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Abstract. The question of extending L”-sub-Markovian semigroups to the spaces L7, ¢ > p,
and the interpolation of L?-sub-Markovian semigroups with Feller semigroups is investigated.
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groups. The role played by some function spaces which are domains of definition for
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0 Introduction

Probably the most important equation connecting the theory of Markov processes
with functional analysis is given by

(0.1)  p(x, 4) = T y(x) = E™(x4(X1))-

Here (7;),- is a semigroup of operators on some function space over R" (for sim-
plicity), ((Xi);5¢, P*)cr» 18 @ Markov process with state space R" and transition
function p,(x, 4); x4 is the characteristic function of the set A. In order to construct a
Markov process using the Kolmogorov theorem we have to know the family p,(x, 4)
of (sub-)Markovian kernels. One way to construct p,(x, A) is to start with a given
operator semigroup (7;),-, and to define p,(x,4) through (0.1). In this case it is
natural to use the theory of strongly continuous contraction semigroups on Banach
spaces. The direct approach is, of course, a pointwise construction working with
continuous functions. This means that we start with a Feller semigroup (T,(OQ),ZO,
that is a positivity preserving strongly continuous contraction semigroup on the Ba-
nach space (C, (R"), || - ||.,) of all continuous functions vanishing at infinity. Now
we have a nice structure theorem for the generator of (T,(OC))t?O due to Ph. Courrege.
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However, there are two major drawbacks: in order to obtain non-trivial examples of
Feller semigroups, one uses the Hille-Yosida-Ray theorem. This means that one has
to solve equations in the Banach space C,,(R") which can be quite difficult. More-
over, operators with non-smooth coefficients cannot be treated in general.

M. Fukushima proposed to start with a symmetric L’-sub-Markovian semigroup
(T ,(2>)t>0, i.e., a strongly continuous L>-contraction semigroup satisfying the sub-
Markov property

0<u<l1 (ae.)implies 0 < TPu<1 (a.e.)

Using the potential theory of the associated quadratic form, the Dirichlet form, it is
possible to construct the transition function up to an exceptional set, i.e., a set of
capacity zero. This method has the advantage that L>(IR") is a Hilbert space where it
is easier to solve equations and thus to construct semigroups using the Hille-Yosida
theorem; moreover, one can treat operators with non-smooth coefficients. A major
problem is, of course, the presence of exceptional sets which implies that the con-
structed process effectively lives on R” less an exceptional set and that all consider-
ations have to be done modulo this set. This problem can be overcome if we consider
L?*-sub-Markovian semigroups (sz)) />0 With the property that for all bounded and
measurable sets 4 the functions

(0.2)  x— Tigu(x)

are continuous. Recall the result of E. M. Stein that symmetric sub-Markovian
semigroups are analytic, hence

Txae N D(AD)")
k>0

holds, where D((A?®)*) is the domain of the k-th power of the generator (4?),
D(A®)) of (T,<2>) i>0- We may, therefore, establish the continuity of (0.2) for those
cases where we can embed the intersection (of some finite number) of domains of
powers of A?) into C(R"). Usually, it is quite hard to obtain precise information on
D((AD)*) for k > 2 and this requires (in general) higher regularity of the coefficients.

With the Sobolev embedding theorem and the theory of (second order) elliptic
differential operators in mind, it might be helpful to pass from the L>-theory to an
LP-setting, p > 2, and to consider operators with domains in some L?-space such that
we may embed these domains into C(R") n L?”(R").

The purpose of this paper is to discuss these ideas and to give some examples.
Sections 1-5 are of theoretical nature whereas sections 6—9 contain illuminating
examples.

In Section 1 we discuss the problem of extending a given L?-sub-Markovian semi-
group to the spaces L(IR"), ¢ > p. To do this, we establish first some interpolation
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results for operators which coincide on L?(IR") n By(R") or L?(R") n L*(R"), see
Theorem 1.4 and Remark 1.6. We pay particular attention to the difference between
By(R") vs. L*(R"), i.e. functions vs. classes of functions, which implies some
technical changes to otherwise standard proofs. In Theorem 1.8 we show that any
L?-sub-Markovian semigroup extends to an L9-sub-Markovian semigroup for
p < g < 0. Note that we do not assume symmetry.

A further application is Theorem 1.10 where we show that L4-sub-Markovian semi-
groups (p < g < o0) interpolate between L?-sub-Markovian and Feller semigroups if
the operators of the original semigroups coincide on L”(R") n C, (IR"). These results
alone seem not to be too surprising, however, combining them with results of
W. Hoh [23]-[27] or [30]-[33] gives many concrete examples of L7-sub-Markovian
semigroups.

Section 2 is devoted to the structure of generators of L”-sub-Markovian semigroups.
The form of generators of Feller semigroups is well known. They satisfy the positive
maximum principle and once the domain contains C°(IR"), they are already certain
differential-integrodifferential operators with negative definite symbol. Generators
of L?-sub-Markovian semigroups are L?-Dirichlet operators, i.e., they satisfy for
ue D(AP)

J (AP u)((u = 1)) dx <0,
R

which was first proved for p =2 and selfadjoint operators by N. Bouleau and
F. Hirsch [7], for the general case we refer to A. Eberle [13], V. Liskevich and
Yu. Semenov [41], Z.-M. Ma and M. Réckner [43], E. M. Ouhabaz [48]-[49], and
[34]. Using the extension result from Section 1 we conclude that any L”-Dirichlet
operator extends to L¢-Dirichlet operators for all p < ¢ < co. Under suitable
regularity assumptions on the respective domains and the mapping behaviour, see
Theorem 2.4 for details, we infer that each L9-generator satisfies the positive
maximum principle and has the same structure as a Feller-generator. This result is
quite important since it tells us something about the type of the operator one has to
start in order to construct an L?-sub-Markovian semigroup, or if p = 2, a Dirichlet
form.

Section 3 recalls just some basic facts on subordination in the sense of Bochner which
is applied in Section 4 to discuss the I'-transform (V,.(P )),ZO of an L?-sub-Markovian
semigroup (Tl(p >) ;>0 Which is needed to handle refinements of that semigroup. This
is, of course, closely related to the work of P. Malliavin and M. Fukushima (with
coauthors). New, however, is the observation that the I'-transformed semigroup is a
subordinate semigroup. This enables us to determine VP as (id — A<1’>)7"/ 24
being the generator of (T,(m) />0, and to identify the abstract Bessel potential space
Z,, with D((id — 47))"?), see Theorem 4.1 and Corollary 4.2. For p =2 and a
selfadjoint operator 4 this was proved in [18] and [20] using spectral theory. Our
proof is based on a functional calculus for generators of semigroups and Bernstein
functions, see [53].
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In Section 5 we discuss the problem of constructing refinements of L?-sub-Markovian
semigroups. In particular we are interested in L”-sub-Markovian semigroups
(T,("))t>0 with the property T,”y, € C,(R") for all # > 0 and all Borel sets A with
finite Lebesgue measure. We call these semigroups strong LP-sub-Markovian
semigroups in analogy to strong Feller semigroups. Whenever (T,(p ))120 is a strong
L?-sub-Markovian semigroup we may use p,(x,A4) := T,<p );( 4(x) to construct an
associated Hunt process without any exceptional set. Otherwise we shall try to reduce
the exceptional set whenever possible by using capacities associated with (Tfp )) >0
and %, , for some suitable r. The key observation (which seems to be new in our
context) is that a combination of the regularising effects of an analytic semigroup
with the concrete characterisation of the domain(s) (of powers) of the generator, and
Sobolev-type embeddings will immediately give the strong L”-sub-Markov property,
see Proposition 5.3 and Theorem 5.4. A first example for this idea is provided by
semigroups generated by second order elliptic differential operators. Of course, not
every (analytic) LP-sub-Markovian semigroup is a strong L?-sub-Markovian semi-
group. In this case we use the theory of (r, p)-capacities to get refinements, see [17]—
[18] or [20] which is briefly recorded for the reader’s convenience.

Our approach can be summed up in the following way: Let (T,(p ))zzo be a given
L?-sub-Markovian semigroup with L?-extensions (T,(q>),>0, p < q < o0, and assume
that Ci*(R") = .5, D(A9). If each operator 49 maps Cg°(R") into L(R") N
C(R"), then A?) (and each A?) restricted to C;°(R") is a pseudo-differential oper-
ator with negative definite symbol, i.e.,

0.3) AV goyu(x) = —(2m) " JN ¢*q(x, ©)a&) dE = —q(x, D)u(x),

where ¢ : IR” x R” — C is a continuous and negative definite in &. If] in addition,
the semigroup (Tt(p))t>0 is analytic and if for some r > 0 the space D(—(—A4)")
is contained in a space of continuous functions, then (T,(p )),20 is a strong L*-
sub-Markovian semigroup.

Thus it would be very natural to start with —¢g(x, D) as in (0.3) and to prove that
it extends under certain conditions on ¢(x,&) to a generator A”) of an analytic
LP-sub-Markovian semigroup with some nice function space containing D((—4?)")
for some r.

