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Abstract

The classical Cox proportional hazards model is a benchmark approach to ana-
lyze continuous survival times in the presence of covariate information. In a number
of applications, there is a need to relax one or more of its inherent assumptions,
such as linearity of the predictor or the proportional hazards property. Also, one
is often interested in jointly estimating the baseline hazard together with covariate
effects or one may wish to add a spatial component for spatially correlated sur-
vival data. We propose an extended Cox model, where the (log-)baseline hazard
is weakly parameterized using penalized splines and the usual linear predictor is
replaced by a structured additive predictor incorporating nonlinear effects of con-
tinuous covariates and further time scales, spatial effects, frailty components, and
more complex interactions. Inclusion of time-varying coefficients leads to models
that relax the proportional hazards assumption. Nonlinear and time-varying ef-
fects are modelled through penalized splines, and spatial components are treated
as correlated random effects following either a Markov random field or a stationary
Gaussian random field. All model components, including smoothing parameters,
are specified within a unified framework and are estimated simultaneously based on
mixed model methodology. The estimation procedure for such general mixed haz-
ard regression models is derived using penalized likelihood for regression coefficients
and (approximate) marginal likelihood for smoothing parameters. Performance of
the proposed method is studied through simulation and an application to leukemia
survival data in Northwest England.

Key words: extended Cox model, structured hazard regression, mixed models, marginal
likelihood

1 Introduction

A standard tool for analyzing the impact of covariates v on continuous survival times is
the Cox proportional hazards model (Cox 1972) where the multiplicative structure

λ(t, v) = λ0(t) exp(v′γ) (1)

is assumed for the hazard rate and γ is a vector of regression coefficients. The baseline
hazard rate λ0(t) remains unspecified and estimation of the regression coefficients is based
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on the partial likelihood. In a second step the baseline hazard can be approximated by a
step function using Breslow’s estimate. However, it is often desirable to estimate λ0(t) in
a smooth way simultaneously with covariable effects, for example if we are interested in
predicting survival times for new observations or if we are interested in analytic properties
of the baseline. Furthermore the linear predictor in (1) is often not flexible enough to
describe data situations of realistic complexity in an adequate way. Considering the data
set on leukemia survival times, the effect of the age of a patient or other continuous
covariates may supposed to be of an unknown nonlinear form. In addition, the data set
contains information on the residence of the patient and survival times are likely to be
spatially correlated. Further questions might be, whether there are interactions between
two continuous or continuous and categorical covariates or whether some covariate effects
are time-varying.

Non- and semiparametric Bayesian or related penalized likelihood approaches that can
deal with these issues through extensions of the basic Cox model (1) have been suggested
by several researchers. Fully Bayesian models, for estimating the baseline hazard rate
and possibly time-varying covariate effects, are described in Ibrahim, Chen and Sinha
(2001). Survival models which add a spatial component to the linear predictor in (1)
have been developed recently. Li and Ryan (2002) model the spatial component through
a stationary Gaussian random field. The baseline hazard rate, however, is treated as
a nuisance parameter, and no procedure for estimating the spatial effects is provided.
Henderson, Shimakura and Gorst (2002) propose a Cox model with gamma frailties,
where the means follow either a Markov random field (MRF) or a stationary Gaussian
random field (GRF) kriging model. They use a kind of hybrid MCMC scheme, plugging
in the Breslow estimator for the baseline hazard at each updating step. Banerjee, Wall
and Carlin (2003) assume a parametric Weibull baseline hazard rate and MRF or GRF
priors for the spatial component. Banerjee and Carlin (2003) and Carlin and Banerjee
(2002) extend this work by including nonparametric estimation of the baseline hazard
rate. Effects of continuous covariates are still assumed to be of linear parametric form
as in (1). A semiparametric fully Bayesian extension to Cox-type models that can deal
with all the issues mentioned has been developed by Hennerfeind, Brezger and Fahrmeir
(2004). An empirical Bayes or penalized likelihood approach based on a mixed model
representation of linear regression splines to estimate the baseline hazard rate has been
suggested by Cai, Hyndman and Wand (2002). Cai and Betensky (2003) extended this
work by including estimation of linear covariate effects and considering interval-censored
data.

In this paper we propose an extended Cox-type model that allows for the simultaneous
estimation of the baseline hazard and a structured additive predictor acting multiplica-
tively on the baseline. Both the log-baseline hazard and effects of continuous covariates
or further time scales such as calendar time are weakly parameterized using penalized
splines. If observations are clustered in connected geographical regions, spatial effects
can be estimated using the MRF approach commonly known from disease mapping. If
exact spatial locations are available, we propose to use GRFs or two-dimensional P-spline
surface smoothers, which can also be used to model flexible interaction surfaces between
two continuous covariates. Our approach also supports cluster-specific random effects (or
frailties) and varying coefficient terms both with continuous and spatial effect modifiers.
Time-varying effects can be subsumed into the varying coefficients framework, where sur-
vival time acts as effect modifier and is again modelled as a P-spline.

