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Abstract

We derive analytic expressions for the tail behavior of credit losses in a

large homogeneous credit default portfolio. Our model is an extended Credit-

Metrics model; i.e. it is a one-factor model with a multiplicative shock-variable.

We show that the first order tail behavior is robust with respect to this shock-

variable. In a simulation study we compare different models for the latent

variables. We fix default probability and correlation of the latent variables

and the first order tail behavior of the limiting credit losses in all models and

observe a completely different tail behavior leading to very different VaR esti-

mates. For three portfolios of different credit quality we suggest a pragmatic

model selection procedure and compare the fit with that of the β-model.
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1 Introduction

We consider a homogeneous portfolio L(m) = 1
m

∑m
j=1 Lj of m bonds Lj ∈ {0, 1},

where Lj = 1 indicates the default of the credit of company j. Each bond is char-

acterized by the vector (Sj, s), where Sj is a latent variable, e.g. the equity value of

company j. The number s denotes the default threshold in the sense that the bond

of company j defaults, if Sj < s.

The credit loss of the portfolio is expressed as the fraction of defaulted bonds

and the portfolio is homogeneous in the sense that all bonds have the same charac-

teristics; i.e. the vector (S1, S2, . . . , Sm) follows a factor model

Sj := Ws∗(X,Yj), (1.1)

where W > 0, X ∈ R and (Yj)j∈N is an iid sequence of real random variables. The Yj

are interpreted as a company-specific risk factors, X is a common risk factor (which

can be extended to a vector of common factors) and W is a global risk factor and

allows for a tuning of the model.

A well-known example for s∗(·, ·) is the CreditMetrics model as described in

Gupton, Finger and Bhatia (1997). We consider an extended CreditMetrics model

given by

Sj = W (aX + bYj), a, b > 0 and W > 0, X, Yj ∈ R random. (1.2)

The CreditMetrics model corresponds to W = 1, X,Yj
iid∼ N (0, 1) and a =

√
ρ,

b =
√

1 − ρ for some ρ ∈ (0, 1), modelling the correlation between Si and Sj for

i 6= j. One popular extension of this model takes W =
√

ν/χ2
ν , which yields for

(S1, . . . , Sm) a multivariate tν distribution, called the multivariate t-model.

A treatment of different credit portfolio models with a finite number of loans can

be found in Frey and McNeil (2001, 2002, 2003) and in Frey, McNeil and Nyfeler

(2001).

For the limiting portfolio L := limm→∞ L(m) it can be shown (see Theorem 2.3)

that L is a random variable and the limit is in the almost sure sense. For model

(1.2) with W ≡ 1 Lucas, Klaassen, Spreij and Straetmans (2003) show under weak

regularity conditions that the tail behavior of L is Weibull -like, i.e. P(L > q) =

(1 − q)αL(1/(1 − q)), q ∈ (0, 1), for some α > 0 and a slowly varying function L
(see Definition 2.7 for the term Weibull-like and Definition 2.6 for the concepts of

regular and slow variation).

For a random variable W > 0 the result remains true with the same α but a

different slowly varying function L appears. We indicate the influence of W in Section

3 by simulation, showing that it has an important influence on the right-tail behavior

of L. In Section 4 we fit four (extended) CreditMetrics models to three portfolios of
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different credit quality. We also investigate the fit of a simple β-model. This model,

however, proves as being too simplistic in most real world credit portfolios. The

extended CreditMetrics model proves to be superior provided the shock-variable W

is chosen correctly.

All proofs are gathered in the Appendix.

2 Results

First, we give some notations used throughout the paper.

Notation 2.1 (i) Random variables are always denoted by capital letters.

(ii) F· denotes the distribution function of the random variable ’·’ and f· denotes

its density, e.g. FX and fX are the distribution function and density of X,

respectively. Further, let F · := 1 − F· denote the tail-distribution of ’·’.

(iii) Let h = h(x1, x2) be a function of two variables. Then D2h := ∂h/∂x2.

(iv) 111AAA denotes the indicator function of the set AAA.

(v) We write a(x) ∼ b(x) as x → x0, if limx→x0
a(x)/b(x) = 1.

(vi) We write a(x) = o(1) as x → ∞, if limx→∞ a(x) = 0. 2

We shall investigate the tail-distribution of the limiting portfolio credit loss as

defined in the following definition in combination with Theorem 2.3

Definition 2.2 Let Lj := 111{Sj<s} = 111{Ws∗(X,Yj)<s} denote the default indicator of

the bond of company j and define the portfolio credit loss by

L(m) :=
1

m

m∑

j=1

Lj =
1

m

m∑

j=1

111{Ws∗(X,Yj)<s}.

The (almost sure) limit of L(m) as m → ∞ is called limiting portfolio credit loss and

denoted by L. 2

Theorem 2.3 Consider the setting of Definition 2.2. Then

lim
m→∞

L(m) = lim
m→∞

1

m

m∑

j=1

Lj

a.s.
= E(L1|W,X) = P(S1 < s|W,X) =: L

d
= FY (y∗(s/W,X)) .

2
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Considering the variance of L, we observe the following lemma.

Lemma 2.4 (i) Choose the setting of Definition 2.2 with ploss := P(Lj = 1), then

0 ≤
√

Var(L) ≤
√

ploss(1 − ploss). The upper bound is obtained for Li
a.s.
= Lj

∀i, j and the Var(L) = 0 is obtained for Li independent of Lj ∀i 6= j.

(ii) In the extended CreditMetrics model (1.2) the upper bound is obtained for a = 1

and b = 0, and the lower bound is obtained for a = 0, b = 1 and W ≡ const.

2

Next, we introduce our key assumptions on the factor model (1.1) and the risk

factors.

Assumption 2.5 (i) 0 < W ∼ FW , X ∼ FX , (Yj)j∈N are iid with Y1 ∼ FY and

all random variables are independent.

(ii) Denote by S, W, X and Y the supports of Sj, W , X and Yj, respectively, and

let W ⊆ (0,∞), inf X = −∞ and supY = +∞. We further assume that FX

and FY have densities fX and fY , respectively, and that fX is monotone on

some interval (−∞, zX) and fY is monotone on some interval (zY ,∞).

(iii) The factor model s∗(x, y) is strictly increasing, differentiable in both compo-

nents and the inverse functions exist on its support; i.e. for all s ∈ S, w ∈ W,

and x ∈ X there exists an inverse function y∗(s/w, x) ∈ Y and for all s ∈ S,

w ∈ W, and y ∈ Y there exists an inverse function x∗(s/w, y) ∈ X , so that

s = ws∗(x∗(s/w, y), y) = ws∗(x, y∗(s/w, x)).

(iv) We assume limy→∞ FX (x∗(0, y)) /F Y (y) < ∞.

(v) The default threshold s is negative. 2

Assumption 2.5 is nothing but Assumption 1 and the comment before Assump-

tion 2A of Lucas et al. (2003), amended by some further regularities.

Assumption 2.5(iii) says that we only consider factor models, where, given three

components of (Sj,W,X, Yj), the fourth is uniquely determined.

Assumption 2.5(iv) is needed since we extend the standard latent variable model

s∗(X,Yj) by the multiplicative factor W . Note that the default probability P(Lj =

1) is in general small and therefore, if E(Sj) = 0, we always have s < 0, hence

Assumption 2.5(v) is not restrictive.

Assumptions 2.5 hold for a large number of factor models. For instance, they are

satisfied by the CreditMetrics model as well as for the multivariate t-model. In the

following we focus on the extended CreditMetrics model (1.2) and turn our attention
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to the right tail behavior of the limiting portfolio credit losses L. From the right tail

behavior we can deduce the riskyness of the portfolio.

Before we specify the different types of distributions of X and Yj further, we

introduce the concept of regular variation.

Definition 2.6 (i) A positive, Lebesgue measurable function r is called regularly

varying at infinity with index α ∈ R and we write r ∈ Rα, if

r(tx)/r(x)
x→∞−→ tα, t > 0.

If L ∈ R0, then L is called slowly varying at infinity and we write L ∈ R0.

(ii) r ∈ Rα if and only if r(x) = xαL(x) for L ∈ R0.

(iii) If X ∼ F with F ∈ R−α for some α ≥ 0 holds, then the random variable X is

called regularly varying at infinity with index −α and we write X ∈ R−α. 2

For more details on the concept of regular variation we refer to Bingham, Goldie

and Teugels (1987).

If we want to determine large losses of the limiting portfolio L we are interested

in its right tail behavior near 1 and we use extreme value theory as the natural tool

to describe this tail.

Definition 2.7 We say that the random variable X or the distribution function F

of X belongs to the maximum domain of attraction of the Weibull distribution

Ψκ(x) = exp (− (max{−x, 0})κ) , κ > 0,

if for the iid sequence X1, X2, . . .
iid∼ F there exist norming constants cn > 0, dn ∈ R

such that (as n → ∞)

(max{X1, . . . , Xn} − dn) /cn
d→ Ψκ.