In the case p =2 and symmetric operators many concrete examples are known,
mainly due to W. Hoh and some earlier work of the second named author. In the
general case several problems arise. First of all there are non-analytic sub-Markovian
semigroups. More important however is the fact that a general continuous negative
definite function & — (&) is neither smooth nor homogeneous implying that stan-
dard LP-analysis tools such as the Calderon—Zygmund theory of singular integrals or
multiplier theorems of Michlin—H6érmander or Lizorkin type do not apply. For this
reason we cannot (yet) offer a rich theory of L? generators for p # 2. In Sections 6-9
however we illustrate our approach using concrete and partly rather new examples.
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Section 6 examines those function spaces which should be natural domains of L”-
generators. They are constructed for translation invariant operators, i.e., Lévy pro-
cesses, and we recall some recent results from [15]. Since we do not dispose of
Plancherel’s theorem, the L”-analysis for p # 2 is much harder than the L?-analysis.

In Section 7 we concentrate on fractional powers of second order elliptic differential
operators generating L”-sub-Markovian (diffusion) semigroups. We need not assume
the analyticity of the original diffusion semigroup since by a result of A. Carasso and
T. Kato [9] the subordinate semigroup is automatically analytic if the corresponding
Bernstein function is a complete Bernstein function. Interpolation results for frac-
tional powers of generators lead to a large class of strong L”-sub-Markovian semi-
groups. Moreover we get concrete, non-trivial examples of the structure theorem for
generators, see Theorem 2.6.

In Sections 6 and 7 we consider the domain of the generator itself. In Section 8§ we
are concerned with the problem of regularising powers of generators. We restrict
ourselves (as in [19] and [32]) to the Hilbert space case, but handle quite general
pseudo-differential operators ¢(x, D), see W. Hoh [23]-[27] or [31], [33].

In this case it is clear that the semigroup is analytic, see E. M. Stein [55], and that in

general the space HY-2(IR”) which may describe the domain D((—4®)*) has better
embedding properties the larger k is. In fact, for ¥ satisfying asymptotically (&) >

colél”™, o >0, 0 <ry <1, we have H¥?*(R") — C,.(R") if k > % But in order
0

to prove that H"2(R") = D((—A@)*) if H"2(R") = D(—A®), it turns out that
the coefficients x — ¢(x, &) must have increasing regularity with increasing k. In
particular the very simple examples taken from [28] show quite detailed which type
of regularity of the coefficients is needed to reach finally a space D((—A®)*) which
is embedded into C.,(R"). In the intermediate steps the processes can only be con-
structed up to certain exceptional sets which however become smaller and smaller as
k approaches k.

The final section treats (from the structural point of view) a simple perturbation of
the original generator. Moreover, we restrict our concrete considerations to the easy
case —(D)+a, where (&) =y (&) +1, y:R" — R is a continuous negative
definite function, and ¢ € L*(R"), a < 0. We discuss the associated L”-generator and
study the effects of the regularity of a on the strong L?-sub-Markov property of the
semigroup. Our reasoning is not confined to this case but can easily be applied to
similar situations.

Despite the lack of a general LP-theory for the operators (0.3) our examples show the
following:

e good applicability of the L?-theory to operators obtained from given generators by
standard constructions such as subordination or perturbation;

e there is a natural limit in the (r, p)-capacity refinements of L”-sub-Markovian
semigroups, namely the strong L?-sub-Markovian semigroups;
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e the determination of domains in terms of concrete function spaces is the key to get
concrete refinement results.

Notation. If X is a Banach space we denote its norm by || - | X||. Since we work always
on R” we will from now on drop the IR” in function spaces, e.g., L? = L?(R") or
C, = C,(IR"). All other notation should be standard or self-explanatory.

Acknowledgement. The two first-named authors have been supported through the
DFG-project Ja522/7-1 Funktionenriume in der Theorie der stochastischen Prozesse.

1 On L?-sub-Markovian semigroups and Feller semigroups

We start defining the central objects of our investigation.

Definition 1.1 A. A linear contraction S : L? — L7 is called an L?-sub-Markovian
operator if forue L? with 0 <u < 1a.e. also0 < SPWu <1 ae.

B. A family (Tt(p >) /0 of LP-sub-Markovian operators is called an L”-sub-Markovian
semigroup if (T,(’7 )) />0 1s a strongly continuous contraction semigroup on L7, i.e., we
have | 7.7ul17]] < [l 2], Tim 0|7, u — ul ]| =0, and T, o TP = T} and
T,” =id.

C. A bounded linear operator S\») : L? — L? is called positivity preserving if u >0
a.e. implies S”u >0 a.e.

Our first problem is the following question: given an L?-sub-Markovian semigroup
(T,f(p)),ZO does it extend to other LY spaces, i.e., is it possible to find an L9-
sub-Markovian semigroup (T,<q)) />0 such that for all > 0

Tr<q)|Ll’an/ = Tr(p)|LﬁmLfl?
Without proof we mention the well-known

Lemma 1.2. Let 1 < p < o0 and let S?) : L? — L” be a sub-Markovian operator.
Then S'P) is positivity preserving and |SPu| < SP|u| a.e., for any ue LP. For
ue L? nL* we have

(L1 [Pl L] < [lul L™

Now let S): L? — L? be a sub-Markovian operator and u € L” n L*. For any
p < g < oo we find
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1/q
ISz = (J |s<p>uqu>
]R”l

1/q
= <j |S<p)u‘qfﬂ|5(p)u|li dx)

R
< \|S<P>u|L°C||<‘1*1’>/‘f . HS(p)u|LpHp/q
< P9l L2

thus for u e L? n L™, which is a dense set in L9, p < ¢ < o0, S(Py is a function in

LA,

However, we want to prove more, namely that S(?) extends to an L¢ contraction.
This will be done by interpolation, and—for reasons becoming clear later—we
interpolate not the operators S”) : L”? — L? and S|, ;, : L* — L*, but we will
use as second operator a linear contraction on Bj (the Banach space of bounded
Borel measurable functions on R”, normed in the usual way).

First recall the Hadamard three lines theorem, see [2, page 195] for a proof.

Theorem 1.3. Let Q := {x+iy:0<x <1,y e R} and Q its closure. Further let F be
a bounded continuous function on Q which is analytic in Q. Then the function

M, == sup{|F(y +iy)| : y e R}
satisfies
M, <My M/, 0<y<l.

Theorem 1.4. Let 1 < p < oo, let S\P) be a linear contraction on LP and S g linear
contraction on By, such that

(1-2) S(p)|L/’mB,, = S(m)|Lﬁme'
Then there exists for every q, p < q < o0, a linear contraction S0 on L4 such that

(13) S(q)|L1)mL‘/mB;, = S(p)|LPmL‘/me - S(OC)‘LPQLLImBh'

Remark 1.5. The statements (1.2) and (1.3) need some interpretation. A function
u € By is uniquely determined on R” whereas an element v € L? is an equivalence
class of functions which may differ on a set of Lebesgue measure zero. By u € B, n L?
we mean the uniquely determined element in B,. Let S : L”? — L? and §*) :
B, — By be two linear operators and let u € B, n L?. Then Sy e B, and SPue
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L?. For the latter we have Sy = Sy a.e. whenever v =u a.e., ie., although
ue By, nLP can be considered as a uniquely determined function, Sy is still an
equivalence class of functions and all v € L? such that u = v a.e. are mapped via S(?)
into the equivalence class of S(”)u. We write

S(p)|L/’mB,, = S<%)|Lm5,,

if, and only if, for all u € L? n B, we have

SPy =8y ae.

Since S(™)u is uniquely determined, this allows the interpretation SPyeB,nLP,
i.e., we may choose S'™)u as representative for S(")u.

Proof of Theorem 1.4. Denote by S the operator S|, , = §(*)
1

1
—+=
q 4

Lr~B,- Since for

=1
ISIzo—po = sup{l|Sul L] : u e LY, [lu| L]} = 1}

! b

where the supremum ranges over all u € L9 and v € LY with |ju|L?|| = ||[v|LY|| = 1, it
is sufficient to show that

| (Su)(x)o(x) dx

RrR”

(1.4) | (Su)(x)v(x)dx| <1
R
for all simple functions u, v satisfying |u|L?|| = ||v|L? || = 1. Such functions « and v
are of the form
J K
u=73 ay, and v=> by,
=1 k=1
where the sets 4;, j=1,...,J, and By, k=1,...,K, are two families of pairwise

disjoint Borel sets with finite Lebesgue measure, and the coefficients ¢; and by satisfy

J K ,
S a7 (4;) = 2 b T2 (Br) = 1.
Jj=1 k=1

-z 1 1-0 1

Foreachz e Clet a(z) = and let 0 € (0, 1) be such that «(0) = -, i.e., =-.

<
A
B
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Further, for z € € define

(1—=a(z2))/(1-2(0)) jiargv

(z)/(0) piargu v, |U‘ e

u, = |u|

and set

Since

FO) = J]Rn(Sug)(x)Ug(x) dx = J (1) (x)0(x) dx

R”

the desired estimate (1.4) will follow from Hadamard’s three lines theorem if we show
that F is analytic in Q and bounded, continuous in Q with

|[F(iy)] <1 and |[F(1+iy)| <1 forall yeRR.

