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Abstract

Common approaches to monotonic regression focus on the case of a uni-
dimensional covariate and continuous dependent variable. Here a general
approach is proposed that allows for additive and multiplicative structures
where one or more variables have monotone influence on the dependent
variable. In addition the approach allows for dependent variables from
an exponential family, including binary and Poisson distributed dependent
variables. Flexibility of the smooth estimate is gained by expanding the
unknown function in monotonic basis functions. For the estimation of co-
efficients and the selection of basis functions a likelihood based boosting
algorithm is proposed which is simply to implement. Stopping criteria
and inference are based on AIC-type measures. The method is applied to
several data sets.

Keywords: monotonic regression, additive models, likelihood based boosting

1 Introduction

In classical monotonic regression it is assumed that E(y|x) is nondecreasing (or
nonincreasing) in x for an independent variable x and dependent variable y. The
theory of isotonic regression yielding a nonparametric solution in the form of a
step function is treated extensively in Robertson, Wright & Dykstra (1988). The
most widely used estimate is based on the Pool Adjacent Violators Algorithm
(PAVA) which minimizes the (weighted) sum of squares and yields a step func-
tion that may have n levels, where n is the number of observations. The resulting
estimate tends to overfitting and is aesthetically not convincing, the latter being
also a handicap when the method is recommended to practioners. There have
been several suggestions to obtain smooth estimates of the underlying monotonic
function by combining isotonic regression with smoothing in a sequential fashion.
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Friedman & Tibshirani (1984) recommended first smoothing and then isotonizing
the data; Mukerjee (1988) suggested the reverse sequence. Mammen (1991) de-
rived theoretical results for both approaches. For theoretical background see also
Mammen, Marron, Turlach & Wand (2001). Alternative approaches to smooth
isotonic regression have been given by Ramsay (1998) based on differential equa-
tions and Ramsay (1988) based on monotone splines. From a Bayesian point of
view, monotonic regression has been treated more recently by Holmes & Heard
(2003), Neelon & Dunson (2004) or Brezger & Steiner (2004).

It is surprising that most of the literature on monotonic regression focusses on
the case of unidimensional covariate x and metrically scaled, continuous depen-
dent variable y. In applications one often has multiple covariates x′ = (x1, . . . , xp)
and it is known that E(y|x) depends isotonically on some of the variables (say
x1, . . . , xs) but the effect of all variables has to be modelled. In particular if
dichotomous variables have to be included, monotonicity can refer only to part
of the variables. The second restriction refers to the type of distribution that is
assumed for y. While generalized linear models (GLMs) and generalized additive
models (GAMs) are nowadays common tools for modelling linear and additive
relationships between regressors and dependent variables, isotonic modelling for
binomial or Poisson distributed variables is rarely found. Because of lack of ad-
equate methods least squares approaches have been widely used for binary data
(e.g. Kelly & Rice 1991), in spite of the deficiencies of least squares approaches
concerning the implicit variance heterogenity of binary data.

In the following a likelihood based approach is suggested that allows to con-
sider dependent variables from a simple exponential family (e.g. binomial, Pois-
son, normal) and allows to consider an isotonic relationship between y and one
or more of the covariates. The approach is based on an idea of Ramsay (1988) to
expand the monotone function in a sum of monotone basis functions f =

∑
i αiBi

and restrict the coefficients by the condition αi ≥ 0. While Ramsay uses very few
basis functions (integrated splines, one to at most three interior knots) we allow
for more flexibility by using many basis functions (say 30). This seems to imply
heavy computational burden when using common algorithms which are able to
handle inequality constraints. In addition one might fear that estimates become
wiggly. Both effects are prevented by using boosting strategies. By using com-
ponentwise boosting, monotonicity restrictions are easily incorporated and by
controlling the number of boosting iterations (which corresponds to controlling
smoothness) the resulting estimate turns out to be very stable.

An illustration of the resulting fits is given in Figure 1, where an additive
model has been fitted to investigate the effect of weight and engine displacement
on gasoline consumption for 60 automobiles (to be described in Section 3). It
is seen that the monotonic fit (solid lines), selected by a corrected AIC crite-
rion, is rather smooth and stable also in ranges with few data. In contrast, the
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Figure 1: Dependence of gasoline consumption on weight and displacement.

Upper panels: solid lines show monotonic boosted regression, dashed lines show

GAM. Lower panel: surface plot of monotonic boosted regression.

fitting of an unconstrained additive model (dashed line, function gam() of the
R library mgcv) yields a curve that is strongly detracked by single observations
within ranges where few observations are found. The result is a strong dip in the
displacement curve in the upper range of displacement.

In Section 2 we introduce the method of boosted monotonic estimates for the
simpler case of continuous response. The properties of the method are investi-
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gated in Section 3, where the automobile data are considered more extensively. In
Section 4 the method is extended to more general response distributions by using
likelihood based boosting techniques. Section 5 gives applications of the general
distribution case. In Section 6 the method is extended to surface fitting where
the response is assumed to depend monotonically on two covariates. Throughout
the paper we consider monotonic regression to denote nondecreasing regression.

2 Monotonic regression by boosting techniques

We focus initially on conventional monotonic regression where y is a continuous
variable. For a dependent variable yi and covariates x′i = (xi1, . . . , xip) an additive
model is assumed,

yi = α0 +

p∑
s=1

ms(xis) + εi, (1)

where α0 is an intercept parameter, ms(.) is an unknown regression function
for the sth covariate and E(εi) = 0. Monotonic regression postulates that one
or more of the regression functions are monotonic. If ms(.) is assumed to be
monotonic one postulates

ms(x) ≥ ms(z) if x > z. (2)

Simple monotonic regression corresponds to the special case p = 1 with only one
explanatory variable in the model. The additive model is an appealing way of
structuring the influence of explanatory variables which allows to separate the
(potentially monotonic) influence of single variables. Various procedures have
been proposed for the estimation of non–monotonic additive models (see e.g.
Hastie & Tibshirani (1990) for backfitting algorithms, Linton & Nielsen (1995)
for the marginal integration approach, Marx & Eilers (1998) for direct estimates
based on P–splines). In the latter approach, which has also been used by Ram-
say (1988), flexibility of the predictor is obtained by expanding ms(x) in basis
functions of the form

ms(x) =
m∑

j=1

α
(s)
j B

(s)
j (x)

for given basis functions B
(s)
j . In a regression spline approach, computationally

convenient bases are B–splines which have been used recently by Eilers & Marx
(1996) and Ruppert (2002). Ruppert (2002) mainly deals with the selection of
the number of knots in spline regression. As will be demonstrated, the approach
suggested here implies an automatic, data driven selection of knots.

