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SUMMARY. This paper considers the problem of modeling migraine sever-
ity assessments and their dependence on weather and time characteristics.
Since ordinal severity measurements arise from a single patient dependencies
among the measurements have to be accounted for. For this the autore-
gressive ordinal probit (AOP) model of Miiller and Czado (2004) is utilized
and fitted by a grouped move multigrid Monte Carlo (GM-MGMC) Gibbs
sampler. Initially, covariates are selected using proportional odds models
ignoring this dependency. Model fit and model comparison are discussed.
The analysis shows that humidity, windchill, sunshine length and pressure
differences have an effect in addition to a high dependence on previous mea-
surements. A comparison with proportional odds specifications shows that

the AOP models are preferred.
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1. INTRODUCTION

According to Prince, Rapoport, Sheftell, Tepper and Bigal (2004) forty-five
million Americans seek medical attention for head pain yearly causing an
estimated labor cost of $ 13 billion. They found in their study that about
half of their migraine patients are sensitive to weather. However some stud-
ies investigating the relationship between weather conditions and headache
have been negative or inclusive (see Prince et al. (2004) and Cooke, Rose
and Becker (2000) for specific references). In these studies the frequency of
headache occurrences and the daily maximum or total score of an ordinal
severity assessment have been the focus.

Here we focus directly on studying and modeling the observed severity
categories collected using a headache calendar. In particular we want to in-
vestigate the 4 daily ratings of the headache intensity obtained from a patient
in study conducted by psychologist T. Kostecki-Dillon, Toronto, Canada, re-
sulting in an ordinal valued time series.

Most studies ignore correlation among measurements on the same patient.
We will show that this correlation can be very high and should not be ignored.
For example Prince et al. (2004) use daily maximum and total scores as
response variable relating to factors obtained from a factor analysis of the
weather data alone in a regression setup ignoring this correlation.

For studying headache occurrences Piorecky, Becker and Rose (1996) used
a generalized estimating approach (GEE) introduced by Zeger and Liang
(1986) to adjust for the dependency between multiple measurements. While
GEE could also be used for ordinal valued time series (see for example Liang,

Zeger and Qaqish (1992), Heagerty and Zeger (1996) and Fahrmeir and



Pritscher (1996)), we prefer a likelihood based regression time series approach
to investigate the influence of weather conditions on migraine severity.

Kauermann (2000) also considered the problem of modeling ordinal val-
ued time series with covariates. He used a nonparametric smoothing ap-
proach by allowing for time varying coefficients in a proportional odds model.
While Kauermann (2000) uses local estimation, Gieger (1997) and Fahrmeir,
Gieger and Hermann (1999) consider spline fitting within the GEE frame-
work. Wild and Yee (1996) focus on smooth additive components. While
these approaches are useful for fitting the data, a hierarchical time series
approach which we propose here is easier to interpret and has the potential
for forecasting. In particular, we will use an autoregressive ordered probit
(AOP) model recently introduced by Miiller and Czado (2004). It is based
on a threshold approach using a latent real valued time series. It is fitted and
validated in a Bayesian setting using Markov Chain Monte Carlo (MCMC)
methods.

We will restrict our analysis to data obtained from a single patient,
since we believe that the complex relationship between headache severity
and weather conditions is best captured by an individual analysis. Such
an approach was also followed by Schmitz and Otto (1984). However they
ignored the ordinal nature of the considered response time series. We in-
vestigate data collected by a 35 year old woman with chronic migraine who
recorded her migraine severity four times a day on a scale from 0 to 5. To de-
termine which weather conditions have an important effect on the migraine
severity we used a proportional odds model commonly used for regression

models with independent ordinal responses as a starting model for our AOP



analysis. We will show that for this data the first order autocorrelation in
the latent time series is high within the AOP model (= .8), demonstrating
considerable dependence among the measurements.

The paper is organized as follows. In Section 2 we review the proportional
odds model to motivate our AOP formulation. We address the problem
of variable selection and model comparison. In Section 3 we describe the
data in more detail and present some results from an exploratory analysis
yielding three mean specifications for the proportional odds model and two
for the AOP model. In Section 4 we give the results of the model fitting and
model comparison, demonstrating the superiority of the AOP model. Finally

Section 5 gives a summary and draws conclusions.

