
Tutz, Binder:

Generalized additive modelling with implicit variable
selection by likelihood based boosting

Sonderforschungsbereich 386, Paper 401 (2004)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Generalized additive modelling with implicit
variable selection by likelihood based boosting

Gerhard Tutz1 & Harald Binder2

1Institut für Statistik, Ludwig-Maximilians-Universität München, Germany
2Klinik für Psychiatrie und Psychotherapie, Universität Regensburg, Germany

November 2004

Abstract

The use of generalized additive models in statistical data analysis suf-
fers from the restriction to few explanatory variables and the problems of
selection of smoothing parameters. Generalized additive model boosting
circumvents these problems by means of stagewise fitting of weak learners.
A fitting procedure is derived which works for all simple exponential family
distributions, including binomial, Poisson and normal response variables.
The procedure combines the selection of variables and the determination
of the appropriate amount of smoothing. As weak learners penalized re-
gression splines and the newly introduced penalized stumps are considered.
Estimates of standard deviations and stopping criteria which are notorious
problems in iterative procedures are based on an approximate hat matrix.
The method is shown to outperform common procedures for the fitting of
generalized additive models. In particular in high dimensional settings it
is the only method that works properly.

Keywords: Generalized additive models, boosting, selection of smoothing pa-
rameters, variable selection

1

1 Introduction

Generalized additive models assume that data (yi, xi), i = 1, . . . , n, follow the
model

µi = h(ηi), ηi = f(1)(xi1) + · · ·+ f(p)(xip)

where µi = E(yi|xi), h is a specified response function and f(j), j = 1, . . . , p, are
unspecified functions of covariates. As in generalized linear models (McCullagh &
Nelder, 1989) it is assumed that y|x follows a simple exponential family, including
among others normally distributed, binary, or Poisson distributed responses.

Various estimation procedures have been proposed for the estimation of functions
f(j). Backfitting procedures based on local scoring (Hastie & Tibshirani, 1990)
use iterative estimates whereas direct estimates are obtained by P-splines (Marx
& Eilers, 1998) or the marginal integration method (Linton & Nielsen, 1995). For
an overview of fitting methods see Schimek & Turlach (2000).

The proposed algorithms work well for given smoothing parameters and given
set of variables. Serious problems occur if the number of variables is large and
smoothing parameters as well as variables from the set of potentially influential
variables have to be selected. Even if variables are given, determining the amount
of smoothing for the components f(j), j = 1, . . . , p, implies selection of smoothing
parameters from a p dimensional space. This limits additive modelling to the
case of small p. Reduction to just one smoothing parameter is often inadequate
since it implies that the variation in the surface is comparable with respect to
all covariates. Problems increase if in addition variables have to be selected.
Stepwise selection of variables along a prespecified path of models as offered by
S (Chambers & Hastie, 1992) is bound to fail in the case of many variables.

A quite different approach to simultaneous selection of variables and degree of
smoothing may be based on boosting concepts which have been derived and suc-
cessfully used for prediction purposes in the machine learning community (e.g.
Freund & Schapire, 1996). More recently, Bühlmann & Yu (2003) demonstrated
how additive models may be fitted by iteratively refitting of residuals when us-
ing a weak learner. They show that L2Boost which is constructed from L2 loss
works very well for high dimensional predictors when used in a componentwise
fashion. In the present paper this approach is modified so that not only normally
distributed dependent variables are possible but all distribution models familiar
from generalized linear models. The weak learner that is used in each step of
the algorithm can be based on penalized B-splines or on trees with two terminal
nodes and both will be investigated. In Section 2 we introduce the new boosting
procedure together with two types of weak learner. Approximate pointwise con-
fidence bands and approximate degrees of freedom (useful for the selection of the
number of boosting steps) are derived. In Section 3 the new algorithm is empir-
ically evaluated and compared to other procedures. In Section 4 the method is

2

applied to the modelling of the number of readmissions in a psychiatric hospital.
Although the number of predictors is only five some of the usual GAM procedures
fail in this example.

2 Likelihood based boosting

2.1 Basic concepts

Boosting was originally developed in the machine learning community as a mean
to improve classification procedures (e.g. Schapire, 1990). The basic concept to
use a classifier iteratively with differing weights on the observations and combine
the results in a committee voting has been shown to reduce the misclassification
error drastically. More recently, it has been shown that boosting is a way of
fitting an additive expansion in basis functions when the single basis functions
represent the results of one iteration of the boosting procedure. The procedure
is based on gradient descent by use of specific loss functions (Breiman, 1999;
Friedman et al., 2000). From this view it is no longer restricted to classification
problems. It may also be used in regression problems although the main body
of the literature still focuses on classification problems. Friedman et al. (2000)
replace the exponential loss function which underlies classical AdaBoost by the
binomial log-likelihood yielding LogitBoost. Bühlmann & Yu (2003) investigate
L2 loss which yields the L2Boost algorithm.

In the following a likelihood based procedure, called GAMBoost (Generalized
Additive Model Boost), is proposed which aims at maximizing the likelihood in
generalized additive models. In the case of the logit model and binomial likelihood
it is quite close to LogitBoost but instead of Newton steps it uses Fisher scoring
steps which are common in generalized linear models. The different algorithm
comes from the focus on semiparametrically structured regression in the form of
additive models for all kinds of link functions and distributions of the dependent
variable. Moreover, variable selection by componentwise learners is incorporated.

As in generalized linear models let yi|xi have a distribution from a simple expo-
nential family f(yi|xi) = exp{(yiθi− b(θi))/φ+ c(yi, φ)} where θi is the canonical
parameter and φ is a dispersion parameter. Instead of assuming a linear predictor
ηi = xT

i β in each boosting step the fitting of a simple learner (estimator)

ηi = η(xi, γ)

is assumed, where γ is a finite or infinite–dimensional parameter. If the learner is
a decision tree, γ describes the variable to be split, the split points and the values
of the piecewise constant fitted function. For regression splines γ describes the

3

weights of the spline functions and (potentially) the location of the knots. The
likelihood to be maximized is given by

l(γ) =
n∑

i=1

l(yi, ηi)

=
n∑

i=1

(yiθi − b(θi))/φ + c(yi, φ)

where the canonical parameter θi is a function of ηi = η(xi, γ). The basic algo-
rithm for likelihood based boosting is as follows.

Likelihood based boosting

Step 1 (Initialization)

For given data (yi, xi), i = 1, . . . , n, fit the model

µ(0)(x) = h(η(x, γ))

by maximizing the likelihood l(γ) yielding η̂(0)(x) = η(x, γ̂), µ̂(0)(x) = h(η̂(0)(x)).

Step 2

For l = 0, 1, . . . fit the model

µi = h(η̂(l)(xi) + η(xi, γ)) (1)

to data (yi, xi), i = 1, . . . , n, where η̂(l)(xi) is treated as an offset and η(xi) is
estimated by the learner η(xi, γl).

