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Abstract

A framework for the statistical analysis of counts from infectious disease surveillance databases
is proposed. In its simplest form, the model can be seen as a Poisson branching process model
with immigration. Extensions to include seasonal effects, time trends and overdispersion are
outlined. The model is shown to provide an adequate fit and reliable one-step-ahead prediction
intervals for a typical infectious disease surveillance time series. Furthermore, a multivariate
formulation is proposed, which is well suited to capture space-time interactions caused by the
spatial spread of a disease over time. Analyses of uni- and multivariate times series on several
infectious diseases are described. All analyses have been done using general optimization routines

where ML estimates and corresponding standard errors are readily available.
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1 Introduction

There has been much recent interest in the statistical analysis of multivariate time series of counts,
where each component, for example, corresponds to the number of disease cases in a specific ge-
ographical region or in a certain age group. Such data arise naturally in surveillance systems on
infectious diseases and are typically collected on a weekly or daily basis. Statistical analyses are typ-
ically done with computer-intensive Markov chain Monte Carlo (MCMC) methods, see for example
Mugglin et al. (2002), Svensson and Lindbéck (2002) and Knorr-Held and Richardson (2003).

For simplicity, consider first the simple univariate time-series case. Approaches to analyze such
data typically employ a log-linear Poisson regression model, perhaps allowing for overdispersion, and
model the disease incidence with unknown latent parameters, which exhibit temporal (Farrington

et al., 1996) and possibly also seasonal dependence. For example, the number of counts y; at time

t=1,...,n may be assumed to be Poisson with mean exp(7;) where
s
= oo+ art + Z (/68 Sin(wst) + s cos(wst)) ) (1)
s=1

where the Fourier frequencies w, are wy = 2sm/52 for weekly data (Diggle, 1990). Following the
terminology of Cox (1981), this class of models can be called parameter-driven. Note that similar
parameter-driven formulations with suitable prior distributions on latent parameters are used in the
analysis of non-infectious diseases, for example counts of cancer incidence or mortality (Knorr-Held
and Besag, 1998, Knorr-Held, 2000).

However, it has soon been recognized that a purely parameter-driven approach is often not able
to describe localized epidemics, and further model extensions were needed. In particular, a fruitful
approach is to add the number of cases in the past as additional explanatory variables in the model.
In the terminology of Cox (1981), this part of the model is called observation-driven and, combined
with (1), the complete model could thus be called parameter- and observation-driven.

However, certain complications arise. Adding the observed counts 4;_1 in the linear predictor

(1), i.e. y; is Poisson distributed with mean

pe = exp(ne + Aye—1),



say, is implausible because this model can only describe negative association but no positive associ-
ation without growing exponentially in time (Diggle et al., 2002, Section 10.4). Zeger and Quaqish
(1988) have therefore introduced a modification, where essentially the logarithm of the observed
counts (with log 0 replaced by logd, 0 < d < 1), minus the linear predictor 1,1 of y;_1, enters as

an explanatory variable, i.e.

pe = exp(re + A(max(log ye—1,logd) — m—1)).

This model can be seen as a size-dependent branching process (Diggle et al., 2002) and has nicer
properties, in particular it allows for positive association between successive counts. The constant
d prevents y;_1 = 0 from being an absorbing state, forcing all future responses to be zero. When
A > 0, we have an increased expectation when the previous outcome exceeds exp(1:—1).

However, the introduction of the parameter d and the regularization of past counts y;_; through
their non-epidemic expected values 1;,_; is complicated and seems slightly unnatural. Interpretation
of the autoregressive parameter X is not straightforward in this formulation. Alternatively, Knorr-
Held and Richardson (2003) let the logarithm of 1+y;_; enter as an explanatory variable, but avoid
the need to regularize. This is achieved by modulating the dependence on the previous counts by
latent O-1-indicators, which are assumed to follow a two-stage hidden Markov model.

