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Abstract. The question of extending Lp-sub-Markovian semigroups to the spaces Lq, q > p,
and the interpolation of Lp-sub-Markovian semigroups with Feller semigroups is investigated.
The structure of generators of Lp-sub-Markovian semigroups is studied. Subordination in the
sense of Bochner is used to discuss the construction of re®nements of Lp-sub-Markovian semi-
groups. The roÃ le played by some function spaces which are domains of de®nition for
Lp-generators is pointed out. The problem of regularising powers of generators as well as
some perturbation results are discussed.
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0 Introduction

Probably the most important equation connecting the theory of Markov processes
with functional analysis is given by

�0:1� pt�x;A� � TtwA�x� � E x�wA�Xt��:

Here �Tt�tX0 is a semigroup of operators on some function space over Rn (for sim-

plicity), ��Xt�tX0;P
x�x ARn is a Markov process with state space Rn and transition

function pt�x;A�; wA is the characteristic function of the set A. In order to construct a
Markov process using the Kolmogorov theorem we have to know the family pt�x;A�
of (sub-)Markovian kernels. One way to construct pt�x;A� is to start with a given
operator semigroup �Tt�tX0 and to de®ne pt�x;A� through (0.1). In this case it is
natural to use the theory of strongly continuous contraction semigroups on Banach
spaces. The direct approach is, of course, a pointwise construction working with
continuous functions. This means that we start with a Feller semigroup �T �y�t �tX0,
that is a positivity preserving strongly continuous contraction semigroup on the Ba-
nach space �Cy�Rn�; k � ky� of all continuous functions vanishing at in®nity. Now
we have a nice structure theorem for the generator of �T �y�t �tX0 due to Ph. CourreÁge.
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However, there are two major drawbacks: in order to obtain non-trivial examples of
Feller semigroups, one uses the Hille-Yosida-Ray theorem. This means that one has
to solve equations in the Banach space Cy�Rn� which can be quite di½cult. More-
over, operators with non-smooth coe½cients cannot be treated in general.

M. Fukushima proposed to start with a symmetric L2-sub-Markovian semigroup
�T �2�t �tX0, i.e., a strongly continuous L2-contraction semigroup satisfying the sub-
Markov property

0W uW 1 �a:e:� implies 0WT
�2�

t uW 1 �a:e:�

Using the potential theory of the associated quadratic form, the Dirichlet form, it is
possible to construct the transition function up to an exceptional set, i.e., a set of
capacity zero. This method has the advantage that L2�Rn� is a Hilbert space where it
is easier to solve equations and thus to construct semigroups using the Hille-Yosida
theorem; moreover, one can treat operators with non-smooth coe½cients. A major
problem is, of course, the presence of exceptional sets which implies that the con-
structed process e¨ectively lives on Rn less an exceptional set and that all consider-
ations have to be done modulo this set. This problem can be overcome if we consider
L2-sub-Markovian semigroups �T �2�t �tX0 with the property that for all bounded and
measurable sets A the functions

�0:2� x 7! TtwA�x�

are continuous. Recall the result of E. M. Stein that symmetric sub-Markovian
semigroups are analytic, hence

TtwA A
T

kX0

D��A�2��k�

holds, where D��A�2��k� is the domain of the k-th power of the generator �A�2�;
D�A�2��� of �T �2�t �tX0. We may, therefore, establish the continuity of (0.2) for those
cases where we can embed the intersection (of some ®nite number) of domains of
powers of A�2� into C�Rn�. Usually, it is quite hard to obtain precise information on
D��A�2��k� for k X 2 and this requires (in general) higher regularity of the coe½cients.

With the Sobolev embedding theorem and the theory of (second order) elliptic
di¨erential operators in mind, it might be helpful to pass from the L2-theory to an
Lp-setting, p > 2, and to consider operators with domains in some Lp-space such that
we may embed these domains into C�Rn�XLp�Rn�.
The purpose of this paper is to discuss these ideas and to give some examples.
Sections 1±5 are of theoretical nature whereas sections 6±9 contain illuminating
examples.

In Section 1 we discuss the problem of extending a given Lp-sub-Markovian semi-
group to the spaces Lq�Rn�, q > p. To do this, we establish ®rst some interpolation
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results for operators which coincide on Lp�Rn�XBb�Rn� or Lp�Rn�XLy�Rn�, see
Theorem 1.4 and Remark 1.6. We pay particular attention to the di¨erence between
Bb�Rn� vs. Ly�Rn�, i.e. functions vs. classes of functions, which implies some
technical changes to otherwise standard proofs. In Theorem 1.8 we show that any
Lp-sub-Markovian semigroup extends to an Lq-sub-Markovian semigroup for
p < q <y. Note that we do not assume symmetry.

A further application is Theorem 1.10 where we show that Lq-sub-Markovian semi-
groups �p < q <y� interpolate between Lp-sub-Markovian and Feller semigroups if
the operators of the original semigroups coincide on Lp�Rn�XCy�Rn�. These results
alone seem not to be too surprising, however, combining them with results of
W. Hoh [23]±[27] or [30]±[33] gives many concrete examples of Lp-sub-Markovian
semigroups.