First note that

J K ]
F(z)=3" Z| | (2)/2(0) |be | (1—a(z))/(1—a(6)) J]Rn(SXAj)(x)XBk(x)ez(argajJrargbk) dx

j=1k=1

which shows that z +— F(z) is an entire function. It also reveals that F is bounded in
Q since the real part of a(z) is bounded there. Applying Hélder’s inequality and using
the fact that S is an L?-contraction we have

(L5)  [F(iy) < J}Rn |(Suiy) (x)oiy (x)] dx
< N1 Su | L oo L] < Hag| L7 [0 | L.

. 1 1
Moreover, since a(6) = p and Rea(iy) = > we have
P S (1| XV0) 2 5 ) I
(16)  uey |L7]]" = 2. [l PA7 ) = 2l "4 () = 1
j= j=
o . 1 .
and similarly, since 1 — «(6) = 7 and Re(l — a(iy)) = —

K "
(1.7) HUU\UH”—EHIJII“” /=)' 30 g, 0= 3 bl A (B = 1.
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From (1.5)—(1.7) we conclude that |F(iy)] < 1. In order to estimate |F(1+ iy)|
observe that

(1.8)  urwp(x)] = ||u(x) O] = 1

. 1 . .

since a(0) = p and Rea(l + iy) = 0, and similarly
(1.9)  |oray ()] = [Ju(x)| VO] = ()¢

1 1
since 1 —a(f) =1— p = 7 and Re(1 — o1 4 iy)) = 1. Using (1.8), (1.9), and the fact

that S is also a contraction on Bj, we arrive at
PO+ < [ [(Si0) (s (9] d

< ||Su1+l»y|m||j o143 () dx < j o) dx = 1,
N

R”
and the theorem is proved. [

Remark 1.6. Clearly, Theorem 1.4 is a type of Riesz-Thorin theorem where the
space L* of the interpolation couple is substituted by B,. We have given a proof
of this result since we could not find a precise reference in the literature for this
situation. We followed the standard proof, see C. Bennett and R. Sharpley [2, Theo-
rem 2.2, page 196].

From Remark 1.6 it is clear that we may apply the result of Theorem 1.4 also to the
situation where By is substituted by L*.

Corollary 1.7. Let 1 < p < o0, let S?) be a linear contraction on L?, and let ') be a
linear contraction on L™ such that

S(p)|LI’mL‘L = S(w>|LPmL7~"
Then there exists for every q, p < q < o0, a linear contraction S'9 on L9 such that

S(q)|L"ﬂL"ﬁLf~ = S<p)‘LmLsz~% =5

LPNLINL* "

Now we may use Corollary 1.7 to answer the extension problem for sub-Markovian
semigroups:

Theorem 1.8. Let 1 < p < oo and let (T,(p)),ZO be an LP-sub-Markovian semigroup on
L?. Then for any p < q < oo there exists on LY an L7-sub-Markovian semigroup
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(1), such that for any t >0
Tt(q)|Ll’mL‘l = Tt(p)|Li’mL‘/'

Proof. By Lemma 1.2 and Corollary 1.7 each of the operators T,<P ), t > 0, extends
to an L*-contraction f,(m) and an L?-contraction T,(q). Clearly (T,(”)) />0 1S @ semi-
group, and each of the operators T,(q) is sub-Markovian. It remains to prove that
(Tt@) />0 18 strongly continuous. For u € L” n L* we have

NP0 — 9| < 7w — a2 TP — e

< 2Ylul L | P TP — L)

which yields lim,_,OHTt(q)u —u|L?|| = 0. For general u € L? the claim follows with a

standard approximation argument. O

We return to Theorem 1.4 and we will use it to interpolate between L7-sub-
Markovian semigroups and Feller semigroups.

Definition 1.9. A Feller semigroup (T,@))I?0 is a strongly continuous, positivity
preserving contraction semigroup on the space C,, of continuous functions on R”
vanishing at infinity.

It is well-known that a Feller semigroup gives rise to sub-Markovian kernels
(p,(x,-)),=¢ which may be used to extend T,<OO) to an operator T,(OC) on By, by

(1.10) T\ u(x) = J

R" u(y)p,(x,dy), HEBb'

It is easy to see that (T,(w))tzo is a contraction semigroup on B, and each of the
operators 7,”, t > 0, is positivity preserving. However, in general, this semigroup is
not strongly continuous. Applying Theorem 1.4 we get

Theorem 1.10. Let (Tt(w))t>0 be a Feller semigroup with extension (TI(OC)) /=0 on By and

let (Tt(p))zzo be an LP-sub-Markovian semigroup. If for all t = 0 we have f,(oo)|LMBb =
T,(p |Lorp, then (Tt(p)|Lﬂme)t>0 extends for all p < q < o to a strongly continuous

contraction semigroup (T,(q>) >0 of sub-Markovian operators on L4 satisfying

T[(‘I)

_ o)
LinLPnB, — Tt

_ 7(p)
LinLPnBy, — Tt

LinLPNBy*

Proof. As in the proof of Theorem 1.8 it remains to prove that (7}(‘1)),20 is strongly
continuous on L% and this can be done in the same way as in that proof. O
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For later purposes let us introduce the notion of strong Feller semigroups and an
analogous notion for L?-sub-Markovian semigroups.

Definition 1.11 A. A Feller semigroup (T<°O>) />0 1s called a strong Feller semigroup if
for all ¢ > 0 the operators T ) defined by (1.10) map B, into Cp.

B. An L”-sub-Markovian semigroup (T,(p ))zzo is called a strong LP-sub-Markovian
semigroup if each of the operators E(p ) maps L? into L? n C.

Suppose that (7; >) />0 18 a strong L?- sub Markovian semigroup. In this case for any
bounded Borel set 4 = IR” we find 7, (P) x4 € Cp. This observation will be used later
on to avoid exceptional sets when constructing Markov processes starting with
LP-semigroups.

Remark 1.12. For the study of one-parameter semigroups acting simultaneously on
different LP-spaces and for some interpolation results with consequences for the
spectrum of generators we refer to the works [58] and [59] of J. Voigt.

2 Generators of L?-sub-Markovian semigroups and the positive maximum
principle

Let ( . ))t>0 be a Feller semigroup with generator (A4), D(A*))) such that C* =
D(A<OO ) © Cy. Tt is well-known that A(*) satisfies the positive maximum principle,
1e.,

u(xo) = sup u(x) >0 implies 4@ u(x;) <O0.
xeR”

Due to a result of Ph. Courrége [10] we know that on C{° the operator 4 is a
pseudo-differential operator

@.1) A(%(x):fq<x,D>u<x>:f<zn>*"/2j ¢*Eq(x, E)i(E) de

n

where ¢ : R” x R” — € is a measurable, locally bounded function such that for
every x € R" the function ¢(x,-) : R" — C is continuous and negative definite (in the
sense of 1. J. Schoenberg), i.e., ¢(x,0) = 0 and ¢ +— e 4% is for all > 0 and all
x € R" positive definite (in the usual sense). Alternatively, ¢(x, ) satisfies the follow-
ing Lévy-Khinchin formula

g(x, &) = —e(x) + fg"lb,(x)@- + ,E: a(x)E,E,

k=1

+J L—ee - 8 Ny ay)
y#0 1+ ]yl
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where ¢ < 0, (ax);; € R™" is a symmetric, positive semidefinite matrix, b € R”, and
v(x,dy) is a kernel satisfying L#o min{|y|?, 1}v(x,dy) < .

Using the Lévy-Khinchin formula we can derive another representation of A4(*),
namely

(2.2) A u(x) = L(x, D)u(x) + S(x, D)u(x)

where
n A2 n
L6 DJu(x) = 3 () “gx) + 20y )ag@ + e(x)u(x)
k,I=1 XeOX] - j=1 Xj

is a second order differential operator with non-negative characteristic form and
¢(x) <0, and

B ~ no Y Ou(x)
S(X’D)”(x)_Jm"\{O} (u(x+y) u(ngl L+ [y*

)v(x7 dy).

(This representation shows immediately that any pseudo-differential operator
—q(x,D) with a negative definite symbol ¢(x,¢) naturally satisfies the positive
maximum principle, independent of the question whether —¢g(x, D) extends to the
generator of a Feller semigroup.)

Thus the structure of the generators of Feller semigroups is (essentially) known. In
case of a (symmetric) sub-Markovian semigroup (Tt(2 )i=0 on L?, N. Bouleau and
F. Hirsch [7] showed that its generator (4?), D(4?)) is a Dirichlet operator in the
sense that

(2.3) J ”(Aa)u)((u -1 dx<0

holds for all u € D(A?). For non-symmetric sub-Markovian semigroups on L? this
result is shown in the monograph [43] by Z.-M. Ma and M. Réckner. However, from
(2.3) we cannot deduce a structure theorem like Courrege’s result. The notion of a
Dirichlet operator in the context of L”-sub-Markovian semigroups were introduced
by the second author, see [34, 35], where also related and independent results of
A. Eberle [13], V. Liskevich and Yu. Semenov [41], and E. M. Ouhabaz [48, 49] are
discussed. Let us call (4?), D(AP))), D(AP)) = L?, an LP-Dirichlet operator if

J (AP ) (- 1)) dx <0
R

holds for all u € D(AP). It is easy to see, compare [34, 35] that for an L?-Dirichlet
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operator

(2.4) J n(A<f'>u)(u+)1’*1dx<0 and J (AP ) dx =0

]R”
hold for all u e D(A?)). The following result was proved in [34].