In the following the monotonicity restriction is imposed by two modifications
of the simple basis function approach. First (strictly) monotonically increasing
basis functions are used and second the restriction

αj ≥ 0, j = 1, . . . , m, (3)
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which is a sufficient condition for monotonicity is imposed. We will use two
different choices of basis functions. The first set of basis functions consists of
sigmoidal functions which are popular in the machine learning community in the
fitting of hidden layer networks (e.g. Intrator & Intrator 2001). We consider the
logistic type functions Bj(x) = {1/[1+exp(c(x− tj)]}−0.5, where c specifies the
steepness of the functions and {tj} is a given sequence of knots. Moreover, the
functions are centered around zero. The second set of basis functions is based
on splines. Following Ramsay (1988) we use integrated splines (I–splines), in
particular I–splines of order 2, which have the closed form (centered around zero)

Bj(x) =





−0.5, x < tj,
(x−tj)

2

(tj+1−tj)(tj+2−tj)
− 0.5, tj ≤ x ≤ tj+1,

0.5− (tj+1−x)2

(tj+2−tj)(tj+2−tj+1)
, tj+1 ≤ x ≤ tj+2,

0.5, x > tj+2,

where {tj} is again a given sequence of knots.
In order to obtain estimates that fulfill restriction (3) we propose boosting

techniques. Boosting has originally been developed in the machine learning com-
munity to improve classification procedures (e.g. Schapire 1990). With Fried-
man’s (2001) gradient boosting machine it has been extended to regression mod-
elling (Bühlmann & Yu 2003, Bühlmann 2004). The basis concept in boosting is
to obtain a fitted function iteratively by fitting in each iteration a ”weak” learner
to the current residual. Componentwise boosting in the sense of Bühlmann & Yu
(2003) means that in one iteration, only the contribution of one variable is up-
dated. Boosting for monotonic fits uses a similar procedure, however component-
wise does not refer to variables but to basis functions. Thus in each iteration only
the contribution of one basis function is updated. This knotwise update makes it
easy to control the monotonicity property (2). In addition, the procedure auto-
matically selects a subset of basis functions (knots) which produce a proper fit.
The weak learner that is used is ridge regression as proposed by Hoerl & Kennard
(1970). For simplicity, we give the algorithm for the case p = 1 and therefore
omit the index s in basis functions and the regression function m(.). In matrix
notation the data are given by y = (y1, . . . , yn)′, x = (x1, . . . , xn)′. The expan-
sion into basis function yields the data set (y,B), where B = (B1(x), . . . , Bm(x)),
Bj(x) = (Bj(x1), . . . , Bj(xn))′, µµµ = (µ1, . . . , µn)′.
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MonBoost (continuous dependent variable)

Step 1 (Initialization)

Standardize y to zero mean, i.e. set α̂0 = ȳ, α̂αα(0) = (ȳ, 0, . . . , 0)′ and µ̂µµ(0) =
(ȳ, . . . , ȳ)′.

Step 2 (Iteration)

For l = 1, 2, . . . , compute the current residuals u(l) = y − µ̂µµ(l).

1. Fitting step
For j = 1, . . . , m, compute the ridge regression estimator with tuning pa-
rameter λ for the linear regression model

u(l) = αjBj(x) + εεε.

The resulting ridge estimate is given by α̂j = Bj(x)′u(l)/[Bj(x)′Bj(x) + λ].

2. Selection step
Choose from components j ∈ {1, . . . , m} the component γ̂(l) such that

||u(l) − α̂jBj(x)||2 is minimized and the constraint α̂
(l+1)
j = α̂

(l)
j + α̂j ≥ 0 is

satisfied, i.e. check if the potential update of component j is non–negative.
If α̂

(l+1)
j < 0 for all j, stop. Otherwise, set γ̂(l) = j.

3. Update
Set

α̂
(l+1)
j =

{
α̂

(l)
j + α̂j j = γ̂(l)

α̂
(l)
j otherwise,

and
µ̂µµ(l+1) = µ̂µµ(l) + α̂γ̂(l)Bγ̂(l)(x).

By construction, the fitted function

m(x) =
m∑

j=1

α̂
(l)
j Bj(x)

is monotonic for each iteration l. In order to prevent overfitting, it is necessary
to include a stopping criterion. The often used cross-validation criterion is not
recommended because it implies heavy computational effort. A much more ap-
propriate criterion is the AIC criterion which balances goodness-of-fit with the
degrees of freedom (for AIC in smoothing, see Hastie & Tibshirani 1990). In
order to use the AIC criterion, the hat matrix of the smoother has to be given.
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For the present procedure, it can be obtained in a similar way as for component-
wise L2Boost in linear models. With Sl = Bγ̂(l)(x)Bγ̂(l)(x)′/[Bγ̂(l)(x)′Bγ̂(l)(x)+λ],
l = 1, 2, . . . and S0 = 1

n
1n1

′
n, 1n = (1, . . . , 1)′, one has in the lth iteration

µ̂µµ(l+1) = µ̂µµ(l) + Slu
(l) = µ̂µµ(l) − Sl(µ̂µµ

(l) − y),

and therefore
µ̂µµ(l+1) = Hly,

where

Hl = I− (I− S0)(I− S1) · · · (I− Sl) =
l∑

j=0

Sj

j−1∏
i=0

(I− Si). (4)

Since Hl corresponds to the hat matrix after the (l + 1)−th iteration, tr(Hl)
may be considered as degrees of freedom of the estimate. The suggested stopping
rule for boosting iterations is based on the corrected AIC criterion proposed by
Hurvich, Simonoff & Tsai (1998), given by

AICc(l) = log(σ̂2) +
1 + tr(Hl)/n

1− (tr(Hl) + 2)/n
, (5)

where σ̂2 = 1
n
(y−µ̂µµ(l))′(y−µ̂µµ(l)). Thus, the optimal number of boosting iterations,

which in our framework plays the role of a smoothing parameter, is estimated by
lopt = arg minl AICc(l). The main objective of stopping the boosting procedure
is to prevent overfitting. By applying the monotonicity restriction (3) in the
selection step, a slightly higher resistance to overfitting is to be expected, when
compared to unrestricted componentwise L2Boost (see Section 3).

In boosting procedures the number of iterations is the crucial tuning parame-
ter which determines the amount of smoothing. The procedure is less sensitive to
the choice of the shrinkage parameter λ which has to be large in order to obtain
a weak learner. Since very large values of λ make more iterations necessary, in
applications λ is chosen as large as possible but with the number of iterations
until convergence being below 500.

