  the structural analysis 

made significant progress. The Lill laboratory revealed 

that ABCE1 binds iron and requires the iron-sulfur-cluster 

biosynthesis machinery, while the Tamp é  laboratory 

showed that ABCE1 contains two diamagnetic, non-equiv-

alent [4Fe-4S] 2 +   clusters (Kispal et al. , 2005 ; Barthelme 

et al. , 2007 ). At the same time, we crystallized full length 

ABCE1 using an anoxic chamber that enabled us to  in vitro  

reconstitute FeS clusters in overexpressed ABCE1 and 

prevent deterioration of the oxidation sensitive FeS clus-

ters during crystallization. 

 The crystal structure of  Pyrococcus abyssi  ABCE1 at 

2.8  Å  resolution revealed a relatively compact particle with 

five structural domains (Karcher et al. , 2008 ) (Figure 2). 

Two NBDs are arranged in a V shape by a hinge domain, 

similar to our previously determined structure of  P. furio-
sus  ABCE1- Δ FeS. In all our structures, we found Mg-ADP 

moieties stably bound to both active sites and the struc-

tures represent a  ‘ symmetric ’  post-hydrolysis state of the 

enzyme. Remarkably, ADP was retained at the protein 

from the cells throughout purification and could not be 

exchanged to ATP or non-hydrolysable derivatives in our 

hands. Related structures form other organisms from our-

selves and others revealed a similar ADP-state and even 

mutating the Walker B motif to prevent ATP hydrolysis 

still resulted in ADP-bound active sites (Karcher et al. , 

2005 ; Karcher et al. , 2008 ; Barthelme et al. , 2011 ). Unfold-

ing followed by refolding of the protein in the presence of 

AMP-PNP removed ADP in favor of AMP-PNP, but rather 

than a structural change in the protein, AMP-PNP was 

forced to adopt an unusual ADP-like conformation with 

misplaced  γ -phosphate (unpublished). This put forward 

the argument that ABCE1 ’ s ADP conformation is rather 

stable in the absence of physiological binding partners 

and ADP → ATP exchange is likely allosterically regulated. 

In any case, comparison with ABC proteins in ATP-bound 

states argued that the two NBDs in ABCE1 undergo a 

tweezers-like movement in the functional cycle of the 

protein (Chen et al. , 2003 ). The structures also revealed 

other notable motifs, such as a helix-loop-helix (HLH) 

motif, which are often involved in protein-nucleic acid 

interactions. 

 The most unique and notable feature of ABCE1 

compared to other ABC proteins is the FeS domain. It is 
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 Figure 3    Model for ABCE1 function in ribosome recycling and competition with the RNase-L pathway.    
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situated at the lateral opening of the ATP binding cleft, 

where ATP-dependent conformational changes between 

the NBDs might impact on the position of the FeS domain. 

The structure is in agreement with previous biophysi-

cal data and showed two 4Fe-4S clusters bound to eight 

cysteins in a ferredoxin-like fold (Barthelme et al. , 2007 ; 

Karcher et al. , 2008 ). All cysteines except one are essential 

in yeast. However, an additional cysteine next to the non-

essential cysteine might rescue the FeS cluster in yeast 

(Barthelme et al. , 2007 ). In any case, mutational analysis 

revealed that both ATP binding sites and both FeS clusters 

are essential for ABCE1 function. 

 FeS clusters most prominently function in electron 

transfer reactions but can also have structural roles or 

poorly understood functions in the recognition of nucleic 

acids. In fact, more and more nucleic acid associated 

proteins are found to contain FeS clusters, yet the func-

tions of these clusters in the vicinity of the nucleic acid 

remain to be clarified (Kuo et al. , 1992 ; Wu and Brosh , 

2012 ). It is possible that the positive charge on the clus-

ters plays a functional role in the electrostatic recognition 

of the nucleic acid, or the clusters stabilize the protein to 

provide a rigid fold in ribosome splitting functions (see 

below). In ABCE1, both FeS cluster are well shielded from 

solvent (Karcher et al. , 2008 ), ruling out direct contacts of 

the irons to an interaction partner or a direct participation 

in a catalysis reaction, and they are electronically very 

stable (Barthelme et al. , 2007 ). The redox potential is also 

not changed upon ribosome binding (Barthelme et al. , 

2011 ). Thus, on the basis of present data, it is unlikely that 

the FeS clusters have a role in electron transfer. On the 

other hand, twin clusters in other proteins (e.g., ferredox-

ins) typically function in electron transfer reactions. The 

distance between the two clusters in ABCE1 is with 12  Å  

center to center ideal for electron transfer, so the function 

of the FeS clusters in ABCE1 needs to be further studied.  