The estimation procedure is based on a variance components mixed model representation
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of the structured additive predictor, which has become popular in a generalized additive
model context (compare Fahrmeir, Kneib and Lang (2004) or Ruppert, Wand and Carroll
(2003) and the references therein). We extend existing methods for the estimation of
Cox models with uncorrelated cluster-specific frailties or random effects to more general
mixed models for survival times. Variance components of the mixed model, correspond-
ing to inverse smoothing parameters, are estimated using marginal or restricted maximum
likelihood. Since the marginal likelihood can not be derived analytically, certain approxi-
mations are proposed. Performance of these approximations is investigated by comparing
results from the mixed model approach to results from its fully Bayesian counterpart
by Hennerfeind et al. (2004), where posterior estimates for the smoothing parameters are
available without approximations. The presented methodology is implemented in BayesX,
a public domain software package available from

http://www.stat.uni-muenchen.de/~lang/bayesx1

Section 2 describes structured hazard regression models for survival times including a
discussion of the different model terms and priors. Inference is outlined in Section 3.
In Section 4 we analyze the data set on leukemia survival times and Section 5 further
investigates properties of the presented approach through simulation. The concluding
Section 6 gives comments on future research.

2 Structured hazard regression

2.1 Hazard rate model and likelihood

Consider right-censored survival data given by observed lifetimes ti with censoring indi-
cator δi, i = 1, . . . , n, and additional covariate observations. As pointed out in the intro-
duction, in a number of applications there is a need for extending the basic Cox model
(1) to hazard rate models which can incorporate flexible nonparametric terms for time
scales and continuous covariates, time-varying effects, and a spatial component. Repara-
metrizing the baseline hazard rate through g0(t) = log(λ0(t)) and partitioning covariates
into groups of different type, we extend the Cox model to a semiparametric hazard rate
model

λi(t) = exp(ηi(t)), i = 1, . . . , n, (2)

with structured additive predictor

ηi(t) = v′iγ + g0(t) +
L∑

l=1

gl(t)uil +
J∑

j=1

fj(xij(t)) + fspat(si) + bgi
. (3)

In (3), g0(t) is the log-baseline effect, gl(t) are time-varying effects of covariates ul, fj(xj(t))
is the nonlinear effect of a possibly time-varying covariate xj(t), and fspat(s) is the spatial
effect at site or in region s ∈ {1, . . . , S}. The vector γ contains the usual linear effects,
and bg, g ∈ {1, . . . , G} are uncorrelated individual- or group-specific frailties, with bgi

= bg

if individual i is in group g. Several extensions of the predictor (3), such as inclusion of

1The new version of BayesX containing structured hazard regression within a mixed model approach
will be available in the beginning of November 2004.
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interactions fjk(xij(t), xik(t)) between two continuous covariates and random slopes z′ibgi
,

are possible and included in our implementation.

To obtain a general mixed model formulation of (3) we introduce some matrix no-
tation. Let η = (η1, . . . , ηi, . . . , ηn)′ denote the predictor vector, where ηi := ηi(ti)
is the value of predictor (3) at the observed lifetime ti, i = 1, . . . , n. Correspond-
ingly, let gl = (gl(t1), . . . , gl(tn))′ denote the vector of evaluations of the functions
gl(t), l = 0, . . . , L, fj = (fj(t1), . . . , fj(tn))′ the vector of evaluations of the functions
fj(t), j = 1, . . . , J , fspat = (fspat(s1), . . . , fspat(sn))′ the vector of spatial effects, and
b = (gg1 , . . . , bgn)′ the vector of uncorrelated random effects.

In the following, we express all vectors gl, fj, fspat and b as the matrix product of an
appropriately defined design matrix Z, say, and a (possibly high-dimensional) vector β
of regression coefficients, e.g. gl = Zlβl, fj = Zjβj, etc. Then, after reindexing, we can
represent the predictor vector η in generic notation as

η = V γ + Z1β1 + . . . + Zpβp. (4)

Under the usual assumptions about noninformative censoring, the likelihood, given all
parameters γ and β = (β′1, . . . , β

′
p), is

L(γ, β) =
n∏

i=1

λi(ti)
δi exp

(
−

∫ ti

0

λi(t)dt

)
, (5)

inserting (2) and (3) for λi(ti). let δ = (δ1, . . . , δn)′ denote the vector of censoring in-
dicators and Λ = (Λ1(t1), . . . , Λi(ti), . . . , Λn(tn))′ the vector of cumulative hazard rates
Λi(ti) =

∫ ti
0

λi(t)dt. Then the log-likelihood can be written as

l(γ, β) = δ′η − 1′Λ. (6)