Section 2 is devoted to the structure of generators of Lp-sub-Markovian semigroups.
The form of generators of Feller semigroups is well known. They satisfy the positive
maximum principle and once the domain contains Cy

0 �Rn�, they are already certain
di¨erential±integrodi¨erential operators with negative de®nite symbol. Generators
of Lp-sub-Markovian semigroups are Lp-Dirichlet operators, i.e., they satisfy for
u A D�A�p���

Rn

�A�p�u���uÿ 1���pÿ1 dxW 0;

which was ®rst proved for p � 2 and selfadjoint operators by N. Bouleau and
F. Hirsch [7], for the general case we refer to A. Eberle [13], V. Liskevich and
Yu. Semenov [41], Z.-M. Ma and M. RoÈckner [43], E. M. Ouhabaz [48]±[49], and
[34]. Using the extension result from Section 1 we conclude that any Lp-Dirichlet
operator extends to Lq-Dirichlet operators for all p < q <y. Under suitable
regularity assumptions on the respective domains and the mapping behaviour, see
Theorem 2.4 for details, we infer that each Lq-generator satis®es the positive
maximum principle and has the same structure as a Feller-generator. This result is
quite important since it tells us something about the type of the operator one has to
start in order to construct an Lp-sub-Markovian semigroup, or if p � 2, a Dirichlet
form.

Section 3 recalls just some basic facts on subordination in the sense of Bochner which
is applied in Section 4 to discuss the G-transform �V �p�r �rX0 of an Lp-sub-Markovian
semigroup �T �p�t �tX0 which is needed to handle re®nements of that semigroup. This
is, of course, closely related to the work of P. Malliavin and M. Fukushima (with
coauthors). New, however, is the observation that the G-transformed semigroup is a
subordinate semigroup. This enables us to determine V

�p�
r as �idÿ A�p��ÿr=2, A� p�

being the generator of �T �p�t �tX0, and to identify the abstract Bessel potential space

Fr;p with D��idÿ A�p��r=2�, see Theorem 4.1 and Corollary 4.2. For p � 2 and a
selfadjoint operator A�2� this was proved in [18] and [20] using spectral theory. Our
proof is based on a functional calculus for generators of semigroups and Bernstein
functions, see [53].
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In Section 5 we discuss the problem of constructing re®nements of Lp-sub-Markovian
semigroups. In particular we are interested in Lp-sub-Markovian semigroups

�T � p�t �tX0 with the property T
�p�

t wA A Cb�Rn� for all t > 0 and all Borel sets A with
®nite Lebesgue measure. We call these semigroups strong Lp-sub-Markovian
semigroups in analogy to strong Feller semigroups. Whenever �T �p�t �tX0 is a strong
Lp-sub-Markovian semigroup we may use pt�x;A� :� T

� p�
t wA�x� to construct an

associated Hunt process without any exceptional set. Otherwise we shall try to reduce
the exceptional set whenever possible by using capacities associated with �T �p�t �tX0

and Fr;p for some suitable r. The key observation (which seems to be new in our
context) is that a combination of the regularising e¨ects of an analytic semigroup
with the concrete characterisation of the domain(s) (of powers) of the generator, and
Sobolev-type embeddings will immediately give the strong Lp-sub-Markov property,
see Proposition 5.3 and Theorem 5.4. A ®rst example for this idea is provided by
semigroups generated by second order elliptic di¨erential operators. Of course, not
every (analytic) Lp-sub-Markovian semigroup is a strong Lp-sub-Markovian semi-
group. In this case we use the theory of �r; p�-capacities to get re®nements, see [17]±
[18] or [20] which is brie¯y recorded for the reader's convenience.

Our approach can be summed up in the following way: Let �T �p�t �tX0 be a given
Lp-sub-Markovian semigroup with Lq-extensions �T �q�t �tX0, p < q <y, and assume
that Cy

0 �Rn�H T
qXp D�A�q��. If each operator A�q� maps Cy

0 �Rn� into Lq�Rn�X
C�Rn�, then A�p� (and each A�q�) restricted to Cy

0 �Rn� is a pseudo-di¨erential oper-
ator with negative de®nite symbol, i.e.,

�0:3� A�p�jCy
0
�Rn�u�x� � ÿ�2p�ÿn=2

�
Rn

e ix�xq�x; x�û�x� dx � ÿq�x;D�u�x�;

where q : Rn �Rn ! C is a continuous and negative de®nite in x. If, in addition,
the semigroup �T �p�t �tX0 is analytic and if for some r > 0 the space D�ÿ�ÿA�p��r�
is contained in a space of continuous functions, then �T � p�t �tX0 is a strong Lp-
sub-Markovian semigroup.

Thus it would be very natural to start with ÿq�x;D� as in (0.3) and to prove that
it extends under certain conditions on q�x; x� to a generator A�p� of an analytic
Lp-sub-Markovian semigroup with some nice function space containing D��ÿA�p��r�
for some r.

In the case p � 2 and symmetric operators many concrete examples are known,
mainly due to W. Hoh and some earlier work of the second named author. In the
general case several problems arise. First of all there are non-analytic sub-Markovian
semigroups. More important however is the fact that a general continuous negative
de®nite function x 7! c�x� is neither smooth nor homogeneous implying that stan-
dard Lp-analysis tools such as the Calderon±Zygmund theory of singular integrals or
multiplier theorems of Michlin±HoÈrmander or Lizorkin type do not apply. For this
reason we cannot (yet) o¨er a rich theory of Lp generators for p0 2. In Sections 6±9
however we illustrate our approach using concrete and partly rather new examples.
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Section 6 examines those function spaces which should be natural domains of Lp-
generators. They are constructed for translation invariant operators, i.e., LeÂvy pro-
cesses, and we recall some recent results from [15]. Since we do not dispose of
Plancherel's theorem, the Lp-analysis for p0 2 is much harder than the L2-analysis.