We write X ∈ DA(Ψκ) or F ∈ DA(Ψκ), and it can be shown that in this case F has

a finite right endpoint xF := sup{x ∈ R : F (x) < 1} < ∞. It also can be shown,

that F ∈ DA(Ψκ) if and only if F (x) = (xF − x)κ · L(1/(xF − x)) with L ∈ R0,

xF < ∞ and κ > 0. 2

For more details on extreme value theory we refer to Embrechts, Klüppelberg and

Mikosch (1997) or to Resnick (1987).

The following two assumptions classify the different regimes of tail behavior of

the risk factors X ∼ FX and Yj ∼ FY . The first regime assumes polynomially

decreasing tails of the risk factors.
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Assumption 2.8 (i) FX(−·) ∈ R−µX
, µX > 0, i.e. FX(−x) = x−µXLX(x), x >

0, and LX ∈ R0.

(ii) Yj ∼ FY and F Y ∈ R−νY
, νY > 0, i.e. F Y (y) = y−νY LY (y), y > 0, and

LY ∈ R0.

(iii) Let s < 0 be the threshold from Definition 2.2 and consider the function x∗(·, ·)
defined in Assumption 2.5(iii). Define

ζ(w, y) :=
yD2x

∗(s/w, y)

x∗(s/w, y)
.

Assume limy→∞ ζ(w, y) = ζ ∈ (0,∞) for any w ∈ (0,∞) pointwise. Fur-

ther, assume that there exists an integrable (w.r.t. FW ) function u such that

ζ(w, y) ≤ u(w) for all w ∈ (0,∞), for all y ∈ (y0,∞) and some y0. 2

The second regime assumes exponentially decreasing tails of the risk factors.

Assumption 2.9 (i) FX(−x) = rX(x) exp ( −µXxµ2(1 + εX(x)) ), x > 0, where

εX(x) = o(1), rX ∈ Rµ1
, µX , µ2 > 0 and µ1 ∈ R. Further, let also the deriva-

tives ε′X and r′X be ultimately monotone for x → ∞.

(ii) F Y (y) = rY (y) exp ( −νY yν2(1 + εY (y)) ), y > 0, where εY (y) = o(1), rY ∈
Rν1

, νY , ν2 > 0 and ν1 ∈ R. Further, let also the derivatives ε′Y and r′Y be

ultimately monotone for y → ∞.

(iii) Let s < 0 be the fixed threshold from Definition 2.2 and consider the function

x∗(·, ·) defined in Assumption 2.5(iii). Define

ζ(w, y) :=
µ2 (−x∗(s/w, y))µ2−1 (−D2x

∗(s/w, y))

ν2yν2−1

Assume limy→∞ ζ(w, y) = ζ ∈ (0,∞) for any w ∈ (0,∞) pointwise. Fur-

ther, assume that there exists an integrable (w.r.t. FW ) function u such that

ζ(w, y) ≤ u(w) for all w ∈ (0,∞), for all y ∈ (y0,∞) and some y0. 2

Note that Assumptions 2.8 and 2.9 are slightly stronger than Assumptions 2A and

2B in Lucas et al. (2003), since we use the existence of a density of L in the proof

of the following Theorem 2.10.

We now determine the right tail behavior of the limiting portfolio credit loss

distribution.

Theorem 2.10 Consider the setting of Assumption 2.5. If Assumptions 2.8 or 2.9

are satisfied, then L ∈ DA(ψκ) with κ = ζµX/νY > 0, i.e. there exists L ∈ R0 such

that

P(L > q) = (1 − q)ζµX/νY L(1/(1 − q)), q ∈ (0, 1). (2.3)
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For W ≡ 1 this result has been proved in Lucas et al. (2003), Theorems 2 and 3.

Hence, our result shows that the tail of the portfolio loss is in first order robust with

respect to a shock variable W . Consequently, any difference between W ≡ 1 and

a random W > 0 can only be found in the second order tail expansion, the slowly

varying function L(1/(1 − q)).

As an example, we derive an analytic expression of L(1/(1− q)) in the extended

CreditMetrics framework, both, in the setting of Assumptions 2.8 and 2.9:

Theorem 2.11 Given the extended CreditMetrics model (1.2) with X ∼ tµX
, Yj ∼

tνY
and W > 0 such that µX ≥ νY . Let Assumptions 2.5 hold. Then the distribution

of L is of the form (2.3) with κ = µX/νY and L ∈ R0 satisfies for q → 1 the relation

L
(

1

1 − q

)
∼ CµX

µ
(µX−1)/2
X

∫ ∞

0

(
− s

aw
(1−q)1/νY +

b

a
C1/νY

νY
ν(νY−1)/(2νY )

)−µX

dFW (w).

2

Theorem 2.12 Given the extended CreditMetrics model (1.2) with X,Yj ∼ N (0, 1)

and W > 0 such that E(1/W ) < ∞ and b ≥ a. Let Assumptions 2.5 hold. Then the

distribution of L is of the form (2.3) with κ = b2/a2 and L ∈ R0 satisfies for q → 1

the relation

L
(

1

1 − q

)
∼

∫ ∞

0

exp

(
− s2

2aw
+

sb

a2w

√
−2 ln(1−q)

)
(−2 ln(1−q))b2/(2a2)

∣∣∣∣
s

aw
− b

a

√
−2 ln(1−q)

∣∣∣∣
dFW (w).

2

Remark 2.13 (i) In the setting of Theorem 2.12 we require b ≥ a > 0. The

natural choice in this model is a =
√

ρ and b =
√

1 − ρ for ρ ∈ (0, 1) modelling

the correlation between Si and Sj for i 6= j. Then, b ≥ a is equivalent to

ρ ≤ 1/2 and this is always given in practice.

(ii) The first order tail behavior is a function of the correlation ρ only.

(iii) As can be seen in the proof, for the CreditMetrics model Assumptions 2.5(iv)

and 2.8(iii) or 2.9(iii) are superfluous. However, in the extended model, one

can easily construct examples, where these restrictions are essential. 2

Setting W ≡ 1 in Theorem 2.12 we immediately obtain Theorem 6 of Lucas et al.

(2003).

Corollary 2.14 (Lucas et al. (2003), Theorem 6) For the CreditMetrics model

with b ≥ a the tail-distribution of L is of the form (2.3) with κ = b2/a2 and L ∈ R0

satisfies for q → 1 the relation

L
(

1

1 − q

)
∼ a

b
exp

(
− s2

2a
+

sb

a2

√
−2 ln(1 − q)

)
(−2 ln(1 − q))(b2−a2)/(2a2) .

2
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3 A simulation study

We focus on the extended CreditMetrics model (1.2). Denote the default probability

by ploss = P(Sj ≤ s) and we assume that ploss < 1/2. We consider different distribu-

tions of W , X and Yj and show their influence on the tail-distribution of the limiting

portfolio credit loss L. We consider the following examples.

Model 3.1 (1) W ≡ 1 and X,Yj
iid∼ N (0, 1) and b ≥ a.

(2) W
d
=

√
4/χ2

4 and X,Yj
iid∼ N (0, 1) and b ≥ a.

(3) W ≡ 1 and X ∼ tµX
, Yj ∼ tνY

and µX ≥ νY > 2.

(4) W
d
=

√
4/χ2

4 and X ∼ tµX
, Yj ∼ tνY

and µX ≥ νY > 2. 2

As shown in Theorems 2.11 and 2.12, all these models fall into the framework of our

assumptions, i.e. for q ∈ (0, 1) there are functions L1, . . . ,L4 ∈ R0 such that

P(L > q) = (1 − q)b2/a2L1,2(1/(1 − q)), in case of model 1 and 2,

P(L > q) = (1 − q)µX/νY L3,4(1/(1 − q)), in case of model 3 and 4.

As indicated in Remark 2.13 the restriction b ≥ a for model 1 and 2 is quite natu-

ral corresponding to ρ < 1/2; see Table 1 for some scenarios. The restriction µX ≥ νY

for model 3 and 4 can be seen in the same spirit as we choose µX/νY = b2/a2 ≥ 1.

The bound νY , µX > 2 is needed to ensure finite variance of Sj.

To make the four models comparable, we fix the following parameters

• the default probability ploss := P(Sj ≤ s),

• the correlation-structure ρ := Corr(Si, Sj) ∀i 6= j and

• the first order tail behavior κ = ζµX/νY of the limiting portfolio credit loss L,

given by Theorem 2.10.