2.2 Priors for random effects

In our mixed model approach to structured hazard regression, the parameters γ are consid-
ered as fixed while β1, . . . , βp are random effects. Specification of the model is completed
by appropriate distributional assumptions. From a Bayesian point of view, we have to
specify priors for β1, . . . , βp. The general form of a prior or random effects distribution
for βj in (4) is Gaussian,

p(βj) ∝ exp

(
− 1

2τ 2
j

β′jKjβj

)
, (7)

where Kj is a precision or penalty matrix. Uncorrelated random effects b = (b1, . . . , bG)′

are a special case, with Kj = I. Generally, the random effects βj representing a function
are correlated, and Kj shrinks parameters towards zero or penalizes too abrupt jumps
between neighboring components of βj. In the case of P-splines and MRF models for
the spatial component, Kj will be rank deficient, i.e. rank(Kj) < dim(βj), and the
Gaussian distribution is partially improper. The variance τ 2

j in (7) acts as an inverse
smoothing parameter: A small (large) value of τ 2

j corresponds to an increase (decrease) of
the penalty or shrinkage. We consider these variances as unknown fixed constants, which
are estimated through a marginal likelihood approach, see Section 3.3.

In the following, we outline specification of Kj in (7) and the design matrices Zj for
functions gl, fj and the spatial component fspat. For more details, especially on how to
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include interactions and varying coefficient terms in the general framework, we refer to
Fahrmeir et al. (2004) and Lang and Brezger (2004).

Unknown functions gl or fj are modeled through P-splines. The basic idea (Eilers and
Marx 1996) is to a approximate a function fj(xj) as a linear combination of B-spline basis
functions Bm, i.e.

fj(xj) =

dj∑
m=1

βjmBm(xj). (8)

The basis functions Bm are B-splines of degree l defined over a grid of equally spaced
knots xmin = κ0 < κ1 < . . . < κs = xmax, dj = l + s. The number of knots is mod-
erate, but not too small, to maintain flexibility, and smoothness of the functions is en-
couraged by quadratic difference penalties for neighboring coefficients in the sequence
βj = (βj1, . . . , βjdj

)′. In a penalized log-likelihood setting, the difference penalty can be
expressed as λjβ

′
jKjβj, where the penalty matrix is of the form Kj = D′D, with D a first

or second order difference matrix and λj = 1/2τ 2
j a smoothing parameter. In a mixed

model or Bayesian approach this is equivalent to a prior (7). The matrix Kj has rank
dim(βj)− 1 or dim(βj)− 2 for first or second order difference penalties, respectively and
therefore prior (7) is partially improper. The n × dim(βj) design matrix Zj consists of
the basis functions evaluated at the observations xij, i.e., Zj[i,m] = Bm(xij). Priors for
the unknown functions gj(t) are defined in complete analogy.

For the spatial effect fspat(s) we assume either Markov random field (MRF) priors,
Gaussian random field (GRF) priors common in geostatistics (kriging) or two dimensional
tensor product P-spline priors. In the case of MRF priors we define areas as neighbors if
they share a common boundary and assume that the effect of an area s is conditionally
Gaussian, with the mean of the effects of neighboring areas as expectation and a variance
that is inverse proportional to the number of neighbors of areas s, i.e.

fspat(s) := βspat
s =

1

Ns

∑

s′∈δs

βspat
s′ + us, us ∼ N

(
0,

τ 2
spat

Ns

)
(9)

where Ns is the number of neighbors of area s, and s′ ∈ δs denotes that area s′ is a
neighbor of area s. The n × S design matrix Zspat is now a 0/1 incidence matrix. Its
value in the i-th row and s-th column is 1 if observation i is located in site or region s,
and zero otherwise. The S×S penalty matrix Kspat has the form of an adjacency matrix
with rank(Kspat) = S − 1.

Our second option are stationary Gaussian random field (GRF) priors, which can be
seen as two-dimensional surface smoothers based on special basis functions, e.g. radial
basis functions, and have been used by Kammann and Wand (2003) in their mixed model
approach for the spatial component in Gaussian regression models. The spatial component
fspat(s) = βspat

s is assumed to follow a zero mean stationary Gaussian random field {βspat
s :

s ∈ R2} with variance τ 2
spat and an isotropic correlation function corr(βspat

s , βspat
s′ ) =

ρ(||s − s′||). For a finite array s ∈ {1, . . . , S} of sites as in our application the prior can
be brought in the general form (7) with penalty matrix Kspat = C−1 and

C[k, l] = ρ(||sk − sl||), 1 ≤ k, l ≤ n.