2. MODELS, PREDICTIONS, AND MODEL SELECTION
2.1 Models

In the migraine data we model an ordinal valued time series {Y;,t =
1,...,T}, where Y; € {0,..., K} denotes the pain severity at time ¢ with
ordinal levels given by {0,---, K}. Together with the response Y; we ob-
serve further a vector x; of real-valued covariates for each ¢t € {1,...,T}

representing metrological and time measurement information.

2.1.1 Proportional Odds Model A common ordinal regression model for
independent responses is the ordinal logistic model first described by Walker
and Duncan (1967) and later named proportional odds model by McCullagh
(1980). We will use the proportional odds model as a starting model to
identify important covariates for in the context of the migraine headache

data more appropriate autoregressive ordinal probit (AOP) model. Since



we will base our AOP model formulation on a threshold approach, we also
present the proportional odds model in this way.

For this we assume that the covariate vector &, = (x4,...,2y) is p-
dimensional. To model the K + 1 different categories, an underlying unob-
served real-valued time series {Y;*,t = 1,...,T} is used which produces the

discrete valued Y; by thresholding. In particular,

Y=k <= Y € (ap_1,04], k=0,..., K, (2.1)

Y =—x,0+¢, t=1,...,T, (2.2)

where —oo =: a1 < ap < a1 < -+ < ai = 00 are unknown cutpoints, and
B = (Pr,...,0,) is a vector of unknown regression coefficients. The errors

e; are assumed to be i.i.d. and follow a logistic distribution with distribution

function given by
Fo) = 2P0
1 + exp(x)

It is easy to see that (2.1)-(2.2) imply the more familiar representation given

by
exp(ay + x,8)

PY, <k =F '3) =
( t > ‘wt) (ak+wt/6) 1+eXp(Oék+£C2,6)

(2.3)

for Kk =0,1,--- , K — 1. The properties of the proportional odds model are
for example discussed in Harrell (2001) and Agresti (2002). Let {y;,t =
1,--+,T} be the observed responses and a := (ayp,...,ax_1)". Since the

responses are assumed to be independent the joint likelihood is given by

T
L(IB>O‘) = L(ﬁva‘ylf" 7yT) :Hﬂ't,yt? (2'4>
t=1

where 7y, := P(Y; = k|z;) = Fagp+x,8)— F(ag_1+x,8) for k=0,--- , K—

1 and mx = 1—2?;01 mi. The unknown B and a together with the ordering
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constraint —oco =: a1 < g < a1 < --- < ag = 00 can be estimated by

maximum likelihood (ML) using the S-Plus Design Library by Frank Harrell.

2.1.2  Autoregressive Ordered Probit (AOP) Model  Since the migraine
severity at time ¢ may depend not only on the covariates at time ¢, but
also on the migraine severity at time ¢ — 1, it may be adequate to use the
autoregressive ordered probit (AOP) model introduced by Miiller and Czado
(2004). Here, the latent process of the common ordered probit model is

extended by an autoregressive component:

Y, =k — Y;*G(ozk_l,ozk], k=0,...,K, (25)

Y =x,8+ oY, + ¢}, t=1,...,T, (2.6)

where —00 =: a1 < qp < a; < -+ < ag = 00, &f ~ N(0,6%) i.i.d., and
x; = (1,24,...,24) is a p + 1-dimensional vector of real-valued covariates.

Accordingly, (3, is the intercept for the latent process. For reasons of identifi-
ability the cutpoint ay is fixed to 0, and the variance 62 to 1. For notational
convenience we use & := (a1, ...,ax_1)" as for the proportional odds model,
however, since aq is fixed here, the vector o has only K — 1 components in
the AOP case. More details on this model and a Markov chain Monte Carlo
(MCMC) estimation procedure for the latent variables and parameters can
be found in Miiller and Czado (2004).

