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Abstract. Let Z=p act on an Fp-Poincaré duality space X, where p is an odd prime number. We
derive a formula that expresses the Fp-Witt class of the fixed point set X Z=p in terms of the
Fp½Z=p�-algebra H �ðX ;FpÞ, if H �ðX ;Zð pÞÞ does not contain Z=p as a direct summand. This
extends previous work of Alexander and Hamrick, where the orientation class of X is supposed
to be liftable to an integral class.

2000 Mathematics Subject Classification: 18G40, 57S17; 57P10.

Given a prime p and a finite dimensional Z=p-CW complex X which fulfills Poincaré
duality over Fp, a theorem of Bredon ([4]) and Chang and Skjelbred ([7]) predicts the
fixed point set components of this Z=p-action to be Fp-Poincaré duality complexes,
as well. Furthermore, the formal dimension (with Fp-coe‰cients) of each fixed point
component has the same parity as the formal dimension of X. It is the purpose of this
paper to derive an analogue of the classical Atiyah-Singer-Segal G-signature formula
in this context, if p is odd (the case p ¼ 2 is easy, see Section 3). Our main result is
Theorem 7 below and can be stated as follows.

Theorem. Let the formal dimension of X be an even number 2m and let anFp-orientation
n of X be fixed. Additionally, assume that H �ðX ;ZðpÞÞ does not contain Z=p as a direct
summand. For each component FHX Z=p, let wðF ; rF Þ AWðFpÞ denote the Witt class
of the inner product on H evðF ;FpÞ induced by the cup product and the orientation rF of
F (which depends canonically on the orientation n of X, cf. Theorem 3 below). Then the

element P
FHX Z=p

wðF ; rF Þ

in the Witt ring of Fp is equal to the Witt class of the form w=KerðwÞ, where w is the
symmetric bilinear form
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HmðZ=p;HmðX ;FpÞÞ �HmðZ=p;HmðX ;FpÞÞ

! H 2mðZ=p;H 2mðX ;FpÞÞ ! Fp:

This form is defined using the multiplicative structures of the group cohomology of Z=p
and of H �ðX ;FpÞ and the orientation n.

In particular, we do not assume that the orientation class of X can be lifted to an inte-
gral class or to a class with ZðpÞ-coe‰cients, as it is the case in analogous discussions in
[1] and [12]. In this respect, the content of this paper should be viewed as comple-
mentary to these previous results.
The new feature of our approach is a careful analysis of the LðsÞ-module struc-

ture on H �ðXZ=p;FpÞ, where LðsÞ denotes the exterior algebra over a generator s A
H 1ðZ=p;FpÞ and XZ=p denotes the Borel construction (cf. Prop. 9). In the first part of
this paper we develop a computational tool that proves to be very useful in order to
carry out this analysis within the Leray-Serre spectral sequence for the Borel con-
struction XZ=p, but might be of independent interest.

1 Connecting homomorphisms on spectral sequences

We take coe‰cients in a fixed commutative ring k with unit. Let ðA�; dAÞ; ðB�; dBÞ
and ðC �; dCÞ be Z-graded k-modules equipped with di¤erentials of degree þ1. Fur-
thermore, we assume that each of these di¤erential modules comes with a decreasing
filtration


 
 
 IFg�1X
� IFgX

� IFgþ1X
� I 
 
 
 ;

which is indexed over the integers and respected by the di¤erentials, i.e. dX ðFgX
�ÞH

FgX
�. Here X stands for either A, B or C. As usual, one can naturally associate spec-

tral sequences ðE �;�
� ðXÞ; d�Þ to the filtered cochain complexes A�, B� and C �. These

have E0-terms

E
g;m
0 ðXÞ ¼ FgX

gþm=Fgþ1X
gþm

and a limit term E g;m
y ðXÞ. By definition, the last expression can be naturally identified

with FgH
gþmðXÞ=Fgþ1H

gþmðXÞ (using the induced filtration on H �ðX Þ), if E �;�
� ðX Þ

is convergent. For example, this is the case, if the filtration on X � is exhaustive and
bounded above, i.e. if

S
g FgX

� ¼ X � and for all n, we have FgðX nÞ ¼ 0 for large g

(cf. [17], 5.5, where a detailed discussion of convergence properties of spectral se-
quences can be found). Now we additionally assume that we are given a short exact
sequence

ð1Þ 0 ! A� !f B� !c C � ! 0
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of filtered cochain complexes with the property that for each g A Z, the induced se-
quence

0 ! FgA
� ! FgB

� ! FgC
� ! 0

is exact. In particular, we get an induced short exact sequence

0 ! E �;�
0 ðAÞ ! E �;�

0 ðBÞ ! E �;�
0 ðCÞ ! 0

and, after applying the di¤erential d0, a long exact sequence


 
 
 ! E �;�
1 ðAÞ ! E �;�

1 ðBÞ ! E �;�
1 ðCÞ !G1 E �;�þ1

1 ðAÞ ! 
 