For the correlation function ρ(r) we use the Matérn family of correlation functions
ρ(r; α, ν). For the special case ν = 1.5 the correlation function simplifies to

ρ(r; α) = τ 2
spat(1 + |r|/α)e−|r|/α,
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which is the simplest member of the Matérn family that results in differentiable surface
estimates. The parameter α controls how fast correlations die out with increasing distance
r. We choose α in a preprocessing step according to the rule

α̂ = max
k,l
||sk − sl||/c.

This rule proved to work well in practice and also ensures scale invariability. The constant
c is chosen in such a way that ρ(c) is small, e.g. ρ(c) = 0.001.

To decrease the computational burden and to enhance numerical stability, we suggest to
use low-rank kriging instead of a full kriging approach where the dimension of βspat is equal
or close to the number of observations. Applying a space filling algorithm to the locations
si yields a set of knots κ1, . . . , κM . Based on these knots we can approximate fspat as
Zspatβ

spat, where the n×M design matrix Zspat consists of elements Z[i, j] = ρ(||si−κj||)
and the penalty matrix is given by Kspat = C̃ with C̃[k, l] = ρ(||κk − κl||). The number
of knots controls the trade-off between accuracy of the approximation and numerical
simplification. Details on GRFs and (low-rank) kriging can be found in Kammann and
Wand (2003) or Kneib and Fahrmeir (2004).

A third alternative approach is based on two-dimensional tensor product P-splines, a
rather parsimonious, but flexible method for modelling interactions between continuous
covariates described in Lang and Brezger (2004) for Gaussian regression. Considering the
x and y coordinates, the spatial effect can be seen as an interaction between two continuous
covariates x and y. The corresponding spatial prior for the array of two-dimensional B-
splines can again be expressed in the general form (7), see Lang and Brezger (2004).

3 Mixed Model based Inference

Since regression parameters describing nonparametric and spatial effects are assumed to
have a random effects or prior distribution, inference is not based on the log-likelihood
itself but on the penalized log-likelihood

lpen(γ, β) = l(γ, β)−
p∑

j=1

1

2τ 2
j

β′jKjβj. (10)

From a Bayesian viewpoint (10) is equivalent to the log-posterior and therefore maxi-
mizing (10) with respect to the regression coefficients yields either penalized likelihood
or posterior mode estimates. Though direct maximization of (10) is possible, marginal
likelihood estimates for the variance parameters τ 2

j cannot be derived from this penalized
likelihood, since some of the random effects distributions (7) for the correlated effects in
(4) are improper. We therefore propose to estimate structured hazard regression models
via the following two steps:

1. Reparametrize the general mixed model (4) in a classical variance components model
formulation to obtain uncorrelated random effects with proper priors.

2. Iteratively update regression coefficients given the current variance parameters and
variance components given current regression coefficients through Newton-Raphson- /
Fisher-Scoring-steps.

The different parts of the estimation procedure will now be described in further detail.
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3.1 Mixed model representation

In the following we assume that βj has dimension dj and the corresponding penalty matrix
has rank kj. To rewrite the structured additive predictor (4) in variance components
formulation the vectors of regression coefficients βj, j = 1, . . . , p, are decomposed into an
unpenalized part (with flat prior) and a penalized part (with i.i.d. Gaussian prior), i.e.

βj = Zunp
j βunp

j + Zpen
j βpen

j (11)

with a dj × (dj − kj) matrix Zunp
j and a dj × kj matrix Zpen

j . We expect decomposition
(11) to satisfy the following conditions:

(i) The composed matrix (Zunp
j Zpen

j ) has full rank to make the transformation in (11)
a one-to-one transformation. This also implies that both Zunp

j and Zpen
j have full

column rank.

(ii) Zunp
j and Zpen

j are orthogonal, i.e. Zunp′
j Zpen

j = 0.

(iii) Zunp′
j KjZ

unp
j = 0, resulting in βunp

j being unpenalized by Kj.

(iv) Zpen′
j KjZ

pen
j = I, resulting in an i.i.d. Gaussian prior for βpen

j .

In general, matrices fulfilling these requirements can be obtained as follows: Zunp
j con-

tains a dj − kj dimensional basis of the null space of Kj. Therefore requirement (iii) is
automatically fulfilled. Zpen

j can be obtained by Zpen
j = Lj(L

′
jLj)

−1 where the full col-
umn rank dj × kj matrix Lj is determined by the decomposition of the penalty matrix
Kj into Kj = LjL

′
j. This ensures requirements (i) and (iv). If we choose Lj such that

L′jZ
unp
j = 0 holds, we finally obtain requirement (ii). The decomposition Kj = LjL

′
j of

the penalty matrix can be based on the spectral decomposition Kj = ΓjΩjΓ
′
j, where the

(kj×kj) diagonal matrix Ωj contains the positive eigenvalues ωjm, m = 1, . . . , kj, of Kj in
descending order, i.e. Ωj = diag(ωj1, . . . , ωj,kj

). Γj is a (dj × kj) orthogonal matrix of the

corresponding eigenvectors. From the spectral decomposition we can choose Lj = ΓjΩ
1/2
j .