In this paper we take a different model perspective, motivated from a branching process model
with immigration (e.g. Guttorp, 1995, Section 2.11). Essentially, our proposal is to let previous
counts act directly on the conditional mean p; of yt|y:—1 (and not on the log mean), so - in its
simplest version without temporal or seasonal trends - we use an identity link rather than a log
link:

Ut =V 4+ Ayr—1. (2)

It is easy to show (Guttorp, 1995) that, for v > 0 and 0 < A < 1, this process is stationary with

mean and variance

po= v/(1=N\), (3)
of = v/{1-N01-2)}.



The advantage of model (2) is that, without the immigration, it has a nice interpretation as an
approximation to a chain binomial model (see Becker, 1989, for further details) in the absence of
information on the number of disease susceptibles. Information on the number of susceptibles is only
ever available in very special, much analysed dataset, see for example Finkenstédt et al. (2002). It
is seldom, if ever, available in a surveillance setting (Farrington et al., 2003), so the approximation
appears to be justified. Furthermore, under certain assumptions, the autoregressive parameter A
can be interpreted as the basic reproduction number Ry (Farrington et al., 2003), the key quantity
in infectious disease epidemiology (e.g. Dietz, 1996).

The additional influx of immigrated case with mean v ensures that the process will not die
out with probability one, in contrast to the ordinary branching process. This is a useful addition,
as infectious disease surveillance data often displays a mixture of an endemic and an epidemic
behaviour. Indeed, for A close to one, simulations from this model display occasional epidemic
outbreaks, so the formulation seems more realistic than a purely parameter-driven formulation.
However, in applications there may be need to replace the Poisson with a more flexible observation
model to allow for overdispersion. We will use a negative binomial model, where the mean structure

of the models remains the same but the variance o7 increases to

of = pe + pi /b

with the additional parameter ¢» > O, to be estimated from the data at hand. Note that for ¢y — oo,
the negative binomial model equals the simple Poisson model.

Clearly, model (2) will still be not sufficient for most data on infectious diseases. In particular,
it does not allow for seasonality and temporal trends. A simple adjustment is to replace v with a
time-changing v, where logry = 1 from (1). Note that the autoregressive parameter A remains
independent of time. However, we comment on extensions with time- or area-dependent A in Section
4. As a side comment, unequally spaced time series can easily be casted into this framework by
including the log length of the underlying reporting period as an additional offset variable.

A further advantage of this formulation is that the extended model is easily estimated by
Maximum Likelihood using generic optimization routines, e.g. the function optim() in R. Note

that the simple model (2) is just a generalized linear model (GLM) with Poisson observation model



and identity link, whereas the extended model with time-changing v as in (1) does no longer fit
into the GLLM framework.

We will show that the model can readily be extended to typical research questions that appear
in infectious disease surveillance. We will discuss the following: (a) Model-based prediction of
epidemics, (b) Modelling multivariate times series, and (c) Space-time modelling of longitudinal

count data on infectious diseases. Further extensions are outlined in Section 4.

2 The time series case

For illustration consider Figure 1, a univariate time series of weekly counts for Salmonella Agona,
1990-95, reported also in Farrington et al. (1996). Note that the time series shown in Farrington
et al. (1996) is slightly different (and also slightly shorter), due to later modifications in the data-
file.

To these data we fitted model (2) with logv replaced by logr; from (1) and S = 1. Higher
terms for seasonality did not lead to a significant improvement in the likelihood. The term for
the linear time trend has always been included. We have thus fitted 8 different models, depending
on the observation model (Poisson or negative binomial), whether the seasonality terms have been
included or not, and whether the autoregressive component Ay; 1 has been included in the linear

predictor (2) or not. The results are summarized in Table 1.

Model  Distribution  Seasonality Autoregression MSE) ¢ (SE)  logL DF

1 Poisson No No - - —744.0 309
2 Poisson No Yes 0.49 (0.03) - —664.8 308
3 Poisson Yes No - —660.0 307
4 Poisson Yes Yes 0.29 (0.03) - —637.8 306
5 Neg. Binomial No No - 2.1 (0.3) —673.4 308
6  Neg. Binomial No Yes 0.48 (0.04) 3.8 (0.8) —636.5 307
7 Neg. Binomial Yes No - 4.0 (0.8) —632.3 306
8 Neg. Binomial Yes Yes 0.27 (0.04) 5.2 (1.3) —620.2 305

Table 1: Summary of the ML estimates (standard errors in brackets) of the different models for
the Salmonella Agona data.