Set

η̂(l+1)(xi) = η̂(l)(xi) + η̂(xi, γ̂l). (2)

In model (1) the predictor is considered as an unknown function of xi which is es-
timated by η(xi, γ̂). The estimate η(xi, γ̂) may represent a tree with fixed number
of knots, multivariate splines or some other learner determined by γ. Likelihood
based boosting will be called GAMBoost if the fitted predictor is additive in the
variables x1, . . . , xp. Although in principle any estimation method for additive
models could be used, common procedures are restricted to few variables. Thus
in the following we will focus on the component-wise approach which means that
in each iteration only the contribution of a single variable is determined. A simple
learner of this type which has often been used in boosting is a tree with only two

4

terminal nodes (stumps). With stumps the selection of the variable to be updated
is done implicitly by tree methodology. When using regression splines, model fit-
ting within the algorithm contains a selection step in which one variable xj is
selected and only the corresponding function f(j) is updated. The component-
wise update has the advantage that the selection of variables is performed by the
fitting of simple models which contain only one variable. In particular we will use
regression splines and trees with two terminal nodes. Regression splines provide
simple learners which in contrast to trees yield smooth estimates. The estimation
procedures for both approaches are derived below.

2.2 Generalized additive model boosting for specific
smoothers

2.2.1 Penalized regression splines

Componentwise smoothing means that in each step only one variable is used as
learner. For regression splines that means in each step the model

µi = h(η̂
(l)
i + f(j)(xij)) (3)

is fit where f(j) is an unspecified function of the jth variable. By using knots

τ
(j)
1 < · · · < τ

(j)
m from the range of the jth variable and corresponding basis

functions B
(j)
1 (x), . . . B

(j)
m (x) regression splines fit

µi = h(η̂
(l)
i + zT

ijγ) (4)

where zT
ij = (B

(j)
1 (xij), . . . B

(j)
m (xij)). Although the vector γ is specific for variable

j the dependence on j is suppressed in the notation. B-splines (used e.g by
Eilers & Marx, 1996; Marx & Eilers, 1998) provide a numerically rather stable
procedure. In the spirit of penalized B-splines (P-splines) it is useful to use many
basis functions, say 20, and penalize them by use of a tuning parameter λ (see
e.g. Ruppert, 2002).

Fitting of model (4) is then based on maximizing the penalized likelihood

lp(γ) = l(γ)− 1

2
γτΛγ

where Λ is a penalty matrix constructed such that γT Λγ penalizes first order
differences

∑
i(γi+1 − γi)

2 or higher order differences of parameters which corre-
spond to basis functions of adjacent knots. In matrix notation one obtains the
penalized score function

sp(γ) = s(γ)− Λγ

5

where
s(γ) = ZjD(γ)Σ(γ)−1(y − µ) = ZT

j W (γ)D(γ)−1(y − µ)

with yT = (y1, . . . , yn), µT = (µ1, . . . , µn), ZT
j = (z1j, . . . , znj),

D(γ) = Diag(∂h(η1)/∂η, . . . , ∂h(ηn)/∂η), ηi = η̂
(l)
i +zT

ijγ, Σ(γ) = Diag(σ2
1, . . . , σ

2
n),

σ2
i = varγ(yi), W (γ) = D(γ)Σ(γ)−1D(γ). The penalized Fisher matrix Fp(γ) =

E(−∂2(γ)/∂γ∂γT) has the form

Fp(γ) = F (γ) + Λ

where
F (γ) = E(−∂2l(γ)/∂γ∂γT) = ZT

j W (γ̂)Zj.

One step in Fisher scoring is given by

γ̂new = Fp(γ̂)−1sp(γ̂). (5)

Although Fisher scoring steps could be iterated it is sufficient to use just one
step since the fit is within an iterative procedure which is based on weak learners.
Thus one sets η̂(l+1)(xi) = η̂(l)(xi) + Zj γ̂new. It should be noted that the Fisher
step in (5) is different from the usual Fisher step which has the form γ̂new =
γ̂ +Fp(γ̂)−1sp(γ̂). The reason is that in boosting one seeks an additive correction
of the already fitted terms by fitting the residuals. As is seen below this effect
results from scoring step (5).

In componentwise boosting in each boosting step it is necessary to decide which
of the predictor variables is used in fitting model (3). A straightforward criterion
is to link the choice of the variable to the improvement of fit by one Fisher
scoring step. For likelihood based models an appropriate measure is the deviance
which depends on the form of the considered distribution. For binary responses
yi ∈ {0, 1} the mean µ̂i corresponds to π̂i where πi =P (yi = 1|xi) and the deviance
may be written as

Dev = −2
n∑

i=1

log(1− |yi − π̂i|).

Then the variable is selected that yields the lowest deviance.

Before summarizing the algorithm it is useful to recall the additive structure that
is fitted. In vectorized form the fitting of a generalized model means determina-
tion of the additive linear predictor

η̂ = f1 + · · ·+ fp

where η̂T = (η̂1, . . . , η̂n) is the fitted predictor and fT
j = (f1j, . . . , fnj), fij =

f(j)(xij) is the fitted vector of the jth variable at observation x1j, . . . , xnj. With
Dev(η̂) denoting the deviance when η̂ is the fitted predictor the algorithm with
penalized regression splines (in step 2) has the following form.

6

GAMBoost with Penalized Regression Splines

Step 2 (Model fit)

For l = 0, 1, . . .

1. Estimation step:
For s = 1, . . . , p compute

fs,new = Zs(Z
T
s ŴZs + λΛ)−1(ZT

s Ŵ D̂−1(y − µ̂)− λΛγ) (6)

where Ŵ , D̂, µ̂ are evaluated at η̂T = (η̂
(l)
1 , . . . , η̂

(l)
n).

2. Selection step:
Set fs = f

(l)
s + fs,new yielding η̂s,new

Compute
j = arg max

s
{Dev(η̂s,new)−Dev(η̂(l)

s))

3. Update:
Set f

(l+1)
j = f

(l)
j + fj,new

From (6) it is seen that the update has the form of weighted least squares fit-
ting for the scaled residuals D−1(y − µ̂) (without smoothing term). For the
canonical link one has ∂h(ηi)/∂η = var(yi)/φ and the residuals are given by
(yi − µ̂)φ/var(yi).

2.2.2 Likelihood boosting by stumps

Classification and regression trees (CARTs) as introduced by Breiman et al.
(1984) partition the space of explanatory variables recursively into rectangles
within which constants are fitted. The simplest binary tree consists of stumps,
i.e. only two terminal nodes are built. There is a wide body of literature on
CARTs, in particular stumps have been successfully used for classification pur-
poses (e.g. Friedman et al., 2000). Within a likelihood based concept they may

be considered as fitting of a simple model. Given predictor η
(l)
i a split in variable

xj corresponds to the fitting of the model Mδ which has the predictor

ηi = η
(l)
i + c1 I(xij ≤ δ) + c2 I(xij > δ) (7)

where I(.) denotes the indicator function with I(a) = 1 if a is true and I(a) = 0
if a is not true. The parameter vector γ now contains c1, c2, δ.