 


with a connecting homomorphism G1 of bidegree ð0; 1Þ. Now, if G1 ¼ 0, we get a short
exact sequence of E1-terms and—after applying the di¤erential d1—an induced con-
necting homomorphism

G2 : E
�;�
2 ðCÞ ! E �þ1;�

2 ðAÞ

of bidegree ðþ1; 0Þ. Inductively, we can define connecting homomorphisms

Gr : E
�;�
r ðCÞ ! E �þr�1;��rþ2

r ðAÞ

of bidegree ðr� 1;�rþ 2Þ as long as

G1 ¼ 
 
 
 ¼ Gr�1 ¼ 0:

Note that the next theorem applies in particular to the first nonzero Gr.

Theorem 1. The connecting homomorphism Gr is a map of spectral sequences, i.e. for all
e A f0; 1; 2; . . . ;yg, there are homomorphisms

Gr; e : E
�;�
rþeðCÞ ! E �þr�1;��rþ2

rþe ðAÞ

with the following properties.

i. Gr;0 ¼ Gr.

ii. Gr; e � drþe ¼ �drþe � Gr; e and—using this property—Gr; eþ1 is induced by Gr; e.

iii. If E�ðAÞ and E�ðCÞ are convergent, then

Gr;y : FgH
�ðCÞ=Fgþ1H

�ðCÞ ! Fgþr�1H
�þ1ðAÞ=FgþrH

�þ1ðAÞ

is induced by the connecting homomorphism H �ðCÞ ! H �þ1ðAÞ associated to the short
exact sequence (1).
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Proof. We use a construction due to Eilenberg and Moore ([10], equ. (7.16)) and de-
fine a decreasing filtration on the mapping cone of the map f by setting

Fg coneðfÞn ¼ Fgþr�1A
nþ1lFgB

n:

Recall that the mapping cone is equipped with the di¤erential

ða; bÞ 7! ð�dAðaÞ; dBðbÞ � fðaÞÞ:

As in [10], we get for g A Z

coneE
g;�
r�1ðfÞGE

g;�
r�1ðconeðfÞÞ

and from this a commutative diagram with exact rows


 
 
 ���! E �;�
r ðBÞ ���! E �;�

r ðconeðfÞÞ ���!ErðpÞ
E �þr�1;��rþ2
r ðAÞ ���! 
 
 


¼

???y ¼

???y E �; �
r ðaÞ

???y ¼

???y ¼

???y

 
 
 ���! E �;�

r ðBÞ ���! E �;�
r ðCÞ ���!Gr E �þr�1;��rþ2

r ðAÞ ���! 
 
 
 :

The map a : coneðfÞ� ! C � is defined using the universal property of coneðfÞ� and
provides a factorisation

B� ,! coneðfÞ� !a C �

of c, where a is filtration preserving. The map p : coneðfÞ� ! A�þ1 is the projection
map. This map anticommutes with the respective di¤erentials and increases the filtra-
tion degree by r� 1. Applying the five lemma, we see that

E �;�
r ðaÞ : E �;�

r ðconeðfÞÞGE �;�
r ðCÞ:

Hence, ErþeðaÞ is an isomorphism for all eb 0. Assertions i., ii. and iii. in the theorem
follow. r

By applying the standard machinery of homological algebra, an analogue of Theo-
rem 1 holds, if we replace A�, B� and C � by chain complexes in an abelian category
and work with the Grothendieck spectral sequence associated to the composition of
two functors. This generalisation is mainly technical and we leave it to the interested
reader.

Example 2. Let F ,! E ! B be a Serre fibration. The Leray-Serre spectral sequence
(with its multiplicative structure) for this fibration can be constructed by a filtration
on the cubical cochain complex SC �ðEÞ associated to E (cf. [16]). In particular, the
exact sequence of coe‰cients

0 ! Z=p! Z=p2 ! Z=p! 0
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induces a short exact sequence of filtered cochain complexes

0 ! SC �ðE;Z=pÞ ! SC �ðE;Z=p2Þ ! SC �ðE;Z=pÞ ! 0

in the sense explained before Theorem 1. Our considerations now imply the following
fact: Let p be a prime. If the Bockstein operator

b : H �ðF ;FpÞ ! H �þ1ðF ;FpÞ

is the zero map, we have operators

G2; e : E
g;m
2þeðE;FpÞ ! E

gþ1;m
2þe ðE;FpÞ

for e A f0; 1; 2; . . . ;yg. Note that these operators act as bigraded derivations (this
follows from the definition of G2). Furthermore,