  ABCE1 is a eukaryotic and archaeal 
termination and ribosome-recycling 
factor 
 The biochemical function of ABCE1 in translation became 

clearer recently. A first set of studies found that ABCE1 is 

involved in translation termination. Translation has four 

phases: initiation, elongation, termination and ribosome 

recycling. Termination in eukaryotes was initially thought 

to be mediated solely by eRF1 and eRF3: the eRF1-eRF3 

complex binds to the stopped ribosome, eRF3 dissociates 

upon guanine nucleotide exchange, while eRF1 recog-

nizes the termination codons and triggers hydrolysis of 

peptidyl-tRNA. Unexpectedly, work from the Krebber and 

Ficner labs found that ABCE1 physically interacts with 

eRF1 and is required for proper stop codon recognition 

(Khoshnevis et al. , 2010 ). At the same time the Pestova 

lab showed that ABCE1 functions in mammalian ribo-

some recycling by studying ABCE1 promoted ribosome 

splitting in biochemical assays (Pisarev et al. , 2010 ). Here, 

Pestova and colleagues found that the ATPase activity of 

ABCE1 is stimulated by post-termination complexes and 

that ABCE1 splits ribosomes using ATP hydrolysis (Pisarev 

et al. , 2010 ). In parallel, the Green and Tamp é  labs dem-

onstrated that ABCE1 is the ribosome recycling factor in 

yeast and archaea, respectively, establishing that ABCE1 ’ s 

role in ribosome recycling is evolutionary conserved 

(Barthelme et al. , 2011 ; Shoemaker and Green , 2011 ). 

 These data established a function of ABCE1 in the recy-

cling of ribosomes that are stalled at termination codons. 

Subsequent studies extended the role of ABCE1 also to the 

recycling of stalled elongation complexes (Pisareva et al. , 

2011 ): ribosome elongation complexes that are stalled for 

instance at mRNA with secondary structures or at mRNAs 

that lack a proper stop codon trigger no-go decay or non-

stop decay surveillance pathways, upon which malfunc-

tioning mRNAs are degraded in eukaryotes (van Hoof 

and Wagner , 2011 ). Analogous to the eRF1-eRF3 system in 

normal translation termination, the stalled ribosomes are 

recognized by Pelota (Dom34 in yeast, a homolog of eRF1) 

and Hbs1 (a homolog of eRF3), resulting in the release 

of peptidyl-tRNA (Saito et al. , 2010 ; Tsuboi et al. , 2012 ). 

ABCE1 also works together with Dom34/Pelota, suggest-

ing that ABCE1 is a universal ribosome splitting/recycling 

factor in eukaryotic and archaeal translation termination 

that works not only release factor dependent termina-

tion but also on Dom34/Pelota dependent recognition of 

stalled ribosomes (Pisareva et al. , 2011 ) (Figure 3).  

  A hybrid view of the structure 
of ABCE1 bound to the ribosome 
 A recent breakthrough on the structural mechanism 

came from Roland Beckmann ’ s laboratory where in 

collaboration with Rachel Greens laboratory and us 

the structure of yeast and archaeal ABCE1-ribosome 

complexes were studied by cryo-electron microscopy 

and visualized by cryo-electron microscopy and single 

particle reconstruction (Becker et al. , 2012 ) (Figure 2B). 

Here, ribosome nascent chain complexes (RNCs) stalled 
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by an mRNA that contained a synthetic stem loop were 

incubated with Pelota/Dom34 and ABCE1 in the pres-

ence of ADPNP (a non-hydrolysable ATP analog). The 

exceptional quality of the resulting EM densities for 

both  S. cerevisiae  and  P. furiosus  systems (7.2 and 6.6  Å , 

respectively) allowed unambiguous interpretation of the 

EM density with an atomic model of ABCE1 derived from 

the crystal structure of the  P. abyssi  protein and even 

revealed the two electron-dense FeS clusters directly in 

the electron densities (Becker et al. , 2012 ). 