7

With lMδ
denoting the log–likelihood of model Mδ the deviance DMδ

= −2φ{lMδ
−

lsat} has the form
DMδ

= (yiθi − b(θi))/φ + c(yi, φ) (8)

where ηi is defined by (7).

For the normal distribution model with identity link one obtains

DMδ
=

∑
xij≤δ

(yi − µ
(l)
i − c1)

2 +
∑
xij>δ

(yi − µ
(l)
i − c2)

2

and simple derivation shows that the deviance is minimized by

ĉ1 =
∑
xij≤δ

(yi − µ
(l)
i)/n1, ĉ2 =

∑
xij>δ

(yi − µ
(l)
i)/n2

where n1 = #{xij : xij ≤ δ}, n2 = n − n1. Thus only δ has to be computed to
find the threshold that minimizes DMδ

.

For binary yi ∈ {0, 1} one obtains for the logit link

DMδ
= 2 {

∑
xij≤δ

(yi(η
(l)
i + c1)− log(1 + exp(η

(l)
i + c1)))

+
∑
xij>δ

(yi(η
(l)
i + c2)− log(1 + exp(η

(l)
i + c2)))}.

Regrettably maximization of DMδ
in this case is not as straightforward as the

splitting of nodes in common methodology where η
(l)
i is zero. If the offset η

(l)
i

does not depend on i, that is if η
(l)
i = c holds for constant c (including c = 0),

an explicit solution for c1, c2 (depending on δ) is easily derived. However, in
likelihood boosting alternative estimation procedures have to be used.

For fixed δ, c1, c2 may be estimated by Fisher scoring with predictor

ηi = η
(l)
i + (zi1, zi2)

T α, (9)

where zi1 = I(xij ≤ δ), zi2 = I(xij > δ), αT = (c1, c2). Then one step in Fisher
scoring is given by

α̂new = F (α̂)−1s(α̂). (10)

For the logit model which uses canonical link this reduces with zT
i = (zi1, zi2) and

F (γ) = ZT
j,δΣ

−1Zj,δ, ZT
jδ = (z1, . . . , zn) to

α̂new = (ZT
j,δΣZj,δ)

−1ZT
j,δ(y − π(l) − µ(α̂)).

The total update γ̂new uses the δ value that minimizes the deviance, say δnew, to
obtain γ̂T

new = (α̂T
new, δnew).

8

Penalized stumps

Although stumps may be considered a weak learner it turns out that in appli-
cations they might not be weak enough. This phenomenon has already been
observed by Bühlmann & Yu (2003). In boosting procedures with Newton steps
(e.g. LogitBoost) this is often prevented by decreasing the size of the steps. In
the context of GAMBoost where Fisher scoring is used we propose penalized
stumps as an alternative. Penalized stumps are built from fitting stumps with
an penalization on the log-likelihood. With underlying predictor (9) and param-
eter vector αT = (c1, c2) the corresponding log-likelihood is penalized by adding
λ
2
αT Λα where Λ is given by

Λ =

(
1 −1

−1 1

)
.

With the penalization given as

λαT Λα = λ(c2 − c1)
2

the difference of parameters is shrunken toward zero. For λ = 0 one obtains
common stumps, for λ →∞ one obtains for penalized estimates ĉ1 − ĉ2 → 0.

The GAMBoost algorithm with penalized stumps is given in the following form:

GAMBoost with Penalized Stumps

Step 2 (Model fit)

For l = 0, 1, . . .

1. Estimation step:
For s = 1, . . . , p and δ = x1s, . . . , xns, compute

α̂s,δ,new = (ZT
s,δŴZs,δ + λΛ)−1(ZT

s,δŴ D̂−1(y − µ̂))

where Ŵ , D̂, µ̂ are evaluated at η̂T = (η̂
(l)
1 , . . . , η̂

(l)
n).

2. Selection step:
Set fs,δ = f

(l)
s + Zs,δα̂s,δ,new yielding η̂s,δ,new

Compute
(j, δm) = arg max

s,δ
{Dev(η̂s,δ,new −Dev(η̂(l)

s))

9

3. Update:
Set f

(l+1)
j = f

(l)
j + Zj,δmα̂j,δm,new

By using the specific structure of the design matrix Zs,δ one may derive a more
explicit form of the estimation step yielding

α̂s,δ,new =
1

(F̄xij≤δ + λ)(F̄xij>δ + λ)− λ2
·
(

(F̄xij>δ + λ)s̄xij≤δ + λs̄xij>δ

(F̄xij≤δ + λ)s̄xij>δ + λs̄xij≤δ

)
where

F̄xij≤δ =
∑
xij≤δ

1

σ̂2
i

(
∂h(η̂i)

∂η

)2

, F̄xij>δ =
∑
xij>δ

1

σ̂2
i

(
∂h(η̂i)

∂η

)2

s̄xij≤δ =
∑
xij≤δ

1

σ̂2
i

∂h(η̂i)

∂η
(yi − µ̂i), s̄xij>δ =

∑
xij>δ

1

σ̂2
i

∂h(η̂i)

∂η
(yi − µ̂i).

It is seen that for the normal model with identity link and λ = 0 estimation
reduces to calculation of the mean of the residuals (yi− µ̂i) for observations with
xij ≤ δ and observations with xij > δ.

2.2.3 B-splines versus stumps: an empirical comparison

In the following we will use examples with simulated data where some of the
p predictors xi1, . . . , xip carry information on the response variable yi (either
from a Binomial or from a Poisson distribution) and some represent just noise.
The following example uses three informative predictors drawn from a uniform
distribution (values between −1 and 1) with the predictor given by

ηi = cn(−0.7 + xi1 + 2x2
i3 + sin 5xi5) (11)

and the distribution of the response yi being

yi ∼ Binomial

(
1,

exp(ηi)

1 + exp(ηi)

)
for the binary case and

yi ∼ Poisson(exp(ηi))

for the Poisson case. The constant cn determines the extent to which the in-
formative predictors contribute to the response. With smaller values it will be
harder to identify the shape of the predictor contribution as there is a smaller
signal-to-noise ratio. When not noted otherwise we will use a training sample
size of n = 100.

10

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x1

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x2

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x3

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x4

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x5

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x1

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x2

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x3

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x4

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x5

et
a

co
nt

rib
.

Figure 1: Boosting fit to simulated data with B-spline (upper panels) and tree
stump (lower panels) learners. The broken lines indicate the true predictor influ-
ence functions and the solid lines indicate the model fit.