For all models we have Corr(Si, Sj) = a2EX2/(a2EX2+b2EY 2
i ) ∀i 6= j. Let a =

√
ρ,

b =
√

1 − ρ in models 1, 2 and a =
√

ρ(µX − 2)/µX , b =
√

(1 − ρ)(νY − 2)/νY ,

µX , νY > 2 in models 3, 4. Then we have always the same correlation ρ ∈ (0, 1) in

all models.

By Theorem 2.12 we have κ = b2/a2 = (1 − ρ)/ρ in model 1 and 2 as the

parameter of the first order tail behavior. In model 3 and 4 we get κ = µX/νY (by

Theorem 2.11), therefore we choose µX = 2/ρ and νY = 2/(1 − ρ) and this leads to

a = b =
√

ρ(1 − ρ). Hence we have the same κ in all models.
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The threshold s is the ploss-quantile of Sj. Since Sj ∼ N (0, 1) in model 1 and

Sj ∼ t4 in model 2, we can read off this quantile from standard tables. In model 3

and 4, we choose s as the empirical ploss-quantile of Sj. The simulation run length

is 107, which should suffice to obtain a reliable estimate.

In choosing the specific default probabilities and correlations we follow Frey, Mc-

Neil and Nyfeler (2001), i.e. we consider three rating groups of decreasing credit

quality, which we label A, B and C; see Table 1. This leads to the (rounded) pa-

rameters given in Table 2.

group A B C

ploss 0.01% 0.50% 7.50%

ρ 2.58% 3.80% 9.21%

Table 1: Values for default probability and correlation of the three credit quality groups.

As stated in Theorem 2.3 we have L
d
= FY (s/(bW ) − Xa/b) and we simulate L

by this distributional equality, see Figures 1 to 3 corresponding to the three groups.

Each of Figures 1 to 3 shows four graphs, each with four curves, corresponding to

the different models (1)-(4) with parameters as given in Tables 1 and 2.

The upper left graph corresponds to the tail-distribution L(q) of the limiting

portfolio, where the arguments q are chosen such that 0 ≤ L(q) ≤ 0.1 for all four

models; the lower left graph is similar but zoomed in, i.e. q is such that 0 ≤ L(q) ≤
0.01. The right graphs show the quantile functions or the Value-at-Risk L←(p) =

VaRp of the portfolios with 0.9 ≤ p ≤ 1 and 0.99 ≤ p ≤ 1, respectively.

In Table 3 the VaRp of all models in the three groups for p running through the

different values 95%, 99%, 99.5%, 99.9%, 99.95%.

We observe in all groups that model 2 leads to a portfolio with larger quantiles

than model 1 and, similarly, model 4 gives larger quantiles than model 3; this is

obviously due to W . Although three parameters are the same in all models, we

observe a completely different behavior of the four models in their right tails. As

can be seen in Table 3, the 99.95%-quantile of model 2 in group A is 90 times larger

than in case of model 1 and even 440 times larger than in case of model 3. In group

B we observe in model 2 an up to 25 times larger 99.95%-quantile than in model 3

and in group C the riskyness of the models turn where model 4 shows up to 50%

larger quantiles than model 2.

To quantify the different portfolio behavior further we also estimate empirically

the standard deviation of L, see Table 4. The (rounded) 95% confidence intervals are,

as usual, based on the asymptotic χ2
n−1 distribution of the empirical variance. We

9



Model 1: X,Yi
iid∼ N (0, 1) and W ≡ 1:

a b s κ µX νY

group A .161 .987 -3.73 37.8 .500 .500

B .195 .981 -2.58 25.3 .500 .500

C .303 .953 -1.44 9.86 .500 .500

Model 2: X,Yi
iid∼ N (0, 1) and W

d
=

√
4/χ2

4:

a b s κ µX νY

group A .161 .987 -13.0 37.8 .500 .500

B .195 .981 -4.60 25.3 .500 .500

C .303 .953 -1.78 9.86 .500 .500

Model 3: X ∼ tµX
, Yi ∼ tνY

and W ≡ 1:

a b s κ µX νY

group A .159 .159 -10.1 37.8 77.5 2.05

B .191 .191 -1.81 25.3 52.6 2.08

C .289 .289 -.782 9.86 21.7 2.20

Model 4: X ∼ tµX
, Yi ∼ tνY

and W
d
=

√
χ2

1:

a b s κ µX νY

group A .159 .159 -10.2 37.8 77.5 2.05

B .191 .191 -1.88 25.3 52.6 2.08

C .289 .289 -.679 9.86 21.7 2.20

Table 2: Parameter setting of the four models in the three groups (given by Table 1).

observe that model 2 has a larger empirical deviation than model 1 and, similarly,

model 4 shows larger deviation than model 3. As in case of the VaR the differences

of the standard deviations are not negligible: in group A model 2 shows 850 times

more deviation than model 3; see Table 4. From Lemma 2.4 we get an upper bound

for the standard deviation and observe in all our models a quite small standard

deviation compared to the upper bound, see also Table 4. The meaning of the last

line in Table 4 will be explained in the following section.

4 Cutting Gordon’s knot

Recall that for all models of section 3 the parameters where chosen such that default

probability, correlation and first order tail behavior are the same for all models in

10
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Figure 1: Tail-distribution and Value-at-Risk of the four models with group A-parameter

setting.

each group A-C. Nonetheless, we observe completely different upper tails for the

different models. This indicates that a naive quantile estimator based on extreme

value theory may be grossly misleading. Such a method would concentrate on the

parameter κ in Theorem 2.10 and replace the slowly varying function L by a con-

stant, see Chapter 6 of Embrechts et al. (1997) for details. However, as can be seen

in Theorem 2.12, L is far away from being constant and has a strong influence near

the right endpoint q = 1.

To overcome the problem, which model to choose, we suggest in the following

a pragmatic approach, which originates in the β-model. The β model is a simple

model often used in practice, where the parameters are estimated by matching the

first two moments; see e.g. Bluhm et al. (2003), p.39. The β(c, d)-distribution has

density

fβ(c,d)(q) =
Γ(c + d)

Γ(c)Γ(d)
qc−1(1 − q)d−1, 0 < q < 1, c, d > 0.
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Figure 2: Tail-distribution and Value-at-Risk of the four models with group B-parameter

setting.

From Example 3.3.17 of Embrechts et al. (1997) we know that the β(c, d)-distribution

satisfies the weak requirement of being in DA(Ψd). As our main focus is on VaR-

estimation, we fit besides the location parameter the first order tail behavior. Since

κ = (1 − ρ)/ρ and Eβ(c, d) = c/(c + d) we obtain

c =
1 − ρ

ρ

ploss

1 − ploss

and d =
1 − ρ

ρ
. (4.4)

This means we match the default probability ploss and the correlation ρ.

We observe that VaR estimated from the β-model compared to our models 1-4 is

slightly more moderate but roughly of the same order as for model 2 in all groups;

see Table 3.

The question arises, if there is any further advantage of the latent variable models

1-4 in comparison to the simple and easy to fit β-model for VaR estimation, which

after all, has the correct first order tail behaviour. One drawback of the β-model is

that it has no economic interpretation in the credit risk context. From a statistical
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Figure 3: Tail-distribution and Value-at-Risk of the four models with group C-parameter

setting.

point of view, models 2 and 4 constitute a much richer class of models in the sense

that more parameters can be specified.

One parameter, which we have not considered up to now is the standard devi-

ations (see Table 4) and here we can observe substantial differences between the

models. As the first order tail behavior is determined by ρ solely, it is independent

of W . As W acts as a random standard deviation of the factor models, it is natural

to match the empirical standard deviation by choosing a proper W . In our simula-

tions we observe for models 2 and 4 that the standard deviation of Lν is decreasing

in νW . For the normal factor model 2 we can proof this by asymptotic expansion.

Consequently, we can estimate νW by matching the standard deviation.

Theorem 4.1 In the setting of model 2, let W = Wν
d
=

√
νW /χ2

νW
and denote

Lj = Lj,ν and L = Lν. Then, the standard deviation of Lν is decreasing in ν for

sufficiently small default probability ploss = P(Lj,ν = 1) = P(Sj < s). 2

We conclude this section by a comparison of the extended CreditMetrics models

13



VaRp for group A, ploss = 0.0001 and ρ = 0.0258.

p 95% 99% 99.5% 99.9% 99.95%

model 1 2.18 · 10−4 3.29 · 10−4 3.82 · 10−4 5.14 · 10−4 5.76 · 10−4

2 1.54 · 10−8 1.76 · 10−4 1.46 · 10−3 2.48 · 10−2 5.12 · 10−2

3 1.09 · 10−4 1.12 · 10−4 1.13 · 10−4 1.15 · 10−4 1.16 · 10−4

4 2.98 · 10−4 7.30 · 10−4 1.06 · 10−3 2.46 · 10−3 3.52 · 10−3

β 1.91 · 10−8 1.10 · 10−3 4.73 · 10−3 2.37 · 10−2 3.47 · 10−2

VaRp for group B, ploss = 0.005 and ρ = 0.038.

p 95% 99% 99.5% 99.9% 99.95%

model 1 0.0107 0.0152 0.0173 0.0221 0.0242

2 0.0254 0.108 0.155 0.265 0.308

3 0.00715 0.00871 0.00942 0.0113 0.0122

4 0.0143 0.0376 0.0568 0.151 0.226

β 0.0285 0.069 0.0886 0.135 0.155

VaRp for group C, ploss = 0.075 and ρ = 0.0921.

p 95% 99% 99.5% 99.9% 99.95%

model 1 0.162 0.221 0.245 0.299 0.321

2 0.259 0.394 0.444 0.544 0.581

3 0.209 0.431 0.541 0.750 0.810

4 0.274 0.595 0.706 0.856 0.889

β 0.233 0.345 0.388 0.478 0.513

Table 3: VaRp, p = 95%, 99%, 99.5%, 99.9%, 99.95%, for the four models and the fitted

β-distribution in the three groups.