In particular, it is shown there that a standard Gibbs sampling approach
is extremely inefficient and cannot be recommended in practice. This inef-
ficiency of the Gibbs sampler was already noted by Albert and Chib (1993)

for polychotomous regression models and Chen and Dey (2000) for corre-



lated ordinal regression data using lagged covariates to account for corre-
lation. Nandram and Chen (1996) proposed a scale reparametrization for
ordinal regression models with three categories, which accelerated the Gibbs
sampler in this situation sufficiently. The reason for the inefficiency in ordi-
nal response models is that the updating scheme for the cutpoints a allows
only small movements from one iteration to the next in larger data sets.
To overcome this inefficiency Miiller and Czado (2004) developed a specific
grouped move multigrid Monte Carlo (GM-MGMC) Gibbs sampler for the
AOP model with arbitrary number of categories. GM-MGMC Gibbs sam-
plers have been suggested by Liu and Sabatti (1996) as a general approach
to accelerate Gibbs sampling schemes.

We emphasize that the right-hand side of Equation (2.2) includes the term
—x;3 whereas the right-hand side of Equation (2.6) uses the term ;3. To
make the parameters (; in model specifications (2.2) and (2.6) comparable
we decided to compute the posterior mean estimates in the AOP model for
the response Y,” := 5—Y,. Therefore the worst migraine severity is associated
with category 0, and no migraine is associated with category 5 when we fit
the AOP model. Hence now in both the proportional odds and in the AOP
model a negative value for 3; means that an increasing value of the covariate
x; leads to a more severe migraine.

2.2 Model Selection with the Deviance Criteria
2.2.1 Residual Deviance Test for the Proportional Odds Model Here we
use the deviance statistic D defined as

Supﬂ,aL(/Ba a)
Suppp'“,pT L(pla e 7pT)’

D :=2log



where L(3, a) is defined in (2.4) and the supremum is taken over all e which
satisfy the ordering constraint. Further we denote by L(py,--- ,py) for p, :==
(pro, - -+, pex)’ the joint likelihood of T independent discrete random variables
Z taking on values 0, - - - | K with probabilities py, - - - , pii, respectively. We
call L(p,,- - ,py) the likelihood of the corresponding unstructured model.

It is straight forward to show that

T
D = Zlog(ﬁtk),
=1

where 7y, == F(ay + x}8) — F(ay_, + x}3) and B and & the joint MLE of
B and a under the ordering constraint for . Note that the proportional
odds model can be considered as a special case of multi categorical models
considered in Tutz (2000). Here he shows that the null hypothesis of model

adequacy can be rejected at level «v if

2
D > XT-Kfp,lfou

where T is the number of observations, K the number of categories minus 1
and p the number of regression parameters to be estimated. The x? approxi-
mation is most accurate when covariates are categorical and the expected cell
counts formed by the cross classification of the responses and covariates are
greater than 5. Alternative goodness-of-fit tests in ordinal regression models
have been suggested in Lipsitz, Fitzmaurice and Molenberghs (1996). We
restrict our attention to the residual deviance, since we want to use the de-
viance information criterion for the AOP model, which is closely related to

the deviance.



2.2.2  Deviance Information Criterion for the AOP model As model se-
lection criterion for the AOP models we use the Deviance Information Cri-
terion (DIC) of Spiegelhalter, Best, Carlin and van der Linde (2002). Here
model fit is measured by a deviance statistic and model complexity is taken
into account.

First, the Bayesian deviance is defined as

D(0) := —2log{f(y|0)} + 2log{f(y)},

where 2log{ f(y)} can be considered as a standardizing constant depending
on the data alone. In the following we set this constant to zero, which is
consistent with the unstructured model occurring in the deviance statistics

and use
D(6) = —2log{f(y|0)}

as Bayesian deviance. The effective number of model parameters is denoted
by pp and can be evaluated as the difference of the posterior mean of the

deviance, D(0) := (D(0)y), and the deviance at the posterior mean for the

parameters of interest, D(6) := D(E(0|y)) (cf. Spiegelhalter et al. (2002),
p.h87), so that

where 6 = E(0]y). As model selection criterion Spiegelhalter et al. (2002)

now suggest the DIC defined as

DIC := D(8) + 2pp = D(6) +pp = 2D(0) — D(8).