There are several interesting features to see:



e There is clear evidence for overdispersion, since the negative binomial models result in a
significant increase in terms of maximized log-likelihood, denoted by log L., compared to the

corresponding Poisson models.

e Inclusion of seasonality terms in models with the autoregressive component leads to a consid-
erably smaller estimated autoregressive parameter A. This illustrates that the autoregressive
component captures the residual temporal dependence in the time series, after adjusting for

seasonal effects.

e Nevertheless, from the log-likelihood values it can be seen that both seasonality and the
autoregressive component have to be included in the model and hence, model 8 appears to

be the best.

The fit of the final model is compared with the observed data in Figure 1. Furthermore, Figure 2

also gives a plot of the Pearson residuals

Ye — [t
2
t

Ty =

where [i; and 67 is the estimated mean and variance of 7; respectively. Note that, for the negative

binomial model, we used

R ~2 7

6p = fie + fi; [
Figure 2 also display a nonparametric smooth fit through the residuals and the estimated auto-
correlation function of the residuals; The nonparametric fit does not indicate any strong evidence
for non-stationarity of the residuals; the 95% pointwise confidence intervals for the autocorrelation

give also only weak evidence of positive autocorrelation at lag 3, 7, 9, which may be spurious. In

summary it appears that this model gives a reasonable (but perhaps not perfect) fit to the data.

As a further check, we also looked at the out-of-sample predictive quality of the models. The
appropriateness of the predictions is of paramount importance, if warnings for the possibility of
future outbreaks are based on the predictive distribution for 1:41. Based on the data up to a certain

week t, we have estimated all parameters in the model and then computed the predicted number
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Figure 1: Observed and fitted counts of Salmonella agona, 1990-95

of cases from the chosen model for the next week. Furthermore, an upper limit for the number of
cases has been computed based on the quantiles of the Poisson and negative binomial distribution,
respectively. This procedure has been iterated over the last 100 observations of the time series and
over all models.

The predictive quality of the different models, based on those one-step-ahead-predictions of the
last 100 observations is summarized in Table 2. We have computed (a) the mean squared prediction
error (MSPE) based on the square root counts (we have used the square root transformation in
order to stabilize the variance of the counts) and (b) the empirical coverage of the upper prediction
limits to the confidence levels 90, 95 and 99%, i.e. the proportion of observed counts that are
smaller or equal to the corresponding upper prediction limit.

The following results should be highlighted:

e In terms of MSPE, the two models with seasonality and with the autoregressive component
perform best. In particular, the MSPE is slightly smaller than the purely parameter-driven

formulation with A = 0.

e The MSPE is nearly independent of the chosen observation model. This is not surprising, as
the negative binomial model does not change the mean structure, it only changes the variance

structure.
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Figure 2: Pearson residuals and corresponding autocorrelation function

Model  Distribution = Seasonality Autoregression MSPE Coverage

90% 95% 99%
1 Poisson No No 0.637 0.80 0.86 0.95
2 Poisson No Yes 0.558 0.84 0.92 0.98
3 Poisson Yes No 0.505 0.81 0.90 0.97
4 Poisson Yes Yes 0.484 0.83 0.89 0.97
5 Neg. Binomial No No 0.635 0.90 0.96 1.00
6 Neg. Binomial No Yes 0.557 0.93 0.98 0.99
7 Neg. Binomial Yes No 0.507 0.88 0.93 0.98
8 Neg. Binomial Yes Yes 0.484 0.87 094 0.99

Table 2: Predictive performance of the different models.

e The coverage is too low for the Poisson models (again not surprising, because the variance of

the Poisson model is too low), but seems very reasonable for the negative binomial models.