Bühlmann (2004) suggests using a multiplicative shrinkage constant ν ∈ (0, 1]
in the update step of componentwise L2Boost, rather than the application of ridge
regression. It is easily seen that the two methods provide the same results if and
only if

ν =
1

1 + λ
and Bj(x)′Bj(x) = 1, j = 1, . . . , p. (6)

In general, the Euclidean norm of basis function vectors is not equal to one, i.e.
in our framework, shrinkage and ridge regression lead to different results, even if
the first condition in (6) is fulfilled.

The extension to the additive model (1) with p > 1 is straightforward. Instead
of m basis functions one has p sets of basis functions, one set for each variable.
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The monotonicity constraint has to be fulfilled only for coefficients within one set
of basis functions. The fitting step as well as the selection step include all of the
basis functions with the effect that basis functions which refer to variables with
stronger curvature are selected more often than basis functions which refer to flat
functions. This automatic adaption to the curvature is an additional strength of
the boosting approach. Although essentially only one tuning parameter, namely
the number of iterations is needed, different amounts of smoothing are exerted
for different variables.

3 Simulation and application

3.1 Simulations

In order to examine the performance of the suggested approach, we conduct a
simulation study over a variety of data settings. Consider a regression model with
continuous response, yi = f(xi) + εi, where the εi are iid drawn from a N (0, σ2)–
distribution and the xi from a U [0, 5]–distribution, respectively. We investigate
two types of monotonic functions:

f(x) = 3I(x > 2.5) (piecewise constant)

and

f(x) = 3/[1 + exp(10(x− 1))] + 2/[1 + exp(5(x− 4))] (plateau).

For each setting, MonBoost is compared with GAM and PAVA, where the
function gam() of the library mgcv, and the function isoreg() were used, re-
spectively, both implemented in the statistical environment R (R Foundation
for Statistical Computing 2004). In addition, two earlier approaches of smooth
monotone regression are investigated. On the one hand, we implemented the
algorithm of Friedman & Tibshirani (1984) (FT), where in a first step, yi is fitted
to xi by an appropriate smoothing method, yielding y∗i (in the present analyses,
we again use gam(), which incorporates an automatic selection of the smoothing
parameter by GCV). In the second step, PAVA is applied to the data set (y∗i , xi).
Needless to say, this procedure does not yield continuous curves. On the other
hand, in Mukerjee’s (1988) approach, the data are isotonized first using PAVA,
which results in the fitted data y∗∗i . Then, f(.) is estimated by

m̂(x) =

∑n
i=1 k[(x− xi)/h]y∗∗i∑n

i=1 k[(x− xi)/h]
,

i.e. the new data set (y∗∗i , xi) is piped into a kernel regression smoother. To
ensure monotonicity of the estimate, a log–concave kernel k(.) has to be used
(for details, see Mukerjee 1988 or Mammen, Marron, Turlach & Wand 2001).
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We applied the Gaussian kernel, which is a member of this class and select the
optimal bandwidth by GCV. The method is referred to as MUK. Furthermore, we
include a non–monotone version of componentwise boosting which works similar
to MonBoost, but without any constraints on the estimated αs.

Componentwise boosting leads to an automatic, data driven choice of knots.
That means, a sequence of m knots is available for selection by the boosting
algorithm, but the actually chosen number of knots, i.e. the number of nonzero
estimates of α̂j, j = 1, . . . , m, may be considerably lower than m. Note that
before further proceedings, the predictor variable was always rescaled to [0, 1].
The two types of basis functions in the simulation study are: sigmoidal (scale
parameter c = 50) and I–splines (degree 2). They have to be distinguished
in terms of the pre–chosen sequence of knots. As simulations have shown, for
sigmoidal functions the number of m = [2n/3] knots placed at the (j−1)/(m−1)-
quantiles, j = 1, . . . ,m, of the data xi, i = 1, . . . , n, performs quite reasonable.
While the slope for sigmoidal functions is fixed, the slope of I–Splines depends
on the number and placement of the knots. We followed Eilers & Marx (1996)
and placed m equidistant interior knots in the domain [0,1], resulting in m + 2
basis components. The results of Ruppert (2002) show that functions similar
to the ones investigated here can be well estimated by P–splines with 25 or less
knots. Thus, in the simulations, 25 interior knots were chosen for I–spline basis
functions.

The optimal number of boosting iterations was determined by the corrected
AIC criterion from (5), where the maximal number of iterations was limited by
L = 500. The choice of the ridge parameter λ is mainly guided by computational
issues: Although a small value may lead to better prediction performance, it slows
down the boosting algorithms, and then a large number of iterations is necessary
to optimize the stopping criterion. In several experiments, λ = 20 turned out
as a reasonable compromise between prediction performance and computational
effort. We tried also shrinkage with factor ν = 0.1: the difference compared to
ridge regression was negligible.

Figure 2 shows typical data sets for the piecewise and plateau function, with
n = 30, σ = 1. The true regression functions and several estimates are plotted. It
is seen that especially for the piecewise function, MonBoost clearly outperforms
the non–monotonic competitors and does also considerably better than PAVA,
which might be thought of being appropriate in this discontinuous case. Also for
the plateau example, MonBoost recovers best the typical shape of the underlying
true function, while also Mukerjee’s estimate performs well.

A strong criterion for the performance of an estimation method is out–of–
sample prediction. Therefore, 1000 new observations x

(new)
i , i = 1, . . . , 1000, were

drawn from a U [0, 5]–distribution, and the averaged squared error (generalization
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Figure 2: Typical data set with n = 30, σ = 1, and estimates for the piece-

wise (left) and plateau (right) regression functions. True function (dotted), non-

monotonic estimators (above): componentwise L2Boost (solid), GAM (dashed).