In Section 7 we concentrate on fractional powers of second order elliptic di¨erential
operators generating Lp-sub-Markovian (di¨usion) semigroups. We need not assume
the analyticity of the original di¨usion semigroup since by a result of A. Carasso and
T. Kato [9] the subordinate semigroup is automatically analytic if the corresponding
Bernstein function is a complete Bernstein function. Interpolation results for frac-
tional powers of generators lead to a large class of strong Lp-sub-Markovian semi-
groups. Moreover we get concrete, non-trivial examples of the structure theorem for
generators, see Theorem 2.6.

In Sections 6 and 7 we consider the domain of the generator itself. In Section 8 we
are concerned with the problem of regularising powers of generators. We restrict
ourselves (as in [19] and [32]) to the Hilbert space case, but handle quite general
pseudo-di¨erential operators q�x;D�, see W. Hoh [23]±[27] or [31], [33].

In this case it is clear that the semigroup is analytic, see E. M. Stein [55], and that in

general the space H c;2k�Rn� which may describe the domain D��ÿA�2��k� has better
embedding properties the larger k is. In fact, for c satisfying asymptotically c�x�X
c0jxjr0 , c0 > 0, 0 < r0 < 1, we have H c;2k�Rn� ,! Cy�Rn� if k >

n

4r0
. But in order

to prove that H c;2k�Rn� � D��ÿA�2��k� if H c;2�Rn� � D�ÿA�2��, it turns out that
the coe½cients x 7! q�x; x� must have increasing regularity with increasing k. In
particular the very simple examples taken from [28] show quite detailed which type
of regularity of the coe½cients is needed to reach ®nally a space D��ÿA�2��k0� which
is embedded into Cy�Rn�. In the intermediate steps the processes can only be con-
structed up to certain exceptional sets which however become smaller and smaller as
k approaches k0.

The ®nal section treats (from the structural point of view) a simple perturbation of
the original generator. Moreover, we restrict our concrete considerations to the easy
case ÿc1�D� � a, where c1�x� � c�x� � 1, c : Rn ! R is a continuous negative
de®nite function, and a A Ly�Rn�, aW 0. We discuss the associated Lp-generator and
study the e¨ects of the regularity of a on the strong Lp-sub-Markov property of the
semigroup. Our reasoning is not con®ned to this case but can easily be applied to
similar situations.

Despite the lack of a general Lp-theory for the operators (0.3) our examples show the
following:

� good applicability of the Lp-theory to operators obtained from given generators by
standard constructions such as subordination or perturbation;

� there is a natural limit in the �r; p�-capacity re®nements of Lp-sub-Markovian
semigroups, namely the strong Lp-sub-Markovian semigroups;
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� the determination of domains in terms of concrete function spaces is the key to get
concrete re®nement results.

Notation. If X is a Banach space we denote its norm by k � jXk. Since we work always
on Rn we will from now on drop the Rn in function spaces, e.g., Lp � Lp�Rn� or
Cy � Cy�Rn�. All other notation should be standard or self-explanatory.

Acknowledgement. The two ®rst-named authors have been supported through the
DFG-project Ja522/7-1 FunktionenraÈume in der Theorie der stochastischen Prozesse.

1 On Lp-sub-Markovian semigroups and Feller semigroups

We start de®ning the central objects of our investigation.

De®nition 1.1 A. A linear contraction S�p� : Lp ! Lp is called an Lp-sub-Markovian

operator if for u A Lp with 0W uW 1 a.e. also 0WS�p�uW 1 a.e.

B. A family �T �p�t �tX0 of Lp-sub-Markovian operators is called an Lp-sub-Markovian

semigroup if �T �p�t �tX0 is a strongly continuous contraction semigroup on Lp, i.e., we

have kT �p�t ujLpkW kujLpk, limt!0kT �p�t uÿ ujLpk � 0, and T
�p�

t � T
�p�
s � T

� p�
t�s and

T
�p�
0 � id.

C. A bounded linear operator S�p� : Lp ! Lp is called positivity preserving if uX 0
a.e. implies S�p�uX 0 a.e.

Our ®rst problem is the following question: given an Lp-sub-Markovian semigroup
�T � p�t �tX0 does it extend to other Lq spaces, i.e., is it possible to ®nd an Lq-
sub-Markovian semigroup �T �q�t �tX0 such that for all tX 0

T
�q�

t jL pXLq � T
�p�

t jL pXLq ?

Without proof we mention the well-known

Lemma 1.2. Let 1 < p <y and let S�p� : Lp ! Lp be a sub-Markovian operator.
Then S� p� is positivity preserving and jS�p�ujWS�p�juj a.e., for any u A Lp. For

u A Lp XLy we have

�1:1� kS� p�ujLykW kujLyk:

Now let S�p� : Lp ! Lp be a sub-Markovian operator and u A Lp XLy. For any
p < q <y we ®nd
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kS�p�ujLqk � �
Rn

jS�p�ujq dx

 !1=q

� �
Rn

jS�p�ujqÿpjS�p�ujp dx

 !1=q

W kS�p�ujLyk�qÿp�=q � kS�p�ujLpkp=q

W kujLyk�qÿp�=q � kujLpkp=q;

thus for u A Lp XLy, which is a dense set in Lq, p < q <y, S�p�u is a function in
Lq.