G2;0 : H
gðB;H mðF ;FpÞÞ ! H gþ1ðB;H mðF ;FpÞÞ

is induced by the sequence of coe‰cients

0 ! H �ðF ;Z=pÞ ! H �ðF ;Z=p2Þ ! H �ðF ;Z=pÞ ! 0;

which is exact by the assumption that b ¼ 0. The operator G2; e restricted to E
�;0
2þeðE;FpÞ

is induced by the usual Bockstein operator on H �ðB;FpÞ. In this sense, G2; e reflects
the ‘Bockstein on the base’ rather than the ‘Bockstein on the fibre’.

2 Actions of ZZ/p on Poincaré duality spaces

In this section we shall apply the discussion of the last section to the cohomology
theory of transformation groups. Let p be an odd prime number and let X be a finite
dimensional Z=p-CW complex that is an (oriented) Poincaré duality complex over
Fp. By definition, this means that H �ðX ;FpÞ is finitely generated over Fp, there is
given a natural number n, the formal dimension of X, and an element n A HnðX ;FpÞ,
the orientation of X, such that

HiðX ;FpÞ �Hn�iðX ;FpÞ ���!W HnðX ;FpÞ ���!�Xn Fp

is a nonsingular bilinear form for all i A Z. In particular, H>nðX ;FpÞ ¼ 0. Let X Z=p

denote the fixed point set of the Z=p-space X. We recall the following fundamental
result.

Theorem 3 ([4, 7, 11]). Each component of X Z=p fulfills Poincaré duality over Fp and
has formal dimension equal to n mod 2. The orientation of each component of X Z=p can

be chosen to depend canonically on the orientation of X.
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We remark that the components of X Z=p do not fulfill Poincaré duality over Z, in
general, even if X is a sphere, unless the Z=p-action is assumed to be locally linear.
Examples are provided by the converses of the P. A. Smith theorems ([13], Corollary
3.1).

Similar to the signature for topological manifolds, we can associate an invariant to an
Fp-Poincaré duality complex using a nonsingular bilinear form on its Fp-cohomology.

Definition 4. Let Y be an Fp-Poincaré duality complex of even formal dimension and
let

r A H�ðY ;FpÞ ¼ HomðH �ðY ;FpÞ;FpÞ

be an orientation of Y. We denote by wðY ; rÞ AWðFpÞ the Witt class of the non-
degenerate symmetric bilinear form

H evðY ;FpÞ �H evðY ;FpÞ ! Fp; ðx; yÞ 7! rðxW yÞ;

where H evðY ;FpÞ ¼
L
i H

2iðY ;FpÞ.

For the definition and the properties of the Witt ringWðkÞ associated to a commuta-
tive ring with unit k, see for example [2, 15]. For our purposes we recall

WðFpÞ ¼
Z=4; if p1 3 mod 4;

Z=2½Z=2�; if p1 1 mod 4;

�

as rings. Note that wðY ; rÞ ¼ 0, if the formal dimension of Y is not divisible by four.
If the formal dimension of Y is equal to 4m with m A f0; 1; 2; . . .g, then wðY ; rÞ is
equal to the Witt class of the induced form on H 2mðY ;FpÞ, because the form re-
stricted to

L
i0m H

2iðY ;FpÞ is split.
Theorem 3 motivates the search for a formula that relates the Witt classes of the

components of X Z=p to invariants associated to the cohomology of X. Results of this
type can be regarded as analogues (for actions on Poincaré duality spaces) of the clas-
sical G-signature theorem. In [1], the authors derive such a relation, if X fulfills Poin-
caré duality over Z. This assumption is weakened in [12] to X satisfying Poincaré
duality over ZðpÞ, a property that is in fact equivalent to the orientation class of the
Fp-Poincaré duality space X being liftable to homology with coe‰cients in ZðpÞ (see
[12], Proposition 3).

Example 5. Let M be an oriented closed di¤erentiable manifold of dimension m and
let

f :M !M

be a map of degree z 
 pþ 1, where z A Z is a nonzero number. Let

N ¼M � ½0; 1�=ðm; 0Þ@ ð f ðmÞ; 1Þ
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be the mapping torus of f . One checks that N is (homotopy equivalent to)
an Fp-Poincaré duality complex of formal dimension mþ 1. But the orientation
class in Hmþ1ðN;FpÞ cannot be lifted to a class with coe‰cients in ZðpÞ, because
Hmþ1ðN;ZðpÞÞ ¼ 0. Hence the study of Z=p-actions on N (concerning the comparison
of Witt classes) cannot be carried out using any of the previously known results.