2 and 4 with the β-model estimated from the parameters ploss and ρ given in Table 1.

The estimated parameters for group A-C are given in Table 2. We estimate σ from

the parameters (4.4) of the β-model; the estimates are given in the last line in Table 4.

We see that in case of group C the standard deviation of model 3 is already slightly

larger than in the β-case, therefore we set νW = ∞ (corresponding to W ≡ 1) for

model 4 in group C. All results are summarized in Table 5.

In Figure 4 we plot the tail-distribution (left column) and the VaRp (right col-

umn), where the upper, middle and lower row correspond to group A, B and C,

respectively. In Table 6 we also give the VaRp estimates of model 2, 4 and β-model

in the three groups for certain values of p. We observe now that model 2 and the

β-model are very similar in all groups, indicating that the β-model gives a reason-

14



group

A B C

σmax 0.01 0.0705 0.263

σ̂L

model 1 6.54 · 10−5 ± 2 · 10−6 3.00 · 10−3 ± 9 · 10−5 4.50 · 10−2 ± 2 · 10−3

2 2.93 · 10−3 ± 9 · 10−5 2.16 · 10−2 ± 7 · 10−4 8.72 · 10−2 ± 3 · 10−3

3 3.38 · 10−6 ± 1 · 10−7 1.18 · 10−3 ± 4 · 10−5 7.84 · 10−2 ± 3 · 10−3

4 3.28 · 10−4 ± 1 · 10−5 1.24 · 10−2 ± 4 · 10−4 1.07 · 10−1 ± 4 · 10−3

β 1.61 · 10−3 1.37 · 10−2 7.71 · 10−2

Table 4: Estimated standard deviations σ̂L with 95%CI of the estimator for the four models

in the three groups. The last line shows the standard deviation of the fitted β-model.

group

ν̂W A B C

model 2 7.77 8.22 5.74

4 2.65 3.72 0

Table 5: Estimated νW for model 2 and 4 with W ∼
√

νW /χ2
νW

.

able approximation for model 2, provided the standard deviations of both models

coincide. In other words, the similarity of model 2 and the β-model suggests model

2 as a substantial improvement of the β-model.

As to model 4, we see that in group A the quantiles of model 2 and β are roughly

three times larger than in model 4. In group B, all three models are comparable and

in group C model 4 behaves roughly 50% riskier than the other models. We shall

further comment on model 4 in the next section.

5 A word of warning

In the heavy-tailed models 3 and 4 we restrict the parameters to µX ≥ νY , i.e.

we consider only X being not heavier-tailed than Yj. As can be seen in Table 2

we always have µX > νY with a rather large ratio µX/νY > 9.8. We did this for

good reasons. Because, if ν = µX = νY , then this models a very extreme economic

situation, the more extreme, the smaller ν is. In this case X (and Yj) have extremely

heavy tails and, thus, have with very high probability extremely large realizations.

Consequently, it can happen that a large negative observation of X dominates all Yj

such that almost the whole portfolio defaults. This would model an economy which

15



0.
0

0.
0

0.
0

0.
0

0.0

0.
00

4
0.

00
4

0.
00

4
0.

00
8

0.
00

8
0.

00
8

0.
2

0.2

0.
2

0.2

0.
4

0.4

0.
4

0.4

0.
4

0.4

0.
6

0.6

0.
6

0.6

0.
6

0.6

0.
8

0.8

0.
8

0.8

1.
0

1.0 0.99

0.99

0.99

0.992

0.992

0.992

0.994

0.994

0.994

0.996

0.996

0.996

0.998

0.998

0.998

1.0

1.0

1.0

betabeta

betabeta

betabeta

group A

group B

group C

L
(q

)
L

(q
)

L
(q

)

q

q

q

V
aR

p
V

aR
p

V
aR

p

p

p

p

model 2model 2

model 2model 2

model 2model 2

model 4model 4

model 4model 4

model 4model 4

Figure 4: Tail-distribution and Value-at-Risk of model 2, 4 and β-model in the three

groups.

fluctuates wildly. In that case the limiting portfolio credit loss behaves like the model

built on Sj = min{√ρX,
√

1 − ρYj}.

Corollary 5.1 Define L
(m)
∧ := 1

m

∑m
j=1 L∧

j with L∧
j := 111{min{√ρX,

√
1−ρYj}≤s}. Let

X,Y1, . . . , Ym
iid∼ tν. Then

L∧ := lim
m→∞

L
(m)
∧

a.s.
=

{
1, with probability Ftν

(
s/
√

ρ
)
,

Ftν

(
s/
√

1 − ρ
)
, with probability F tν (s/

√
ρ) .

2

Theorem 5.2 Choose the model L
(m)
∧ and L∧ as in the setting above. Let L(m) and

L correspond to model 3 with µX = νY =: ν. Further, choose the same default

threshold s for both models.

(i) Let m be fixed. Then, lims→−∞ P
(

L(m) = q
∣∣ L

(m)
∧ = q

)
= 1, for any q ∈

{0, 1/m, 2/m . . . , 1}.
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VaRp for group A, ploss = 0.0001, ρ = 0.0258 and σ = 1.61 · 10−3.

p 95% 99% 99.5% 99.9% 99.95%

model 2 6.91 · 10−5 1.69 · 10−3 4.19 · 10−3 1.88 · 10−2 2.99 · 10−2

4 2.66 · 10−4 9.62 · 10−4 1.65 · 10−3 5.81 · 10−3 1.00 · 10−2

beta 1.91 · 10−8 1.10 · 10−3 4.73 · 10−3 2.37 · 10−2 3.47 · 10−2

VaRp for group B, ploss = 0.005, ρ = 0.038 and σ = 1.37 · 10−2.

p 95% 99% 99.5% 99.9% 99.95%

model 2 0.0249 0.0673 0.0906 0.151 0.180

4 0.0145 0.0400 0.0617 0.170 0.257

beta 0.0285 0.0693 0.0886 0.135 0.155

VaRp for group C, ploss = 0.075, ρ = 0.0921 and σ = 7.71 · 10−2.

p 95% 99% 99.5% 99.9% 99.95%

model 2 0.234 0.352 0.398 0.495 0.531

4 0.209 0.432 0.542 0.750 0.810

beta 0.233 0.345 0.388 0.478 0.513

Table 6: VaRp, p = 95%, 99%, 99.5%, 99.9%, 99.95% for model 2, 4 and β-model in the

three groups.

(ii) Let ε > 0. Then, lims→−∞ P ( |L − L∧| < ε | L∧)
a.s.
= 1.

2

From Theorem 5.2(ii) conclude that in the setting of model 3, where s, ρ and

µX = νY = ν are small, the limiting portfolio credit loss L degenerates in the sense

that most of the mass is near the point Ftν

(
s/
√

1 − ρ
)

(when the Yj’s dominate the

portfolio) and some very rare events can be observed close to 1 (when X dominates

the portfolio). From Theorem 5.2(i) conclude that this behavior also can be ob-

served for portfolios with a finite number of loans. Of course, model 4 has the same

structure; the difference to model 3 being that large fluctuations are multiplied by

a random W .

6 Conclusion

In this paper we derived the tail behavior of aggregate credit losses extending results

of Lucas et al. (2003). We enriched the one factor latent variable model by a positive

multiplicative shock variable W . In the models, where the latent variables follow a

17



multivariate normal or t-distribution, we observed that first order tail behavior is

a function of the correlation between the latent variables. In particular, W has no

influence on the first order tail behavior of the limiting credit loss portfolio.

In a simulation study we observed an impact of the second order tail behavior on

the quantiles by comparing four different models. We fitted the models by matching

default probability, correlation between latent variables and first order tail behavior.

In some credit scenario we observed quantiles that were up to 440 times larger than

in another scenario.