Monotonic estimators (below): MonBoost (solid), PAVA (dashed), FT (dot-

dashed), MUK (longdashed).

error),

ASE =
1

1000

1000∑
i=1

[f̂(x
(new)
i )− f(x

(new)
i )]2,

was computed using the new observations. In Tables 1 and 2, for selected sample
sizes and variances, the mean of the ASE is given over S = 50 simulated data sets
for the various fitting methods. In each setting, the best two performers are given
in bold numbers. It is seen from Table 1 that in the case of the piecewise constant
function, MonBoost with either logistic basis functions or I-splines outperforms
the other competitors in almost all of the experiments. Thereby, the I-spline
approach does distinctively better for n = 100, whereas logistic basis functions
seem to have some advantages for lower sample sizes. Among the alternative
monotonic fitting methods, only MUK can compete with MonBoost in the low
noise case σ = 0.5, while PAVA and FT in some cases do even worse than GAM.
Interestingly, the unrestricted L2Boost estimators performs better than GAM in
all experiments.
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GAM PAVA FT MUK L2B (log.) MonB (log.) L2B (ISpl.) MonB (ISpl.)
σ = 0.5 n = 20 0.304 0.446 0.416 0.222 0.247 0.227 0.270 0.226

n = 30 0.248 0.282 0.282 0.184 0.173 0.160 0.177 0.143
n = 100 0.138 0.099 0.140 0.090 0.093 0.092 0.066 0.055

σ = 1 n = 20 0.595 0.609 0.577 0.456 0.427 0.367 0.518 0.395
n = 30 0.488 0.433 0.450 0.399 0.328 0.265 0.381 0.268
n = 100 0.210 0.160 0.192 0.166 0.152 0.123 0.139 0.091

σ = 1.5 n = 20 0.934 0.911 0.793 0.678 0.731 0.599 0.922 0.676
n = 30 0.751 0.713 0.642 0.580 0.580 0.438 0.725 0.461
n = 100 0.309 0.271 0.270 0.260 0.237 0.169 0.253 0.153

Table 1: Piecewise constant function, averaged squared error over 50 simulated

datasets.

GAM PAVA FT MUK L2B (log.) MonB (log.) L2B (ISpl.) MonB (ISpl.)
σ = 0.5 n = 20 0.209 0.356 0.336 0.145 0.178 0.174 0.180 0.167

n = 30 0.163 0.253 0.250 0.097 0.108 0.101 0.124 0.106
n = 100 0.040 0.054 0.047 0.031 0.033 0.025 0.039 0.030

σ = 1 n = 20 0.489 0.566 0.508 0.351 0.436 0.398 0.452 0.389
n = 30 0.359 0.411 0.401 0.246 0.296 0.257 0.329 0.249
n = 100 0.110 0.137 0.107 0.088 0.097 0.080 0.122 0.090

σ = 1.5 n = 20 0.798 0.878 0.711 0.595 0.762 0.686 0.848 0.708
n = 30 0.558 0.661 0.570 0.440 0.542 0.444 0.672 0.452
n = 100 0.209 0.254 0.193 0.154 0.194 0.157 0.247 0.178

Table 2: Plateau function, averaged squared error over 50 simulated datasets.

The results for the plateau function are given in Table 2. It is seen that
Mukerjee’s estimator performs very well, but the MonBoost results are by all
means comparable. The logistic basis function approach does slightly better
than the I-spline approach in the high noise case σ = 1.5. PAVA as well as FT
in most cases perform worse than GAM, which might be explained by the non-
continuous character of the corresponding curve fits. Again, unrestricted L2Boost
with logistic basis functions performs consistently better than GAM, while the
unrestricted I-splines perform worse than GAM for σ = 1.5.

In Figure 3 exemplarily, the logarithm of the ASE is shown for the piecewise
constant function (left panels) and plateau function (right panels) is shown, for
n = 30 and σ = 1 (upper panels), as well as for n = 100 and σ = 1.5 (lower
panels). It is again seen that the MonBoost estimates clearly perform best for the
piecewise continuous function, whereas in the alternative scenarios, also MUK
yields comparable results. The advantage of MonBoost over the unrestricted
versions becomes more distinct for higher noise when monotonicity is harder to
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Figure 3: Boxplots of log(ASE) for GAM, PAVA, FT, MUK, L2Boost with

logistic basis functions, MonBoost with logistic basis functions, L2Boost with I-

splines and MonBoost with I-splines for various models with continuous response.

detect without using restricted estimators. In particular, Figure 3 shows that
PAVA should no longer be used and that GAM is not a good solution for smooth
monotone problems.

For the comparison of restricted and unrestricted boosting approaches it is
interesting to look at the number of knots which have actually been chosen by the
methods. Figure 4 shows the results for the piecewise constant (left panel) and the
plateau function (right) panel, for a sample size of n = 30, with m = 20 logistic
basis functions and noise σ = 1. It is seen how boosting adapts automatically
to the complexity of the true underlying function: for estimation of the simpler
structured piecewise function, on average fewer knots were chosen than for the
plateau function. Furthermore, the monotonicity restriction results in sparser
modeling. For example in the piecewise continuous case, in 10 out of 50 cases
only one or two knots were actually chosen by MonBoost, while unrestricted
L2Boost only in 2 cases chose such a small number of knots.
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Figure 4: Number of actually chosen knots by boosting algorithms (left bars:

comp. L2Boost, right bars: MonBoost)over S = 50 simulations, piecewise con-

tinuous (left) and plateau function (right), n = 30, logistic basis functions with

m = 20, σ = 1.
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Figure 5: σ̂2 vs. the number of boosting iterations, averaged over 50 simula-

tions for MonBoost (solid) and componentwise L2Boost (dotdashed), piecewise

constant (left panel) and plateau (right panel) function with n = 30 and σ = 1
with logistic basis functions.

Additionally, Figure 5 shows the averaged estimated variance σ̂2 = 1
n
(y −

µ̂µµ(l))′(y−µ̂µµ(l)) for MonBoost and unrestricted L2Boost plotted against the number
of boosting iterations l, with sample size n = 30 and σ = 1. It is obvious that
with increasing l, the variance of MonBoost remains fairly stable in both cases,
indicating that there is resistance against overfitting. It is seen that in particular
the monotonicity restriction is a strong tool to prevent overfitting.
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AICc

covariates MonBoost GAM
s(WGT) 0.842 0.886
s(DPL) 0.958 1.089
s(WGT)+s(DPL) 0.657 0.744

Table 3: AICc values for the various models for the automobile data set.

3.2 Application to automobile data

The analysis uses a data set reported in the April 1990 issue of Consumer Reports,
which is included in the R library rpart as car.test.frame. The data set
contains several measures on 60 automobiles. Ramsay (1988) investigated an
earlier version of the data set, where the measure of gasoline consumption [CON]
was considered as dependent variable, and weight [WGT] and engine displacement
[DPL] were explanatory variables. An isotonic relationship between weight as
well as displacement and gasoline consumption is expected, as large or highly
motorized cars are supposed to use more gas. Note that the variables of interests
were converted: CON to liters per 100 km, WGT to kg and DPL to liters.