Figure 3 illustrates this procedure for the last model. Shown are the one-step-ahead predictions, the
corresponding 99% upper limits of the predictive distribution, and the actually observed data. Such
an upper prediction limit is typically used as a threshold to flag outbreaks of infectious diseases
(Farrington and Andrews, 2003).

In conclusion, we have shown that for this time series, a fairly simple model with only 6 unknown
parameters produces an adequate fit and reasonable one-step-ahead predictions that do not indicate

any serious inappropriateness of the model. All models can be estimated easily using the general
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Figure 3: Observed, predicted, and upper 99% prediction limits for one-step-ahead predictions of
the last 100 observations of the Salmonella Agona time series

purpose R routine optim() for numerical optimization. Results are immediately available and are
numerically stable. Note that this function also returns standard errors based on the Hessian
matrix, without any need to supply analytic derivatives of the log likelihood function (Venables
and Ripley, 2002, Chapter 16).

As a further illustration, we have analysed the weekly number of Enterohaemorrhagic Es-
cherichia coli (EHEC) infections in Bavaria, 2001-2003, shown in Figure 4. Fitting the same
models as for Salmonella Agona to this time series, gives different results, summarized in Table 3.
In particular, once the models are adjusted for seasonality, there is no need to include the autore-
gressive component and a purely parameter-driven model is sufficient. This can be seen as for the
models with an additional autoregressive component, the estimate A\ is not significantly different
from zero and does also not lead to a significant reduction in maximized likelihood. Incidentally,
there is still evidence for overdispersion, for example comparing the seventh with the third model
using a likelihood ratio test gives a test statistic of 2(377.1 — 373.2) = 7.8 with a p-value of 0.005.
Note that Figure 4 also includes the fitted values from model 7 in Table 3. In contrast to Figure
1, now the sinusoidal parametric form for the seasonal pattern is clearly visible, due to the lack of

the autoregressive component.
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Figure 4: Observed and fitted counts of Enterohaemorrhagic Escherichia coli, 2001-2003

3 A multivariate model extension

Consider now the case where multivariate time series data is available. For example, we might
consider the number of cases in different age groups or different geographical regions. We assume
that we have i = 1,...,m “units” and denote with y;; the number of cases in unit ¢ at time ¢.

Suppose now that (in the simplest model without time or seasonal trends) the mean structure
is

Mit = AYit—1 + ngv

where n;: are - possibly standardized - population counts in area z.
This model has a nice aggregation property, since the aggregated counts yz = > .. ; yi have
mean

e = AYi—1 + v (4)

where n; = "7 | nj. So the parameter A has the same interpretation for the aggregated counts as
for the individual counts y;; and v is adjusted with the corresponding population counts n;. Note
that - under a Poisson model for y; - y: will still be Poisson distributed. However, this does no
longer hold for the negative binomial distribution.

Also note, that, in the Poisson case, the model can be written as a multivariate or multitype

10



Model  Distribution  Seasonality Autoregression AMSE) Y (SE) loglL. DF

1 Poisson No No - - -394.5 153
2 Poisson No Yes 0.13 (0.03) - -392.4 152
3 Poisson Yes No - - -377.1 151
4 Poisson Yes Yes -0.04 (0.03) - -376.9 150
5 Neg. Binomial No No - 9.9 (3.0) -384.6 152
6 Neg. Binomial No Yes 0.12 (0.04) 10.7 (3.4) -383.4 151
7 Neg. Binomial Yes No - 171 (7.7) -373.2 150
8 Neg. Binomial Yes Yes -0.05 (0.03) 17.1 (7.7) -373.1 149

Table 3: Summary of the ML estimates (standard errors in brackets) of the different models for
EHEC.