However, we want to prove more, namely that S�p� extends to an Lq contraction.
This will be done by interpolation, andÐfor reasons becoming clear laterÐwe
interpolate not the operators S�p� : Lp ! Lp and S�p�jLyXL p : Ly ! Ly, but we will
use as second operator a linear contraction on Bb (the Banach space of bounded
Borel measurable functions on Rn, normed in the usual way).

First recall the Hadamard three lines theorem, see [2, page 195] for a proof.

Theorem 1.3. Let W :� fx� iy : 0 < x < 1; y A Rg and W its closure. Further let F be

a bounded continuous function on W which is analytic in W. Then the function

Mg :� supfjF �g� iy�j : y A Rg

satis®es

Mg WM
1ÿg
0 M

g
1 ; 0W gW 1:

Theorem 1.4. Let 1 < p <y, let S�p� be a linear contraction on Lp and ~S �y� a linear
contraction on Bb such that

�1:2� S� p�jLpXBb
� ~S �y�jLpXBb

:

Then there exists for every q, p < q <y, a linear contraction S�q� on Lq such that

�1:3� S�q�jLpXLqXBb
� S�p�jLpXLqXBb

� ~S �y�jL pXLqXBb
:

Remark 1.5. The statements (1.2) and (1.3) need some interpretation. A function
u A Bb is uniquely determined on Rn whereas an element v A Lp is an equivalence
class of functions which may di¨er on a set of Lebesgue measure zero. By u A Bb XLp

we mean the uniquely determined element in Bb. Let S�p� : Lp ! Lp and ~S �y� :
Bb ! Bb be two linear operators and let u A Bb XLp. Then ~S �y�u A Bb and S�p�u A
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Lp. For the latter we have S�p�u � S�p�v a.e. whenever v � u a.e., i.e., although
u A Bb XLp can be considered as a uniquely determined function, S�p�u is still an
equivalence class of functions and all v A Lp such that u � v a.e. are mapped via S�p�

into the equivalence class of S�p�u. We write

S� p�jLpXBb
� ~S �y�jLpXBb

if, and only if, for all u A Lp XBb we have

S� p�u � ~S �y�u a:e:

Since ~S �y�u is uniquely determined, this allows the interpretation S�p�u A Bb XLp,
i.e., we may choose ~S �y�u as representative for S�p�u.

Proof of Theorem 1.4. Denote by S the operator S�p�jL pXBb
� ~S �y�jLpXBb

. Since for
1

q
� 1

q 0
� 1

kSkLq!L q � supfkSujLqk : u A Lq; kujLqk � 1g

� sup
�

Rn

�Su��x�v�x� dx

�����
�����

( )
;

where the supremum ranges over all u A Lq and v A Lq 0 with kujLqk � kvjLq 0 k � 1, it
is su½cient to show that

�1:4� �
Rn

�Su��x�v�x� dx

�����
�����W 1

for all simple functions u; v satisfying kujLqk � kvjLq 0 k � 1. Such functions u and v
are of the form

u �PJ
j�1

ajwAj
and v � PK

k�1

bkwBk
;

where the sets Aj, j � 1; . . . ; J, and Bk, k � 1; . . . ;K , are two families of pairwise
disjoint Borel sets with ®nite Lebesgue measure, and the coe½cients aj and bk satisfy

PJ
j�1

jajjql�n��Aj� �
PK
k�1

jbkjq
0
l�n��Bk� � 1:

For each z A C let a�z� � 1ÿ z

p
and let y A �0; 1� be such that a�y� � 1

q
, i.e.,

1ÿ y

p
� 1

q
.
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Further, for z A C de®ne

uz :� juja�z�=a�y�ei arg u vz :� jvj�1ÿa�z��=�1ÿa�y��ei arg v

and set

F�z� :�
�

Rn

�Suz��x�vz�x� dx:

Since

F�y� �
�

Rn

�Suy��x�vy�x� dx �
�

Rn

�Su��x�v�x� dx

the desired estimate (1.4) will follow from Hadamard's three lines theorem if we show
that F is analytic in W and bounded, continuous in W with

jF�iy�jW 1 and jF�1� iy�jW 1 for all y A R:

First note that

F�z��PJ
j�1

PK
k�1

jajja�z�=a�y�jbkj�1ÿa�z��=�1ÿa�y��
�

Rn

�SwAj
��x�wBk

�x�ei�arg aj�arg bk� dx

which shows that z 7! F�z� is an entire function. It also reveals that F is bounded in
W since the real part of a�z� is bounded there. Applying HoÈlder's inequality and using
the fact that S is an Lp-contraction we have

�1:5� jF �iy�jW
�

Rn

j�Suiy��x�viy�x�j dx

W kSuiyjLpk kviyjLp 0 kW kuiyjLpkkviyjLp 0 k:

Moreover, since a�y� � 1

q
and Re a�iy� � 1

p
, we have

�1:6� kuiyjLpkp �PJ
j�1

jjajja�iy�=a�y�jpl�n��Aj� �
PJ
j�1

jajjql�n��Aj� � 1

and similarly, since 1ÿ a�y� � 1

q 0
and Re�1ÿ a�iy�� � 1

p 0

�1:7� kviyjLp 0 kp 0 � PK
k�1

jjbkj�1ÿa�iy��=�1ÿa�y��jp 0l�n��Bk� �
PK
k�1

jbkjq
0
l�n��Bk� � 1:
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From (1.5)±(1.7) we conclude that jF�iy�jW 1. In order to estimate jF�1� iy�j
observe that

�1:8� ju1�iy�x�j � jju�x�ja�1�iy�=a�y�j � 1

since a�y� � 1

q
and Re a�1� iy� � 0, and similarly

�1:9� jv1�iy�x�j � jjv�x�j�1ÿa�1�iy��=�1ÿa�y��j � jv�x�jq 0

since 1ÿ a�y� � 1ÿ 1

q
� 1

q 0
and Re�1ÿ a�1� iy�� � 1. Using (1.8), (1.9), and the fact

that S is also a contraction on Bb we arrive at

jF�1� iy�jW
�

Rn

j�Su1�iy��x�v1�iy�x�j dx

W kSu1�iyjLyk
�

Rn

jv1�iy�x�j dxW
�

Rn

jv�x�jq 0dx � 1;

and the theorem is proved. r

Remark 1.6. Clearly, Theorem 1.4 is a type of Riesz-Thorin theorem where the
space Ly of the interpolation couple is substituted by Bb. We have given a proof
of this result since we could not ®nd a precise reference in the literature for this
situation. We followed the standard proof, see C. Bennett and R. Sharpley [2, Theo-
rem 2.2, page 196].

From Remark 1.6 it is clear that we may apply the result of Theorem 1.4 also to the
situation where Bb is substituted by Ly.

Corollary 1.7. Let 1 < p <y, let S�p� be a linear contraction on Lp, and let S�y� be a

linear contraction on Ly such that

S� p�jLpXLy � S�y�jL pXLy :

Then there exists for every q, p < q <y, a linear contraction S�q� on Lq such that

S�q�jLpXLqXLy � S� p�jLpXLqXLy � S�y�jLpXL qXLy :

Now we may use Corollary 1.7 to answer the extension problem for sub-Markovian
semigroups:

Theorem 1.8. Let 1 < p <y and let �T �p�t �tX0 be an Lp-sub-Markovian semigroup on

Lp. Then for any p < q <y there exists on Lq an Lq-sub-Markovian semigroup
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�T �q�t �tX0 such that for any tX 0

T
�q�

t jL pXLq � T
�p�

t jL pXLq :

Proof. By Lemma 1.2 and Corollary 1.7 each of the operators T
�p�

t , t > 0, extends

to an Ly-contraction ~T
�y�

t and an Lq-contraction T
�q�

t . Clearly �T �q�t �tX0 is a semi-
group, and each of the operators T

�q�
t is sub-Markovian. It remains to prove that

�T �q�t �tX0 is strongly continuous. For u A Lp XLy we have

kT �q�t uÿ ujLqkW k ~T
�y�

t uÿ ujLyk�qÿp�=p � kT �p�t uÿ ujLpkp=q

W 2kujLyk�qÿp�=p � kT �p�t uÿ ujLpkp=q
;

which yields limt!0kT �q�t uÿ ujLqk � 0. For general u A Lq the claim follows with a

standard approximation argument. r

We return to Theorem 1.4 and we will use it to interpolate between Lp-sub-
Markovian semigroups and Feller semigroups.

De®nition 1.9. A Feller semigroup �T �y�t �tX0 is a strongly continuous, positivity
preserving contraction semigroup on the space Cy of continuous functions on Rn

vanishing at in®nity.

It is well-known that a Feller semigroup gives rise to sub-Markovian kernels

�pt�x; ���tX0 which may be used to extend T
�y�

t to an operator ~T
�y�

t on Bb by

�1:10� ~T
�y�

t u�x� �
�

Rn

u�y�pt�x; dy�; u A Bb:

It is easy to see that � ~T
�y�

t �tX0 is a contraction semigroup on Bb and each of the
operators ~T

�y�
t , t > 0, is positivity preserving. However, in general, this semigroup is

not strongly continuous. Applying Theorem 1.4 we get

Theorem 1.10. Let �T �y�t �tX0 be a Feller semigroup with extension � ~T
�y�

t �tX0 on Bb and

let �T �p�t �tX0 be an Lp-sub-Markovian semigroup. If for all tX 0 we have ~T
�y�

t jLpXBb
�

T
�p�
t jL pXBb

then �T �p�t jLpXBb
�tX0 extends for all p < q <y to a strongly continuous

contraction semigroup �T �q�t �tX0 of sub-Markovian operators on Lq satisfying

T
�q�

t jL qXLpXBb
� T

�p�
t jLqXLpXBb

� ~T
�y�

t jLq XLpXBb
:

Proof. As in the proof of Theorem 1.8 it remains to prove that �T �q�t �tX0 is strongly
continuous on Lq and this can be done in the same way as in that proof. r
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For later purposes let us introduce the notion of strong Feller semigroups and an
analogous notion for Lp-sub-Markovian semigroups.