Figure 1 shows the fit to binary response data generated from model (11) with
cn = 3. The penalty parameters used were λsplines = 30 and λstumps = 2 where
for B-splines equidistant knots have been used throughout the paper. The upper
panels show the results for penalised B-spline learners and the lower panels the
results for penalized tree stumps. Although both fits (solid lines) track the true
predictor functions (broken lines) closely (with the B-spline fit being slightly
dampened compared to the true function) the fits based on B-splines are visually
more satisfying.

The left panel of Figure 2 shows how for this example the corresponding mean
squared error (MSE) of η for GAMBoost with B-splines (solid line) and penalized
stumps (broken line) respectively depends on the number of boosting iterations.
The dash-dotted line shows the MSE for unpenalized stump learners. It is seen
that overfitting occurs earlier when no penalty is used and the minimal value ob-
tained during iterations is rather large. The situation becomes even more severe
with a smaller signal-to-noise ratio (not shown here). This example demonstrates
that penalization can effectively prevent early overfitting when tree stump learn-
ers are not weak enough. Penalizing stumps also result in a smaller minimum
MSE compared to unpenalized stumps. The MSE for both types of tree stumps
is consistently larger than for B-spline learners

The better performance of B-spline learners might be due to the special nature of
the simulated data (smooth true functions and no categorical predictors). There-

11

0 20 40 60 80 100

2
4

6
8

10

step no.

M
S

E

0 20 40 60 80 100

3
4

5
6

7

step no.
M

S
E

Figure 2: Mean curves of mean squared error (MSE) for 20 repetitions of data
generation and model fit plotted against the number of boosting steps for data
with smooth influence of predictors (left panel) and predictor influence via step
functions (right panel) (GAMBoost with penalised B-splines: solid lines; with
penalized stumps: broken lines; with unpenalized stumps: dash-dotted lines).

fore we generated binary response data with the same setup as the previous
example but this time using a step function

fstep(x) =

{
−1 for x ≤ 0
1 for x > 0

and the predictor given by

ηi = cn(0.5fstep(xi1) + 0.25fstep(xi3) + fstep(xi5)).

The right panel of Figure 2 shows the MSE for GAMBoost with B-splines and
penalized and unpenalized stumps. The penalty parameters used for B-splines
and stumps are the same as in the last example. Again unpenalized stumps
show early overfitting that can be prevented to some extent by penalization. The
minimum MSE achieved by penalized tree stumps learners in this case is smaller
than that resulting when B-spline learners are used. This does not come as a
surprise as this second example is designed to favor tree learners compared to
learners that use smooth functions like penalized B-splines.

In summary, at least if the underlying functions are smooth, B-splines seem to
yield smaller values of MSE. In addition the fits are visually more pleasing.

12

2.3 Stopping criteria and complexity

Stopping of boosting iterations is often based on cross-validation (e.g. Dettling
& Bühlmann, 2003). In particular for larger data sets cross-validation becomes
very time consuming. An attractive alternative is to link the amount of flexibility
to be used in boosting to some measure that specifies the model complexity at
a specific boosting step. With such a measure the optimal number of boosting
steps can be determined as a trade-off between complexity and goodness-of-fit.
A well known measure for the trade-off between model complexity and goodness-
of-fit is the information criterion given by Akaike (AIC). For this measure the
degrees of freedom used by a model fit have to be known. Although the degrees
of freedom are known for each iteration, the degrees of the iterative procedure
do not have a simple additive form. Therefore the effective degrees of freedom
(as introduced by Hastie & Tibshirani, 1990) which are given given by the trace
of the hat matrix will be used. In the following an approximate hat matrix for
GAMBoost with penalized B-splines will be developed, but the formulation can
also be adapted to tree stumps.

When considering penalized regression splines the vectorized predictor ηT =
(η1, . . . , ηn) is given by η = Zβ where the total design matrix Z = (Z1, . . . , Zp)
decomposes into the design matrices for single variables

ZT
j = (z1j, . . . , znj) with zT

ij = (B
(j)
1 (xij), . . . , B

(j)
m (xij)), j = 1, . . . , p.

Similarly the vector β decomposes into βT = (βT
1 , . . . , βT

p) where βi denotes the
parameters for the basis function values collected in Zj. The additive structure
is captured in

Zβ = Z1β1 + · · ·+ Zpβp = f1 + · · ·+ fp.

In the following it is essential to distinguish between the estimates which evolve
over iterations and the change over iterations. The γ-parameters represent the
change over iterations whereas the evolving estimates are denoted by β.

Let j denote the variable that is selected in the (l + 1)th iteration. The linear
predictor of the fitted model has the form

η̂(l+1) = η̂(l) + Zjγj.

With estimate γ̂j the total vector after the update is denoted by

β̂T
(l+1) = β̂T

(l) + (0T , . . . , γ̂T
j , . . . , 0T)

where 0T = (0, . . . , 0) is a vector of length m, containing only zeros. The predictor
in the (l + 1)th iteration has the form

η̂(l+1) = Zβ̂(l) + Zj γ̂j = Zβ̂(l+1).

13

With starting value γ̂j0 and Wl = W (γ̂j0), Σl = Σ(γ̂j0), Dl = D(γ̂j0) denoting
evaluations at value η̂ = η̂(l) + Zj γ̂j0 one step Fisher scoring (5) is given by

γ̂j = Fp(γ̂j0)
−1sp(γ̂j0)

= (ZT
j WlZj + Λ)−1(ZjWlD

−1
l (y − µ̂(l))),

where µ̂(l) = h(η̂(l) + Zjγj0). One obtains

η̂(l+1) = Zβ̂(l) + Zj γ̂j

η̂(l+1) − η̂(l) = Zj γ̂j

= Zj(Z
T
j WlZj + Λ)−1ZT

j WlD
−1
l (y − µ̂(l)).

Taylor approximation of first order h(η̂) = h(η) + ∂h(η)
∂ηT (η̂ − η) yields

µ̂(l+1) ≈ µ̂(l) + Dl(η̂(l+1) − η̂(l))

η̂(l+1) − η̂(l) ≈ D−1
l (µ̂(l+1) − µ̂(l))

and therefore

W
1/2
l D−1

l (µ̂(l+1) − µ̂(l)) ≈ W
1/2
l Zj(Z

T
j WlZj + Λ)−1ZT

j WlD
−1
l (y − µ̂(l)).

Since W (γ)1/2D(γ)−1 = Σ(γ)−1/2 one has

Σ
−1/2
l (µ̂(l+1) − µ̂(l)) ≈ H̄l+1Σ

−1/2
l (y − µ̂(l))

where H̄l+1 = W
1/2
l Zj(Z

T
j WlZj + Λ)−1ZT

j W
1/2
l . With

µ̂(l+1) − µ̂(l) ≈ Ml+1(y − µ̂(l))

where Ml+1 = Σ
1/2
l H̄lΣ

−1/2
l one obtains

µ̂(l+1) ≈ µ̂(l) + Ml+1(y − µ̂(l))

= µ̂(l) + Ml+1(y − µ̂(l−1) − (µ̂(l) − µ̂(l−1)))

≈ µ̂(l) + Ml+1(y − µ̂(l−1) −Ml(y − µ̂(l−1)))

= µ̂(l) + Ml+1(I −Ml)(y − µ̂(l−1)).