A model with smaller DIC fits the data better. Moreover we see that the

effective number of parameters acts as penalizing term.
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For the AOP model the parameter 8 includes the cutpoint vector a, the
regression parameter vector 3, the autoregressive parameter ¢, and all the

latent variables Y,*. The Bayesian deviance for the model is

D) = —2log f(y | 6)

T
= —2) log [®(ax — x(B — ¢V ) — Pl — x(B — Y ,)|(2.7)
t=1

To compute the DIC, the expression D(0) can be estimated by averaging
the terms D(6;), where 6; denotes the random sample for @ drawn in iter-
ation 4 of the MCMC sampler. The value of D(8) is given by inserting the
corresponding posterior mean estimates in Equation (2.7).
2.3 Pseudo-predictions

One intuitive and quite simple way to investigate the quality of a model fit
is to compute pseudo-predictions. In the proportional odds model this means
that one predicts the response at time ¢ using ML estimates for the regression
parameters and cutpoints which are plugged into the model equations. This
results in a forecast probability for each category. One can use the category
with highest forecast probability as prediction for the response at time ¢.
However, when the ML estimates are based on the whole data set we call
these predictions more precisely pseudo-predictions. For the AOP model one
uses posterior mean estimates instead of the ML estimates. Here, of course,

one also needs a posterior mean estimate of Y;* ;.

2.3.1 Pseudo-predictions for the Proportional Odds Model The fitted

probabilities for the proportional odds model for each category at time ¢
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are defined by

exp(@ + "1323)
1 + exp(ap + z;8)
exp(@ +2jB)  exp(@i +;B)
1+exp(ay +;B) 1+ exp(@_1 +x;8)
k=1,...,K —1,
exp (@1 + ,0)
1+ exp(ak 1 + ;)

T = p(Y;:0|:nt,a,B):

T = P(Yi=k|x, @&, B)=

gk = PYV,=K |z, aB)=1-

where @ and 8 denote maximum likelihood estimates of a and 3, respec-
tively. The corresponding pseudo-prediction of Y; is therefore given by the

category k, which has the highest value among 7y, ..., Tk

2.3.2  Pseudo-predictions for the AOP model The corresponding poste-
rior probability estimates in the AOP model for each category at time ¢ are

defined by

T = PV, =0|z,a B,6,Y, ) =0a@—z,8-0Y, ),
T = PYi=k|z,@, B,6.Y, ) =@ —x,8-0Y, )
— O(@1 —T,B0Y,_,), k=1,...,K—1,
Tk = p(Yt =K |z, @, 3,57?:_1) =1—®(@x- — =B — C_b?:—l)-

where @, 3, ¢, and 7:_1 denote posterior mean estimates of the correspond-
ing parameters and latent variables. The corresponding pseudo-prediction of
Y; are therefore given by the category k which has the highest value among

7_Tt07u' 777-15](-

2.3.3 Assessing Model fit based on Pseudo-predictions Now we suggest

to use the pseudo-predictions for model assessment. For this we define the
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variables P’* which correspond to the ‘observed’ probabilities for category k
at time t in contrast to the 'predicted’ probabilities 7, defined in the previous

subsections:

]Dtokbs ::{ 1 lf)/t:k,

0 else.

When category k is observed at time ¢, it is clear that a good model fit
leads to a high probability 7, and to small probabilities 7;; for the other
categories j # k. A large difference should be punished more than a small

difference. Therefore we compute the verification score introduced by Brier

(1950) defined by

| KT
S LY SR -
k=0 t=1
to get an idea of the model fit. Of course, the smaller the value of S, the
better the model. The Brier score has been heavily used to evaluate forecasts

in the metrological sciences and has the attractive property of being a strictly

proper scoring rule (see for example Gneiting and Raftery, 2004).

3. ANALYSIS OF MIGRAINE SEVERITY DATA
3.1 Data description and exploratory analysis

We investigate the migraine headache dairy of a 35 year old female, who
is working full-time as a manager. She suffers from migraine without aura
for 22 years. In this study she recorded her headache four times a day
on an ordinal scale from 0 to 5, where 0 means that she did not feel any
migraine headache, and 5 the worst migraine headache she can feel. For a
precise definition of the migraine intensity categories see Table 1. The data
is part of a larger study on determinants of migraine headaches collected
by the psychologist T. Kostecki-Dillon, York University, Toronto, Canada.