To offer some decision support to the risk manager on which model to choose,

we compared the VaR estimated from the β-model with the VaR estimated from the

four extended CreditMetrics models. Fixing default probability and first order tail

behavior we observed a similar (slightly more moderate) performance of the β-model

and the multivariate t-model. From Section 5 we learned to be aware of the influence

of heavy-tailed latent variables as the limiting credit loss portfolio may degenerate.

This suggests the β-model as a simple model based on the fit of two quantities of

interest, either matching the first two moments, or, perhaps more advisable in the

context of risk management and VaR estimation, loss probability and correlation.

The multivariate t-model offers an improved fit by the shock variable W . We

showed that W can influence the standard deviation without having influence on the

other parameters. As for small loss probabilities the standard deviation of the limit-

ing credit loss distribution decreases in ν, we estimate ν by matching the standard

deviation. Consequently, the multivariate t-model improves the fit of the β-model.
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Appendix

Proof of Lemma 2.4: As in Definition 2.2 set Li := 111{Ws∗(X,Yi)≤s} with ELi = ploss,

L(m) = 1
m

∑m
i=1 Lj. We observe

Var

(
m∑

i=1

Lj

)
= E




(

m∑

i=1

Lj

)2


 −
(

E

(
m∑

i=1

Lj

))2

(A.1)

=
m∑

i,j=1

E(LiLj) − m2p2
loss ≤ m2ploss(1 − ploss), (A.2)

since E(LiLj) ≤ E(Li) = ploss. Hence, VarL(m) ≤ ploss(1 − ploss) for all m, and,

obviously, VarL(m) = ploss(1 − ploss) holds for Li
a.s.
= Lj.

By Theorem 2.3 (independent of Lemma 2.4), we have limm→∞ L(m) a.s.
= L and L

has bounded support (0, 1), hence VarL = Var
(
limm→∞ L(m)

)
= limm→∞ VarL(m) ≤

ploss(1 − ploss).

In the extended CreditMetrics setting Sj = W (aX + bYj) obviously we have for

a = 1, b = 0 that Li
a.s.
= Lj, for all i, j, hence L(m) a.s.

= L1 therefore VarL = VarL1 =

ploss(1 − ploss) and for W = const ∈ (0,∞), a = 0, b = 1 we have L1, L2, . . .
iid∼

Ber(ploss), therefore VarL = 0. 2

Proof of Theorem 2.3: Given W and X, the indicator variables Lj = 111{Sj≤s} are

iid, hence a conditional law of large numbers holds as m → ∞ with

L(m) =
1

m

m∑

j=1

111{Sj≤s} =
1

m

m∑

j=1

111{Ws∗(X,Yj)≤s}

a.s.−→ E
(
111{S1≤s} |W,X

)
= P (S1 ≤ s |W,X) =: L.

Furthermore, by Assumption 2.5(iv), s∗(·, ·) is increasing and invertible with respect

to the second component, therefore

L = P(Ws∗(X,Y1) ≤ s|W,X) = P(Y1 ≤ y∗(s/W,X)|W,X)
d
= FY (y∗(s/W,X)) .

2

For the proof of Theorem 2.10 we need the following Lemmas A.1, A.2 and A.3.

Lemma A.1 (Smith (1983), Theorem 10.3, Chapter 13) Let µ be a finite mea-

sure on AAA ⊂ R
m, BBB an open interval in R and h : AAA × BBB → R

n defined by

(w, t) 7→ h(w, t). Assume that the following holds.
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(i) For almost every t ∈ BBB, the function h(·, t) is measurable on AAA and for some

t it is integrable.

(ii) For almost every w ∈ AAA, the function h(w, ·) is C1 on BBB.

(iii) There is an integrable u : AAA → R such that

|D2h(w, t)| ≤ u(w) for all t ∈ BBB and almost all w ∈ AAA.

Then the function
∫

h(w, ·) dµ(w) is C1 and satisfies

∂

∂t

∫
h(w, t) dµ(w) =

∫
D2h(w, t) dµ(w).

2

Lemma A.2 (i) Choose the setting of Assumption 2.8, then

fX(−x) ∼ µX

x
FX(−x) as x → ∞ and fY (y) ∼ νY

y
F Y (y) as y → ∞.

(ii) Choose the setting of Assumption 2.9, then

fX(−x) ∼ µXµ2x
µ2−1FX(−x), as x → ∞, and

fY (y) ∼ νY ν2y
ν2−1F Y (y), as y → ∞.

Proof: In the setting of Assumption 2.8 just apply the Monotone Density Theorem,

e.g. Theorem 1.7.2 in Bingham et al. (1987), since the densities fX and fY are

ultimately monotone. In the setting of Assumption 2.9 we have (the asymptotic

behavior of fY is shown similarly)

FX(−x) = rX(x) exp (−µXxµ2(1 + εX(x))) .

We obtain

fX(−x) = FX(−x)µXµ2x
µ2−1

(
1 + εX(x) − xε′X(x)

µ2

+
x1−µ2

µXµ2

r′X(x)

rX(x)

)
.

As r′X is ultimately monotone, the monotone density theorem yields r′X(x)/rX(x) ∼
c/x as x → ∞. Since µ2 > 0, it follows that

x1−µ2

µXµ2

r′X(x)

rX(x)
∼ c

µXµ2

x−µ2
x→∞−→ 0.

Considering xε′X(x) choose x such that ε′X(ξ) is monotone for all ξ ≥ x. Note

that εX(x) = o(1) and monotonicity of ε′X implies ε′X(x) = o(1). Without loss

of generality let ε′X > 0 be decreasing. Hence there exists δ > 0 such that

−εX(x) =

∫ ∞

x

ε′X(ξ) dξ ≥
∞∑

i=⌊x⌋+1

∫ i+1

i

ε′X(ξ) dξ ≥
∞∑

i=⌊x⌋+2

ε′X(i) ∈ [0, δ). (A.3)
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Therefore, iε′X(i)
i→∞−→ 0, hence (by monotonicity of ε′X), xε′X(x) = o(1) holds. 2

Lemma A.3 Consider the setting of Assumption 2.5 and let q0 be close to 1. If

Assumptions 2.8 or 2.9 are satisfied, then, for q ∈ (q0, 1), L has density

fL(q) = − 1

fY (F←
Y (q))

∫ ∞

0

fX (x (s/w, F←
Y (q))) D2x (s/w, F←

Y (q)) dFW (w) .

Proof: From Theorem 2.3 we have

L
d
= FY (y∗(s/W,X)) .

Let q be close to 1; then L(W,X) is larger than q, if y∗(s/W,X) is close to ∞, since Y

has support unbounded to the right. By Assumption 2.5(iii) FY is strictly increasing

near its right endpoint, hence the (continuous) inverse F←
Y exists. By independence

of W and X we have

P(L > q) = P (FY (y∗(s/W,X)) > q)

= P (y∗(s/W,X)F←
Y (q)) = P (X < x (s/W,F←

Y (q)))

=

∫ ∞

0

FX (x (s/w, F←
Y (q))) dFW (w), (A.4)

where the inequality sign is reversed since y∗(s/W,X) is decreasing in X. By As-

sumption 2.5(iii) X and Yj have ultimately monotone densities fX and fY , respec-

tively.

To show existence and to derive an analytic representation of fL(q), we set

h(w, q) := FX (x (s/w, F←
Y (q))) (A.5)

and show that h satisfies the conditions of Lemma A.1. Since x∗(·, ·) is continuous

we have that h(·, t) is measurable on (0,∞) and, since |h| ≤ 1, it is also integrable

with respect to FW for some q ∈ (0, 1). Therefore Lemma A.1(i) is applies. Next

we have to show that h(w, ·) : (q0, 1) → (0, 1) is C1 on (q0, 1) (as we consider

q → 1 we do not need continuity of h for all q ∈ (0, 1)). We choose q0 large enough

such that F←
Y is C1 and denote y := F←

Y (q). To show that FX(x∗(s/w, y)) is C1

first note that x∗(s/w, ·) is C1 and decreasing (by Assumption 2.5(iv)). Therefore,

limy→∞ x∗(s/w, y) = c ≥ −∞ and, by Assumption 2.8(iii), c < 0. Assuming c > −∞
implies y∗(s/w, c − 1) = ∞ 6∈ Y . This contradicts Assumption 2.5(iii) as c − 1 ∈ X .

Therefore limy→∞ x∗(s/w, y) = −∞, hence h(w, ·) is C1 and Lemma A.1 applies.