With the starting value µ̂(0) = M0y one obtains

µ̂(1) ≈ M0y + M1(y − µ̂(0))

= M0y + M1(I −M0)y

and more general

µ̂(m) ≈
m∑

j=0

Mj

j−1∏
i=0

(I −Mi) y.

14

The corresponding hat matrix is given by

Hm =
m∑

j=0

Mj

j−1∏
i=0

(I −Mi). (12)

The initial estimate corresponds to the fitting of the intercept which yields µ̂T
0 =

(ȳ, . . . , ȳ). Thus M0 is given by M0 = 1
n
1n1T

n where 1T
n = (1, . . . , 1).

In the special case where Ml does not depend on the iteration, i.e. Ml = S with
linear smoother S, one obtains the form

Hm =
m∑

j=0

S(I − S)j−1 = I − (I − S)m+1

which is equivalent to the form given in Bühlmann & Yu (2003). However, the
use of the same smoother in each iteration in particular excludes componentwise
boosting where only one variable is used in each iteration.

The hat matrix is used to obtain the complexity of the fit, which for the mth
estimate is given by dfm = tr(Hm). The corresponding AIC criterion is given by

AIC = Dm + 2 · dfm (13)

where Dm is the deviance of the model µ̂(m) = h(η̂(l)).

To investigate if the hat matrix approximation (12) leads to a useful criterion for
selection of the number of boosting steps we compare the number of boosting steps
chosen by approximate AIC (calculated from tr(HM) and (13)) to the number
of steps chosen by cross-validation. Usually cross-validation is based on squared
errors. But since the responses yi are not necessarily normally distributed a more
general concept is needed. By use of Kullback-Leibler discrepancy one obtains the
likelihood based cross-validation criterion which uses the log-likelihood l(yi, ηi)
for observation yi in the form l(yi, η̂

−S
i) which is the log-likelihood for observation

yi with the predictor η̂−S
i obtained by leaving out the subsample S. Twenty data

sets have been generated from model (11) with cn = 2.5 for binary response
and cn = 1 for Poisson response, where the values of cn and the penalty λ have
been chosen such that the MSE curves have a similar shape for both examples.
Figure 3 shows the number of boosting steps selected by the approximate AIC
(circles) and 5-fold cross-validation (crosses) plotted on the mean MSE curve.
For the binary response example (left panel) as well as for the Poisson response
example (right panel) the number of steps chosen by approximate AIC is closer
to the minimum of the MSE than for the cross-validation method. The tendency
of cross-validation to stop too early often results in very high values of MSE.
In particular for Poisson distributed responses the number of steps chosen by

15

0 20 40 60 80 100

2
3

4
5

6

step no.

M
S

E

●
●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

step no.
M

S
E

●●●● ●
●

●●
●

● ● ● ●
●●● ● ●●●

Figure 3: Number of boosting steps selected by AIC (circles) and cross-validation
(crosses) for binary response data (left panel) and Poisson response data (right
panel) plotted on the mean MSE curves for 20 repetitions.

AIC shows less variation than that chosen by cross-validation and is close to the
minimum. The results indicate that tr(Hm) yields a satisfying approximation of
the degrees of freedom of the additive model fit by GAMBoost. An additional
advantage of the AIC criterion are the low computational costs as five-fold cross-
validation takes about five times as much time as the use of the approximate
AIC.

2.4 Standard deviations

For the derivation of standard deviations of function estimates the estimate of
the linear predictor has to be investigated. The linear predictor after m iterations
decomposes into

η̂(m) = f̂0 + Z1β̂(m),1 + · · ·+ Zpβ̂(m),p

where f̂0 stands for the intercept vector. With jl+1 ∈ {1, . . . , p} denoting the
variable chosen in the (l + 1)th iteration one has

Zjβ̂(l+1),j =

{
Zjβ̂(l),j jl+1 6= j

Zjβ̂(l),j + Rl+1(y − µ̂(l)) jl+1 = j

where Rl+1 = Zj(Z
T
j WlZj + Λ)−1ZjWlD

−1
l .

16

The form reflects that only one component is updated at a time. In closed form
one obtains for the jth component

Zjβ̂(l+1),j = Zjβ̂(l),j + I(jl+1 = j)Rl+1(y − µ̂(l))

where I is the indicator function with I(a) = 1 if a is true and I(a) = 0 if a does
not hold. With approximation µ̂(m) ≈ Hmy one obtains

Zjβ̂(l+1),j ≈ Zjβ̂(l),j + I(jl+1 = j)Rl+1(I −Hl)y

and therefore
Zjβ̂(m),j ≈ Qm,jy

where

Qm,j =
m−1∑
l=0

I(jl+1 = j)Rl+1(I −H(l)).

From
ˆcov(Qm,jy) = Qm,j ˆcov(y)QT

m,j (14)

where ˆcov(y) = diag(σ̂2
1, . . . , σ̂

2
n) approximate confidence intervals of f̂(m),j =

Zjβ̂(m),j ≈ Qm,jy are found. For the normal model with identity link this is equal
to the formulation suggested in Hastie & Tibshirani (1990).

Figure 4 shows the mean of the pointwise empirical confidence bands (±2 stan-
dard error) (broken lines) and and the mean of pointwise confidence bands (dash-
dotted lines) based on (14). The upper panels show the bands for binary response
data (with cn = 2) and the lower panels for Poisson response data (with cn = 1),
both generated from model (11) with n = 200. For each of the 50 repetitions the
number of boosting steps has been determined by AIC (see Section 2.3) and so
the empirical bands already incorporate the variation that stems from the stop-
ping criterion. The solid lines indicate the mean of the fitted functions, the true
functions are shown as dotted lines.

In the Poisson examples the estimated and the empirical confidence bands al-
most coincide. In the binary example the estimated confidence bands are slightly
narrower than the empirical bands. Given that confidence bands in additive mod-
elling, including the selection of smoothing parameters and variables, is always
approximative the approximation by means of the hat matrix is rather good. Al-
ternative confidence intervals by bootstrap techniques fail because of the heavy
computational burden. In both examples the true function is within the empirical
as well as within the estimated pointwise confidence bands.

17

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

x1

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

x2

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

x3

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

x4

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

x5

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

x1

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

x2

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

x3

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

x4

et
a

co
nt

rib
.

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

x5

et
a

co
nt

rib
.

Figure 4: Mean empirical (broken lines) and estimated (dash-dotted lines) con-
fidence bands for 50 fits to data from a binary response (upper panels) and a
Poisson response model (lower panels). The solid lines indicate the estimates
and the dotted lines the true functions.