 ABCE1 binds both the archaeal and eukaryotic ribo-

some at the intersubunit space, showing that its interac-

tion and mode of activity is highly conserved in evolution. 

HLH and NBD1 interact with the small subunit while NBD2 

and hinge predominantly interact with the large subunit. 

Thus, ABCE1 populates the same site at the ribosome as 

the elongation and termination GTPases (EF-Tu and EF-G 

in bacteria; eEF2, Hbs1 and eRF3 in eukaryotes) (Gao 

et al. , 2004 ; Klaholz et al. , 2004 ; Spahn et al. , 2004 ; 

Schmeing et al. , 2009 ; Tsuboi et al. , 2012 ). Since both NBDs 

have multiple contacts to the ribosomal subunits, ATP 

driven conformational changes between the NBDs could 

have important roles both in recognition of ribosomes 

and ribosome splitting (Becker et al. , 2012 ). Remarkably, 

however, the FeS domain had not direct contacts to the 

ribosome but instead binds and induces a large confor-

mational shift in Pelota. Although not directly visualized 

by EM yet, an analogous shift in the Pelota homolog eRF1 

by ABCE1 would bring the GGQ motif of eRF1 into close 

proximity to P-site tRNA for peptidyl-tRNA hydrolysis, sug-

gesting that ABCE1 could modulate eRF1 to trigger peptide 

release prior to splitting (Frolova et al. , 1999 ; Becker et al. , 

2012 ). These results argue that a key function of the FeS 

domain is recognition of ribosomes with Pelota and eRF1 

on one side, and inducing a structural change to prepare 

recycling on the other side. 

 In any case, from the biochemical and structural 

studies ABCE1 emerged as a universal recycling factor for 

translationally terminated and stalled ribosomes, and in 

both eukaryotes and archaea.  

  Asymmetry and allosteric 
regulation: a new chapter in ABC 
protein structural research 
 An unexpected outcome of the EM studies on ABCE1 on 

stalled RNCs was the observation that the conformation 

of ABCE1 at the ribosome is somewhat distinct from the 

crystallographically observed state with Mg 2 +  -ADP bound 

to both NDBs (Karcher et al. , 2008 ; Becker et al. , 2012 ). 

Although the nucleotide state cannot be directly deduced 

from the EM maps, the conformation of the two NBDs 

most closely match a novel hybrid state, where nucleo-

tide binding site 1 (NBS1: Walker A/B from NBD1 and sig-

nature motif from NBD2) is  ‘ open ’  and either ADP bound 

or nucleotide free, and NBS2 (NBD1 signature motif and 

NBD2 Walker A/B motifs) is closed and presumably bound 

to ADPNP (Figure 2B). Such a  ‘ hybrid ’  nucleotide binding 

state with an ATP bound and ADP bound or empty NBS 

has not been structurally observed before, although other 

ABC enzymes such as the DNA mismatch sensor MutS and 

also ABC transporters displayed other types of asymmetry 

(ADP and empty NBSs) (Lamers et al. , 2000 ; Obmolova 

et al. , 2000 ; Hvorup et al. , 2007 ). 

 Interestingly, biochemical studies on archaeal ABCE1 

showed that a mutation in NBS2 Walker B-aimed at 

slowing ATP hydrolysis in NBD2-induces increased ATP 

hydrolysis activity in NBS1, while the equivalent mutation 

in NBS1 reduced ATPase activity of ABCE1 by half (hence 

not stimulating NBS2) (Barthelme et al. , 2011 ). These 

remarkable results biochemically identified asymmetry 

between ABCE1s NBS1 and 2 before the structural analysis 

and suggested that ATP binding to NBS2 stimulates ATP 

binding and/or hydrolysis of NBS1. 

 In summary, the recent observations argue that 

ABCE1 is allosterically controlled by the ribosome. A plau-

sible model is that ABCE1 acts as a two-step engine. In 

step 1, ABCE1 (likely in the crystallographically observed 

ADP form) binds to the stalled ribosome and allosteric 

regulation by ribosome/Pelota/eRF1 enables ADP-  >  ATP 

exchange in NBS2. NBS2 closes and NBS1 remains open. 