Note, that the factor Lj is not unique and numerically superior factorizations may exist
(compare Fahrmeir et al. (2004) for a more detailed discussion of special model terms).

From decomposition (11) and requirements (i) to (iv) it follows that

p(βunp
j ) ∝ const and βpen

j ∼ N(0, τ 2
j I). (12)

Now, defining the matrices Qj = ZjZ
unp
j and Pj = ZjZ

pen
j , allows us to rewrite the

structured additive predictor (4) as

η =

p∑
j=1

Zjβj + V γ =

p∑
j=1

(ZjZ
unp
j βunp

j + ZjZ
pen
j βpen

j ) + V γ = Qβunp + Pβpen,

which is the predictor of a variance components mixed model with fixed effects βunp,
random effects βpen ∼ N(0, Σ) and Σ = diag(τ 2

1 , . . . , τ 2
1 , . . . , τ 2

p , . . . , τ 2
p ). The design

matrix P and the vector βpen are composed of the matrices Pj and the vectors βpen
j ,

respectively. More specifically, we obtain P = (P1 P1 · · · Pp) and the stacked vector
βpen = ((βpen

1 )′, . . . , (βpen
p )′)′. Similarly the matrix Q and the vector βunp are given by

Q = (Q1 · · · Qp U) and βunp = ((βunp
1 )′, . . . , (βunp

p )′, γ′)′.
In variance components model representation the penalized likelihood (10) transforms to

lpen(βunp, βpen) = δ′η − 1′Λ− 1

2
βpen′Σ−1βpen. (13)
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3.2 Estimation of regression coefficients

The main difficulty in obtaining derivatives of (13) with respect to the regression coeffi-
cients is to derive expressions for the derivatives of the cumulative hazard function Λ(t).
For simplicity consider for the moment a cumulative hazard of the form

Λ(ti) =

∫ ti

0

exp(zi(t)
′β)dt,

where zi(t) is a (possibly time-dependent) vector of covariates and β is a vector of re-
gression coefficients. This setting essentially reflects the structure of Λ(t) in a structured
hazard regression model. Now, first and second derivatives are given by

∂

∂βj

Λ(ti) =

∫ ti

0

zij(t) exp(zi(t)
′β)dt (14)

and
∂

∂βj∂βk

Λ(ti) =

∫ ti

0

zij(t)zik(t) exp(zi(t)
′β)dt. (15)

Both expressions include integrals, which, in general, can not be solved analytically.
Therefore we have to apply a numerical integration procedure such as the trapezoidal
rule to approximate them. In our implementation we use a quantile-based grid on the
time axis instead of the observed ti to reduce the gridsize without loosing accuracy of the
approximation. Note, that expression (14) can be somewhat simplified if some covariates
are constant over time, i.e. zij(t) ≡ zij, since in this case (14) reduces to zijΛ(Ti) and
Λ(Ti) has to be computed only once. Similar simplifications can be used when computing
(15) if both zij(t) and zik(t) do not depend on t.

In a mixed model, the score-vector can be partitioned into two parts defined by the deriv-
atives with respect to the unpenalized and the penalized vector of regression coefficients,
i.e.

s =

(
su

sp

)
=




∂lp
∂βunp

∂lp
∂βpen


 =




δ′Q− 1′ ∂Λ

∂βunp

δ′P − 1′ ∂Λ

∂βpen
− Σ−1βpen


 .

Similarly, the observed Fisher-information is partitioned into four blocks:

F =

(
F uu F up

F pu F pp

)
=



1′

∂2Λ

∂βunp∂βunp′ 1′
∂2Λ

∂βunp∂βpen′

1′
∂2Λ

∂βpen∂βunp′ 1′
∂2Λ

∂βpen∂βpen′ + Σ−1


 .

Both quantities are now easy to calculate based on expressions (14) and (15) and allow
the computation of updated estimates for the regression coefficients given the variances
via a Newton-Raphson-step.

3.3 (Approximate) Marginal likelihood for variance components

In Gaussian linear mixed models, a well established method for the estimation of variance
components is restricted maximum likelihood (REML), which - in contrast to ordinary
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maximum likelihood - takes into account the loss of degrees of freedom due to the es-
timation of the regression coefficients. As Harville (1974) showed, REML estimation is
equivalent to maximizing the marginal likelihood for the variance components

Lmarg(Σ) =

∫
Lpen(βunp, βpen, Σ)dβunpdβpen. (16)

This equivalence allows to generalize REML estimation to more general situations includ-
ing regression models for survival times. Up to now marginal likelihood estimation has
mostly been used in the context of subject-specific frailty models based on the partial like-
lihood (compare e.g. Therneau and Grambsch (2000) or Ripatti and Palmgren (2000)).
Cai et al. (2002) use marginal likelihood estimates for the smoothing parameter of the
baseline hazard but do not provide estimation equations. Instead they maximize the
marginal likelihood numerically, which may become quite computerintensive if the model
includes more variance components for a structured additive predictor. Furthermore, in
their model effects of covariates are assumed to have parametric form.