3 Comparison to alternative fitting methods

3.1 GAMBoost and LogitBoost

For binary responses LogitBoost (Friedman et al., 2000) is a well established
general boosting procedure. In contrast to GAMBoost where past boosting steps
are represented by an intercept η̂(l) LogitBoost uses the weighted least squares
representation of Fisher scoring by considering the working response variables
zi = yi − p(l)(xi)/(p(l)(xi)(1− p(l)(xi))) with weights wi = p(l)(xi)(1 − p(l)(x))
where p(l)(xi) is the predicted probability of y = 1 based on the past boosting
steps. With the resulting estimate f(l+1) the current function estimate η(l)(x) is
updated by η(l+1)(x) = η(l)(x) + 1

2
f(l+1)(x) and p(l+1) is obtained by p(l+1)(x) =

exp(F(l+1)(x))/(exp(F(l+1)(x)) + exp(−F(l+1)(x))). If LogitBoost is adapted to the
present setting of componentwise boosting one obtains the estimation step for
component s as

f (l+1)
s = Zs(Z

T
s ŴLZs + λΛ)−1ZT

s ŴLz(l)

where Wl = diag(p(l)(x1)(1− p(l)(x1), . . . , p(l)(xn)(1− p(l)(xn)) is the weight ma-
trix corresponding to the working response zT

(l) = (z1, . . . , zn) after step l. The
corresponding

GAMBoost step for a binary response and the (canonical) logit link takes with

18

∂h(ηi)/∂η = var(yi)/φ the form

fs,new = Zs(Z
T
s D̂Zs + λΛ)−1ZT

s (y − µ̂).

Since for the canonical link D̂ = ŴL and WLz(l) = (y1−p(l)(x1), . . . , yn−p(l)(xn))T

it is seen that with the same starting point (i.e. µ̂
(l)
i = p(l)(xi)) the update is

identical for LogitBoost and GAMBoost.

from GAMBoost because it uses a factor of 1/2 for the update and employs
exp(F (x))/(exp(F (x)) + exp(−F (x))) instead of exp(F (x))/(1 + exp(F (x))).

3.2 Empirical comparison

We present part of a simulation study in which the performance of GAMBoost
is compared to other procedures for function estimation and variable selection in
additive models. We used only procedures for comparison that explicitly allow
for an exponential family response and give estimates for each model component
(corresponding to a variable) separately together with standard deviations. The
simplest approach is to use generalized linear models (GLM) which are restricted
to linear predictors (McCullagh & Nelder, 1989). Generalized additive models
(GAMs) weaken the linearity assumption and allow for smooth functions. For
fitting Hastie & Tibshirani (1990) suggest to use the backfitting algorithm (to be
denoted by “bfGAM”) where each component function is iteratively re-estimated
by a scatterplot smoother (e.g. smoothing splines). The amount of smoothness to
be used is often specified by per-component degrees-of-freedom. An alternative
approach is to use simultaneous estimation of all components with a design matrix
that consist of basis function expansions of the predictors (Marx & Eilers, 1998).
We will use the implementation of Wood (2000) (to be denoted by “wGAM”)
that incorporates automatic selection of smoothing parameters by generalized
cross-validation (GCV). In contrast to GAMBoost which uses small updates of
its estimates in each step, all other procedures use simultaneous estimation of
all components or perform a separate re-estimation of components instead of an
update. Therefore they are more prone to numerical problems with a large num-
ber of predictors and some kind of variable selection has to be performed. For
GLM we use backward elimination as described e.g. by McCullagh & Nelder
(1989) (denoted by “GLMse”) and compare it to the full model. For generalized
additive models with backward elimination (bfGAM) in addition to the variables
to be used the degrees-of-freedom for each component have to be selected. We
will use the step-wise approach that is suggested in Chambers & Hastie (1992).
Starting from an initial model that includes all variables as linear predictors, for
each predictor an upgrade and a downgrade by one level (with levels “not in-
cluded”,“linear” and “smooth” with 4, 6 and 12 degrees of freedom) is evaluated
and then that predictor is modified that results in a maximum decrease of the

19

AIC. This upgrade/downgrade procedure is repeated until no further decrease
of AIC can be achieved. For wGAM we evaluate a similar procedure (denoted
by “wGAMfb”) that uses the levels “not included”, “linear” and “smooth with
parameter selected by GCV”. Alternatively for a small number of predictors back-
ward elimination is used (i.e. the initial model includes only smooth predictors
and elimination of one variable is evaluated in each step). This will be denoted
by “wGAMb”. For GLM and the variants of GAM we used the implementations
available for the statistical environment R (R Development Core Team, 2004)
with parameters set to the default values.

The two flexible parameters of GAMBoost are the number of boosting steps
and the penalty parameter λ. The first is chosen according to the approximate
AIC given in (13). The second is chosen by an automatic procedure in such a
way that the number of boosting steps chosen is greater or equal to 50. The
reason for this rule is that despite being rather insensitive to the exact value of
λ, often inadequate fits are obtained when the learner used is not weak enough
and therefore only a small number of boosting steps is used.

The performance baseline that can for example be used to identify extreme over-
fitting of real models is defined by fitting a generalized linear model that uses
only an intercept.

The simulation study is in two parts. First a GLM is assumed to hold and then
an additive model is the data generating model. The assumed GLM is given by

ηi = cn(xi1 + 0.7xi3 + 1.5xi5). (15)

with the response being drawn from a binomial or a Poisson distribution with
parameter ηi. The variables xij, j = 1, . . . , p, are drawn from a uniform distribu-
tion (with values between -1 to 1) where the influence of the three informative
predictors on the respone (similar to model (11)) is controlled by the parameter
cn. The training sample size is n = 100. As a measure of goodness-of-fit we used
the Kullback-Leibler distance on future observations as it is both adequate for
the binary and the Poisson case. We evaluated it on a test sample of size 1000.

Figure 5 shows the Kullback-Leibler distances obtained from 50 repetitions for
binary response data (upper panels) and for Poisson response data (lower panels)
for p = 5 (left panels) and p = 10 right panels. The signal-to-noise ratio is chosen
in such a way that generalized linear models, which are adequate for this data,
can improve over the baseline intercept model. It is seen that all of the more
advanced procedures that offer too much flexibility for the underlying model also
outperform the baseline model. It comes as a surprise that the performance of
GAMBoost is well comparable to the performance of GLM. Although the data
generating model is a generalized linear model the added flexibility by estimating
an generalized additive model does not affect the performance. In the contrary,
considering the variability of estimates, GAMBoost is even more stable than