In this conformation, Pelota and possibly eRF1 are struc-

turally modulated and eRF1 could trigger peptide release. 

ATP binding to NBS1 might then induce a further confor-

mational change to split the ribosome. Some differing 

data exist with respect to the necessity of ATP binding 

versus ATP hydrolysis in this splitting reaction. While in 

one study on the archaeal system a non-hydrolysable ATP 

analog triggered splitting (Barthelme et al. , 2011 ), in two 

other studies on the eukaryotic and archaeal systems, 

hydrolysis competent ATP was necessary (Pisarev et al. , 

2010 ; Becker et al. , 2012 ). However, the stability of ribo-

somes is sensitive to buffer conditions (especially mag-

nesium), which may account for these discrepancies. 

Perhaps in a physiological context, repeated ATP-binding 

and hydrolysis cycles are necessary for splitting. Alterna-

tively, upon ATP binding to NBS1, ATP hydrolysis in NBS2 

might generate an asymmetric state with open NBS2 and 

closed NBS1 to fully promote splitting. 
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 Although we have a first structural snapshot, the 

intermediates and the conformation of ABCE1 on the small 

subunit after splitting need to be structurally addressed 

in future studies. For instance, it will be interesting to 

see whether the FeS domain has more direct functions in 

splitting as well and/or interaction with the small subunit 

after splitting. Because ABCE1 also interacts with initiation 

factors and especially the HCR1 component in yeast (Dong 

et al. , 2004 ), the functional role of ABCE1 on recycled small 

subunits is another interesting road of investigation. 

 In any case, the directly observed asymmetry in the 

two ATP binding sites of ABCE1 when bound to its sub-

strate is a very important step forward in our understand-

ing of ABC proteins and of high relevance also for studies 

on other ABC systems.  

  Innate immune and virus 
associated functions of ABCE1 
revisited 
 Given the role of ABCE1 in ribosome recycling, how can one 

reconcile its functions in RNase-L pathway and the assem-

bly of HIV capsids ?  With respect to inhibition of RNase-L, 

the original data found a diminished binding of 2-5ApCp 

to RNase-L when ABCE1 was overexpressed in reticulocyte 

extracts and the activity of RNase-L against degradation of 

18S rRNA was reduced (Bisbal et al. , 1995 ). Given the core 

function of ABCE1 in ribosome splitting and interaction 

with ribosomal small subunits, it is possible that ABCE1 

prevents RNase-L cleavage of 18S rRNA simply by steric 

hindrance. However, RNase-L appears to also have a more 

direct function in translation termination itself: it interacts 

with eRF3, reduces translation termination and increases 

 + 1 frameshift read-throughs at premature stop codons 

(Le Roy et al. , 2005 ). Thus, RNase-L appears to oppose 

the function of ABCE1 also in translation termination and 

recycling. As both proteins interact with the eRF3-eRF1 

machinery, it is important to clarify whether RNase-L and 

ABCE1 have overlapping binding sites with the translation 

apparatus or whether they bind simultaneously. In any 

case, as the function of RNase-L is to cleave viral mRNA, 

recruitment of RNase-L to the ribosome in virus-infected 

cells and cleavage of actively translated mRNA is presum-

ably of advantage, as is prevention of ribosome recycling 

and re-initiation to hinder production of new viral mRNAs. 

Therefore, from a biological and evolutionary point of view 

RNase-L might be considered as an  ‘ ABCE1 inhibitor ’  and 

not the other way around (Figure 3). 

 The role of ABCE1 in HIV capsid assembly is more 

difficult to reconcile. Here, ABCE1 interacts with the Gag 

polypeptide, which is the only viral protein required to 

assemble and release virus like particles (Zimmerman 

et al. , 2002 ; Dooher and Lingappa , 2004 ; Lingappa et al. , 

2006 ; Klein et al. , 2011 ). After its synthesis from transla-

tion of full length viral genomic RNA, 3000 – 5000 Gag pol-

ypeptides assemble in a stepwise process at the plasma 

membrane, forming buds that produce immature capsids 

(Briggs and Krausslich , 2011 ). Later, the capsids mature 

in a process that involves proteolysis of Gag into several 

polypeptides (Ross et al. , 1991 ). Analysis of capsid assem-

bly in cell free systems indicated an energy-dependent 

step and an important role of ABCE1. ABCE1 is found in 

assembly intermediates at the plasma membrane but not 

in mature capsids (Zimmerman et al. , 2002 ; Lingappa 

et al. , 2006 ). Hereby, the nucleocapsid (NC) domain of Gag 

binds viral genomic RNA and is also required for interac-

tion with ABCE1, albeit indirectly (Klein et al. , 2011 ). 