branching process with immigration (Mode, 1971) where
pr = Ay tv

with suitable defined vectors g, y,_;, v, and matrix A. In model (4), A is simply diagonal with
entries equal to A; more elaborate specifications will be presented later.
As before, the assumption of a constant v in (4) is too strict, and we may, for example, replace

v by v, where

S
logvig = i + aat + > _ (e sin(wst) + 75 cos(wst)) . (5)
s=1

Compared to (1), the additional unit-dependent parameter «; allow for different incidence levels in
the different units. For example, if a series of geographical units are analysed, there may be different
reporting rates and they will be captured by «;. Note that model (5) decomposes the incidence
into unit-specific and time-dependent parameters, in the spirit of Knorr-Held and Besag (1998)
and Knorr-Held and Richardson (2003). Inclusion of dependence across the different series in the
parameter-driven part of the model is more difficult. Below we propose an extension where such
dependence is captured in the observation-driven part of the model through an additional regression
on the number of cases in other units. Depending on the context, this may be geographically
neighbouring units, see Section 3.2, or, in the case of units corresponding to age groups, simply all

other age groups.
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3.1 Application to meningococcal infections in France

For illustration we now consider monthly counts of meningococcal incidence in France, 1985-1995.
These data have previously been analysed in Knorr-Held and Richardson (2003) with focus on
geographical variations. Here we split the data into m = 4 age groups (< 1, 1 — 5, 5 — 20, > 20)
and obtain a multivariate time series of dimension four.

Model (5) has been fitted to these data with S = 1 (note that w, = 27/12 now), and the
results are as follows: The ML-estimate of A is 0.12 (0.02), indicating some evidence for a weak
dependence on the number of counts in the last month - after adjustments for seasonal effects. The
value of the maximized log likelihood is —1543.1, which should be compared to —1547.4, the value
of the log likelihood in the purely parameter-driven model without the component Ay; ;1. Hence,
there is evidence that the autoregressive component is needed (p-value = 0.003) in the model.
Note that these results are based on a negative-binomial model, as there was evidence for residual
overdispersion. The observed and fitted times series are displayed in Figure 5 while the Pearson

residuals are shown in Figure 6.
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Figure 5: Observed and fitted counts of meningococcal infections in the different age groups

As said earlier, a more general model may also consider the past number of cases in other age
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Figure 6: Pearson residuals

groups as potential explanatory variables for y;;. In the simplest case,

Mit = NYii—1 + @ Zyj,t—l + il (6)
i#i

with v as in (5), which introduces one additional parameter ¢ for the autoregressive effect of the
other age groups. Written as a multivariate branching process, the matrix A now has diagonal
entries A and off-diagonal entries equal to ¢. Note that the effective basic reproduction number
Ry now equals the largest eigenvalue of A (Anderson and Britton, 2000, Chapter 6). If Ry < 1,
the process is ergodic with mean v(I — A)~! (Mode, 1971, Section 2.7). This formula is just the
multivariate analogue of equation (3).

For the meningitis data, the ML-estimates of A are nearly identical to the model without ¢
while the ML-estimate of ¢ is —0.0004 (0.005), very close and not significantly different from
zero. Furthermore, the maximized log likelihood is still —1543.1, which clearly indicates, that the
component ¢ " i Yit—1 is not needed for these data. Incidentally, we also considered the model
including this term, but excluding Ay;;—1. The ML-estimate of ¢ is now 0.017 (0.005) and the
maximized log likelihood is —1546.8, which is not significantly different from the purely parameter-

driven. model (p-value = 0.27). This indicates that, after adjusting for seasonality, an epidemic
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component can be isolated within the age groups, but not between the age groups. This may relate
to different contact rates in different age groups, see Farrington et al. (2001) and Whitaker and
Farrington (2004) for a discussion of suitable choices of contact rates in different age groups in the
context of serological surveys.

Incidentally, we have also analysed the four age groups separately, using the basic formulation
(2) and (1). The ML-estimates of A are 0.25 (0.04), 0.10 (0.03), 0.07 (0.03) and 0.05 (0.03) for the
age groups < 1, 1 — 5, 5 — 20 and > 20. This suggests that there is some heterogeneity in the
autoregressive effect, decreasing for older age groups. However, again using a likelihood ratio test,

the separate analysis does not indicate a significant improvement over the joint model.