The migraine headache dairy was completed between January 6, 1995, and

12



September 30, 1995, which is a period of 268 subsequent days. Therefore
the length of the data set is 4 - 268 = 1072. Since she believes that her
migraine headache is triggered by weather conditions, also weather related
information on a daily basis was collected. This includes information on
humidity, windchill, temperature and pressure changes, wind direction, and
length of sun shine on the previous day.

Table 1 contains also the frequencies for the six possible response cate-
gories in the data set. As can be seen from this table 150 observations are
unequal to zero which corresponds to suffering from migraine headaches in
about 14% of the time. On the one hand we use covariates which reflect
weather conditions, on the other hand covariates which contain information
about the measurement time points. A description of the covariates in our
analysis is also provided in Table 1. We point out that the humidity index
is measured only in the period from May to October and the windchill index
only in the period from November to April. This means that always only one
of these covariates is contained in the data set.

In the following we conduct a short exploratory analysis. As described
in Miiller and Czado (2004), the idea is to compute the average response for
each category of a categorical covariate and for intervals, when a continu-
ous covariate is considered. Depending on the shape of the graph one can
then decide to use an appropriate transformation of the covariate or to use
indicator variables, which is, of course, the most flexible way of modeling.

PMNDI1P (mean pressure change from previous day, cf. Figure 1, top
panel): We group the observed PMNDIP values into six intervals with equal

number of observations and compute the average response for each interval.
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Table 1

Description of response scales with observed frequencies and weather and

time measurements related covariates

Response categories
intensity frequency condition

0 922
1 27
2 46
3 47
4 24
5) 6

No headache

Mild headache: Aware of it only when attending to it
Moderate headache: Could be ignored at times

Painful headache: Continuously aware of it, but able to start
or continue daily activities as usual

Severe headache: Continuously aware of it. Difficult to
concentrate and able to perform only undemanding tasks
Intense headache: Continuously aware of it, incapacitating.
Unable to start or contiunue activity.

weather conditions

PMND1P
S1P
HDXDD
WCD

WC.IND

mean pressure change since previous day in 0.01 kilopascal
length of sunshine on previous day in hours

humidity index based on maximal temperature and humidity,
only in period May to October, 0 otherwise

windchill index based on minimal temperature and wind speed,
only in period November to April, 0 otherwise

indicator for windchill: 1 if WCD unequal 0, 0 otherwise

time of measurement

WDAY
MESS

HAPM.IND

weekday, also coded by 1 (Monday) to 7 (Sunday)

time of measurement: HAAM = morning (also coded by 1),
HANOON = noon (2), HAPM = afternoon (3),

HABED = late evening (4)

indicator for afternoon: 1 if MESS=HAPM, 0 otherwise

14



A linear relationship seems to be sufficient, since a possibly present quadratic
part is obviously small.

S1P (sunshine on previous day): This covariate has not been collected
120 times in the considered period. The remaining 952 observations are
grouped in intervals. The relationship is quite linear (not shown), and a
sunny day seems to increase the probability for headache on the following
day, since the average response increases with the length of the sunshine.
The range of the average response is 0.31.

HDXDD (humidity index): We computed the average response for each
interval. and decided to use a quadratic transformation. The relative high
range among these average responses of 0.83 is a first hint at the importance
of this covariate.

WCD (windchill): We use an indicator for windchill. If windchill is
present, the patient suffered from more intense migraine headaches.

WDAY (weekday): Because of the periodicity a polynomial or loga-
rithmic transformation does not make sense. Perhaps a sine transformation
could be used. We use indicator variables since this choice provides the most
flexible way for modeling the influence of the weekdays. Indicator variables
are abbreviated in a natural way. For example, the variable TUEWED is 1
if the measurement was done on a Tuesday or Wednesday, otherwise 0.

MESS (time of measurement, cf. Figure 1, bottom panel): In the after-
noon the average response is the highest with 0.51. The difference between
the range of the average response is 0.51 — 0.26 = 0.25. The afternoon
indicator HAMP.IND is used.