To show that Lemma A.1(iii) holds observe that

D2h(w, q) = D2x
∗(s/w, F←

Y (q))fX(x∗(s/w, F←
Y (q)))/fY (F←

Y (q)),
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as x∗(s/·, y) is increasing. Define y0 := F←
Y (q0), y := F←

Y (q), and xw,y := x∗(s/w, y)

and choose the setting of Assumption 2.8. Then

|D2h(w, q)| =
fX (x∗ (s/w, F←

Y (q)))

fY (F←
Y (q))

|D2x
∗ (s/w, F←

Y (q))| =
fX (xw,y)

fY (y)
|D2xw,y|

=

∣∣∣∣
yD2xw,y

xw,y

∣∣∣∣
|xw,y|fX(xw,y)

FX(xw,y)

F Y (y)

yfY (y)

FX(xw,y)

F Y (y)
. (A.6)

By Lemma A.2(i) we have fY (y) ∼ νY /yF Y (y) and therefore F Y (y)/(yfY (y)) ≤
1/νY + εY for all y ≥ y0 and an εY > 0. Similarly, |xw,y|fX(xw,y)/FX(xw,y) → µX

as y → ∞. As xw,y is increasing in w, |x∞,y|fX(x∞,y)/FX(x∞,y) ≤ µX + εX for all

y ≥ y0 and an εX > 0 implies |xw,y|fX(xw,y)/FX(xw,y) ≤ µX + εX for all y ≥ y0, an

εX > 0 and for all w ∈ (0,∞). By Assumption 2.5(iv),

lim
y→∞

FX(xw,y)

F Y (y)
≤ lim

y→∞

FX(x∗(0, y))

F Y (y)
< ∞,

i.e. supw∈(0,∞), y∈(y0,∞) FX(xw,y)/F Y (y) = C < ∞. Note that there exists a function

u(w), integrable with respect to FW , such that yD2xw,y/xw,y ≤ u(w) for all y (As-

sumption 2.8(iii)). Hence |D2h(w, q)| is dominated by an integrable function u(w)

and Lemma A.1(iii) is satisfied. Showing that there is an integrable upper bound

u(w) such that |D2h(w, q)| ≤ u(w) ∀q ∈ (q0, 1) in the setting of Assumption 2.9

is proved similarly using the asymptotic behavior of fX and fY , given in Lemma

A.2(ii).

Therefore, by Lemma A.1, we can interchange integration and differentiation and

get the result. 2

Proof of Theorem 2.10: By Lemma A.3, L has density fL. If we observe limq→1(1−
q)fL(q)/FL(q) = κ then we know from Corollary 3.3.13 in Embrechts et al. (1997)

that L ∈ DA(Ψκ). Substituting y = F←
Y (q) (hence 1 − q = F Y (y)), we obtain

lim
q→1

(1 − q)fL(q)

FL(q)

= lim
q→1

(1 − q)
∫ ∞
0

−fX (x (s/w, F←
Y (q))) D2x (s/w, F←

Y (q)) dFW (w)

fY (F←
Y (q))

∫ ∞
0

FX (x (s/w, y)) dFW (w)

= lim
y→∞

∫ ∞
0

−F Y (y)/fY (y)fX (x (s/w, y)) D2x (s/w, y) dFW (w)∫ ∞
0

FX (x (s/w, y)) dFW (w)
. (A.7)

Now we consider the setting of Assumption 2.8 and denote the integrands of (A.7)

by

h∗(w, y) := −F Y (y)/fY (y)fX (x (s/w, y)) D2x (s/w, y) and

h(w, y) := FX (x (s/w, y)) .

22



Choose w ∈ (0,∞) fixed, then Lemma A.2(i) yields

lim
y→∞

h∗(w, y)

h(w, y)
=

µX

νY

lim
y→∞

FX (x∗(s/w, y)) yD2x
∗(s/w, y)/x∗(s/w, y)

FX (x∗(s/w, y))
.

By Assumption 2.8(iii) we have limy→∞ yD2x
∗(s/w, y)/x∗(s/w, y) = ζ, hence

lim
y→∞

h∗(w, y)

h(w, y)
= ζ

µX

νY

,

for almost every w ∈ (0,∞). Similarly to (A.6), h∗(w, y) is dominated by an in-

tegrable function u(w) for all q ∈ (q0, 1). Therefore we can apply the Dominated

Convergence Theorem and with (A.7) we get

lim
q→1

(1 − q)fL(q)

FL(q)
= lim

y→∞

∫ ∞
0

h∗(w, y) dFW (w)∫ ∞
0

h(w, y) dFW (w)
= ζ

µX

νY

.

Hence, L ∈ DA(ΨζµX/νY
).

In the setting of Assumption 2.9 the same result is obtained similarly using the

asymptotic behavior of fX and fY given in Lemma A.2(ii). 2

Proof of Theorem 2.11: We have X ∼ tµX
and Yj ∼ tνY

. The tν density fν is

given by

fν(x) = Cν

(
1 +

x2

ν

)−(ν+1)/2

= Cν |x|−ν−1

(
1

ν
+

1

x2

)−(ν+1)/2

, Cν =
Γ((ν + 1)/2)√

νπΓ(ν/2)
.

We immediately obtain that for x > 0 the tν distribution function Fν is bounded by

f
ν
(x) :=

Cν

ν
x−ν

(
1

ν
+

1

x2

)−(ν+1)/2

=
Cν

ν

(
x−2/(ν+1) +

1

ν
x2−2/(ν+1)

)−(ν+1)/2

≤ Fν(−x) = F ν(x) ≤ Cν

ν
x−ν

(
1

ν

)−(ν+1)/2

=: f ν(x). (A.8)

Note that f
ν
(x) ∼ f ν(x) as x → ∞. To get the asymptotic behavior of F ν , we show

that f←
ν

(q) ∼ f
←
ν (q) as q → 0. First, we obtain

f←
ν,U(q) = C1/ν

ν ν(ν−1)/(2ν)q−1/ν . (A.9)

Straightforward calculation yields

f
ν

(
f
←
ν (q)

)
= q

(
1 +

(
ν

Cν

)2/ν

q2/ν

)
∼ q, as q → 0,

hence

f←
ν

(q) ∼ f
←
ν (q) ∼ F

←
ν (q) as q → 0. (A.10)
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Note that x∗(s/w, y) = s/(aw) − yb/a and F←
Y (q) = F

←
Y (1 − q), therefore

FX

(
x∗

( s

w
, F←

Y (q)
))

∼ CµX
µ

(µX−1)/2
X

(
− s

aw
+

b

a
C1/νY

νY
ν(νY −1)/(2νY )(1 − q)−1/νY

)−µX

= (1 − q)µX/νY CµX
µ

(µX−1)/2
X

(
− s

aw
(1 − q)1/νY +

b

a
C1/νY

νY
ν(νY −1)/(2νY )

)−µX

.

Note that this asymptotic behavior holds uniformly for all w ∈ (0,∞), since x∗(s/w, y)

is decreasing in w and the asymptotic behavior also holds for w = ∞. Applying (A.4)

yields

P(L > q) =

∫ ∞

0

FX

(
x∗

( s

w
, F←

Y (q)
))

dFW (w) (A.11)

∼ (1−q)µX/νY CµX
µ

(µX−1)/2
X

∫ ∞

0

(
− s

aw
(1−q)1/νY +

b

a
C1/νY

νY
ν(νY−1)/(2νY )

)−µX

dFW (w).

We observe that

lim
y→∞

FX(x∗(0, y))

F Y (y)
= C lim

y→∞
(y)νY −µX =






∞, µX < νY ,

C, µX = νY ,

0, µX > νY ,

for some constant C < ∞, i.e. the limit is finite, if X is not heavier-tailed than

Yj. Since µX ≥ νY , the upper limit is finite, hence Assumption 2.5(iv) is satis-

fied. We observe that the t-distribution falls into the setting of Assumption 2.8(i)

and (ii). Considering Assumption 2.8(iii) we obtain yD2x
∗(s/w, y)/x∗(s/w, y) =

1/ (1 − s/(bwy)) ր 1 for all w pointwise and 1 is an integrable upper bound. Hence

we can apply Theorem 2.10 and obtain κ = µX/νY . Comparing this to (A.11) gives

the desired result. 2

For the proof of Theorem 2.12 we need the following lemma.

Lemma A.4 Let Φ and φ denote the distribution function and density of the stan-

dard normal distribution, respectively. Taking 0 < C < 1, then for x ≥
√

1/(1 − C),

Cφ(x)/x ≤ Φ(−x) ≤ φ(x)/x and Cφ(x)/x ≤ Φ(x) ≤ φ(x)/x.

Moreover, Mill’s Ratio holds: Φ(−x) = Φ(x) ∼ φ(x)/x as x → ∞.