Three models were fitted: first WGT (model 1) and DPL (model 2) as single
covariates using MonBoost as described in the simulation study, using 40 logistic
basis function. In a second step, the additive model with WGT and DPL from
Figure 1 was fitted (model 3), where the monotonicity restriction was set on both
covariates. The other settings were the same as in the simulation studies. For
all models, boosting was stopped by the corrected AIC from (5). The optimal
numbers of iterations were lopt = 56 (model 1), lopt = 55 (model 2) and lopt = 64
(model 3), respectively. The results for the corrected AIC criterion from (5), along
with the corresponding results from GAM are given in Table 3.2. Obviously, the
MonBoost approach leads to distinguishably more appropriate models, especially
for the additive model.

4 Likelihood based boosting in generalized monotonic re-

gression

An advantage of the proposed boosting approach to monotonic regression is that
it may be extended to non-normal response variables. As in generalized linear
models (e.g. McCullagh & Nelder 1989) it is assumed that yi|xi has a distribution
from a simple exponential family f(yi|xi) = exp{(yiθi− b(θi)/φ+ c(yi, φ))} where
θi is the canonical parameter and φ denotes the dispersion parameter. The link
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between the mean µi = E(yi|xi) and the explanatory variable xi is specified by

µi = h(ηi),

where h is a given (strictly monotone) response function (the inverse of the link
function g = h−1), and the predictor ηi = η(xi) is a function of x. In contrast
to generalized linear models where η(x) is a linear predictor, unidimensional
monotonic regression postulates that

η(x) =

p∑
s=1

ms(x)

and the monotonicity condition (2) is fulfilled for one or more than one regression
function ms(.). Monotonicity in η immediately transforms into monotonicity in
the means.

In the unidimensional case the choice of h is arbitrary and may be based on
computational convenience. In the following the canonical link is used, thus h is
the logistic distribution function for binomial models, h = log for Poisson models
and h = id for normally distributed y (for alternative links see e.g. McCullagh
& Nelder 1989).

We develop a componentwise likelihood based boosting algorithm for gener-
alized monotonic regression (GMonBoost), which is similar to the GAMBoost
algorithm given by Tutz & Binder (2004). We again consider p = 1, and the
same notation as in Section 2 is used for the representation of the data set. In
contrast to monotonic L2Boost, in a generalized context, the estimation of the
intercept cannot be done in the simple way by setting α0 = ȳ. Therefore, we pro-
pose in each boosting iteration one step Fisher scoring based on generalized ridge
regression for one selected component and the unpenalized intercept. In detail,
that means for basis function Bj, j = 1, . . . , m, maximizing the log-likelihood

lp(αααj) =
n∑

i=1

li(αααj)− λ

2
ααα′jΛΛΛαααj,

where li(αααj) = li(h(Bjαααj)) is the likelihood contribution of the ith observation
with design matrix Bj = (1, Bj(x)) and penalty matrix ΛΛΛ = diag(0, 1), λ > 0
representing the ridge parameter. Derivation leads to the penalized score function

sp(αααj) = B′
jW(ηηη)D(ηηη)−1(y − h(ηηη))− λΛΛΛαααj, (7)

with W(ηηη) = D(ηηη)ΣΣΣ(ηηη)−1, D(ηηη) = diag{∂h(η1)/∂η, . . . , h(ηn)/∂η}, ΣΣΣ(ηηη) =
diag{σ2

1, . . . , σ
2
n}, σ2

i = var(yi), all of them evaluated at the current value of
η.
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GMonBoost (Generalized Monotonic Regression Boost)

Step 1 (Initialization)

Set α̂
(0)
0 = ȳ, α̂αα(0) = (ȳ, 0, . . . , 0)′, η̂ηη(0) = (ȳ, . . . , ȳ)′ and µ̂µµ(0) = (h(ȳ), . . . , h(ȳ))′.

Step 2 (Iteration)

For l = 1, 2 . . . ,

1. Fitting step
For j = 1, . . . ,m, compute the estimate from (7) based on one step Fisher
scoring,

α̂ααj = (B′
jWlBj + λΛΛΛ)−1B′

jWlDl
−1(y − µ̂µµ(l)), (8)

where α̂ααj = (α̂j,0, α̂j,1)
′, Wl = W(η̂ηη(l)), Dl = D(η̂ηη(l)), and µ̂µµ(l) = h(η̂ηη(l)).

2. Selection step
For each component j ∈ {1, . . . , m} compute the potential update of the
linear predictor, η̂ηηj,new = η̂ηη(l) + Bjα̂ααj, where ηηη = (η1, . . . , ηn)′. Choose
the component such that the deviance Dev(η̂ηηj,new) is minimized and the

constraint α̂
(l+1)
j = α̂

(l)
j + α̂j,1 ≥ 0 is satisfied, i.e. check if the virtual

update of component j is non–negative. If α̂
(m+1)
j < 0 for all j, break. Else,

set γ̂(l) = j.

3. Update
Set

α̂
(l+1)
0 = α̂

(l)
0 + α̂γ̂(l),0,

α̂
(l+1)
j =

{
α̂

(l)
j + α̂j,1 j = γ̂(l)

α̂
(l)
j else,

η̂ηη(l+1) = η̂ηη(l) + Bγ̂(l)α̂ααγ̂(l) and µ̂µµ(l+1) = h(η̂ηη(l+1)).

The derivation of a stopping criterion based on AIC is not as straightforward
as in the case of a continuous dependent variable. However an approximation
to the hat-matrix may be derived which shows satisfying properties. Let M0 =
1
n
1n1

′
n and Ml = ΣΣΣ

1/2
l W

1/2
l Bγ̂(l)(B′

γ̂(l)WlBγ̂(l)+λΛΛΛ)−1B′
γ̂(l)W

1/2
l ΣΣΣ

1/2
l , where Wl =
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W(η̂ηη(l−1)), l = 1, 2, . . . , and ΣΣΣl = ΣΣΣ(η̂ηη(l−1)). As shown in the Appendix, an
approximate hat-matrix is given by

Hl = I− (I−M0)(I−M1) · · · (I−Ml) =
l∑

j=0

Mj

j−1∏
i=0

(I−Mi), (9)

with µ̂̂µ̂µ(l) ≈ Hly.
Similar to MonBoost, we consider tr(Hl) as measure for the complexity of the

fit, and use the corresponding AIC criterion

AIC(l) = Devl + 2tr(Hl), (10)

where Devl = 2
∑n

i=1[li(yi)− li(η̂
(l)
i )] denotes the deviance of the fitted model in

the lth boosting step, with li denoting the contribution of the ith observation
to the log-likelihood. The optimal number of boosting iterations is defined by
lopt = arg minl AIC(l).