In the following, we need some explicit calculations of Tate cohomology groups. Let
g be a generator of Z=p. Recall (cf. [3], Chapter 1) that for a (graded) Fp½Z=p�-module
V considered to be concentrated in degree d, the Tate cohomology ĤH �ðZ=p;VÞ can
be calculated using an explicit cochain model

ðVnFp LðsÞnFp Fp½t; t
�1�; dÞ;

where degðsÞ ¼ 1, degðtÞ ¼ 2 and LðsÞ is the exterior algebra over Fp generated by
s. The di¤erential d is given by the formulas

dðvn 1n t iÞ ¼ ð�1Þdþ1ð1� gÞvn sn t i;

dðvn sn t iÞ ¼ ð�1Þdð1� gÞp�1vn 1n t iþ1

for i A Z. Further, if U,W are other Fp½Z=p�-modules, considered to be concentrated
in degrees c and cþ d, respectively and if we are given an Fp½Z=p�-linear map
h : UnV !W (using the diagonal Z=p-operation on the left hand side), then the
induced pairing

ĤH �ðZ=p;UÞn ĤH �ðZ=p;VÞ ! ĤH �ðZ=p;WÞ

has an explicit description on the cochain level, given by

ðun 1n t i; vn 1n t jÞ 7! hðun vÞn 1n t iþj ;

ðun 1n t i; vn sn t jÞ 7! hðun vÞn sn t iþj;

ðun sn t i; vn 1n t jÞ 7! ð�1Þdhðun gvÞn sn t iþj;

ðun sn t i; vn sn t jÞ 7! ð�1Þd
P

0al<map�1
hðglun gmvÞn 1n t iþjþ1:

If the Z=p-action on W is trivial, the last formula simplifies to

ðun sn t i; vn sn t jÞ 7! ð�1Þdþ1hðun gð1� gÞp�2vÞn 1n t iþjþ1:

The next proposition is well known (cf. [8], pp. 638, ¤.). But our method of proof is
di¤erent from previous ones and is tightly connected with the forthcoming discussion.
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Proposition 6. Let V be a finitely generated Z=p2½Z=p�-module that is free over Z=p2.
Let g be a generator of Z=p. Then there is an Fp½Z=p�-linear splitting

VnFp ¼ V1lVp�1lVp:

where Vi is a free Fp½x�=ð1� xÞ i-module and x acts as multiplication by g.

Proof. By applying the structure theorem for finitely generated modules over the
principal ideal domain Fp½x�, we obtain an Fp½Z=p�-linear splitting

VnFpGV1lV2l 
 
 
 lVp;

where each Vi is free over Fp½x�=ð1� xÞ i. In our situation, however, the summands Vi
for i0 1; p� 1; p cannot occur: Because V is free over Z=p2, we have a short exact
sequence of Z=p2½Z=p�-modules

0 ! VnFp ! V ! VnFp ! 0

which induces a connecting homomorphism

d : ĤH �ðZ=p;VnFpÞ ! ĤH �þ1ðZ=p;VnFpÞ

of Tate cohomology groups. Using this fact, ĤH �ðZ=p;VnFpÞ can be shown to be a
free LðsÞ-module, where s is a generator of ĤH 1ðZ=p;FpÞ as follows. Let p denote the
canonical projection

ĤH �ðZ=p;VnFpÞ ! ĤH �ðZ=p;VnFpÞ=sĤH ��1ðZ=p;VnFpÞ

and let t A ĤH 2ðZ=p;FpÞ be the image of s under the Bockstein operator. Note that t is
invertible in ĤH �ðZ=p;FpÞ. The map

f : ĤH �ðZ=p;VnFpÞ=ðsÞnLðsÞ ! ĤH �ðZ=p;VnFpÞ

pðxÞn f ðsÞ 7! f ðsÞ 
 dðsxÞ
t

is well defined, grading preserving andLðsÞnFp½t; t�1�-linear. We claim that this map
is an isomorphism. Suppose that

f ðsÞ 
 dðsxÞ
t

¼ 0:

It follows x A s 
 ĤH �ðZ=p;VnFpÞ (using dðsxÞ ¼ tx� sdðxÞ), which proves injectivity
of f. Now, let x A ĤH �ðZ=p;VnFpÞ. Then

pðxÞn 1þ p
dðxÞ
t

� 	
n s

is a preimage of x under f which shows that f is surjective.
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In particular, using the above splitting of VnFp, each ĤH �ðZ=p;ViÞ has to be a
projective LðsÞ-module, hence a free LðsÞ-module, because LðsÞ is a local ring with
unique maximal ideal ðsÞ.
But now one checks by a direct calculation, using the formulas written down pre-

viously, that for i0 1; p� 1; p, multiplication by s is the zero map on ĤH �ðZ=p;Vi Þ
and ĤH �ðZ=p;ViÞ0 0. Note that on the cochain level, (left) multiplication by s A
ĤH 1ðZ=p;FpÞ on ĤH �ðFp;ViÞ is (up to sign) given by the maps

vn 1n t i 7! xvn sn t i; vn sn t i 7! xð1� xÞp�2vn 1n t iþ1:

This concludes the proof of the proposition. r

Using the notation of the last proposition, suppose that on VnFp, we are given a
nonsingular ð�1Þe-symmetric bilinear form g, where e ¼G1. It follows from [14],
Theorem 3.2., that the direct sum decomposition

VnFp ¼ V1lV2l 
 
 
 lVp

can be assumed to be orthogonal with respect to g. We denote the nonsingular bilinear
form induced on Vi by gi.
We will now suppose additionally to the standing assumptions that the formal di-

mension of X is an even number 2m and that the Bockstein operator b : H �ðX ;FpÞ !
H �þ1ðX ;FpÞ is the zero map. This last requirement is equivalent to saying that
H �ðX ;ZðpÞÞ does not contain Z=p as a direct summand. For simplicity, we also as-
sume that X is connected. In particular, H 2mðX ;FpÞGFp with the trivial Z=p-
operation. Furthermore, we fix an orientation n of X. Let g be a generator of Z=p
as before. Set V � ¼ H �ðX ;Z=p2Þ. By our assumption on b, this is a finitely generated
Z=p2½Z=p�-module that is free over Z=p2. Further, VmnFp (that is concentrated
in degree m), comes equipped with a nondegenerate bilinear form g that is symmetric
if m is even and antisymmetric, if m is odd. This form is invariant under the induced
Z=p-action on V. We define wðX ; nÞ AWðFpÞ as the Witt class of the nonsingular
symmetric bilinear form

ĤHmðZ=p;Vmi Þ � ĤHmðZ=p;Vmi Þ ! ĤH 2mðZ=p;FpÞGFp;

where we choose i ¼ 1, if m is even, and i ¼ p� 1, if m is odd, and use the induced bi-
linear form gi on Vi . That these forms are nonsingular can be checked using the above
explicit formulas for the product structure of the Tate cohomology groups.
Now we can state our main result.

Theorem 7. In WðFpÞ the following equation is valid with the canonical orientation rF
of each component F in X Z=p:

wðX ; nÞ ¼
P

FHX Z=p

wðF ; rF Þ:
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Remark 8. The left hand side of the last equation coincides with the Witt class of the
form w=Kerw mentioned in the introduction for the following reason. The kernel of
the symmetric bilinear form

ĤHmðZ=p;HmðX ;FpÞÞ � ĤHmðZ=p;HmðX ;FpÞÞ

! ĤH 2mðZ=p;H 2mðX ;FpÞÞ ! Fp

coincides with ĤHmðZ=p;Vmp�1Þ, if m is even, and with ĤHmðZ=p;Vm1 Þ, if m is odd,

because ĤHmðZ=p;Vmi Þ ¼ s 
 ĤHm�1ðZ=p;Vmi Þ in the respective cases. Furthermore,
ĤH �ðZ=p;Vmp Þ ¼ 0.

The proof of Theorem 7 proceeds in several steps. We write

H �ðZ=p;FpÞGLðsÞnFp Fp½t�

were s and t carry gradings 1 and 2, respectively, and t is the image of s under the
Bockstein map. We will consider the Leray-Serre spectral sequence E �;�

� ðXÞ with co-
e‰cients Fp associated with the Borel fibration

X ,! XZ=p ! BZ=p;

where XZ=p ¼ X �Z=p EZ=p. Note that all E �;�
r ðX Þ with rb 2 are (bigraded) modules

over H �ðZ=p;FpÞ, hence the statement in the following proposition makes sense.
Recall that we assume throughout that the Bockstein operator acts trivially on
H �ðX ;FpÞ.

Proposition 9. For all rb 2, the localized terms E �;�
r ðX Þ½t�1� are finitely generated free

graded LðsÞnFp½t; t�1�-modules.