Theorem 2.1. Let (A'?), D(AP)) be an LP-Dirichlet operator which generates a
strongly continuous contraction semigroup (T,(p ))t>0 on LP. Then (Tt<p ) )iso IS sub-
Markovian.

Conversely, if (A7), D(AP)) is the generator of a sub-Markovian semigroup (Tt(p))t>0
on L?, then (A'?), D(AP)) is an LP-Dirichlet operator.

In [34], see also [35], it was proved that if an operator (A<°°>,D(A<°°>)) generates a
Feller semigroup and extends to a generator (4?), D(A(?))) of a strongly continuous
contraction semigroup on L?, then A(?) is an L?- Dirichlet operator.

Theorem 2.2. Let (A™), D(A™) )) be the generator of a Feller semigroup (T(OC>),>O
Moreover, suppose that U = D(A\*)) is a dense subspace of L?. If A\)|,, extends to a
generator A\P) of a strongly continuous contraction semigroup (T(p ))120 on L? such
that V := (.. — AP)'U is an operator core for AP), then (AP, D(AP))) is an L?-
Dirichlet operator and (T, ))t> o is sub-Markovian.

Moreover, in Section 1 we proved the possibility of interpolating Feller
semigroups with their extension to L’-sub-Markovian semigroups to obtain L9-
Dirichlet operators for p < ¢ < co. It remains, however, to get some structure results
for LP-Dirichlet operators. We will now show a result in this direction: if
(A?) D(AP))) is a Dirichlet operator for all p > p, such that on D(A4)) ~ D(AP))
we have always 470y = APy, then the operator

| ﬂ AlP))

P=po

satisfies the positive maximum principle. To do this, we need the following lemma
which is proved in the same way as lim,_. . ||v|L?|| = ||v|L%||.

Lemma 2.3. Let f, g : R" — [0, 00) be two functions such that for some r = 1 we have
fYge L' and f € L*. Then

p— 0

1/p
lim<fg VP ) =esssup{f(x): xe{g > 0}}.

Now suppose that for all p > p, we have a family of L’-Dirichlet operators
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(AP, D(AP))) satisfying the following conditions: there is a vector space D # ()

25) Dec ) DAPY)AC

P=Do

such that
(26) AP, =4, forall p,q > py;

there exists a function ¢ € Cj° such that ¢(0) =1, ¢(x) < 1 for all x # 0, suppg <

B1(0), and for all k e N and y e R”

(2.7)  o(k(- = y)) € D;

(2.8) 4:=4"|, maps D into C.

Theorem 2.4. Suppose that the family (AP), D(AP)), p = p,, of LP-Dirichlet opera-
tors satisfies conditions (2.5)—(2.8) from above. Then A satisfies on D the positive

maximum principle.

Proof. Let u € D = Cp. From (2.4) we deduce for p = p,
(2.9) J (Aw) ()" dx < 0.
Since

JW (Au)(u+)17*1 dx = J (Au)(u+)1771 dx + J (Au)(u+)p—1 dx

{Au<0} {Auz=0}

we get using (2.9)

0< J (Au) ()P dx < J (—Au) ()P dx
{Au=0} {Au<0}

which yields for u € D and p > p,

I/p 1/p
(2.10) ( | (Au)(m)l’ldx) <<— i (Au)(m)l’ldx) .
{4u<0}

{Au=0}

Now we can apply Proposition 2.3 to the left-hand side of (2.10) with g = Hiaus oy Au
and f =u", and the right-hand side of (2.10) with g = —y;4,<o;4u and [ =u".

Since D = 1, L” n C} we find
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(2.11) esssup{u’(x): xe {Au > 0}} <esssup{ut(x):xe {4u<0}}.

Suppose first that » has only one isolated absolute positive maximum at xp, y, =
u(xp) = sup,.re u(x) = 0. Since Au is continuous, xo € {Au < 0}. Indeed, if xy ¢

{Au < 0}, then x¢ € {Au > 0}, and (2.11) would entail that
vo =esssup{u’(x) : x e {Au > 0}} <esssup{u’(x):xe {du<0}} < y,,

since y is the unique isolated supremum. Hence xo € {A4u < 0} and Au(x,) < 0.

Next we suppose that there are several positive maxima. We set

(1) = {y cu(y) = 0and u(y) = sup u(x)}.

Take some arbitrary xy € .#(u) and choose ¢ as in (2.7). For n € N the function
0n(x) := ragp(n(x — Xo))

belongs to D where r, is given by the real number

r,t=n sup  [(Ap(n(- = x0)))(x)].

[x—xo| <1/n

Note, that by our assumptions on ¢ we have ¢(0) > ¢(x) for all x # 0. It follows that
vy :=u+ ¢, €D and

vn(X0) = u(x0) + ¢,(x0) = u(x) + 9,(x0) > u(x) + 9, (x) = va(x).

Thus v, has a single isolated absolute maximum at the point x¢ with v,(x) =
u(xo) + r,. We may apply the result of the first case to get

0> (4va)(x0) = (Au)(x0) + (A9, ) (x0)-

However for (4¢,)(xo) we have

|(49,)(x0)| = ral(A(p(n(- = x0)))) (x0)]
I |(A(p(n( = x0))))(x0)|

Tasup (Ao — x0) ()]

[x—xo|<1/n

S|

thus lim,,_, ;| (49, ) (x0)| = 0, implying finally 0 > lim,,_,, (Av,)(x0) = (Au)(xp). Since
Xo € .4 (u) was arbitrarily chosen, the theorem is proved. O
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Remark 2.5. After this paper was finished in [54] the third-named author extended
the results mentioned so far in this section into several directions. First he gave an
extension of the notion of a Dirichlet operator for the case p = 1. Further he worked
on an arbitrary measure spaces (X, %, m) when handling L’-sub-Markovian semi-
groups and their generators.

Now we may combine the results in this section with those of Section 1. Let
(Tt(” >)t>0, l < p< oo, be an LP-sub-Markovian semigroup with L¢-extensions
(T,(q )i>0» P < q < 0. Suppose that there is a vector space D satisfying (2.5)—(2.8)
when (49, D(A9)) denotes the generator of ( ),>0, p g < . Then it follows
that the conclusion of Theorem 2.4 applies to A =AW p- In particular it follows
that A(P)| p satisfies the positive maximum principle for p < g < co. In many concrete
situations we can take D = C{°.

Theorem 2.6. Let (T( )),>0 be an LP-sub-Markovian semigroup and denote its L-
extensions by (T, <q)),>0, P < q < o0. Suppose that each of the generators (A9, D(A9)),
maps Cy° into Cy. Then AD] cr satisfies the positive maximum principle and hence, by
the theorem of Ph. Courrége it has the structure (2.1) or (2.2), respectively.

Remark 2.7 A. Having Theorem 2.6 in mind, it is clear that for constructing L?-
sub-Markovian semigroups one should start with operators defined on C§° having
the structure (2.1) or (2.2) respectively.

B. With a different technique, see [54, Theorem 2.10], it is enough to assume in
Theorem 2.6 that 49 maps C;° into Cp for some g > p.

3 Subordination in the sense of Bochner

Subordination is a technique to obtain new semigroups from a given one. On the
level of infinitesimal generators, subordination gives rise to a functional calculus. S.
Bochner developed these ideas in his 1949 paper [5] and in his monograph [6].

Our references for this section are the monographs of C. Berg, G. Forst [4], and of
S. Bochner [6] and the papers of R. S. Phillips [50], F. Hirsch [22], C. Berg, Kh.
Boyadzhiev and R. deLaubenfels [3], and R. L. Schilling [52, 53].

Let (7;),5, be a strongly continuous semigroup on L? (or C,) with generator
(4,D(A4)) and let (4,),-, be a convolution semigroup of sub-probability measures
supported in [0, c0). It is well known that these convolution semigroups are in one-
to-one correspondence with Bernstein functions. This correspondence is given by

J e (ds) =e "M, x>0,
[0, 0

In this situation the Bochner integral
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0

(3.1) T/ u:= J Tup,(ds), uelL? (or Cy),
0

is well-defined and gives a strongly continuous semigroup on L? (or C.,). Proper-
ties like contractivity, Markov or Feller property are passed over from (7;),., to

(th)tzo'

Definition 3.1. Let (7;),, be a strongly continuous semigroup on L? or C, and let
(4;);=0 be a vaguely continuous semigroup of sub-probability measures on [0, o).
The semigroup (th )i>0 given by (3.1) is called subordinate semigroup. Its generator is
given by (47, D(A47)).

For f'to be a Bernstein function it is necessary and sufficient to satisfy the following
Lévy-Khinchin-type representation

(32)  f(x)=a+bx+ J(O 1= uta

with @, b > 0 and a measure x on (0, c0) such that f(o,oo) t/(1+ Hu(dt) < oo.

We will be mainly interested in the set of complete Bernstein functions, €%, which
consists of those Bernstein functions f satisfying

uldt) = m(d)dt, m(t) = J(O @ plan

. _1p(dt :
with a measure p on (0, o0) such that f(o,w)(l +1) 1@ < oo. It is not hard to see

that f € 4% has the representation

3.3 = b —_ = 0.
(33) f(x)=a+ x+[(o,x)l+x - x

Examples for complete Bernstein functions are the fractional powers, f,(x) = x*
(0 <« < 1) or the logarithm f(x) = log(1 + x).