In the following we describe a possibility to estimate variances in a structured hazard re-
gression model based on the full marginal likelihood (not the partial marginal likelihood).
Two approximation steps allow to use a Fisher-Scoring-algorithm for the maximization
of (16), yielding estimation equations which are numerically simple to evaluate. First,
applying a Laplace approximation to the marginal log-likelihood results in

lmarg(Σ) ≈ l(β̂unp, β̂pen)− 1

2
log |Σ| − 1

2
β̂pen′Σ−1β̂pen − 1

2
log |H|.

If we can assume that both l(β̂unp, β̂pen) and β̂pen vary only slowly when changing the
variance components we can further reduce the marginal likelihood to

lmarg(Σ) ≈ −1

2
log |Σ| − 1

2
log |H| − 1

2
βpen′Σ−1βpen, (17)

where βpen denotes a fixed value not depending directly on the variances, e.g. a current
estimate. The second approximation seems to be reasonable since - at least in generalized
additive models - it is well known that small changes in the smoothing parameters do
not affect the estimates of the regression coefficients very much. A similar argument
is given by Breslow and Clayton (1993) to simplify the marginal likelihood for variance
components of generalized linear mixed models. Although the approximation steps may
look rather crude at first sight, they proved to work well in simulations as well as in real
data applications.

First and second derivatives of (17) can be easily derived, based on differentiation rules
for matrices. Since expressions for general covariance matrices Σ become quite lengthy,
we make use of the block diagonal structure of Σ in variance components models to obtain
simpler formulae. For the score function this yields

s∗j =
∂lmarg(Σ)

τ 2
j

= − kj

2τ 2
j

+
1

2τ 4
j

tr
(
Gpp

jj

)
+

1

2τ 4
j

βpen
j

′βpen
j ,

where kj = rank(Kj), G = F−1 denotes the inverse Fisher information (for the regression
coefficients) and Gpp

jj is the diagonal block of F−1 corresponding to βpen
j . The expected

Fisher-information is given by

F ∗
jk = E

(
−∂2lmarg(Σ)

∂τ 2
j ∂τ 2

k

)
=

1

2τ 4
j τ 4

k

tr
(
Gpp

jkG
pp
kj

)
.
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Here, Gpp
jk denotes the off-diagonal block of F−1 corresponding to βpen

j and βpen
k . Both

expressions are numerically simple to evaluate since H−1 and βpen are direct byproducts
from the estimation of the regression coefficients. Based on the score-function and the
Fisher-information we can compute updated variances via a Fisher-scoring step.

4 Application: Leukemia survival data

To illustrate the usefulness and flexibility of structured hazard regression, we reanalyze a
data set from Henderson et al. (2002) on leukemia survival times in Northwest England.
Their analysis concentrated on the detection of spatial variation in survival times but re-
tained the assumption of a linear predictor for covariate effects. Modeling such covariates
as penalized splines allows to check whether this assumption is appropriate or whether a
more flexible modeling improves the model fit.

The data set contains information on all 1,043 cases of acute myeloid leukemia in adults
that have been diagnosed between 1982 and 1998 in Northwest England. Almost 16% of
the cases are censored. Continuous covariates include the age of the patient, the white
blood cell count (WBC) at diagnosis and the Townsend deprivation index (TPI) which
measures the deprivation for the enumeration district of residence. Higher values of this
index indicate poorer regions while smaller values correspond to wealthier regions. Since
the observation area consists of 8,131 enumeration districts, the Townsend index can be
considered a subject-specific covariate. The sex of a patient is included in dummy-coding
(1=female, 0=male). Spatial information is available in both ways described in Section
2: The exact location of the residence of a patient is given in terms of longitude and
latitude, but of course we can also aggregate this information to district-level. Figure
1 shows the district boundaries together with the exact locations of the observed cases.
Comparing results from district-level and individual-level analyzes allows to judge the loss
of information caused by the aggregation of observations within districts.

In both situations the structured additive predictor is given by

ηi(t) = γ0 + γ1sexi + g0(t) + f1(agei) + f2(wbci) + f3(tpii) + fspat(si)

where g0 is the (centered) log-baseline, f1, f2 and f3 are smooth functions of the continuous
covariates and fspat is a spatial effect. Both g0 and the fj will be modeled as cubic P-
splines with second order difference penalty and 20 knots. In an individual-level analysis
si = (sx

i , s
y
i ) is the exact location of the patient’s residence while in a district-level analysis

si denotes the district the patient lives in.