De®nition 1.11 A. A Feller semigroup �T �y�t �tX0 is called a strong Feller semigroup if

for all tX 0 the operators ~T
�y�

t de®ned by (1.10) map Bb into Cb.

B. An Lp-sub-Markovian semigroup �T �p�t �tX0 is called a strong Lp-sub-Markovian

semigroup if each of the operators T
�p�

t maps Lp into Lp XC.

Suppose that �T �p�t �tX0 is a strong Lp-sub-Markovian semigroup. In this case for any
bounded Borel set AHRn we ®nd T

�p�
t wA A Cb. This observation will be used later

on to avoid exceptional sets when constructing Markov processes starting with
Lp-semigroups.

Remark 1.12. For the study of one-parameter semigroups acting simultaneously on
di¨erent Lp-spaces and for some interpolation results with consequences for the
spectrum of generators we refer to the works [58] and [59] of J. Voigt.

2 Generators of Lp-sub-Markovian semigroups and the positive maximum
principle

Let �T �y�t �tX0 be a Feller semigroup with generator �A�y�;D�A�y��� such that Cy
0 H

D�A�y��HCy. It is well-known that A�y� satis®es the positive maximum principle,
i.e.,

u�x0� � sup
x ARn

u�x�X 0 implies A�y�u�x0�W 0:

Due to a result of Ph. CourreÁge [10] we know that on Cy
0 the operator A�y� is a

pseudo-di¨erential operator

�2:1� A�y�u�x� � ÿq�x;D�u�x� � ÿ�2p�ÿn=2

�
Rn

eix�xq�x; x�û�x� dx

where q : Rn �Rn ! C is a measurable, locally bounded function such that for
every x A Rn the function q�x; �� : Rn ! C is continuous and negative de®nite (in the
sense of I. J. Schoenberg), i.e., q�x; 0�X 0 and x 7! eÿtq�x;x� is for all t > 0 and all
x A Rn positive de®nite (in the usual sense). Alternatively, q�x; �� satis®es the follow-
ing LeÂvy-Khinchin formula

q�x; x� � ÿc�x� � i
Pn
j�1

bj�x�xj �
Pn

k; l�1

akl�x�xjxk

�
�

y00

1ÿ eÿiy�x ÿ iy � x
1� jyj2

 !
n�x; dy�
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where cW 0, �akl�kl A Rn�n is a symmetric, positive semide®nite matrix, b A Rn, and
n�x; dy� is a kernel satisfying

�
y00 minfjyj2; 1gn�x; dy� <y.

Using the LeÂvy-Khinchin formula we can derive another representation of A�y�,
namely

�2:2� A�y�u�x� � L�x;D�u�x� � S�x;D�u�x�

where

L�x;D�u�x� � Pn
k; l�1

akl�x� q2u�x�
qxkqxl

�Pn
j�1

bj�x� qu�x�
qxj

� c�x�u�x�

is a second order di¨erential operator with non-negative characteristic form and
c�x�W 0, and

S�x;D�u�x� �
�

Rnnf0g
u�x� y� ÿ u�x� �Pn

j�1

yj

1� jyj2
qu�x�

qxj

 !
n�x; dy�:

(This representation shows immediately that any pseudo-di¨erential operator
ÿq�x;D� with a negative de®nite symbol q�x; x� naturally satis®es the positive
maximum principle, independent of the question whether ÿq�x;D� extends to the
generator of a Feller semigroup.)

Thus the structure of the generators of Feller semigroups is (essentially) known. In
case of a (symmetric) sub-Markovian semigroup �T �2�t �tX0 on L2, N. Bouleau and

F. Hirsch [7] showed that its generator �A�2�;D�A�2��� is a Dirichlet operator in the
sense that

�2:3�
�

Rn

�A�2�u���uÿ 1��� dxW 0

holds for all u A D�A�2��. For non-symmetric sub-Markovian semigroups on L2 this
result is shown in the monograph [43] by Z.-M. Ma and M. RoÈckner. However, from
(2.3) we cannot deduce a structure theorem like CourreÁge's result. The notion of a
Dirichlet operator in the context of Lp-sub-Markovian semigroups were introduced
by the second author, see [34, 35], where also related and independent results of
A. Eberle [13], V. Liskevich and Yu. Semenov [41], and E. M. Ouhabaz [48, 49] are
discussed. Let us call �A�p�;D�A�p���, D�A�p��HLp, an Lp-Dirichlet operator if�

Rn

�A�p�u���uÿ 1���pÿ1 dxW 0

holds for all u A D�A�p��. It is easy to see, compare [34, 35] that for an Lp-Dirichlet
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operator

�2:4�
�

Rn

�A�p�u��u��pÿ1
dxW 0 and

�
Rn

�A�p�u��uÿ�pÿ1
dxX 0

hold for all u A D�A�p��. The following result was proved in [34].

Theorem 2.1. Let �A�p�;D�A�p��� be an Lp-Dirichlet operator which generates a

strongly continuous contraction semigroup �T �p�t �tX0 on Lp. Then �T �p�t �tX0 is sub-

Markovian.

Conversely, if �A�p�;D�A�p��� is the generator of a sub-Markovian semigroup �T �p�t �tX0

on Lp, then �A� p�;D�A�p��� is an Lp-Dirichlet operator.