 The mechanistic role of ABCE1 in capsid assembly of 

HIV-1 and -2 is obscure. Although ABCE1 undergoes ATP-

driven conformational changes that split ribosomes and 

could in principle also chemo-mechanically function in 

capsid assembly, a different scenario is perhaps more 

likely. Full length (unspliced) HIV-1 RNA has two func-

tions: it both acts as a template for Gag and Gag-Pol trans-

lation and as genomic RNA that is packaged into virions 

(Ganser -Pornillos et al., 2012 ). The packaging signal that 

is recognized by Gag is in the 5 ′  untranslated region where 

translation initiation factors also bind (Hayashi et al. , 

1992 ; Zeffman et al. , 2000 ). It is likely that there is a com-

petition between Gag translation and Gag mediated pack-

aging. In fact, Gag regulates its own translation, with low 

concentrations stimulatory and higher concentrations 

inhibitory (Waheed and Freed , 2012 ). Thus, it is plausible 

that the interaction of Gag with ABCE1 helps to regulate 

and coordinate the molecular conflict between translation 

and packaging of full length viral RNA. Hereby, functions 

of ABCE1 in both termination and splitting, but also its 

interactions with translation factors, could be modulated 

or exploited by the virus. Because the interaction of Gag 

with ABCE1 requires Gag dimerization (Klein et al. , 2011 ), 

formation of large assembly intermediates could specifi-

cally sequester ABCE1 to downregulate initiation in  cis , 

but other models are also possible. Therefore, it will be 

interesting to investigate whether, for example, Gag and 

ABCE1 interact at ribosomes, at ribosomal subunits or 

alternatively whether Gag prevents binding of ABCE1 to 

ribosomes or its interaction with translation factors. In 

any case, the central role of ABCE1 in ribosome recycling 

and the available structural information of ABCE1 bound 
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to ribosomes, offers a whole new framework to specifi-

cally address its function in host-pathogen interactions.  

  Concluding remarks 
 The combination of biochemical and cell biological anal-

ysis with structural biology hybrid methods identified 

ABCE1 as a new evolutionary core translation factor and 

visualized it bound to its substrate, the ribosome (Figure 3). 

However, our understanding of ABCE1 is far from being 

complete. Clearly, additional functional states of ABCE1 

need to be visualized at the ribosome or ribosomal sub-

units to reveal the role of ATP-driven conformational 

changes in ribosome recycling. In addition the molecu-

lar role of ABCE1 in HIV capsid assembly and RNase-L 

inhibition can now be better addressed and it should be 

clarified whether ABCE1 in these instances acts through 

its core function in translation or has additional activi-

ties. Finally, the role of the iron-sulfur clusters is, in my 

opinion, not understood. Although no evidence for a 

redox function has been described so far, the twin clusters 

of iron-sulfur clusters are costly for the cell. It is possible 

that the functional interaction with Pelota and eRF1 and 

conformational changes impose very peculiar architec-

tural constraints on the system that require iron-sulfur 

clusters. However, at least bacteria have found a differ-

ent solution and it remains to be shown why none of the 

archaeal and eukaryotic species replaced the FeS domain 

with a simpler motif. Alternatively, the electronic proper-

ties and charge distribution of the clusters could be criti-

cal. Indeed Barthelme et al. (2011) observed that ABCE1 

with deficient FeS clusters does not bind to the ribosomal 

small subunit any longer under conditions where the WT 

protein bound. It is possible that even without electron 

transfer, the stable charge of the clusters and electrostatic 

potential is critical for the interaction with ribosomes 

or their splitting. In fact, such a function could also be 

important for FeS clusters in DNA repair and replication 

enzymes. In any case, we look forward to the next years of 

exciting research on this new translation factor.   
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