4.1 District-level analysis

In a district level analysis a natural choice to model the spatial effect is the Markov random
field (9). With this specification of the spatial effect, we obtain the estimates shown in
Figure 2a-d for the log-baseline g0(t) and the nonparametric effects fj. The log-baseline
decreases monotonically over nearly the whole observation period, alternating between
relatively steep decreasing periods and almost flat periods. At the end of the observation
period there is a strong increase in g0(t). However, only 26 individuals survived more
than 10 years and therefore this increase should not be over-interpreted.

Obviously the effects f1 and f2 of age and white blood cell count are almost linear and
could therefore be modeled parametrically to reduce model complexity. Both effects are
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quite similar to those found by Henderson et al. (2002) as is the effect of sex (γ1 = 0.076).
Note, that Henderson et al. modelled sex in effect-coding.

In contrast, the effect of the deprivation index is clearly nonlinear with lowest values for
the developed enumeration districts with a low value of the TPI. Moving to the right on
the TPI-scale first increases the risk to die from leukemia but remains almost constant
when reaching a value of about zero. Although both effects of age and WBC are nearly
linear, the flexible modeling is a clear improvement over a purely parametric approach
since it allows to check for the linearity of some effects but also allows more flexible
functional forms when needed.

Looking at the estimated spatial effect in Figure 3a, we find several districts with low risk
in the western part of the map, surrounded by districts of increased risk. In the southern
part of the map there are also some districts with lower risk but the spatial effect is less
pronounced here. This structure can be seen even more clearly from the significance map
in Figure 3b, where black denotes districts with strictly negative credible intervals and
white denotes districts with strictly positive credible intervals. Again, estimation results
are quite similar to those found by Henderson et al. (2002).

4.2 Individual-level analysis

Of course, performing a district-level analysis when more detailed information is available
is questionable. Therefore we replaced the MRF with a stationary Gaussian random field
based on the exact locations of the residences. Using a complete kriging term would require
the computation and inversion of an approximately 1,100 times 1,100 matrix, since there
is a total number of about 1,100 regression parameters in this model. Such computations
are rather time-consuming and we used the low-rank kriging approach described in Section
2.2 with a much smaller number of knots instead. We tried 50, 100 and 200 knots with
essentially the same results indicating that the approach is rather insensitive to the number
of knots. We also fitted a two-dimensional P-spline for the individual-level spatial effect
and obtained comparable estimates.

Effects for continuous and categorical covariates are almost the same as in the district-
level model and we do not display them again but concentrate on the spatial effect. Figure
4 shows this spatial effect for a low-rank kriging term with 50 knots. In general, results
are comparable to those from the district-level analysis but the kriging approach shows
a more detailed spatial pattern and also finds a somewhat larger spatial variation. In
particular, there is considerable variation of the spatial effect within most of the districts.
When performing a district-level analysis, such information is lost since a constant risk
level is assumed for each district. This assumption may be problematic because district
boundaries are political constructs and usually do not reflect factors relevant for the risk
of patients. Therefore, the computationally feasible low-rank kriging approach seems to
be preferable to the Markov random field approach when individual-level information is
available.

4.3 Inclusion of time-varying effects

To check the proportional hazards assumption for males and females, we included a time-
varying effect of sex in our model. Although the estimated effect is somewhat increasing
over time (see Figure 2e), it is almost equal to a horizontal line and has rather wide
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credible intervals including such a horizontal line. Therefore we may conclude that the
proportional hazard assumptions is valid for the sub-populations of males and females.

5 Simulation study

To gain deeper insight in the statistical properties of the presented mixed model approach,
especially compared to the fully Bayesian alternative of Hennerfeind et al. (2004), we
performed a simulation study. We generated 250 data sets, each with 750 observations
based on the following structured additive predictor:

ηi(t) = g0(t) + f(xi) + fspat(si). (18)

The baseline hazard λ0(t) = exp(g0(t)) (shown in Figure 5a) is chosen to reflect a situation
where the risk for an event is initially high, decreasing for some time and rising again at
the end of the observation period. Such bathtub-shaped hazard rates are quite common
in studies on survival times, as we have already seen in Section 4, but can hardly be
handled within a regression approach assuming a parametric form of the baseline, e.g.
a Weibull distributed baseline. The nonparametric effect f(x) is given by a sine curve,
i.e. f(x) = 0.6 · sin(π(2x − 1)), where x is chosen randomly from an equidistant grid
of 75 values within the interval [0, 1]. The spatial function fspat is defined based on the
centroids of the 124 districts of the two southern states of Germany (Bavaria and Baden-
Württemberg) and is shown in Figure 5b. Again the value s is randomly assigned to the
observations. Three different amounts of censoring were considered: No censoring at all,
moderate censoring (10-15% censored observations) and high censoring (20-25% censored
observations). To obtain censored observations, we generated independent censoring times
Ci ∼ Exp(0.2) (medium censoring) and Ci ∼ Exp(0.6) (high censoring) and defined the
observed survival time to be ti = min(Ti, Ci), where Ti is generated according to the
hazard rate λi(t) = exp(ηi(t)).