20

●●●●●
●

●
●

●
●

●

●

●

●

●

●
●

● ●

●
●

baseline GLM GLMse bfGAM wGAM wGAMfb GAMBoost

1.
0

1.
5

2.
0

2.
5

K
ul

lb
ac

k−
Le

ib
le

r
di

st
an

ce

●●
● ●●

●

●
●

●
●

●

●

baseline GLM GLMse bfGAM wGAMfb GAMBoost

1.
0

1.
5

2.
0

2.
5

K
ul

lb
ac

k−
Le

ib
le

r
di

st
an

ce

●

●

●

●

●

●

●

●

●

baseline GLM GLMse bfGAM wGAM wGAMfb GAMBoost

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

K
ul

lb
ac

k−
Le

ib
le

r
di

st
an

ce

●

●●

●

●

●

●
●

●

●

baseline GLM GLMse bfGAM wGAMfb GAMBoost

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

K
ul

lb
ac

k−
Le

ib
le

r
di

st
an

ce

Figure 5: Kullback-Leibler distances for various procedures for binary (upper panels)
and Poisson (lower panels) response data generated from model (15) (cn = 2 for the
binary and cn = 0.5 for the Poisson case) with 5 (left panels) and 10 (right panels)
variables (baseline: GLM with only intercept; GLM: GLM with backward elimina-
tion; bfGAM: backfitting GAM with forward/backward; wGAMb: Wood GAM with
backward elimination; wGAMfb: Wood GAM with forward/backward; GAMBoost:
GAMBoost with AIC stopping criterion).

GLM. The performance of the other GAM procedures is worse, where bfGAM
performs better than wGAM procedures. In particular when the noise increases
(p = 10) these procedures perform distinctly worse than GLM.

In the second part of the simulation study we generated data from the additive
(non-linear) model (11) with binary and Poisson responses. The total number of
predictors is varied (p ∈ {5, 10, 20, 50}) but the number of informative predictors
is always three. The amount of influence of the latter on the response is controlled
by the parameter cn which takes three values (1, 2 and 3 for the binary response
examples and 0.5, 0.75 and 1 for the Poisson response examples) corresponding
to “high noise“, “some noise” and “low noise”. The size of the training sample is
kept fixed at n = 100. The training and test procedure is repeated for 20 times
for each combination of p and cn.

Table 1 gives the mean Kullback-Leibler distances for the binary response exam-
ples. The number of instances where no fit could be obtained is given in paren-
theses. So the mean Kullback-Leibler distance given in these cells is based on a
smaller number of repetitions (having possibly less complicated data structure).
An empty cell indicates that a procedure could not be used at all. Given that
there is a linear predictor in the data generating model, GLM performs rather
good for small number of variables whereas for p > 20 its performance is very

21

Table 1: Mean Kullback-Leibler distance for binary response data generated from
model (11) for varying numbers of predictors p and varying amount of predictor in-
fluence cn (base: GLM with only intercept; GLM: GLM with full model; GLMse:
GLM with backward elimination; bfGAM: backfitting GAM with forward/backward;
wGAMb: Wood GAM with backward elimination; wGAMfb: Wood GAM with for-
ward/backward; GB: GAMBoost; opt: GAMBoost with optimal number of boosting
steps). The number of instances where no fit could be obtained is given in parentheses.

cn p base GLM GLMse bfGAM wGAM wGAMfb GB opt
1 5 1.400 1.396 1.386 1.527 1.373 (10) 1.384 1.314 1.270

10 1.398 1.492 1.452 2.190 - 1.534 1.329 1.305
20 1.399 1.707 1.538 - - 1.887 (1) 1.365 1.320
50 1.395 4.554 (38) 2.564 (35) - - - 1.471 1.356

2 5 1.400 1.333 1.325 1.441 (4) 1.087 (20) 1.140 1.041 0.985
10 1.400 1.424 1.378 1.618 (14) - 1.353 1.058 1.043
20 1.397 1.646 1.496 - - 1.812 1.103 1.089
50 1.395 4.836 (43) 2.617 (40) - - - 1.233 1.182

3 5 1.400 1.298 1.286 1.046 (15) 0.884 (27) 0.960 0.842 0.790
10 1.396 1.372 1.333 1.548 (31) - 1.210 0.852 0.839
20 1.397 1.641 1.471 - - 1.780 0.912 0.893
50 1.397 6.233 (44) 2.762 (42) - - - 1.002 0.975

bad. The use of backward elimination results in an improvement but for p > 20
it is still worse than the baseline . For small signal-to-noise ratio the performance
of all GAM procedures (except GAMBoost) is very disappointing. For p > 5 the
performance is worse than the fitting of an intercept model (base), for p = 5 it
is within the range of the intercept model. The procedures are simply unable
to draw information from the data. For bfGAM the effect still is present for a
medium signal-to-noise ratio. wGAM shows better performance for p = 5 but for
more than 5 variables wGAMb cannot be applied and wGAMfb is mostly out-
performed by the intercept model. This is strongly contrasted by the GAMBoost
procedure which (with one exception) strictly performs better than the simple
intercept model and is very robust against the inclusion of noise variables. The
performance is rather the same up to 20 variables, an increase in Kullback-Leibler
distance is seen only for 50 variables where all of the other GAM procedures fail
totally. So GAMBoost seems to be very resistant to overfitting. In addition the
difference between GAMBoost (with the number of steps selected by approximate
AIC) and the results that can be obtained with the optimal number of boosting
steps is rather small. Selection by approximate AIC seems to work rather well.

Table 2 shows the mean Kullback-Leibler distances for the Poisson response data.
Compared to the binary response examples bfGAM performs much better and

22

Table 2: Mean Kullback-Leibler distance for Poisson response data generated from
model (11) for varying numbers of predictors p and varying amount of predictor in-
fluence cn (base: GLM with only intercept; GLM: GLM with full model; GLMse:
GLM with backward elimination; bfGAM: backfitting GAM with forward/backward;
wGAMb: Wood GAM with backward elimination; wGAMfb: Wood GAM with for-
ward/backward; GB: GAMBoost; opt: GAMBoost with optimal number of boosting
steps). The number of instances where no fit could be obtained is given in parentheses.

cn p base GLM GLMse bfGAM wGAM wGAMfb GB opt
0.5 5 1.484 1.449 1.442 1.352 1.299 (2) 1.308 1.261 1.241

10 1.479 1.525 1.490 1.433 - 1.466 1.309 1.283
20 1.471 1.695 1.587 - - 1.527 1.352 1.324
50 1.449 4.332 2.538 - - - 1.435 1.370

0.75 5 2.027 1.849 1.840 1.500 1.276 (3) 1.261 1.250 1.227
10 2.013 1.968 1.928 1.561 - 1.390 1.344 1.317
20 2.024 2.272 2.188 - - 1.572 1.436 1.413
50 1.971 6.589 3.861 - - - 1.579 1.549

1 5 3.11 2.703 2.694 2.069 1.196 (1) 1.196 1.255 1.223
10 3.1 2.907 2.874 2.186 - 1.322 1.381 1.353
20 3.117 3.379 3.283 - - 1.556 1.563 1.521
50 3.117 3.079 12.297 - - - 1.917 1.885

outperforms the baseline and GLM for all examples where it can be fit, but still
the wGAM procedures perform better. For a small number of variables and
a large signal to noise-ratio the latter procedures are close to the performance
of GAMBoost and even dominate it in three examples. In contrast for a large
number of predictors and/or a small-signal-to-noise ratio GAMBoost clearly out-
performs the GAM procedures. Again in most examples the performance of
GAMBoost with approximate AIC is close to that with the optimal number of
boosting steps.