In [34], see also [35], it was proved that if an operator �A�y�;D�A�y��� generates a

Feller semigroup and extends to a generator �A�p�;D�A�p��� of a strongly continuous
contraction semigroup on Lp, then A�p� is an Lp-Dirichlet operator.

Theorem 2.2. Let �A�y�;D�A�y��� be the generator of a Feller semigroup �T �y�t �tX0.
Moreover, suppose that U HD�A�y�� is a dense subspace of Lp. If A�y�jU extends to a
generator A�p� of a strongly continuous contraction semigroup �T �p�t �tX0 on Lp such

that V :� �lÿ A�p��ÿ1U is an operator core for A�p�, then �A�p�;D�A�p��� is an Lp-
Dirichlet operator and �T �p�t �tX0 is sub-Markovian.

Moreover, in Section 1 we proved the possibility of interpolating Feller
semigroups with their extension to Lp-sub-Markovian semigroups to obtain Lq-
Dirichlet operators for p < q <y. It remains, however, to get some structure results
for Lp-Dirichlet operators. We will now show a result in this direction: if
�A�p�;D�A�p��� is a Dirichlet operator for all pX p0 such that on D�A� p0��XD�A�p��
we have always A�p0�u � A�p�u, then the operator

A�p�j T
pX p0

D�A� p��

satis®es the positive maximum principle. To do this, we need the following lemma
which is proved in the same way as limp!ykvjLpk � kvjLyk.

Lemma 2.3. Let f, g : Rn ! �0;y� be two functions such that for some rX 1 we have

f rÿ1g A L1 and f A Ly. Then

lim
p!y

�
Rn

g�x� f pÿ1�x� dx

 !1=p

� ess supf f �x� : x A fg > 0gg:

Now suppose that for all pX p0 we have a family of Lp-Dirichlet operators
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�A�p�;D�A�p��� satisfying the following conditions: there is a vector space D0j

�2:5� DH
T

pXp0

D�A�p��XCb

such that

�2:6� A�p�jD � A�q�jD for all p; qX p0;

there exists a function j A Cy
0 such that j�0� � 1, j�x� < 1 for all x0 0, supp jH

B1�0�, and for all k A N and y A Rn

�2:7� j�k�� ÿ y�� A D;

�2:8� A :� A�p�jD maps D into C:

Theorem 2.4. Suppose that the family �A�p�;D�A�p���, pX p0, of Lp-Dirichlet opera-

tors satis®es conditions (2.5)±(2.8) from above. Then A satis®es on D the positive

maximum principle.

Proof. Let u A DHCb. From (2.4) we deduce for pX p0

�2:9�
�

Rn

�Au��u��pÿ1 dxW 0:

Since �
Rn

�Au��u��pÿ1 dx �
�
fAuW0g

�Au��u��pÿ1 dx�
�
fAuX0g

�Au��u��pÿ1 dx

we get using (2.9)

0W
�
fAuX0g

�Au��u��pÿ1 dxW
�
fAuW0g

�ÿAu��u��pÿ1 dx

which yields for u A D and pX p0

�2:10� �
fAuX0g

�Au��u��pÿ1
dx

 !1=p

W ÿ �
fAuW0g

�Au��u��pÿ1
dx

 !1=p

:

Now we can apply Proposition 2.3 to the left-hand side of (2.10) with g � wfAuX 0gAu

and f � u�, and the right-hand side of (2.10) with g � ÿwfAuW0gAu and f � u�.
Since DH

T
pXp0

Lp XCb we ®nd
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�2:11� ess supfu��x� : x A fAu > 0ggW ess supfu��x� : x A fAu < 0gg:

Suppose ®rst that u has only one isolated absolute positive maximum at x0, y0 �
u�x0� � supx ARn u�x�X 0. Since Au is continuous, x0 A fAuW 0g. Indeed, if x0 B

fAuW 0g, then x0 A fAu > 0g, and (2.11) would entail that

y0 � ess supfu��x� : x A fAu > 0ggW ess supfu��x� : x A fAu < 0gg < y0;

since y0 is the unique isolated supremum. Hence x0 A fAuW 0g and Au�x0�W 0.

Next we suppose that there are several positive maxima. We set

M�u� :� y : u�y�X 0 and u�y� � sup
x ARn

u�x�
� �

:

Take some arbitrary x0 A M�u� and choose j as in (2.7). For n A N the function

jn�x� :� rnj�n�xÿ x0��

belongs to D where rn is given by the real number

rÿ1
n :� n sup

jxÿx0jW1=n

j�Aj�n�� ÿ x0����x�j:

Note, that by our assumptions on j we have j�0� > j�x� for all x0 0. It follows that
vn :� u� jn A D and

vn�x0� � u�x0� � jn�x0�X u�x� � jn�x0� > u�x� � jn�x� � vn�x�:

Thus vn has a single isolated absolute maximum at the point x0 with vn�x0� �
u�x0� � rn. We may apply the result of the ®rst case to get

0X �Avn��x0� � �Au��x0� � �Ajn��x0�:

However for �Ajn��x0� we have

j�Ajn��x0�j � rnj�A�j�n�� ÿ x0�����x0�j

� 1

n

j�A�j�n�� ÿ x0�����x0�j
sup

jxÿx0jW1=n

j�Aj�n�� ÿ x0����x�j W
1

n
;

thus limn!yj�Ajn��x0�j � 0; implying ®nally 0X limn!y�Avn��x0� � �Au��x0�: Since
x0 A M�u� was arbitrarily chosen, the theorem is proved. r
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Remark 2.5. After this paper was ®nished in [54] the third-named author extended
the results mentioned so far in this section into several directions. First he gave an
extension of the notion of a Dirichlet operator for the case p � 1. Further he worked
on an arbitrary measure spaces �X ;B;m� when handling Lp-sub-Markovian semi-
groups and their generators.