Using (3.2) and (3.3) one can obtain representation formulae for A4/. This problem
was first investigated by R. S. Phillips in [50] for general Bernstein functions. Here
we follow F. Hirsch [22], C. Berg, Kh. Boyadzhiev and R. deLaubenfels [3], R. L.
Schilling [53], where it was shown (independently) that for f € ¢ 4%

Afu:_au+bAu+j A(/lid—A)’lup(jA), ueD(A),

(0,0)

holds. This is a straightforward generalisation of Balakrishnan’s formula for frac-
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tional powers, e.g., Yosida [60, Chapter IX.11], in the sense that
A py = =(=A)|pgyy 0<a <L

In fact, as it was shown in [53], we have even

(3.4) DA = {u e L?(or Co) : lim [ (Tou — u)my(t) dt exists strongly}

'k*?i‘L\O

where my () = fok e "p(dr). (A similar result is due to F. Hirsch [22].)

As in the case of fractional powers, subordination gives rise to a functional calcu-
lus that is in agreement with the classical Dunford-Taylor-integral, cf. Dunford-
Schwartz [12, VIL.9]. The next theorem collects some general results on ¥ 4.% as well
as material from [52, 53] on the functional calculus.

Theorem 3.2 A. A7 is a convex cone that is stable under pointwise limits and com-
position of functions.

B. A/ = —f(—A) with the resolvent of —f(—A) being given by the Dunford-
Taylor-integral.

C.AY =04/, A/ = AS + 49, AT = (Ag)f, AT = —gid+ A+ A7,

D.If f-geCBTF then AV = —AT A9 = —49A47 .

E.If f € 6BF then g(x) = % CCRBF and A — —AS 49 = — 4947 .

F. If f,e€#% for any neN and f,— [ (pointwise) then [ e€CBF and
Alu — AT u strongly.

The above equalities have to be understood as equalities between closed operators, their
domains being given by (3.4).

Remark 3.3 A. Subordination has a nice stochastic interpretation: if there is a sto-
chastic process related to (7;),, then (1) />0 gives tise to a stochastic process and
this process is obtained by a random time-change of the original process.

B. It is possible to extend Theorem 3.2 to the algebra generated by ¥4.%. For such f,
however 4/ is, in general, not any longer a generator of a semigroup but merely a
closed operator. This was investigated in [53].

4 The I'-transform of L?-sub-Markovian semigroups

As before, (T,(p)),ZO denotes an L”-sub-Markovian semigroup, 1 < p < 0. For
u € L? and r > 0 we define the gamma-transform of (T,(p )) >0 bY
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1

r

| =
9
According to our considerations in Section 3, (V7 >)r>0 is an LP-sub-Markovian
semigroup obtained from (T,(” )),20 by subordination in the sense of Bochner. The

corresponding Bernstein function is given by f(s) =1log(l +5), and the corre-
sponding convolution semigroup (77,), is given by

V;.(p)u =

)

Thus we have || V”u|L?|| < |ju|L?| and VP VP = Vrfﬁ),z. Moreover, according to a

result of A. Carasso and T. Kato, see [9], the semigroup (Vr<p )),,2 o 1s always analytic.

s e g,

n,(ds) = X[o,m)(s)

Theorem 4.1. Let (A'?), D(AP)) be the generator of the LP-sub-Markovian semigroup
(T,(p))go. For all v > 0 and all u e L? we have

I/;(I’)u = (id — A(p))—r/Zu.

In particular, each of the operators y,7)

is injective.
Proof. Denote by fthe Bernstein function f'(s) = % log(1 + s5). We already know that
7 = 777 On D(AP)) the resolvent at 4 > 0 of (A, D(A(7))) satisfies

(G +1)id— AP) "y = J TP ygr ye DAD).
0

From the Dunford-Taylor calculus for unbounded operators we have

. S O : _
(4.1)  (id—AP) ‘u:ﬁjrf S((&+1)id — AP uae,

for any arc I extending from —oo to 400 inside the resolvent set of (id — A(?)). By
standard techniques for analytic (operator valued) integrals we get from (4.1) the
representation

(id — APy =5y =1 S”J P74+ 1id — AP d)
T Jo

see T. Kato [39, V.11, Lemma 3.4] for the Hilbert space case or [37, Lemma 6.1] for
the Banach space situation. Taking 0 < s < 1 we obtain
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. w .
(id — APy = sman P (f e‘()*')’]“,(p)udt) di
0

T Jo
sins [ (% s _i1yigm(p)
_sin 15 G Py iy .
0 Jo

Observe that for 0 < s < 1 the term 4 *e~(**1! is positive. By Tonelli’s theorem we
get

o0 o0 o0 o0 .
J J I8 A gr gy = J I8 VAN g dr
0 Jo 0 Jo

= VJ (E) e‘“e"d—ﬂdt
Jo Jo \! t

[e¢] 0
=| wule d,uJ rleTldt < 0.
0 0

Since ||4 e~ DT Py Lr|| < A5e= (D! ||u|LP ||, we find for 0 < s < 1 that

(id — AP~y = Si‘::” T e g Py
0 JO
SIS s et e T P
T Jo Jo
_ sinsm (7 e dut " e T P udr
T Jo Jo
1

0
— _J ts—le—tTt<P)udt — Vz(sp)”

Thus we have proved for 0 < r < 2 that

42)  (id—aP)y"Pyu=vy  ueDAW).

r

Due to the semigroup property of A ) and the well-known functional calculus, see
N. Dunford and J. Schwartz, [12, VIII.9, Theorem 8] we may extend equality (4.2) to
all r > 0. The strong continuity of (V,(p >)r>0 finally shows (4.2) also for r = 0. ]

Since each of the operators Vr(” )

is injective we may define for 1 < p < oo the spaces
43)  F,:=VP(LP) and |ju|Z,| = |[v|L?|| foru= V.

Clearly (% ,, || - | % ,l|) is a separable Banach space.
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Corollary 4.2. In the situation of Theorem 4.1 we have %, , = D((id — A? )r/z).
Proof. Clearly, ue %, if, and only if, u=V, ")y for some ve L”. Since V7 =
(id — A(I’))f"/z, we have u € 7, if, and only if, u = (id — A")~ "2, which implies
that D((id — 4»)"/?) = 7, ,. O
Remark 4.3. In the Hilbert space case, i.e. p = 2, and if (4?), D(4?)) is a selfadjoint
generator, the results of Theorem 4.1 and its corollary are well known (see our com-
ments in the next section) and are proved by the spectral theorem for selfadjoint
operators.

We want to give some representation formulae for the generator (4(?)-/, D(AP)/)) of
the semigroup (14(” )),,20. The next result is contained in Theorem 4.1 and Example
4.2 of [52].

Corollary 4.4. For all ue D(A?)) it follows that

oSy~ L[ 59— 40V,
APy =—1 AP (Aid - A udAi

— _ = 4 d — g1
L 7 1A ((A+1)id — AP udA.

The very definition of the logarithm of an operator in Banach space, cf. V. Nollau
[47], proves the following auxiliary result.

1
Corollary 4.5. For u e D(A?)) we have APy = —~ log(ld APy,

We will now examine the domain of the operator 4”):/ in greater detail.

Proposition 4.6. For all o > 0 we have D([A")]*) = D(APM).

Proof. By Corollary 2.10 in [52] it is sufficient to show that for u € D([4(")]") the
integral
0 1 .
J I‘M (Aid — AP)ud)
1

converges strongly. According to V. Nollau [46, Lemma 2] we have for 4 > 0
sinzr(l —a) A"

1oy !
H[A(p)] “(ild—A(p)) lr—r» SZW

OC .

If u e D([AP]%) then
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H%A”’)(i id — AP~y Lp

1
7 1A (2id = AP) g (AP w27

N

which yields
[}
||A<1’)’fu|L1’|| < C“J Sl d/1||[A<p)]au\Lp||
1

and this proves the proposition. L]

Corollary 4.7. We have | J,., D([A"]*) = D(A"P/') and

>0

1 .
A(p)‘f|UD([Aw>]“) — —zlog(ld - A<P))|U D(AP)*)

>0 >0

5 Refinements for analytic L”-sub-Markovian semigroups

Given an LP-sub-Markovian semigroup (Tt<” )) =0» 1 < p < o0, itis of course possible
to define for any Borel set 4 = R” with finite Lebesgue measure A")(4) < oo the
function p,(x, 4) = TI(”))(A (x). As an element in L?, the function x — p,(x, A) is only
almost everywhere determined; it is therefore not possible to use the family p,(x, A4),
t>0, xelR" Ae#", in order to construct a Markov process. However, if it would
be possible to find for each 4 € #", with A" (4) < oo, and all 7 > 0 a unique repre-
sentative p,(-, A) of x — p,(x, A) such that the Chapman-Kolmogorov equations

Bl )= | B A, )
hold, we could construct a Markov process starting in every point x € IR”. Clearly, if
T,(p ) maps for all 7 > 0 the space L? into C n L? (in the sense that Tt<p Ju is considered
to be a uniquely determined continuous function), i.e., if ( T,“’ )) />0 18 strongly
L?-sub-Markovian in the sense of Definition 1.11.B, then we are done.