4 Application

When analyzing patterns of admission/discharge of patients at a psychiatric hos-
pital one important parameter is the number of readmissions after an initial stay
at the hospital. For planning and optimization of and after the initial treatment
variables are needed that are connected to the number of future admissions. To
identify and explore such relations techniques that provide a graphical represen-
tation and do not impose too many restrictions (e.g. linearity) are wanted. In
addition the focus is on homogeneous and therefore often small groups of patients
which raises problems with many complex procedures. GAMBoost with Poisson

23

0 500 1000 1500 2000

−
1

0
1

2

day of discharge

et
a

co
nt

rib
.

20 40 60 80

−
1

0
1

2

age at admission
et

a
co

nt
rib

.

0 20 40 60 80

−
1

0
1

2

GAF at admission

et
a

co
nt

rib
.

30 40 50 60 70 80 90

−
1

0
1

2

GAF at discharge

et
a

co
nt

rib
.

0 1 2 3 4 5

−
1

0
1

2

log(length of stay)

et
a

co
nt

rib
.

Figure 6: Estimated effects of several patient variables collected at the first stay
at a psychiatric hospital on the number of readmissions within three years after
discharge.

response in this situation offers flexible modelling for small datasets and helps
in the selection of useful variables. Its ability to cope with a small signal-to-
noise ratio is an additional benefit in this situation as the variables available for
predicting the number of readmissions may not contain very much information.

To illustrate this application of GAMBoost it is applied to data from a German
psychiatric hospital. There are 94 patients with a specific kind of substance
abuse that have been treated in the hospital within a time of seven years. The
response variable to be investigated is the number of readmissions within a time
of three years after discharge. The metric variables available that are likely to
carry information with respect to readmissions are “age at admission”, (logarithm
of) “length of stay (days)” and the “level of functioning” of the patient (GAF
for “Global Assessment of Functioning”) at admission and at discharge (with
larger values indicating a better state of health). Because the patient data have
been collected over a very long period the time of discharge is also included.
We also included the binary variables “gender” (1:female, 0:male), “compulsory
hospitalization” (1:yes, 0:no) and “comorbidity” (1:yes, 0:no). They are included
into the per-step selection as predictors with one basis function and zero penalty.

Figure 6 shows the GAMBoost estimates for number of readmissions being mod-
elled as a Poisson response. The estimate for the variable “age” suggests that

24

there may be two groups of patients, age ≤ 30 and age > 30, where in the first
group increasing age decreases the tendency to readmission whereas in the second
group this relation is reversed.

The estimate for “length of stay” also indicates that there may be two groups
of patients, the first corresponding to short interventions (one week or less) and
a medium level of readmissions and the second corresponding to comprehen-
sive treatment where the patients that receive more treatment may be the more
problematic and therefore also have more readmissions. Looking at the “level
of functioning” variables it comes as a surprise that the GAF at admission does
not seem to be of high relevance with respect to the number of readmissions.
Nevertheless there seems to be a reduction of the number of readmissions with
increasing GAF score (at discharge) if it is above 50. The estimate for the vari-
able “compulsory hospitalization” is 0.634 (standard deviation: 0.213), indicating
that this type of patient is distinct with respect to the number of readmissions.
For the other categorical variables there does not seem to be a significant effect
(“sex”: not selected in any boosting iteration; “comorbidity”: estimate -0.074,
standard deviation 0.054). It should be mentioned that bfGAM failed to find
estimates for this data sets. Starting from a linear model problems with conver-
gence made it impossible to increase the degrees of freedom of the components
above a certain level and so a final model could not be obtained.

5 Concluding remarks

GAMBoost offers a procedure for fitting generalized additive models that over-
comes deficiencies of commonly used fitting procedures. The selection of smooth-
ing parameters, usually a task in p dimensional space, is reduced to the selection
of just one tuning parameter, the number of iterations. The amount of smooth-
ing which varies across predictors is automatically adapted by the selection of
variables to be updated in each iteration. The componentwise fitting procedure
allows to use it in high dimensions where other GAM procedures fail. The derived
approximation of the hat matrix turns out to be useful for the construction of an
appropriate stopping criterion as well as for the derivation of standard errors.

It is straightforward to extend the method to multivariate generalized additive
models like the proportional odds model with additive predictors (see Hastie &
Tibshirani (1990) for traditional methods to estimate ordinal response models).
After representing the smooth functions as weighted sum of basis functions one
only has to adapt design matrices, score functions and Fisher matrices to the
multivariate response case.

25

References

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Compu-
tation 11, 1493–1517.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984).
Classification and Regression Trees. Wadsworth.

Bühlmann, P. & Yu, B. (2003). Boosting with the L2 loss: Regression and
classification. Journal of the American Statistical Association 98, 324–339.

Chambers, J. M. & Hastie, T. J. (1992). Statistical Models in S. Pacific
Grove, California: Wadsworth.

Dettling, M. & Bühlmann, P. (2003). Boosting for tumor classification with
gene expression data. Bioinformatics 19, 1061–1069.

Eilers, P. H. C. & Marx, B. D. (1996). Flexible smoothing with B-splines
and penalties. Statistical Science 11, 89–121.

Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting
algorithm. In Machine Learning: Proc. Thirteenth International Conference.
Morgan Kaufman.

Friedman, J. H., Hastie, T. & Tibshirani, R. (2000). Additive logistic
regression: A statistical view of boosting. Annals of Statistics 28, 337–407.

Hastie, T. J. & Tibshirani, R. J. (1990). Generalized Additive Models. Lon-
don: Chapman & Hall.

Linton, O. B. & Nielsen, J. P. (1995). A kernel method of estimating struc-
tured nonparametric regression based on marginal integration. Biometrika 82,
93–100.

Marx, B. D. & Eilers, P. H. C. (1998). Direct generalized additive modelling
with penalized likelihood. Computational Statistics and Data Analysis 28, 193–
209.

McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models. Chap-
man & Hall, 2nd ed.

R Development Core Team (2004). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-00-3.

Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal
of Computational and Graphical Statistics 11, 735–757.

26

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning
5, 197–227.

Schimek, M. G. & Turlach, B. A. (2000). Additive and generalized ad-
ditive models. In Smoothing and Regression. Approaches, Computation and
Application, M. G. Schimek, ed. New York: Wiley, pp. 277–327.

Wood, S. N. (2000). Modelling and smoothing parameter estimation with
multiple quadratic penalties. Jounal of the Royal Statistical Society B 62,
413–428.

27