Proof: Lemma 1.19.2 in Gännsler and Stute (1977) shows (1/x − 1/x3)φ(x) ≤
Φ(−x) ≤ φ(x)/x for all x > 0. Then, 1/x − 1/x3 ≥ C/x holds for x > 0 if and only

if x ≥
√

1/(1 − C). The limit relation follows from this as well. 2

Proof of Theorem 2.12: We have X,Yj
iid∼ N (0, 1), Sj = W (aX + bYj). Let Φ

and φ be the distribution function and density of the standard normal distribution,
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respectively. Applying (A.4) yields

P(L > q) =

∫ ∞

0

Φ
(
s/(aw) − Φ−1(q)b/a

)
dFW (w). (A.12)

Let ε ∈ (0, 1) and x ≤ −
√

1/ε, then, by Lemma A.4,

(1 − ε)φ(x)/|x| ≤ Φ(x) ≤ φ(x)/|x|. (A.13)

The integrand of (A.12) increases in w, hence, for Φ−1(q)b/a ≥
√

1/ε,
∫ ∞
0

Φ (s/(aw) − Φ−1(q)b/a) dFW (w)∫ ∞
0

φ (s/(aw) − Φ−1(q)b/a) / |s/(aw) − Φ−1(q)b/a| dFW (w)
∈ [1 − ε, 1].

Therefore, as q → 1,

P(L > q) =

∫ ∞

0

Φ
(
s/(aw) − Φ−1(q)b/a

)
dFW (w)

∼
∫ ∞

0

φ
(
s/(aw) − Φ−1(q)b/a

)
/
∣∣s/(aw) − Φ−1(q)b/a

∣∣ dFW (w)

=

(
φ (Φ−1(q))

Φ−1(q)

)b2/a2 ∫ ∞

0

exp

(
− s2

2aw
+

sbΦ−1(q)

a2w

)
(Φ−1(q))

b2/a2

∣∣∣∣
s

aw
− b

a
Φ−1(q)

∣∣∣∣
dFW (w).

Note that Φ−1(q) = Φ
−1

(1 − q). Then, again by Lemma A.4, φ (Φ−1(q)) /Φ−1(q) ∼
1 − q, as q → 1.

By Mill’s Ratio, Lemma A.2(ii) holds, hence X,Yj
iid∼ N (0, 1) fall into the setting

of Assumption 2.9(i) and (ii) with µX = νY = 1/2. We have ζ(w, y) = (b/a)(s/(aw)−
yb/a)/y and limy→∞ ζ(w, y) = b2/a2. Note that |ζ(w, y)| = c1/(wy)+c2 ≤ c1/(wy0)+

c2 for some c1, c2 < ∞ and all y ≥ y0. As E(1/W ) < ∞, (c1/(wy0) + c2) is an

integrable upper bound, hence Assumption 2.9(iii) is satisfied. From Lemma A.4 we

obtain

lim
y→∞

FX(x∗(0, y))

F Y (y)
= lim

y→∞

Φ(yb/a)

Φ(y)

=
a

b
lim
y→∞

exp

(
y2

2

(
1 − b2

a2

))
=






∞, b < a,

a/b, b = a,

0, b > a.

Hence, Assumption 2.5(iv) is satisfied and, obviously, also Assumptions 2.5(i)-(iii)

and (v) are. Therefore, by Theorem 2.3, P(L > q) = (1− q)b2/a2L(1/(1− q)), where

L satisfies for q → 1 the relation

L
(

1

1 − q

)
∼

∫ ∞

0

exp

(
− s2

2aw
+

sbΦ−1(q)

a2w

)
(Φ−1(q))

b2/a2

∣∣∣∣
s

aw
− b

a
Φ−1(q)

∣∣∣∣
dFW (w). (A.14)
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Choose c > 1 fixed and x ≥ (
√

c/(
√

c − 1))
1/2

, then

fc(x) := c−1/2φ(x)/x ≤ Φ(x) ≤ φ(x)/x =: f1(x).

Therefore, since Φ(x) is decreasing, f−1
c (q) ≤ Φ

−1
(q) ≤ f−1

1 (q), q0 ≤ q < 1, and

some q0. Taking logarithm, we want a solution of ln fc(x) = ln(1 − q), i.e.

1

2
x2 + ln x +

1

2
ln(2πc) = − ln(1 − q).

By asymptotic expansion, similarly to Example 2, Section 1.5 in Resnick (1987) we

obtain

f−1
c (1 − q) =

√
−2 ln(1 − q) − ln(− ln(1 − q)) + ln(4πc)

2
√

−2 ln(1 − q)
+ o

(
1/

√
− ln(1 − q)

)
.

(A.15)

Since f−1
c (1 − q) ∼ f−1

1 (1 − q), as q → 1, f−1
1 (1 − q) ∼ Φ

−1
(1 − q) holds. Note that

f−1
1 (1−q)−f−1

c (1−q) = O
(
1/

√
− ln(1 − q)

)
q→1−→ 0, hence also exp (−f−1

c (1 − q)) ∼
exp

(
−Φ

−1
(1 − q)

)
holds.

Substituting Φ−1(q) in (A.14) by (A.15), we obtain the desired result. 2

Proof of Theorem 4.1: From (A.1) we have

Var
m∑

j=1

Lj = 2
∑

i6=j

E(LiLj) + mploss(1 − mploss), (A.16)

where, since Fν(s) := P(Wνs
∗(X,Yi) ≤ s) = ploss and s < 0,

E(LiLj) = P (Wνs
∗(X,Yi) ≤ F←

ν (ploss),Wνs
∗(X,Yj) ≤ F←

ν (ploss)) .

As mentioned in the introduction, (Sν
i , Sν

j ) := (Wνs
∗(X,Yi),Wνs

∗(X,Yj)) has a

bivariate tν-distribution with correlation ρ. We apply now a dependence measure,

called lower tail-dependence coefficient, defined by

λ := lim
p→0

P
(
Sν

j ≤ F←
ν (p) |Sν

i ≤ F←
ν (p)

)
.

Hult and Lindskog (2001) observed, that in case of a multivariate tν-distribution

and with ρ := Corr(Sν
i , Sν

j )

λ = λ(ν) =

(∫ π/2

arccos((1+ρ)/2)

cosν(v) dv

)
/

(∫ π/2

0

cosν(v) dv

)
.
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Lemma 2.2 in Kostadinov (2004) shows that λ(ν) is strictly decreasing in ν. Let

ν1 < ν2, hence λ(ν1)−λ(ν2) =: ε > 0. Since P
(
Sνi

j ≤ F←
νi

(p) |Sνi

i ≤ F←
νi

(p)
)
→ λ(νi),

i = 1, 2, there exists pε > 0 such that for all p ≤ pε

∣∣λ(νi) − P
(
Sνi

j ≤ F←
νi

(p) |Sνi

i ≤ F←
νi

(p)
)∣∣ <

ε

2
, i = 1, 2.

Hence, for all p ≤ pε,

P
(
Sν1

j ≤ F←
ν1

(p) |Sν1

i ≤ F←
ν1

(p)
)

> P
(
Sν2

j ≤ F←
ν2

(p) |Sν2

i ≤ F←
ν2

(p)
)
.

Since

P
(
Sν

j ≤ F←
ν (ploss) |Sν

i ≤ F←
ν (ploss)

)

=
1

ploss

P
(
Sν

j ≤ F←
ν (ploss), Sν

i ≤ F←
ν (ploss)

)
=

1

ploss

E(LiLj),

also E(LiLj) is decreasing in ν, if ploss is sufficiently small. Applying (A.16), Var
(
L(m)

)

is decreasing in ν, hence VarL is. 2

Proof of Corollary 5.1: We can rewrite

L∧
j = 111min{√ρX,

√
1−ρYj}≤s = 111{√ρX≤s}∪{√1−ρYj≤s}

= 111{√1−ρYj≤s} +
(
1 − 111{√1−ρYj≤s}

)
111{√ρX≤s} .