Another approach is to use capacities and to define the process only up to a set .4 of
capacity zero in the state space. The drawback of this method is that—unless the set
A" is the empty set—the process is only defined on R\.// i.e., it can only start at
points outside A". This was the idea of M. Fukushima in [16] where he used Dirichlet
forms to construct Hunt processes.

In this section we will first discuss conditions for an L”-sub-Markovian semigroup to
be strongly LP-sub-Markovian, and then the theory of (r, p)-capacities and its appli-
cation to analytic LP-sub-Markovian semigroups.
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The concept of (r, p)-capacities was introduced by P. Malliavin in [44], see also [45],
and many investigations have been done in the context of sub-Markovian semigroups
by M. Fukushima and H. Kaneko, see [17, 18], [20] and [38].

In order to study capacities we need further properties of the spaces %, , defined in
Section 4, (4.2)-(4.3).

Lemma 5.1 A. For all s,r = 0 we have F,. , < F; .

)

B. For k € N the space Fy. p is dense in Fy p.

Proof. A. Since Fpyy, = V2(LP) = VPV P(LP), we have F,,, = V\(F,,).
Using 7}\? = (id — 4P))™"2 we find

Il 7. | = | (id — AP) 2l L7
= ||(id — A“’))ﬂ/z(id _ A(ﬁ))(r+é')/2u|Lp||
< (id — A7)l
= ulZricpll,

)

where we used that VS(I7 is a contraction.

B. We know from Corollary 4.2 that the space % , is given by (id — A(m)*k/ 2(LP).
Let u € # , with the representation u = (id — A<1’>)7k/2f, feL”. Since D(A?)) is
dense in L? we find for every ¢ > 0 some w, € D(A?)) such that ||f — w,|L?| < e.

Set h, := (id — A(”)w,. Then we have /, € L” and w, = (id — A4)~"h,. It follows
(id — AP K20, = (id — APYHED P2 e 7y
Furthermore,
= (id — AP) 220 | 7|
= [I(id — 4P) T (f — (id — AP) | F |
= IIf = (id =A%) " m L7
=/ — ol LP]| <&
which proves the lemma. O

The spaces % , should be considered as abstract Bessel potential spaces associated
with the generator (A?), D(AP)) of ( T, )),20. Clearly one can try to associate the
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corresponding Riesz potential spaces. This was done in [15, Section 1.5] and we just
quote the important estimates

VeI L2 ]+ (=AY Ul L2 ) < |ul 72 p | < 5, (lulL2]] + || (=4 ulL7])

which hold for all > 0 and all u e D((—AP)*1) = D((id — AP+,

Definition 5.2. Let (7; (p )) />0 be an LP-sub-Markovian semigroup and %, , as above.
We call &, , regular if 7., n C is dense in (F ,, || - | Z+,l|)-

Proposition 5.3. Let k € N and suppose that the set C ~ D([AP]*) is an operator core
for [AP)*. Then Fox,p 1S regular.

Proof. First note that D((id — 4?)*) = D([4]¥), hence we have
CnFp,p=CnD([4P5).

Since C N Fy, , is an operator core for [A(”)]l‘ we may choose for every u e /2k pa
sequence (uy), . Uy € C N Fay p, which converges in the graph norm of [A "k to u.
This implies

iy =t Foape | = 1) =) | L2|) = (| (id— AP E (u, —u) | L7]| — 0. O

Thus the regularlty problem for %, can be reduced to find a good operator core
for A?) or [4(» ] Our next theorem gives a first answer when one can find a good
Version of p,(x,A).

Theorem 5.4. Let ( T< )),>0 be an analytic LP-sub-Markovian semigroup with genera-
tor (A?) D(AP)Y). If for some ko e N the space D([A< ))%0) is contained in C A L?,
then all the spaces F, ,, r > 0, are regular, and (T,""”) />0 I8 a strong Lp-sub-Markovian
semigroup, i.e., maps L? into L? n C.

Proof. Because of the analyticity of (T,'”) )i=o we find T, e N, .n D([AP]5). By
assumption, there is some ko € N such that D([4?)]*) = C ~ L”, hence, Fokyp 18
regular, and for all # > 0 we have T,(”)u e Cn L?. From Lemma 5.1.B we deduce
further that in this situation %, , is regular for all r > 0. O

Let us give a first instructive example for an application of Theorem 5.4. It is well
known that many second order elliptic differential operators

ou(x)

an

+ Xn: bj(x)

Lix, Du(x) = 3 au(x) + e(0u(x)

are LP-Dirichlet operators, see [35], and extend to generators 4(”) of analytic L?-
contraction semigroups, see [42]. Under mild regularity assumptions on the coeffi-
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cients one can prove that the domain D(A(?)) of the generator is the Sobolev space
sz, see again [42]. By the Sobolev embedding theorem,

Wp2<—>Cw forp>g.
and the analyticity of (Tt(p )) >0 for p > g implies

TPue N D(-A)K) < Wk e Co.
k=0

This, however, means that (T,(p )),20 is already a strong L”-sub-Markovian
semigroup.

This example suggests a strategy to find strong L7-sub-Markovian semigroups:
Determine the domain of its generator in terms of function spaces and prove good
embedding results for these function spaces.

Clearly one cannot expect every LP-sub-Markovian semigroup to be strongly L7-
sub-Markov. Therefore we aim to find good representatives of T,(” ) x4(+) on a subset
IR"\N where N is negligible in an appropriate sense. This can be achieved by in-
troducing a capacity cap, , in each of the spaces 7 ).

Let us recall some results due to M. Fukushima and H. Kaneko. For an open set
G < R" we define the (r, p)-capacity by

cap, ,(G) = inf{||u|Z ,||” :ue Z ,and u>1ae. on G}.
Defining for an arbitrary set £ < IR”
cap, ,(E) = inf{cap, ,(G) : E = G and G open},
cap, , extends to an outer capacity. The following lemma can be found in [20].

Lemma 5.5. Let (T,\") />0 be an LP-sub-Markovian semigroup.

A. For any measurable set E = R" we have: 2" (E) < cap, ,(E).

B. Whenever E < F = R", r <1', or p <p' then cap, ,(E) < cap, ,(F).

C. For any sequence (Ej);. of subsets of R" we have cap, (- Ej) <
221 capy,,(E).

Using cap, , we may introduce the concepts of exceptional sets and quasi-continuous
functions.

Definition 5.6. Let (T,(’7 )) />0 be an LP-sub-Markovian semigroup.
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A.(z;‘x set N = R" satisfying cap, ,(N) =0 is called (r, p)-exceptional (w.r.t.
(T2")20)-

B. A statement is said to hold (r, p)-quasi-everywhere (w.r.t. (T,<’7 )) />0) if there exists
an (r, p)-exceptional set N such that the statement holds on R"\N. We will use the
abbreviation (r, p)-q.e. for (r, p)-quasi-everywhere.

C. A real valued function u defined (r, p)-quasi-everywhere on R” is called (r, p)-
quasi-continuous (W.T.t. (T,(p )),20) if for any ¢ > 0 there exists an open set G < IR”
such that cap, ,(G) < ¢ and u/s. is continuous.

The following theorem is again taken from [20].

Theorem 5.7. Let (T,(p )),20 be an LP-sub-Markovian semigroup and assume %, , is
regular.

A. If u is (r, p)-quasi-continuous and u > 0 a.e. on an open set G, then u > 0 (r, p)-q.e.
on G.

B. Each u € &, , admits an (r, p)-quasi-continuous modification denoted by i, and we
have

_ |
cap,,,({[al > e}) < lulZ,ll”, 0> 0.

Further we have, see [20],

Proposition 5.8. For any A < IR" with finite (r, p)-capacity there exists a unique
Sunction eq e {lue F., i =1 (r,p)-q.e. on A} minimising the norm | -| % ,||. The
function ey is non-negative and satisfies

cap, ,(A4) = llea| 7 ||"-

For the next results of this section one should note that the semigroup (T,('” )) />0 has
to be symmetric and analytic. The next proposition is due to H. Kaneko, see [38].

Proposition 5.9. Let (T,<p )),20 be a symmetric, analytic LP-sub-Markovian semigroup

)

and suppose that 7, , is reqular. For each u € L¥ we can choose a function Tt(p u such

that the function (x,t) — T,(p )u(x) has the following properties:

(i) For each t > 0 the function x — T,(p>u(x) is an (r, p)-quasi-continuous version of
T,<p)u. Moreover, for any ¢ > 0 there exists an open set G independent of t such

that cap, ,(G) < & and the functions x Tl(p )u(x) are continuous on R"\G for all
t>0.

(ii) For (r, p)-quasi-every x € R" the function t — T,<p)u(x) is analytic.
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For our purposes it is important to note that Proposition 5.9 allows to select a nice
representative for the function p,(x,B) = T(”) xp(x). In particular, suppose that
we can find a real number ry such that cap,, ,(4) = 0 implies 4 = . Then it follows
that we have even a continuous representative for x+— TU ) u(x), ue L’ and
(T\” >)[20 is strongly L”-sub-Markovian. This proves

Theorem 5.10. Let (T( >),>0 be a symmetric, analytic LP-sub-Markovian semigroup
and suppose that for some ro > 0 the space F, , is regular and that for every A < R"
such that Cap,op(A) =0 it follows that A = 0. Then (T, )),>0 is a strong LP-sub-
Markovian semigroup, i.e., each T<p ) maps L? into L n C.