It should be noted that for binary variables the fitting step corresponds to
LogitBoost as proposed by Friedman, Hastie & Tibshirani (2000) with the modifi-
cation that it is used in a componentwise way with the components being given by
basis functions. In the general case of distributions from an exponential family it
represents a likelihood based boosting approach. It may be seen as generalization
of the L2Boost which refers to normally distributed responses.

5 Applications of generalized monotonic regression

5.1 Simulation results

It is worthwhile to investigate the performance of GMonBoost since usually less
information is available from binary or Poisson distributed responses than from
normally distributed responses. In our simulation study, a binary regression
model with canonical link is considered, i.e. we draw binary response from yi ∼
B(1, 1/[1+exp(−ηi)]), where ηi = η(xi) is specified by a monotone function. The
two types of investigated functions are similar to the ones used before: η(x) =
γ[−I(x ≤ 2.5) + I(x > 2.5)] (piecewise constant) as well as η(x) = γ{3/[1 +
exp(10(x−1))]+3/[1+exp(5(x−4))]−3} (plateau). The constant γ controls the
influence of the linear predictor on the response. Small values for γ correspond to
smaller signal-to-noise ratio, whereas high values correspond to higher signal-to-
noise ratio. We again compare GMonBoost with GAM and PAVA. In addition, we
apply a generalization of the Friedman-Tibshirani approach (GFT). Therefore, in
step one, yi is fitted on xi with GAM using the canonical link, yielding estimates
η∗i for the linear predictors. Accordingly, the data set (η∗i , xi) is isotonized using
PAVA. To our knowledge this generalization, which explicitly takes into account
the binary character of the data, has not been investigated before. Furthermore,
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GAM PAVA GFT GenB (log.) GMonB (log.) GenB (ISpl.) GMonB (ISpl.)
γ = 1 n = 20 0.140 0.148 0.101 0.210 0.107 0.282 0.120

n = 30 0.111 0.112 0.088 0.159 0.079 0.215 0.089
n = 100 0.039 0.046 0.034 0.062 0.027 0.085 0.031

γ = 2 n = 20 0.144 0.225 0.216 0.145 0.130 0.144 0.121
n = 30 0.104 0.149 0.151 0.092 0.078 0.102 0.083
n = 100 0.083 0.064 0.081 0.062 0.052 0.064 0.042

γ = 3 n = 20 0.170 0.208 0.195 0.167 0.131 0.187 0.136
n = 30 0.127 0.137 0.135 0.123 0.084 0.144 0.089
n = 100 0.097 0.060 0.095 0.064 0.047 0.072 0.040

Table 4: Piecewise constant function, Kullback–Leibler error over 50 simulated

datasets.

the non–monotonic version of GMonBoost is included, where no restrictions on
the estimates are imposed.

Basis functions and the number and location of knots were chosen in the
same way as in Section 3. Boosting was stopped by using the AIC criterion,
as described in Section 4, with a maximum number of L = 500 iterations. In
this generalized context, it turned out that a fairly small ridge parameter of
λ = 3 suffices for a reasonable trade–off between computational convenience
and minimizing prediction error. Experiments with higher values for λ suggested
that especially in the non–monotone case, the AIC does not accomplish a distinct
minimum within 500 boosting iterations for numerous data sets.

The out–of–sample prediction performance of the various methods is measured
by drawing new observations x

(new)
i , i = 1, . . . , 1000, from a U [0, 5]–distribution

and computing the averaged Kullback-Leibler distance,

AKL =
1

1000

1000∑
i=1

KL(π̂i, πi),

where KL(π̂i, πi) = π̂i log( π̂i

πi
) + (1 − π̂i) log(1−π̂i

1−πi
), with π̂i = h[η̂(x

(new)
i )] and

πi = h[η(x
(new)
i )]. In Table 4, the results for the piecewise constant function are

given. It is seen that GMonBoost with logistic basis functions performs well in
almost all settings, while also the I-spline approach yields comparable results.
PAVA is clearly outperformed, and GFT yields good estimates only in the case
of low signed strength and small sample size, but deteriorates in the low noise
case of γ = 3.

From Table 5, the superiority of GMonBoost for the plateau function, com-
pared to the other competitors, becomes apparent. GMonBoost with logistic
basis functions is among the two best performers in all of the 9 settings. GFT
does slightly better than the I-spline approach in the case γ = 1 but yields con-
siderably worse results for lower noise problems. Interestingly, for small γ, GAM
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GAM PAVA GFT GenB (log.) GMonB (log.) GenB (ISpl.) GMonB (ISpl.)
γ = 1 n = 20 0.154 0.152 0.121 0.216 0.112 0.272 0.129

n = 30 0.097 0.122 0.093 0.142 0.083 0.190 0.094
n = 100 0.038 0.044 0.032 0.053 0.031 0.078 0.034

γ = 2 n = 20 0.158 0.150 0.167 0.188 0.112 0.221 0.118
n = 30 0.108 0.120 0.123 0.127 0.081 0.167 0.088
n = 100 0.037 0.041 0.034 0.043 0.025 0.060 0.029

γ = 3 n = 20 0.207 0.166 0.227 0.221 0.138 0.239 0.127
n = 30 0.136 0.125 0.162 0.132 0.086 0.178 0.093
n = 100 0.054 0.040 0.052 0.050 0.030 0.063 0.032

Table 5: Plateau function, Kullback–Leibler error over 50 simulated datasets.

yields better estimates than GenBoost without restrictions. This might be caused
by some data sets where a distinct minimum of the AIC has not been reached
after the maximum number of 500 boosting iterations.

5.2 Bronchitis data

As an illustration of the method, we consider the bronchitis data, previously
analyzed by Küchenhoff & Ulm (1997) and Küchenhoff & Carroll (1997). The
data were collected in a dust burdened mechanical engineering plant in Munich
between 1960 and 1977. The binary response variable is the presence (y = 1) or
absence (y = 0) of a chronic bronchitic reaction [CBR], measured on 1246 workers
of the factory. For the following analysis, we follow Küchenhoff & Carroll (1997)
and consider only the subpopulation of n = 921 smokers, from which 241 (26.2%)
were diagnosed a CBR. The regressor variables of interest are the average dust
concentration in the working area over the period of time in question [dust],
measured in mg/m3, and the duration of exposure [expo] in years. The data
are visualized in Figure 6 on the log scale. Since dust may take the value zero,
log(dust+1) is used rather than log(dust), compare also Küchenhoff & Carroll
(1997). Since the probability for occurrence of CBR is supposed to increase with
dust concentration and duration of exposure on dust, we assume an isotonic
relationship between the two covariates and CBR.