15
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Figure 1. Relationship between average response and pressure difference
intervals (top panel) and average response and time of measurement (bottom
panel).
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3.2 Proportional Odds Model Specifications

To determine reasonable mean specifications for the AOP model we ignore
in an initial analysis the dependency among the responses und utilize the
proportional odds model. For the proportional odds model we analyzed
models with different sets of covariates. As mentioned the covariate 'sunshine
on previous day’ has not been collected 120 times in the period. We remove
these measurements and reduce our data set to the length 1072 — 120 =
952. The 3 models A, B, and C considered in the following are found by
a forward selection procedure. In each step the p-values for each covariate
were determined by a Wald test. The covariate with the best p-value was
included in the model until the 5% level was reached. This means that the
covariates of Model A, B, and C are all significant on the 5% level.

Model A contains only main effects. For time of measurement we use only
an indicator for the afternoon measurement and an indicator for Tuesday or
Wednesday. In Model B and C we consider 3 weekday indicators following
our exploratory analysis. Furthermore, in Model B we also allow for 3 in-
teraction effects, whereas Model C contains even 9 interaction components.
The covariates which are used are seen in Table 2. This table also gives the
ML estimators for the regression coefficients and the cutpoints.

3.3 AOP Model Specifications

For the AOP model with latent variables given by
Y =x,8+ Y, +¢;

we investigate two models. For numerical stability we use covariates which

have been standardized such that they have empirical mean 0 and empirical
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Table 2
Maximum likelihood estimates of regression parameters and cutpoint
parameters, residual deviances and Brier scores using the proportional odds
model ignoring dependency

Model A Model B Model C

weather conditions

HDXDD; -0.4592 -0.4513 -0.4011
HDXDD% 0.0109 0.0106 0.0097
S1P; -0.1055 -0.1205 -0.0651
WC.IND, -4.6821 -4.7190 -4.3610
PMND1P; 0.0035 -0.0149 -0.0147
time of measurement

HAPM.IND; -0.4719 -0.5051 -0.5433
TUEWED; 0.5298

TUESUN; -0.2180 -1.0196
WEDFRI, -0.2542 1.9105
THUSAT, -0.3935 -0.5628
interactions

PMND1P; - TUESUN; 0.0150 0.0174
PMND1P; - WEDFRI,; 0.0284 0.0297
PMNDI1P,; - THUSATY, 0.0185 0.0188
S1P; - TUESUN; 0.0703
S1P; - WEDFRI, -0.2218
S1P; - THUSAT, -0.0413
WC.IND, - TUESUN; 0.5248
WC.IND, - WEDFRI; -0.9426
WC.IND, - THUSAT, 1.3245
cutpoints

fo) 6.8128 7.3810 6.5040
aq 7.0478 7.6272 6.7591
e 7.6310 8.2314 7.3874
Qs 8.6903 9.3101 8.5073
oy 10.2024 10.8279 10.0509
residual deviance (df) 1106 (4753) 1083 (4748) 1056 (4742)
Brier score .2545 .2467 .2405

18



variance 1. We call these standardized covariates % = (x3,,...,2%,)’, where

the components are given by

2y = et 24 (3.8)

\/%té(xm —Z.4)?

T
with z,; = %me Only indicator variables x; (where xy; € {0,1} for all t €
=1

{1,...,T}) are not standardized. The proportional odds model specifications
from above were used as a starting point for the model specifications of the
AOP models considered. If the 95% credible interval of a parameter contained
zero, the corresponding covariate was removed from the model. In this way
proportional odds model A and B lead to AOP model I and II, respectively.
Table 3 shows the posterior mean estimates together with estimated 2.5% and
97.5% quantiles for all parameters based on 10000 iterations with a burnin
of 1000 iterations. For Model I, the 95% credible interval for every main
effect does not contain zero, so every covariate is significant. For Model II,
the 95% credible intervals for PMND1P; and WEDFRI; contain the value 0.
However, these two covariates must remain in the model since they appear
in an interaction term which is itself significant.