We have already remarked that the regularity problem for %, , can be solved by
characterising these spaces or the spaces D((—A”)*) in terms of function spaces. A
criterion for the condition

(5.1)  cap, ,(4) =0 implies 4 = 0.

can also be derived when characterising the spaces % , or the spaces D((—A<1’))k) in
terms of function spaces. Thus if %, , — C,, for some values of r and p then we have

inf{cap, ,(E) : 0 # E c R"} >0,

i.e., every statement which holds (r, p)-quasi-everywhere reduces already to a state-
ment which holds everywhere Therefore we are looking for Sobolev-type embed-
dings for the spaces %, ,. Conversely, (5.1) already implies the inclusion %, , = C,,

Remark 5.11. We may combine Proposition 5.9 and Corollary 4.2 with H. Kaneko’s
construction of Hunt processes associated to a symmetric, analytic L?-sub-Markovian
semigroup to find that if D(A(?)) is regular, then the process is determined up to a
cap, ,-exceptional set. In particular, for p =2, i.e., the Dirichlet form situation, it
follows that the process is always determined up to an exceptional set determined by
the regular domain of the generator, not only up to an exceptional set determined by
the domain of the Dirichlet form.

6 L?-domains of generators of Lévy processes

In this section we recall some results from [15] and outline possible applications. Let
Y : IR” — IR be a fixed continuous negative definite function with representation

61 W@ =] (1—eostr-giay

where v is a Lévy measure integrating the function x — 1 A |x|2. For any R > 0 we
decompose Y according to W(&) = Y x(&) + Yg(&) where
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Yr(&) = J (1—cos(x - &))xpo.p) (X)(dx) and  Yp(&) i= (&) =Y (&).
R"\{0}

Both iz and y are continuous and negative definite. Moreover, Y is smooth and
polynomially bounded, whereas y is just bounded. We define on . the norm

[ully, & p = lI(id + Yr(D)ulLP]|,  R>0, 1< p < 0.
The following result can be found in [15].

Theorem 6.1. For R >0 and S > 0 the norms |- ||, z , and || - ||, s , are equivalent
and each of these norms is equivalent to the norm ||(id + ¥(D))u|L?||.

Further, let us define the space
V2 . .2
H) "= {uel?: lulH) || < o}
where
[ul HY 2| == [|(id + ¥ (D))ul L7 |].
Then we find that .¥ is dense in Hp‘l"'2 and, in addition, the next theorem holds.

Theorem 6.2. The generator of the LP-sub-Markovian semigroup associated with the
continuous negative definite function (6.1) has as its domain the space Hp‘/’*z.

Using Theorem 6.2 we may extend H p‘/“z now to the scale
HY = F 4, 0<s< o,

where % ,, , is the (abstract) Bessel potential space associated with the L7-generator
—/(D). Again it is possible to prove that .# is dense in le//,s and for the purposes of
this paper we have the following important embedding results.

Theorem 6.3. Let y : R" — R be a continuous negative definite function as in (6.1),
1 < p<oo,ands > 0. Then HI;“ — Cq, if, and only if,

/ 1 1
(62 FA+U() el =1
p p
Note that (6.2) means that (1 + y(-))"*/* must be a Fourier multiplier of type (p, o0).
Here is a sufficient criterion for (6.2) to hold:

Theorem 6.4. Suppose that  : R" — R is a continuous negative definite function with
representation (6.1) and such that
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(63) 14y =c(1+1¢7)", EeR”,

holds for some constant ¢y > 0 and some 0 < ry < 1. For 0 < e <1 and <0<1

2—¢
we have the following continuous embedding

) 1+ 0

Hl//.Hn/lo C, i _ __ v
r P P=ro =110

Let us point out by a simple but concrete example that Theorem 6.4 gives indeed

non-trivial results. Choose ¢ = 4, 0 = 3, and ry = 3. It follows that H 1«111/25 is embedded

into C, provided n =1, 2.

The last fact which we need about the spaces Hp‘/” is that they are compatible under
complex interpolation [-, ],.

Theorem 6.5. Let y : R" — R be a continuous negative definite function as in (6.1), let
S0, 81 =0, let 1 < py, py < 00, and 0 < 0 < 1. Set

1 1-
SZ(I—H)So—‘y-HSl, - = O—I—Q
p Po P1

Then

Vs 2030 B & 4/
[Hpo ‘O’le 81]9 - HP E

One should note that the representation (6.1) excludes the continuous negative defi-
nite function ¢ — |é|2. However, this function leads to the classical Bessel potential
spaces H, see e.g. [56], and these spaces are well understood. Observe that in this
case the homogeneity of & — |& \2 leads to sharper results. For example, we have the
embedding

H]ff—>COC fors>%.

Let us point out the difference between the Hilbert space (p = 2) and the Banach
space settings. The norm in Hp‘/” is given by

1Gd + w (D) 2ulL?|| = |7 [(1 +w(-)2a]| L7
In the Hilbert space case we may apply Plancherel’s theorem to get
e = 1L+ () 2l L))

and in this case estimates for  directly imply to norm estimates! This makes the
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Hilbert spvellce case much easier to handle. As in our previous papers we will write
HVs = H)™
2

Now let us indicate how one can use the results from this section provided a good L?-
theory for the operators ¢(x, D) does exist. For this, suppose that —g(x, D) extends
to a generator of an L”-sub-Markovian semigroup (T,(p ))t20 with domain Hp‘/’-f2
where Vs is a fixed continuous negative definite function. If, in addition,  satisfies the
assumptions of Theorem 6.3, or the more concrete assumptions of Theorem 6.4, and
if the semigroup (T,(” ))t>O is analytic, then (Tt(” )),20 is a strong LP-sub-Markovian
semigroup and we may associate with —g(x, D) a Hunt process without any excep-
tional set.

Remark 6.6. Much work has been done for parabolic pseudo-differential operators
with symbols in some classical symbol classes, for example for operators of type
0 . . .

Frie q(x, D), with g € §75. Clearly, under the assumption that ¢(x,-) : R" — C is a
continuous negative definite function and ¢ € S5, we can apply the existing parabolic
theory of pseudo-differential operators to construct sub-Markovian or Feller semi-
groups and processes. For this we refer to the monographs of H. Kumano-go [40] and
that of G. Grubb [21] as well as to the survey of S. D. EjdeI’'man [14]. The simplest
example is the operator (1 —A)’, 0 < ¢ < 1, which is an L?-Dirichlet operator with
domain Hlff : obviously, & — (1 + |¢]?)" is a continuous negative definite function.

7 Subordination of second order elliptic differential operators

We start with a result which follows from the estimates for elliptic differential
operators given by F. Browder in [8]. A detailed treatment can be found in [36], in
particular Theorem 6.1.44.

Theorem 7.1. Let

n 2 n

0
L(x,D) = kJZ:1 ar(x) m +/§1 bi(x) a_x, + c(x)

be a uniformly elliptic operator of second order with coefficients ay = ay, € le, b e Cl}
and ¢ € Cy. In addition suppose that ¢(x) < 0 and

Zn: 2 (bj(x) - i iakj(x)> > 0.

=1 0x; =1 0x;
Then (L(x, D), sz) generates an LP-sub-Markovian semigroup for 1 < p < oo.

For convenience we denote the LP-generator (L(x, D), W}) by (4), W}) and the

correspon(d)%ng L.P—sub-Markovian. semigroup by .(Tt(” )),?0. In particular, the semi-
group (T,"),. is a strongly continuous contraction semigroup on L?.
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According to H. Triebel, [57, page 91], the operator —(A?) — Aid) is for 4 > 0 posi-
tive in the sense that

l[(rcid — (AP — 2id))™Y|| < 1ix K> 0,

holds. Moreover, (4 — Jid, Wz) is also the generator of an L”-sub-Markovian
semlgroup, namely the semigroup (7. /fl))t>0 where T~< P) = g T; (») Consequently,
A(Ap )= A — }id has a positivity preserving resolvent and (e “Tt( >) />0 1s of nega-
tive type since

||€7MT;(17)||LPHLP < e Mg >0.

)

From Example 4.7.3.(c) in H. Amann [1] we deduce that Aﬁw, 1 < p < oo, has
bounded imaginary powers,

1AL e < (1 +7)e™ 2, ke R,
Now we may apply Theorem 1.15.3 from [57] to deduce

Theorem 7.2. Suppose L(x, D) fulfils the assumptions of Theorem 7.1 and let 1. > 0 be

fixed. Each of the operators (Aflp ) , Wz) generates an LP-sub-Markovian semigroup and
the same holds for the fractional powers —(—A ) 0 < a < 1. The domains of these
operators are determined by complex interpolation leading to

D((=A)*) = L7, W), = H}.
Moreover, since 0 € p(—A(i")) the operator —(—A(ip))fﬁ, 0 < B <1, maps L? into szﬁ.

Denote by (T,fﬁ)"a)z;o the LP-sub-Markovian semigroup generated by (—(—Aﬁp e,

HPZ“). From the results of A. Carasso and T. Kato [9] it follows that these semigroups
are analytic.