We investigated several models, first log(dust+1) (model 1) and log(expo)
(model 2), respectively, were considered as single covariates. Then, an additive
model with log(dust+1) and log(expo) as independent variables has been fitted.
We used GMonBoost with I-splines and m = 25 interior knots. For the additive
model, 25 interior knots were taken for each of the covariates. All other settings
were the same as in the simulations. The values of the AIC criterion (10) for the
various models are given in table 6, along with the corresponding results of GAM.
Boosting stopped after 56 (model 1), 15 (model 2) and 14 (model 3) iterations. It

19



0
0

0

00

00

0

1
00

00

00
0
0
0
0

1

0

1

0
00

0

0
0

0

0

1

0
0

0
0

1

00

0

0

1

0

11

0

0

10

1
0

0

1

0

001

10

0

0

0

1

0
00

0

1

0

0

0
10

1

0

00

001

11

1

0

0

1
0
1
1

0

0

0

0

0

0

00
1

0

1

0

00

1

0

0

1
0

0
0

0

0
0

0

0

0

00

1
00

0

0

1

0
0
0
0

0

0

10

00

00

0

0
0

0

0

0

1

00

00
0

0

1
00

1

0

0

0

0
0

0

0
0

000

1
0
1

0

00

1

0

0

001

0

0

00

0
1
0

10
0

1

0
000

1

00

0

0

0

0

1

1

0

0
0

0

1

0

0

0

11
0

1

0

0

0
0
0

0

1
1
0

11
1
0
0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

00

10

0
1

0

0

0
00

0

1
0

0

0

0

00

0

0

0

1

0
0

0
0

0

1

0

0

0

0

0

0

1000

0

0
0

1

10

1

1
1

0

0

00
0

1

0

0

1

0

01
0

0

0

1
1

0

00
0
0

0

00

001

0

0

0

1

0

0
00

1

0

0

1

0

0

00
0
010
0

0

0
00

0

110

0

0
0000
000

0000
0
0
0
0

0

0

1

0

11

1

0
0

0

00
010
0

0

00
00
01

0

1

0

1

01

0
10
0
1

1

0
00
10

0
1
0

0

0

100

1

00

0
1

0

1

00

1

0

0

00
00000

0

00

0

0

0

00

0
0

0

0

00

0

0
10
1
0

00
00
0
0
0
01
0
0

0
0

000

0

0

0
0

00000

0
0

000
1000000
000
0
10

1

0

1

1

1

1

1

0

0
00

1

011
00

0

00

0

0

0

0

0

0

0
0
1

0

1

0

0

0
0

0

0

0
00
0

0

0
1
00
00

0
00
00
0

0
0
0

0

0

0
00
000

0

0

000

1

00
0

0

0

0
0
0
1

00
1

0
0

0

0

0

0
00

0

0
1

0

0

01

00
1
00
0

00

0

1

1
0
00

0

0

0

00

01

0

0

01

000
000
0

0

00000
1000
000
10

10
1
011
1
111
1
110

0

11
1
0
1
1
0

10100110010

1
10
0
0
0

1

111
0

0

0
0
00

0

0
1

0

0

1

1
0

0
0
0
1

0

0

0

0

0

000

000
100

0

00

11

0

1
1

00

0

0

1

1
0

0

1

0
1

10
1

1

0

0

100

0

0

10

1

1

1
1
0
0
0

1

0

0
0
00
0
1

1
0
1

111
0
0

0

000

0

000
0
0

0

00

0

0

1

0

0

10
11

0

111

1
1
1

11

0

0

100
0

01

1
0
0

1

0

1

1

0

0

0

11

1

000

00

0

0

0

0

0
001
11

0
0

0

00
0
0
00001

01

1

0

0

0

00

0
0

0

0
1
0

0
0

0

1
1
1

0

1
1

1

1

1

1
0

0

1

0

0

1

1

1

0

1
0

1

0

0

0

10

1

0

1

1

1

10

1

1

1

1
0

0

1

0

0

0

11

1

0

0

0

00 0

11

0

0
0

0

0.5 1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

log(dust+1)

lo
g(

ex
po

)

Figure 6: Scatterplot drawn from the subpopulation of n = 921 smokers of the

Bronchitis data set (logarithmic scaling).

AIC
covariates GMonBoost GAM
s(log(dust+1)) 1027.64 1032.76
s(log(expo)) 1007.96 1014.70
s(log(dust+1))+s(log(expo)) 982.52 995.79

Table 6: AIC values for Bronchitis data set.

is seen that the fits obtained by GMonBoost dominate the GAM results for each
of the three considered models, and that the monotonic additive model yields the
best fit.

Figure 7 shows the the estimates of the nonparametric functions s(log(dust+1))
and s(log(expo)) for the additive model (lower panel). In addition, Figure 7 shows
in the upper panel the curves for the model s(dust)+s(expo), where the original
scaling of dust and expo has been used. The solid lines show the GMonBoost
fits, compared to GAM (dashed lines). It is seen that in the original scaling
of covariates, one extreme observation pulls the GAM curve downwards in the
range where dust concentration is greater than 12. GMonBoost yields a nearly
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Figure 7: Estimated curves for model 3. Upper panels: original scaling, lower

panels: logarithmic scaling. Solid lines: GMonBoost, Dashed lines: GAM.

constant, nondecreasing curve in this critical region. This effect is attenuated by
using the transformation log(dust+1). Nevertheless also for logarithmic scaling,
the GAM estimate is not monotonic.

6 Monotonic surface fitting

The given framework may be easily extended to incorporate monotonic surface
smoothing. For simplicity, consider the case of two variables with the data given
by (yi, xi1, xi2), i = 1, . . . , n, and assume that the predictor η(xi1, xi2) is monotone
in both components but not necessarily additive.