Hence

L
(m)
∧ =

1

m

m∑

j=1

L∧
j =

1

m

m∑

j=1

111{√1−ρYj≤s} + 111{√ρX≤s}
1

m

m∑

j=1

(
1 − 111{√1−ρYj≤s}

)

=:
1

m

m∑

j=1

Bj + 111{√ρX≤s}
1

m

m∑

j=1

(1 − Bj) ,

where

B1, B2, . . .
iid∼ Ber

(
FX

(
s/

√
1 − ρ

))
and

(1 − B1), (1 − B2), . . .
iid∼ Ber

(
1 − FX

(
s/

√
1 − ρ

))

are iid Bernoulli sequences. Therefore, for m → ∞, L(m) converges almost surely to

FX

(
s/
√

1 − ρ
)

+
(
1 − FX

(
s/
√

1 − ρ
))

111{√ρX≤s}. 2

Proof of Theorem 5.2:

(i): X,Y1
iid∼ tν are regularly varying on R

−, i.e. Ftν (−·) ∈ R−ν . Hence

P
(√

ρX +
√

1 − ρY1 ≤ s
)
∼ P

(
min

{√
ρX,

√
1 − ρY1

}
≤ s

)
, s → −∞ ,
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see for instance Example 3.2 in combination with Definition 1.1 in Goldie & Klüppelberg

(1998). For convenience we define A :=
√

ρX and B :=
√

1 − ρY1. Then, A and

B are independent in R−ν satisfying P(A > s)/P(B > s)
s→∞−→ c ∈ (0,∞) and

P(A ≤ s)/P(B ≤ s)
s→−∞−→ c ∈ (0,∞). Let FA and FB denote the dfs of A and B,

respectively. Writing x ∧ y := max{x, y} and x ∨ y := max{x, y} we have

P (L∧
1 = 1 |L1 = 1) = P (A ∧ B < −s |A + B < −s)

= P (A ∨ B > s |A + B > s) =
P (A ∨ B > s, A + B > s)

P (A + B > s)

= 1 − P (A ∨ B ≤ s, A + B > s)

P (A + B > s)
. (A.17)

For illustration purposes see Figure 5. The set {(a, b) ∈ R
2 : a ∨ b > s, a + b > s}

is the hatched area in Figure 5 above the lines {a + b = s} and {a ∨ b = s}; the

set △ := {(a, b) : a ∨ b ≤ s, a + b > s} is the triangle with edges (s, 0), (s, s) and

(0, s). Let ‖(a, b)‖1 := |a| + |b| denote the 1-norm, then for any ε > 0 it holds that

△ = {(a, b) : a ∨ b ≤ s, a + b > s}

⊂
{

(a, b) : ε <
b

a
<

1

ε
, ‖(a, b)‖1 > s

}

∪{(a, b) : (1 − ε)s < a < s, 0 < b < εs}
∪ {(a, b) : 0 < a < εs, (1 − ε)s < b < s}

=: SSS1 ∪SSS2 ∪SSS3, (A.18)

where SSS1 can be identified in Figure 5 as the set between the two lines through the

points (0, 0), (s, εs) and (0, 0), (εs, s) and above the line {a + b = s}; the sets SSS2

and SSS3 represent in the figure the two small rectangles.

By Resnick (2004), section 4.1 and 4.3, the vector (A,B) is bivariate regularly

varying. More precisely, let ‖ · ‖ be any norm on R
2, then

P (‖(A,B)‖ ≥ x, (A,B)/‖(A,B)‖ ∈ ·)
P (‖(A,B)‖ ≥ x)

x→∞−→ Θ(·).

Θ is a measure on the unit simplex S = {sss ∈ R
2 : ‖sss‖ = 1} called spectral measure.

Since A and B are independent, Θ is concentrated on (1, 0), (−1, 0), (0, 1) and

(0,−1). Note that, using the 1-norm, symmetry of A and B yields

P (‖(A,B)‖1 > s)

P (A + B > s)
<

P (‖(A,B)‖1 > s)

P (A + B > s, A,B > 0)
= 4.
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•

0

0

(0, 0)

(0, s)

(s, 0)

(s, s)

(s, εs)

(εs, s)

((1 − ε)s, εs)

(εs, (1 − ε)s)

((1 − ε)s, 0)

(0, (1 − ε)s)

a + b = s

a ∨ b = s

a ∨ b = s

Figure 5: Illustration of (A.17) and (A.18).

Hence, for any ε > 0, we have

P ((A,B) ∈ SSS1 |A + B > s) =
P (A + B > s, ε < B/A < 1/ε)

P (A + B > s)
(A.19)

=
P (A,B > 0, ε < B/A < 1/ε, ‖(A,B)‖1 > s)

P (‖(A,B)‖1 > s)

P (‖(A,B)‖1 > s)

P (A + B > s)

< 4
P (A,B > 0, ε < B/A < 1/ε, ‖(A,B)‖1 > s)

P (‖(A,B)‖1 > s)

s→∞−→ 4Θ (Sn
1 ) = 0,

since Sn
1 := {sss/‖sss‖1 : sss ∈ S1} has no points on the axes. Considering rectangle SSS2
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we obtain as s → ∞ using again P(A + B > s) ∼ P(A ∨ B > s)

P ((A,B) ∈ SSS2 |A + B > s) ≤ P ((1 − ε)s < A < s)P(0 < B < εs)

P (A + B > s)

∼ P ((1 − ε)s < A < s)P(0 < B < εs)

P (A ∨ B > s)

=
(FA(s) − FA((1 − ε)s)) (FB(εs) − FB(0))

FA(s) + FB(s) − FA(s)FB(s)

=
s−ν ((1 − ε)−νLA((1 − ε)s) − LA(s))

(
1
2
− s−νε−νLB(εs)

)

s−ν (LA(s) + LB(s)) − s−2νLA(s)LB(s)

−→ 1

2(1 + c)

(
(1 − ε)−ν − 1

)
<

νε

(1 + c)
. (A.20)

The last convergence holds since FA(s) = 1 − (s)−νLA(s), FB(s) = 1 − (s)−νLB(s),

LB(s)/LA(s)
s→∞−→ c and LA,LB ∈ R0; (1 − ε)−ν − 1 < 2νε holds for ε small enough

since (1 − ε)−ν − 1 ∼ νε as ε → 0. Combining (A.19) and (A.20), (A.18) yields

lim
s→∞

P (A ∨ B ≤ s, A + B > s)

P (A + B > s)
< Kε , ∀ε > 0 ,

for some constant 0 < K < ∞. Hence the latter limit equals 0 and applying this to

(A.17) yields

P (L1 = 1 |L∧
1 = 1)

s→−∞−→ 1.

Therefore, for all m and any q ∈ {0, 1/m, 2/m, . . . , 1}, we conclude

P
(
L(m) = q |L(m)

∧ = q
)

s→−∞−→ 1.

(ii): Now we consider the limiting case m → ∞. Recall that L
d
= Ftν (y

∗(s,X)) =

Ftν

(
(s −√

ρX)/
√

1 − ρ
)

and from Corollary 5.1 we know L∧ ∈
{
Ftν

(
s/
√

1 − ρ
)
, 1

}
.

Further, L∧ = Ftν

(
s/
√

1 − ρ
)

if s −√
ρX < 0. Define Bε(x) := (x − ε, x + ε), then

P
(
L ∈ Bε

(
Ftν

(
s/

√
1 − ρ

)) ∣∣∣ L∧ = Ftν

(
s/

√
1 − ρ

))
(A.21)

≥ P
(

s −√
ρX ≤

√
1 − ρF←

tν

(
Ftν

(
s/

√
1 − ρ

)
(1 + ε)

) ∣∣∣ s −√
ρX < 0

)

−P
(

s −√
ρX <

√
1 − ρF←

tν

(
Ftν

(
s/

√
1 − ρ

)
(1 − ε)

) ∣∣∣ s −√
ρX < 0

)
.

By (A.9) and (A.10) we have F←
tν (qc) ∼ F←

tν (q)c−1/ν as q → 0, hence

√
1 − ρF←

tν

(
Ftν

(
s/

√
1 − ρ

)
(1 ± ε)

)
∼ (1 ± ε)−1/νs as s → −∞.
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From s − √
ρX ≤ (1 ± ε)−1/νs follows

√
ρX ≥

(
1 − (1 ± ε)−1/ν

)
s. Since 1 − (1 −

ε)−1/ν < 0, we conclude (as s → −∞)

P
(

s −√
ρX <

√
1 − ρF←

tν

(
Ftν

(
s/

√
1 − ρ

)
(1 − ε)

) ∣∣∣ s −√
ρX < 0

)

∼ P
(√

ρX >
(
1 − (1 − ε)−1/ν

)
s
∣∣√ρX > s

)
→ 0.

Since 1 − (1 + ε)−1/ν > 0, we conclude (as s → −∞)

P
(

s −√
ρX <

√
1 − ρF←

tν

(
Ftν

(
s/

√
1 − ρ

)
(1 + ε)

) ∣∣∣ s −√
ρX < 0

)

∼ P
(√

ρX ≥
(
1 − (1 + ε)−1/ν

)
s
∣∣√ρX > s

)
→ 1.

Therefore, (A.21) converges to 1 as s → −∞ for all ε > 0.

We have L∧ = 1 if
√

ρX ≤ s, hence, similarly to (A.21),

P(L > 1 − ε|L∧ = 1) = P
(√

ρX ≤ s −
√

1 − ρF←
tν (1 − ε)

∣∣∣
√

ρX ≤ s
)

=
Ftν

((
s −√

1 − ρF←
tν (1 − ε)

)
/
√

ρ
)

Ftν

(
s/
√

ρ
) .

From (A.8) we know Ftν (−x) ∼ Cx−ν as x → ∞ for some constant C. Hence,

P(L > 1 − ε|L∧ = 1) → 1 as s → −∞ for all ε > 0. 2
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