4. RESULTS

Now we conduct a model comparison analysis for the five models investigated
in Sections 3.2 and 3.3. First we consider the proportional odds models. To
decide which of the proportional odds models fits the data best, we use the
residual deviance test of Section 2.2.1. As mentioned there a model does not

describe the data well, if
D > X%TK—p,l—a‘
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Table 3
Posterior mean and quantile estimates for standardized regression
parameters and cutpoint parameters using the AOP model and their

deviance information criterion and Brier score

Model I Model II

2.5% mean 97.5% 2.5% mean 97.5%
intercept 0.8817 1.2969 1.7624 1.0610 1.4764 1.9456
weather conditions
HDXDDy -2.3685 -1.2880 -0.3530 -2.3874 -1.3548 -0.4171
(HDXDD%)S 0.4096 1.1552 2.0173 0.4616 1.2054 2.0311
S1P; -0.2368 -0.1322 -0.0314 -0.2688 -0.1619 -0.0569
WC.IND, -1.6215 -0.8410 -0.1464  -1.6499 -0.8959 -0.2006
PMND1P; -0.1331 -0.0172 0.0937
time of measurement
HAPM.IND; -0.9163 -0.5924 -0.2612 -0.9194 -0.5769 -0.2469
WEDFRI; -0.2672 -0.0079 0.2609
THUSAT, -0.5213 -0.2899 -0.0535
interactions
PMND1P;
x WEDFRI; 0.0839 0.3077 0.5402
autoregressive parameter
10} 0.7404 0.8077 0.8718 0.7250 0.7932 0.8541
cutpoints
o 0.4706 0.7314 1.0221 0.4596 0.7383 1.1732
Qg 1.0821 1.3851 1.6962 1.1002 1.4021 1.8384
Qs 1.5870 1.8979 2.2151 1.6049 1.9250 2.3588
Qy 1.8548 2.1704 2.5127 1.8644 2.2013 2.6321
deviance information criterion

D(6) D(0) DIC D(6) D(0) DIC

799.6967 701.8899 897.5035 787.8536 695.2686 880.4387
Brier score
.1688 1724
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Here we have T = 952 and K = 5. We test on the 5% and 1% level and
compute the p-value. Table 2 shows the results of the deviance analysis for
the three models. For all three models the deviance D is not larger than the
corresponding 99% quantiles of the y2-distribution, therefore all considered
models fit the data quite well. Next we compare the AOP models using the
DIC criterion. The values of the DIC for Model I and Model IT are given in

Table 3. Both the posterior mean of the deviance, D(0), and the deviance at
the posterior mean, D(0), are smaller for Model I1. From the values of the
DIC we derive that, in spite of the penalizing term for the model complexity
in the DIC, the more complex Model II fits better than the simpler Model 1.

Finally we compare all proportional odds models and AOP models using
the pseudo-predictions defined in Section 2.3. The corresponding Brier scores
are given in Table 2 and 3, respectively. We conclude that the two AOP mod-
els describe the data better than all the proportional odds models. Although
this model selection criterion prefers Model I to all other models, we are in
favor of Model II, since the Brier scores on the one hand show clearly that
the AOP models fit the data better than the proportional odds models, but
on the other hand we prefer the DIC criterion for selection between the AOP
models, and this criterion voted for Model II.

The signs of the regression parameters in Table 3 agree nearly everywhere
with the signs in Table 2. This means that both the proportional odds
models and the AOP models lead to the same conclusions, when asking which
covariates have a high and which a low value to reduce the migraine severity.
For example from the negative signs for S1P in all models we conclude that a

sunny day increases the headache severity on the next day. This agrees with
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our conjecture from the exploratory analysis. The indicator for afternoon,
HAPM.IND, also has a coefficient with negative sign. Again this approves
our conjecture: The afternoon headache is usually worse than in the morning,
at noon, and during the night. Considering the coefficients of the weekday
indicators in Model II we see that the headache is worse between Wednesday
and Saturday which might be a consequence of an (over)exertion on the job.