Proof. The proof is similar to the proof of Proposition 6, but uses the operators G2; e
from Example 2 in the first section. These are Fp½t�-linear, as bðtÞ ¼ 0 in H �ðZ=p;FpÞ.
Therefore, we get induced operators on E2þeðX Þ½t�1� that we denote by the same
symbols G2; e. Let p denote the canonical projection

ErðXÞ½t�1� ! ErðXÞ½t�1�=ðsÞ:

It is clear that the map

f : ðErðX Þ½t�1�=ðsÞÞ�;� nLðsÞ ! E �;�
r ðXÞ½t�1�

pðxÞn f ðsÞ 7! f ðsÞG2; r�2ðsxÞ
t

is well defined, grading preserving and LðsÞnFp½t; t�1�-linear. In an analogous
fashion as in the proof of Proposition 6, one proves that f is an isomorphism. Be-
cause ErðXÞ½t�1�=ðsÞ is free over the graded field Fp½t; t�1�, the assertion follows. r
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In [3], Remark 5.2.4, it is claimed that the conclusion of Proposition 9 above holds
without the additional assumption on the Bockstein operator on H �ðX ;FpÞ. This is
not correct, in general. Let pb 5. We can construct a smooth closed manifold Y with
a smooth Z=p-action such that H 1ðY ;FpÞ as an Fp½Z=p�-module is isomorphic to V2
(compare the proof of Proposition 6). The E2-term E2ðYZ=pÞ½t�1� of the localized
spectral sequence (with Fp-coe‰cients) for the Borel construction is not free over
LðsÞ.

For abbreviation, we set

E �;�
r ðX Þ ¼ ðErðXÞ½t�1�=ðsÞÞ�;�

and denote the induced di¤erentials by dr.
Note that the orientation n : H �ðX ;FpÞ ! Fp induces Fp½t; t�1�-linear (not neces-

sarily surjective) homomorphisms (‘orientations’)

Or : E
�;�
r ðXÞ ! Fp½t; t�1�

for r A f1; 2; 3; . . . ;yg that lower the bidegree by ð0; 2mÞ and satisfy

OrðE g;m
r ðXÞÞ ¼ 0;

if g is odd or if m0 2m. We will prove the following assertion by induction on r,
where the superscript ev denotes restriction to even total degree as before.

Proposition 10. The forms ð�;�Þr : E ev
r ðXÞ � E ev

r ðXÞ ! Fp½t; t�1� defined by

ðx; yÞ 7! Orðx 
 yÞ

are nonsingular and Witt equivalent (in WðFp½t; t�1�) for all rb 2.

Proof. First, we prove that the form ð�;�Þ2 is nonsingular. Using the decomposition

H �ðX ;FpÞ ¼ V �
1 lV �

p�1lV
�
p

(cf. Proposition 6), one gets isomorphisms

E
g;m
2 ðXÞG

ĤH gðZ=p;V m
1 Þ; for g even;

ĤH gðZ=p;V m
p�1Þ; for g odd:

(

(This is usual dimension shifting for the Fp½Z=p�-module V �
p�1). Using this descrip-

tion, nonsingularity of ð�;�Þ2 is checked using the same calculation as carried out
for the definition of wðX ; nÞ above.
Now let rb 2. We will prove that

drðErðXÞÞ ¼ ðKer drÞ?
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with respect to ð�;�Þr and that there is a canonical isomorphism

KerðdrÞ=ImðdrÞGErþ1ðXÞ:

These two statements complete the induction step (after restriction to elements of
even total degree), cf. [2], Lemma 1.3. The left hand side in the first statement is con-
tained in the right hand side, because the di¤erential dr is a derivation with respect to
the multiplication on ErðXÞ and because OrðE �;<2m

r ðXÞÞ ¼ 0. The full equality now
holds, because both sides in this equation have the same dimension over Fp½t; t�1�.
The second statement is shown as follows. The isomorphism f in the proof of

Proposition 9 is an isomorphism of di¤erential algebras, if we use the di¤erential
drn id on the left and the di¤erential dr which is induced by the di¤erential on ErðX Þ
on the right. Consequently, f induces LðsÞ-linear isomorphisms Ker drnLðsÞG
Ker dr, Im drnLðsÞG Im dr and therefore aLðsÞ-linear isomorphism ðKer dr=Im drÞn
LðsÞGErþ1ðX Þ½t�1�. From this, the assertion is immediate. r

We now recall the localization theorem (cf. [3, 9]) that in our case states that the in-
clusion X Z=p ! X induces an isomorphism of graded Fp½t; t�1�-algebras

H �ðXZ=p;FpÞ½t�1�=ðsÞGH �ðX Z=p;FpÞnFp½t; t�1�:

As before, the grading superscript � on the left hand side takes into account that the
ideal generated by s is homogenous. By construction of the Leray-Serre spectral se-
quence, we have an induced filtration F� on H

�ðXZ=p;FpÞ that in turn induces a fil-
tration F� on H

�ðXZ=p;FpÞ½t�1� by declaring

x A FgðH �ðXZ=p;FpÞ½t�1�Þ , tc 
 x A Fgþ2cðH �þ2cðXZ=p;FpÞÞ for cg 0:

This makes sense, as multiplication with t induces isomorphisms

FgðH �ðXZ=p;FpÞÞGFgþ2ðH �þ2ðXZ=p;FpÞÞ;

if gb 2mþ 1.
Finally, we get an induced filtration F� on H �ðXZ=p;FpÞ½t�1�=ðsÞ by setting

FgðHiðXZ=p;FpÞ½t�1�=ðsÞÞ equal to

FgðHiðXZ=p;FpÞ½t�1�Þ=s 
Fg�1ðHi�1ðXZ=p;FpÞ½t�1�Þ:

The following fact follows immediately.

Lemma 11. There are canonical graded isomorphisms

FgðH �ðXZ=p;FpÞ½t�1�=ðsÞÞ=Fgþ1ðH �ðXZ=p;FpÞ½t�1�=ðsÞÞGE g;��g
y ðX Þ:

The map Oy : E �;�
y ðX Þ ! Fp½t; t�1� constructed earlier induces a linear map

O : H �ðXZ=p;FpÞ½t�1�=ðsÞ �! E ��2m;2m
y ðXÞ �!Oy Fp½t; t�1�;
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where the first map is the canonical projection. Using this map, we obtain a bilinear
form

H �ðXZ=p;FpÞ½t�1�=ðsÞ �H �ðXZ=p;FpÞ½t�1�=ðsÞ ! Fp½t; t�1�

that (restricted to elements of even degree) is nonsingular, using Proposition 10. We
claim that this pairing (restricted to elements of even degree) is Witt equivalent to the
previously defined pairing on E ev

yðXÞ restricted to
L
i AZ E

2iþm;m
y ðXÞ. Observe that

L
i

F2iþmþ1ðH 2iþ2mðH �ðXZ=p;FpÞ½t�1�=ðsÞÞ

¼
L
i

ðF2iþmðH 2iþ2mðH �ðXZ=p;FpÞ½t�1�=ðsÞÞÞ?;

cf. Lemma 11. Hence, the form in question is Witt equivalent to the form induced on
the quotient of these two modules which is indeed isomorphic to

L
i E

2iþm;m
y ðXÞ.

Now let FHX Z=p be a component of formal dimension nF (which is automatically
even). Using the argument in [4], one can show that the map

HnF ðF ;FpÞnFp½t; t�1�HH �ðX Z=p;FpÞnFp½t; t�1�

GH �ðXZ=p;FpÞ½t�1�=ðsÞ !
O Fp½t; t�1�

is not the zero map, hence an isomorphism. After evaluating at t ¼ 1, this is exactly
the orientation that we referred to in the statement of Theorem 3. Using these maps,
we obtain a nonsingular symmetric bilinear form on

L
FHX Z=p

H evðF ;FpÞnFp½t; t�1�GH evðX Z=p;FpÞnFp½t; t�1�:

Using Proposition 10, we finally get the following sequence of equations in
WðFp½t; t�1�Þ, where we only write down the representing module of an element in
WðFp½t; t�1�Þ.

L
i

E2iþm;m
2 ðXÞ ¼ E ev

2 ðXÞ ¼ E ev
yðX Þ

¼
L
i

E2iþm;m
y ðXÞ ¼ H evðXZ=p;FpÞ½t�1�=ðsÞ

¼ H evðX Z=p;FpÞnFp½t; t�1� ¼
L

FHX Z=p

H evðF ;FpÞnFp½t; t�1�:

Theorem 7 now follows from evaluating this equation at t ¼ 1.
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3 Further remarks

The invariant wðX ; nÞ on the left hand side of the equation in Theorem 7 can be in-
terpreted as a torsion linking form on the group cohomology of Z=p in the following
way. We have a Bockstein operator

d : ĤHm�1ðZ=p;HmðX ;FpÞÞ ! ĤHmðZ=p;HmðX ;FpÞÞ

as before, because HmðX ;Z=p2Þ is a free Z=p2-module. Let T ¼ Im d and define a
bilinear form g : T � T ! Fp as follows:

gðdðxÞ; dðyÞÞ ¼ xW dðyÞ A ĤH 2m�1ðZ=p;H 2mðX ;FpÞÞGFp:

As the Bockstein operator acts trivially on ĤH 2m�2ðZ=p;FpÞ, this bilinear form is well
defined and symmetric (note the derivation property of d). Furthermore, it can easily
be checked that g is nonsingular. Using the fact that Im d ¼ ĤHmðZ=p;Vm1 Þ, ifm is even,
and Im d ¼ ĤHmðZ=p;Vmp�1Þ, if m is odd, (in the notation introduced before Theorem

7), it follows that the Witt class of g coincides with wðX ; nÞ.
If the orientation class n of X lifts to a class in H 2mðX ;ZðpÞÞ, then X is a ZðpÞ-

Poincaré duality space (see [12], Proposition 3) and the right hand side of Theorem 7
can be expressed as the Witt class of the evident nonsingular symmetric bilinear form

ĤHmðZ=p;HmðX ;ZðpÞÞ=TorÞ � ĤHmðZ=p;HmðX ;ZðpÞÞ=TorÞ ! Fp;

cf. [1] and [12] (for this, no further assumption on the Bockstein of H �ðX ;FpÞ is
needed). If, in addition, the Bockstein operator onH �ðX ;FpÞ is trivial, it follows from
our discussion that the Witt class of the above form is equal to wðX ; nÞ. We sketch a
direct proof of this fact, if the induced action of Z=p on HmðX ;FpÞ is trivial (which
implies that the induced action on HmðX ;ZðpÞÞ is also trivial). It is enough to restrict
attention to even m. Then the form wðX ; nÞ is represented by the usual inner product
on V ¼ HmðX ;FpÞ. Let

r : HmðX ;ZðpÞÞ ! HmðX ;FpÞ

be the reduction of coe‰cients and let W ¼ Im rHHmðX ;FpÞ. Because X is a ZðpÞ-
Poincaré duality space, W? ¼ rðTorHmðX ;ZðpÞÞÞ with respect to the inner product
on V. Hence, the inner product spaces V andW=W? G ðHmðX ;ZðpÞÞ=TorÞnFp are
Witt equivalent. The latter is isomorphic to ĤHmðZ=p;HmðX ;ZðpÞÞ=TorÞ.
For p ¼ 2 a comparison result for Witt classes can be proven without any assump-

tion on the Bockstein operator. The proof is easier than the one discussed in this paper
due to the simple structure ofWðZ=2ÞGZ=2 and due to the fact, that the di¤erence
of the total Betti numbers (with Fp-coe‰cients) of a Z=p-space and its fixed point set
is divisible by two.
A class of spaces that do not fulfill Poincaré duality over ZðpÞ, but for which The-

orem 7 can be applied, are finite dimensional Z=p-CW complexes X that are (non-
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equivariantly) homotopy equivalent to mapping tori N as described in example 5, if
pjz and bðH �ðM;FpÞÞ ¼ 0. For example, the union of the 4k-dimensional compo-
nents of the fixed set of such an action cannot consist of exactly one point, if pb

dimH �ðX ;FpÞ and dimN1 2mod 4, as wðX ; nÞ ¼ 0 in this case (cf. Prop. 6). Here, n
denotes the orientation of the complex X. More generally, let N be an oriented closed
smooth manifold of dimension mþ 1 and let h A HmðN;ZÞ be a nonzero homology
class. It is well known that this class can be represented by an embedded oriented
submanifold Mm ,! N. The space Nn ~MM, where ~MM is a tubular neighbourhood ofM
in N, is an oriented manifold whose boundary is oriented di¤eomorphic to the dis-
joint union MWM, where M is M with its orientation reversed. We identify these
boundary components by a mapM !M of degree �ðz 
 pþ 1Þ, where pjz, to get an
Fp-Poincaré duality complex X. If the Bockstein operator on H �ðN;FpÞ is the zero
map, any finite dimensional Z=p-CW complex that is (nonequivariantly) homotopy
equivalent to X can be studied using Theorem 7.
It is still an open problem, if there is a G-signature formula for Z=p-actions on Fp-

Poincaré duality complexes X without any further restrictions on X. More specifically
one might ask, if the theorem in the introduction holds in general, if H �ðX ;FpÞ does
contain a direct summand Z=p. This generalization seems particularly plausible, if
the induced Z=p-operation on H �ðX ;FpÞ is trivial.
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159–175

[5] Browder, W.: Surgery on simply connected manifolds. Ergebnisse der Math. 65. Springer-
Verlag, 1972

[6] Brown, K.: Cohomology of groups. GTM 87. Springer Verlag, 1982
[7] Chang, T., Skjelbred, T.: Group actions on Poincaré duality spaces. Bull. Amer. Math.
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