In order to allow for interaction effects one considers the knots tij = (t
(1)
i , t

(2)
j ) ∈

R2 with ordering t
(1)
1 ≤ t

(1)
2 ≤ . . . , t

(2)
1 ≤ t

(2)
2 ≤ . . . , and corresponding cen-

tered basis functions Bij(x1, x2) = φ
(1)
i (x1)φ

(2)
j (x2)− 0.5, where φ

(1)
i (.), φ

(2)
j (.) are

monotonic basis functions, e.g. sigmoidal function or I-splines, with values in
[0,1], which are linked to knots ti, tj, respectively. Instead of fitting the model di-
rectly we propose to fit it in two stages. Following the hierarchical order, first the
additive model is fitted and then the model which has an additional interaction
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term. More concrete, in the first stage the monotonic additive model

ηa(xi1, xi2) = α0 +
m∑

j=1

α
(1)
j B

(1)
j (xi1) +

m∑
j=1

α
(1)
j B

(2)
j (xi2)

is fitted, yielding η̂a(xi1, xi2). In the second stage, the model

η(xi1, xi2) = η̂a(xi1, xi2) +
∑
i,j

αijBij(xi1, xi2)

is fitted, where η̂a is treated as an offset. The essential modification that is needed
in the second stage concerns the constraints in the selection step. Only updates
are taken into consideration for which

αij ≥ 0

holds. In addition, the basis functions in the fitting step have to be replaced by
Bij(x) = (Bij(x11, x12), . . . , Bij(xn1, xn2)). By computing the corresponding AIC
criterion the algorithm decides if the additional interaction term is necessary for
an appropriate fit or not.

We applied monotonic surface fitting to the Bronchitis data. Therefore, two
dimensional I-spline basis functions were used, specified by a grid of 10 × 10
equidistant interior knots. Boosting stopped after 63 additional iterations, yield-
ing a slightly improved AIC of 981.89 (logarithmic scaling). In Figure 8 surface
plots for the additive model without interaction (upper panel), and with interac-
tion (lower panel), fitted by GMonBoost, are given. It is seen that the additional
interaction leaves the overall surface unchanged. Only in extreme ranges of dust
and expo where only a few data have been observed, a deviation from the addi-
tive model is fitted. However, the small difference in AIC is hardly supporting
the necessity of an interaction effect. For the automobile data the case for the
additive model is even stronger. When trying to improve the model by includ-
ing an interaction effect, no further two-dimensional basis function is selected.
Corrected AIC cannot be improved by including interaction effects.

7 Concluding remarks

The proposed framework is very flexible with regard to the handling of monotonic
components. While some of the additive components may be assumed to be
monotonic, others can be fitted without the assumption of monotonicity. Both
types of components are estimated by the same algorithm, which slowly fits by
selection of basis functions and ridging. The only difference is that under the
assumption of monotonicity the constraints on coefficients are taken into account
whereas they are ignored in unconstrained fitting.

22



log
(d

us
t+

1)

0.5

1.0

1.5

2.0

2.5

3.0

log(expo)

1.5

2.0

2.5

3.0

3.5

eta

−4

−2

0

2

log
(d

us
t+

1)

0.5

1.0

1.5

2.0

2.5

3.0

log(expo)

1.5

2.0

2.5

3.0

3.5

eta

−4

−2

0

2

Figure 8: Surface plots of the additive model without (above) and with (be-

low) interaction for the Bronchitis data, both fitted by GMonBoost (logarithmic

scaling).
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The inclusion of categorical variables and parametrically specified variables
is straightforward. In each fitting step all the parametric terms and the basis
functions under investigation are taken into the fitted model. In the selection
step it is determined which update is performed. Alternatively one could treat
the parametric terms in the same way as basis functions and select among the set
of parametric terms and basis functions. The latter approach is not recommended
since we found some bias in favor of smooth continuous variables over the less
informative categorical variables which are rarely selected for an update.
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Appendix

Approximate hat-matrix for GMonBoost:
In the lth iteration of GMonBoost, after the selection of γ̂(l), the update is given
by

α̂ααγ̂(l) = (B′
γ̂(l)WlBγ̂(l) + λΛΛΛ)−1B′

γ̂(l)WlDl
−1(y − µµµ(l)),

where Wl = W(η̂ηη(l−1)) and Dl = D(η̂ηη(l−1)). From the update step of the algo-
rithm, one has

η̂ηη(l) − η̂ηη(l−1) = η̂ηη(l−1) + Bγ̂(l)α̂ααγ̂(l) − η̂ηη(l−1)

= Bγ̂(l)α̂ααγ̂(l)

= Bγ̂(l)(B′
γ̂(l)WlBγ̂(l) + λΛΛΛ)−1B′

γ̂(l)WlDl
−1(y − µ̂µµ(l)).

By using a first order Taylor approximation, h(η̂) ≈ h(η) + (∂h(η)/∂ηT )(η̂ − η),
one obtains

µ̂µµ(l) = h(η̂ηη(l−1) + Bγ̂(l)α̂ααγ̂(l))

≈ µµµ(l−1)Dl(η̂ηη
(l) − η̂ηη(l−1))

and therefore

η̂ηη(l) − η̂ηη(l−1) ≈ D−1
l (µ̂µµ(l) − µ̂µµ(l−1)),

and

D−1
l (µ̂µµ(l) − µ̂µµ(l−1)) ≈ Bγ̂(l)(B′

γ̂(l)WlBγ̂(l) + λΛΛΛ)−1B′
γ̂(l)WlDl

−1(y − µ̂µµ(l)).
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Multiplication with W
1/2
l and using W

1/2
l D−1

l = ΣΣΣ
−1/2
l yields

ΣΣΣ
−1/2
l (µ̂µµ(l) − µ̂µµ(l−1)) ≈ H̃lΣΣΣ

−1/2
l (y − µ̂µµ(l−1)),

where H̃l = W
1/2
l Bγ̂(l)(B′

γ̂(l)WlBγ̂(l) +λΛΛΛ)−1B′
γ̂(l)W

1/2
l denotes the usual general-

ized ridge regression hat-matrix. Defining Ml = ΣΣΣ
1/2
l H̃lΣΣΣ

−1/2
l yields the approxi-

mation

µ̂µµ(l) ≈ µ̂µµ(l−1) + Ml(y − µ̂µµ(l−1))

= µ̂µµ(l−1) + Ml[(y − µ̂µµ(l−2))− (µ̂µµ(l−1) − µ̂µµ(l−2))]

≈ µ̂µµ(l−1) + Ml[(y − µ̂µµ(l−2))−Ml−1(y − µ̂µµ(l−2))]

= µ̂µµ(l−1) + Ml(I−Ml−1)(y − µ̂µµ(l−2)).

With starting value µ̂µµ(0) = M0y, M0 = 1
n
1n1

′
n, one obtains

µ̂µµ(1) ≈ µ̂µµ(0) + M1(y − µ̂µµ(0))

= M0y + M1(I−M0)y,

and further, in a recursive manner,

µ̂µµ(l) ≈ Hly,

where

Hl = I− (I−M0)(I−M1) · · · (I−Ml) =
l∑

j=0

Mj

j−1∏
i=0

(I−Mi).
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