We now compute the impact of the covariate z; on the conditional means
of the latent variables in Model II defined as the product of the posterior
mean estimate ﬁ_j and the value of x;. Since we used the inverted order of
categories for the AOP model, hence a smaller conditional mean increases
the probability for a severe headache. The impact of the main effects is
shown in the top panel of Figure 2, the impact of the interaction in the
bottom panel of Figure 2. From the top panel of Figure 2 we see that the
humidity index has the largest range and exhibits a quadratic influence. An
humidity index around 20 has the lowest conditional mean for Y,* in the
AOP model, whereas a higher or lower index increases the conditional mean.
This means that a humidity index of 20 results in the most severe headaches,
while deviations from 20 in both directions results in lower migraine severity.
With regard to the interaction effect, we see that pressure differences have
only on Wednesdays and Fridays an effect. On these days a high negative
pressure difference gives the lowest conditional mean for Y,*.

We provide now a quantitative interpretation of the covariate impacts.

For this we match the first two moments of the standard normal distribution
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Figure 2. Impact of main effects (top panel, sunshine ...., humidex -.-.-

-) and interaction effect between pressure difference and weekday (bottom
panel) of the AOP Model II.
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to the logistic distribution to give the approximation

exp (lz)
O(2) ~ EVA
1+ exp (%z)

w

For the AOP model it follows that the cumulative log odds ratio can approx-

imated by

L Ft(k> ~ ™ ! *
)= tog (20 )~ et~ i - oY)
where Fy(k) .= P(Y; < klzy, o, 8,0, Y, ) = P(ay, — i B — ¢Y;" ;). Therefore

the scaled impact
i
V3

approximates the effect on the cumulative log odds ratio. This allows us to

Bjx;

quantify covariate effects. In particular, a change from 0 to 14 hrs of sunshine
on the previous day changes the cumulative log odds ratio by —.9. The same
change is seen if one changes humidity from 6 to 20 or from 34 to 20 index
points. The presence of a Thurday or Saturday changes the cumulative log
odds ratio by —.45, while the presence of windchill yields a change of —1.45.
An afternoon measurement has a scaled impact change of —1.09. Finally, a
pressure change from —1.5 kilopascal to 1.5 kilopascal on Wednesdays and
Fridays changes the cumulative log odds ratio by 1.9.

Comparing different covariates, we see that a sunshine length change from
0 to 14 hrs has the same effect as a humidity index point change from 6 to
20 or 34 to 20. In comparison the effect of a Thursday or Saturday is only
half the size, while the effect of an afternoon measurement is slightly higher

and the windchill effect is 50 % higher than the sunshine change from zero
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to 14 hours. Finally a pressure change of —1.5 kilopascal to 1.5 kilopascal
on Wednesdays and Fridays has a three times higher opposite effect.

Finally we note that the autoregressive component for the latent time
series Y;" is around .8 indicating large positive dependency among the ordinal
intensity measurements.

In summary we recommend to this patient to avoid long sunshine and
windchill exposures. With regard to humidity, either a low or high humidity
index has a more favorable influence than exposure to moderate humidity.
Since about 70 % of observed humidity values are above 20 index points,
the exposure to moderate humidity might not occur too often at her present
residence location. Further negative pressure changes on the previous day
cause problems especially on Wednesdays and Fridays. Changing work and

life style arrangement on these days might help.
5. Conclusions

We applied the autoregressive ordererd probit (AOP) model suggested by
Miiller and Czado (2004) to an ordinal valued time series arising from headache
intensity assessments. Here the ordered categories are produced by thresh-
holding a latent real-valued time series with regression effects. To model the
dependencies among the measurements the latent time series includes beside
regression components also an autoregressive component. Parameter estima-
tion is facilitated using a grouped move multigrid Monte Carlo (GM-MGMC)
Gibbs sampler in a Bayesian setting. Models were compared using the DIC
criterion suggested by Spiegelhalter et al. (2002) and the Brier score based
on pseudo predictions.

For the migraine headache intensity data the latent time series shows a
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high first order autocorrelation of around .8 demonstrating considerable de-
pendence among the ordinal measurements. For this patient we were able
to demonstrate considerable impact of weather related variables such as hu-
midity, windchill, sunshine length and pressure differences. In addition, time
measurement effects were present. The final model specification includes
nonlinear and interaction terms. Specific recommendations to this patient
to lower the risk factors for severe migraine headaches have been provided.
Even though an individual analysis offers the opportunity to develop more
precise migraine control mechanisms, it is of interest to identify common risk

factors in groups of patients. This problem is the subject of current research.
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