In general it is not clear, how to simulate survival times from a Cox-type model with
such a hazard rate since λi(t) does not correspond to a known distribution. We used a
technique proposed in Bender, Augustin and Blettner (2004) that allows the simulation
of Cox-models with arbitrary baseline hazard as long as the cumulative baseline hazard
Λ0(t) and its inverse Λ−1

0 (t) are available (at least for numerical evaluation). In this case
uncensored survival times Ti can be simulated via Ti = Λ−1

0 (− log(Ui)), where Ui is a
random variable uniformly distributed on [0, 1], i.e. Ui ∼ U [0, 1].

To compare the accuracy of the point estimates produced by the mixed model approach
and the fully Bayesian MCMC-approach by Hennerfeind et al. (2004), we computed the
empirical MSEs shown in Figure 6. A first important observation is that results for the
covariate effects f1 and fspat are estimated with approximately the same precision regard-
less of the amount of censoring. For the log-baseline the median MSE also remains almost
unchanged but its variability increases with increasing censoring. In general (except for
the log-baseline in the case of high censoring) the mixed model approach performs better
than the MCMC-approach when considering the median MSE but differences are quite
small. For the spatial effect there are some outliers for the mixed model estimates caused
by replications where the variances of the spatial effect were estimated to be close to zero
resulting in very flat curves. This phenomena of underestimating effects in a moderate
number of replications has already been observed in the context of structured additive
regression with responses belonging to exponential families (Fahrmeir et al. 2004).
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Figure 7 shows the average estimates and the bias for the covariate effects f1 and fspat.
Since average estimates were roughly the same for all censoring mechanisms, we only
show results for the highest amount of censoring. Both approaches perform comparably
in terms of bias. While bias is almost negligible for the nonparametric effect f1, it becomes
more distinct for the spatial effect.

The last comparison concerns average coverage probabilities summarized in Table 1. In
general the MCMC-approach produces more conservative credible intervals than the mixed
model approach. Both approaches meet the nominal level in most cases, only the mixed
model approach is somewhat below the nominal 95%-level for the spatial effect without
censoring. This is caused by the outliers discussed earlier, were the estimated spatial
effect was close to zero.

6 Conclusions

In this paper we presented a flexible possibility to extend the traditional Cox model to
allow for the simultaneous estimation of a smooth hazard rate and a complex structured
additive predictor acting multiplicatively on the baseline. The approach proved to be
useful in a real data example on leukemia survival times and showed satisfactory statistical
properties in a simulation study. The approximation steps outlined in Section 3.3 allow
for a fast optimization of the marginal likelihood of the variance parameters even in fairly
complex models.

Some further extensions of the proposed method might be desirable and will be investi-
gated in future work. Two main issues are: First, generalizing our mixed model approach
for survival data to more general censoring schemes, such as left or interval censoring as
often encountered in practice, and secondly, extending it to more complex event history
data, such as competing risks and recurrent event data.
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Figure 1: Leukemia survival data: Districts of Northwest England and locations of the
observations.

g0(t) f1(x) fspat(s)
80% 95% 80% 95% 80% 95%

no censoring 0.911 0.963 0.854 0.976 0.892 0.931
REML medium censoring 0.915 0.960 0.860 0.976 0.937 0.979

high censoring 0.851 0.944 0.864 0.976 0.943 0.993
no censoring 0.925 0.975 0.847 0.975 0.949 0.996

MCMC medium censoring 0.944 0.978 0.853 0.976 0.952 0.997
high censoring 0.973 0.984 0.856 0.977 0.940 0.994

Table 1: Simulation Study: Average coverage probabilities.
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Figure 2: Leukemia Survival data: Estimates of the log-baseline, the effects of age, wbc
and tpi, and of a time-varying effect of sex.
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Figure 3: Leukemia Survival data: Spatial effect based on a district-level analysis and
pointwise significance map. Black denotes districts with strictly negative credible intervals,
white denotes districts with strictly positive credible intervals.
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Figure 4: Leukemia Survival data: Spatial effect based on an individual-level analysis.
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Figure 5: Simulation Study: True baseline hazard and true spatial effect.
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Figure 6: Simulation Study: Boxplots of log(MSE) in the case of no censoring (left two
boxplots), medium censoring (third and fourth boxplot) and high censoring (right two box-
plots).
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Figure 7: Simulation Study: Bias for f1(x) (upper panel), average estimates for fspat

(middle panel) and bias for fspat (lower panel) in the case of high censoring. Results for
the mixed model approach are displayed in the left panel, results for the MCMC approach
in the right panel.
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