3.2 A space-time application: Measles epidemics in Lower Saxony

In the administrative district “Weser-Ems”, located in the eastern part of the German state Lower
Saxony, two measles epidemics occurred in the years 2001 and 2002. Here we analyse the weekly
counts of those measles cases from the corresponding m = 15 spatial areas of this district, see
Figure 8 for a map of the area considered. Note that we have omitted two areas with zero counts

to avoid problems with non-existing ML-estimates. The data are shown in Figure 7, but see also
http://www.nlga.niedersachsen.de/infekt/infekt _dat.htm

for an animated movie of the 2002 epidemic (Click on “Interaktiver Infektionsbericht 2003” and
then select “Masern” and “Diagramme, Zeitverlauf”).

To these data we fitted a model adopted from (6),

Mit = NYii—1 + @ Z Yji—1 + NitVit,
ji

with population fractions n;; and v as in (5), but where now the sum of the cases in other areas is
only over spatially adjacent areas j ~ i. Two areas have been defined to be adjacent if they share
a common border. With S = 1 Fourier frequencies, the model thus has 21 parameters. Again,
estimation of this model with the function optim() was fairly straightforward and results have
been computed in just a few seconds.

The estimates in the full model are A = 0.62 (0.08), ¢ = 0.016 (0.003) and ) = 0.49 (0.06)

with log I = —942.6. Thus, the space-time interaction effect of the counts in neighboring areas is

14
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Figure 7: Weekly counts of new measles cases in n = 15 areas in the district “Weser-Itms”

significant. This can also be seen from a pronounced decrease in log I of the model with ¢ = 0,
where A = 0.66 (0.08), ¢ = 0.45 (0.06) and log L = —954.3. This is in good agreement with the
spatial spread of the disease over time, which is already visible from the animated movie mentioned
above. We note that in the full model, the corresponding value of Ry can be calculated from the

cigenvalues of the matrix A and turns out to be Ry = 0.69.

4 Discussion

The attractiveness of the proposed framework is immediate: All models and analyses shown in
this paper can be easily repeated within seconds using standard optimization software. Thus, in
contrast to methods based on MCMC, the model is particularly well suited for routine analysis in
infectious disease surveillance. On the other hand, we believe that the model constitutes a useful
extension of the purely parameter-driven GLM formulation by Farrington et al. (1996).

However, some caveats are appropriate. First, the interpretation of the branching process as
an approximation to a chain-binomial model is only appropriate if the generation time equals
the observation time, typically days, weeks on months. However, we have conducted simulation

studies which showed that a Poisson branching process, aggregated to coarser time intervals, can be
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Figure 8: A map of the m = 15 areas in the administrative district “Weser-Ems”

approximated by a branching process with additional overdispersion. Indeed, in all our analysis, the
switch from Poisson to negative binomial was needed. Another practical limitation of the model is
that it does not allow for under-reporting, a typical feature of surveillance data. However, detailed
information on under-reporting is rarely available. Furthermore, as long as the under-reporting rate
is roughly constant across units or areas, it can well be absorbed by the area-specific parameter
«;. For example, in the analysis described in Section 3.2, the area effects (adjusted for population
counts) showed a considerable variation, which may be both due to differences in incidence as well
as different reporting rates.

Of course, further generalizations may require a Bayesian approach and more advanced MCMC
techniques for statistical inference. For example, we are currently working on an extension where
the parameter X is allowed to vary over time, according to a Bayesian change-point model with
unknown number of change points (Denison et al., 2002). A time-changing \; will be appropriate

in situations where the invectiveness of an agent varies over time, for example due to vaccination
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programs, other interventions, or due to a sudden outbreak, where \; > 1 for some limited time
period, to be estimated from the data. Alternatively, one may assume a smooth latent process for
At, perhaps suitably transformed. Similarly, random effects, possibly correlated, may be introduced
at area-level. In both cases, Gaussian Markov random fields (Rue and Held, 2005) will be useful
as prior distributions.

Another extension we currently consider in the space-time context is to include covariate in-
formation on area level. Such covariates could be introduced in v, but also in A, perhaps suitably
transformed. The aim is here to bring together spatial ecological regression (Clayton et al., 1993)

and infectious disease epidemiology.
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