Corollary 7.3. Let L(x,D) and A >0 be as in Theorem 7.2 and ( P t )= be the
LP-sub-Markovian semigroup generated by (— (—A< >) 7H;“‘) Then for all ue L? we

have

7" ue H?.

/“1

In particular, for p > 2£ the semigroup (T;(pt)“) />0 is strongly LP-sub-Markovian.
oc ., >

Clearly, C” = H;* for all 1 < p < oo and therefore

—(—A) u e H'™) forany ue Cy°.
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Thus for p > each of the operators —(—Ag_p ))“ maps Cy° into C,,. Therefore

n
2(1 — o)
we may apply Theorem 2.6 implying that for 0 < o« < 1 the operator —(—A4
indeed a pseudo-differential operator

e is

¢5.4(x, D)u(x) = (27r)7"/2j e"x'fq;qa(x, Ea(g) de

R"

with negative definite symbol g, ,(x,&). Of course for g(x,&) = (&) we have
Gr.a(x, &) = (Y(&) + 4)”. In the general situation one should expect an asymptotic
expansion of type

4.4(x, &) = (q(x,&) + 1)” + lower order remainder.
We close this section with the following

Conjecture 7.4. Let f be a complete Bernstein function and AE{’ ) be as in Theorem
7.2. We should expect

- 112
D(=(=4/)) = H]112.

8 On regularising effects of powers of generators in the Hilbert space case

We have already seen in the previous sections that good knowledge of the spaces
D((A)%) does help to decide whether an analytic L?-sub-Markovian semigroup is
strongly L?-sub-Markovian. In this section we will discuss how the improvement of
the regularity of the coefficients will turn an analytic L”-sub-Markovian semigroup
into a strong L”-sub-Markovian semigroup. The result depends essentially on the fact
that higher regularity of the coefficients allows us to determine the domains of (large
integer) powers of the generator in terms of function spaces.

Due to the massive problems in the L”-analysis of pseudo-differential operators with
negative definite symbols we restrict ourselves to the Hilbert space case. The results
we discuss here are closely related to earlier considerations of M. Fukushima, H.
Kaneko and the second named author in [19], as well as in [32]. Our point of view,
however, is now somewhat different.

First let us fix the class of operators. For this let ¢ : R” x R” — € be a continuous
function such that & — ¢(x, &) is negative definite. Further assume that iy : R" — R
is a fixed continuous negative definite function satisfying

(8.1)  1+y(&) =co(l+]E)", ¢ >0,0<r<l.

Assumption 8.1. The pseudo-differential operator q(x, D) maps H""? continuously into
L? and (—q(x, D), HY"?) is the generator of a symmetric L*-sub-Markovian semigroup

2
(17,20
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Remark 8.2. Due to a result of E. M. Stein [55], (Tt(z)) />0 1s an analytic semigroup.

There are many concrete examples of operators satisfying Assumption 8.1. Essen-
tially, one starts with the symbol ¢(x, &) and imposes suitable analytic conditions. In
particular we refer to [30]—[33], [28], as well as to the results of W. Hoh [23], [24],
[25]-[27].

The fact that ¢(x, D) : H"> — L? is continuous, i.e., the estimate
lg(x, DYulL?|| < cllul 2],

requires some regularity and boundedness properties of x — ¢(x, ). Let us discuss
the question under which circumstances we can prove

(82)  D(q(x,D)*) = H"?*.

From the general theory of (selfadjoint) operators we know that

(83)  D(g(x,D)") = {ue D(q(x, D)) : q(x, D) 'u e D(g(x, D))}
= {ue D(g(x, D)) : q(x, D)u e D(q(x, D) )}.

By induction, we are lead to the problem to assure that f € L? and ¢(x, D)ku =f
implies u € H"*. If q;(x, D)k is invertible, we need, in particular, estimates of the

type
lg(x, DY ul L2|| < cl|ulH"]|.

for u e H"->*. But (8.3) requires for larger k € N more regularity of x — ¢(x, &). The

condition (8.1) implies that HY" — C,, for m > % and this last fact combined with
0

Theorem 5.4 leads to

Theorem 8.3. Suppose that q(x, D) satisfies Assumption 8.1 and that (8.1) as well as

(8.2) hold for 2k > % Then the semigroup (T,(z)) 1> I8 strongly L*-sub-Markovian.
0

The simplest and already quite instructive examples to study regularity effects caused
by coefficients were constructed in [28]. These operators are of form

=

q(x, D) = 3 bi(x)y;(Dy)

Il
_

where ¢; : R" — R are fixed continuous negative definite functions and the coeffi-
cients b; are L*-functions independent of the variable x;. Under the assumption
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bi(x) = dy > 0 it follows that —q(x, D) generates a symmetric Dirichlet form with
domain H"!, y(&) = >oic1¥;(&). Thus we may associate with —g(x, D) a Hunt
process Wthh is defined up to an exceptional set in HY!. If, in addition, the oscil-

dy
lations of the coefficients are controlled by — 2 then H%:? is the domain of ¢(x, D),

and we may construct the process up to an exceptional set in HY:2. In order to
identify D(g(x, D)*) with H"-2 we need bounds for certain iterated commutators

Wi (D3 15, (D3 1+ 5 (D), )]

which require regularity of the coefficients 4;! It is thus obvious that stronger regu-
larity assumptions on the coefficients will guarantee the strong L’-sub-Markovian
property provided we have for some m € N the embedding HY"" — C,,; now we can
construct a process associated to —g(x, D) without any exceptional set!

Let us finally point out that in an L”-setting the condition on k in Theorem 8.3

should read 2k > . This means that there is a trade-off between k (i.e. regularity of
Pro

the coefficients) and p (i.e. integrability): better integrability requires less regularity.

This holds at least for some cases of negative definite functions.

9 Some perturbation results

In this section we will discuss how we may apply the results from Section 5 to simple
perturbations of generators. We want to start with an unperturbed generator 4?) of
an L?-sub-Markovian semigroup (7; T\’ >) />0 Which is analytic. Moreover, we suppose
that D(A(?)) is explicitly known as a function space. So far we have seen two
examples, namely the operators (—y (D), pr,z) with (D) = id + /(D) and a con-
tinuous negative definite function i : R” — R (cf. Section 6), and the operator
(—(=L(x, D))" +id), H}"), 0 < r < 1 (cf. Section 7).

We will now only consider the operator (=, (D), H 1;”), all results have an analogue
for (—((—L(x, D))" +id), H;"). Actually, they carry over to any (4, HY?), AP =
AP) —id, generating an L?-sub-Markovian semigroup. Our main purpose is, again,

to show how the regularity of the coefficients determines which type of refinement
result one can apply.

Considering — (D) or —((—L(x, D))" 1d) rather than —y/(D) or —(—L(x, D))" is
just a technical point; clearly we have H], Pl = =H) vor,

From H. Amann [1, Theorem V.1.2.4, page 259] we deduce for any 0 < s < 1 the
estimate

WA (DYl L? || < el (D)ulL7|| + c(e) |[ul L7

for all ¢ > 0 and suitable constants c(¢). In particular, for a € L* we have



86 W. Farkas, N. Jacob, R. L. Schilling
[laul L= < éllypy (D)ul L7 || + c(&)[[ul L],

that is,

O1)  faulL*|| < ellulH) || + c(e)|[ulL?].

If a < 0 it follows that

J (au)((uflﬁ)f’*ldx:J (au)(u—1)""dx <0
.

u=>1

and from (9.1) we get that (—y,(D)+aq, Hp‘“) generates an analytic L?-
sub-Markovian semigroup (Taf’, )i>o for ae L*, a<0. In general, the operator
u +— au does not map C° into C,, and therefore —y (D) + a will not map C§° into
C,. This shows that, in general, we cannot expect —y/, (D) + a to be the generator of
a Feller semigroup (with Cj° in the domain of its generator).

By the general theory of H. Kaneko, see Section 5 for a brief review, we can associate
with (=, (D) + a, le//,Z) a Hunt process up to an cap,,v.>-exceptional set. If
P

H)? — Co,

then we do not have any exceptional set at all, but as we know this embedding does
not hold for general ¥ and p.

Let us examine the problem of determination D(—(f,(D) + a)*). We will restrict
ourselves to k = 2. In order to verify

D(—( (D) + a)z) = HPWA

we need (to calculate and) to estimate —(— (D) + a)(—y, (D) + a)u for u e HY*.
Formally,

—(=¥1 (D) + a)(—¥1 (D) + a)u = Y (D)u + ay, (D)u — a’u + (D) (au).

It is only the last term that could cause trouble: fora e L* and u € Hp‘/”4 the operator
u — Y, (D)(au) is not bounded in L” and we do not have the estimate

11 (D) (aw) |IL?|| < el|ul ).

(With the classical theory in mind one should look for ||y (D)(au)|L?| <
llulHY2.)

However, if we could bound the commutator [y, (D), alu := ¥ (D)(au) — ayr; (D)u,

I1(D), aulL]] < ul )]
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(we should expect ||[y;(D),alulL?| < ||u|Hp‘/’*1||) then we can identify
D(—(,(D) +a)?) with H**. Since the embedding H/** — C., holds often for a
larger range of p (depending of  and n) than the embedding Hp‘/’*2 — C,,, We see
that higher regularity of a will give smaller exceptional sets which might even vanish
at all.
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