Now we may combine the results in this section with those of Section 1. Let
�T � p�t �tX0, 1 < p <y, be an Lp-sub-Markovian semigroup with Lq-extensions
�T �q�t �tX0, p < q <y. Suppose that there is a vector space D satisfying (2.5)±(2.8)

when �A�q�;D�A�q��� denotes the generator of �T �q�t �tX0, pW q <y. Then it follows
that the conclusion of Theorem 2.4 applies to A :� A�p�jD. In particular it follows
that A�p�jD satis®es the positive maximum principle for pW q <y. In many concrete
situations we can take D � Cy

0 .

Theorem 2.6. Let �T �p�t �tX0 be an Lp-sub-Markovian semigroup and denote its Lq-
extensions by �T �q�t �tX0, p < q <y. Suppose that each of the generators �A�q�;D�A�q���,
maps Cy

0 into Cb. Then A�q�jCy
0

satis®es the positive maximum principle and hence, by
the theorem of Ph. CourreÁge it has the structure (2.1) or (2.2), respectively.

Remark 2.7 A. Having Theorem 2.6 in mind, it is clear that for constructing Lp-
sub-Markovian semigroups one should start with operators de®ned on Cy

0 having
the structure (2.1) or (2.2) respectively.

B. With a di¨erent technique, see [54, Theorem 2.10], it is enough to assume in
Theorem 2.6 that A�q� maps Cy

0 into Cb for some qX p.

3 Subordination in the sense of Bochner

Subordination is a technique to obtain new semigroups from a given one. On the
level of in®nitesimal generators, subordination gives rise to a functional calculus. S.
Bochner developed these ideas in his 1949 paper [5] and in his monograph [6].

Our references for this section are the monographs of C. Berg, G. Forst [4], and of
S. Bochner [6] and the papers of R. S. Phillips [50], F. Hirsch [22], C. Berg, Kh.
Boyadzhiev and R. deLaubenfels [3], and R. L. Schilling [52, 53].

Let �Tt�tX0 be a strongly continuous semigroup on Lp (or Cy) with generator

�A;D�A�� and let �mt�tX0 be a convolution semigroup of sub-probability measures
supported in �0;y�. It is well known that these convolution semigroups are in one-
to-one correspondence with Bernstein functions. This correspondence is given by�

�0;y�
eÿsxmt�ds� � eÿtf �x�; t; xX 0:

In this situation the Bochner integral
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�3:1� T
f

t u :�
�y

0

Tsumt�ds�; u A Lp �or Cy�;

is well-de®ned and gives a strongly continuous semigroup on Lp (or Cy). Proper-
ties like contractivity, Markov or Feller property are passed over from �Tt�tX0 to
�T f

t �tX0.

De®nition 3.1. Let �Tt�tX0 be a strongly continuous semigroup on Lp or Cy and let
�mt�tX0 be a vaguely continuous semigroup of sub-probability measures on �0;y�.
The semigroup �T f

t �tX0 given by (3.1) is called subordinate semigroup. Its generator is

given by �A f ;D�A f ��.

For f to be a Bernstein function it is necessary and su½cient to satisfy the following
LeÂvy-Khinchin-type representation

�3:2� f �x� � a� bx�
�
�0;y�
�1ÿ eÿtx�m�dt�

with a; bX 0 and a measure m on �0;y� such that
�
�0;y� t=�1� t�m�dt� <y.

We will be mainly interested in the set of complete Bernstein functions, CBF, which
consists of those Bernstein functions f satisfying

m�dt� � m�t� dt; m�t� �
�
�0;y�

eÿrtr�dr�

with a measure r on �0;y� such that
�
�0;y��1� t�ÿ1 r�dt�

t
<y. It is not hard to see

that f A CBF has the representation

�3:3� f �x� � a� bx�
�
�0;y�

x

t� x

r�dt�
t

; xX 0:

Examples for complete Bernstein functions are the fractional powers, fa�x� � xa

�0W aW 1� or the logarithm f �x� � log�1� x�.
Using (3.2) and (3.3) one can obtain representation formulae for A f . This problem
was ®rst investigated by R. S. Phillips in [50] for general Bernstein functions. Here
we follow F. Hirsch [22], C. Berg, Kh. Boyadzhiev and R. deLaubenfels [3], R. L.
Schilling [53], where it was shown (independently) that for f A CBF

A f u � ÿau� bAu�
�
�0;y�

A�l idÿ A�ÿ1u
r�dl�

l
; u A D�A�;

holds. This is a straightforward generalisation of Balakrishnan's formula for frac-

W. Farkas, N. Jacob, R. L. Schilling68

Bereitgestellt von | Universitaetsbibliothek der LMU Muenchen
Angemeldet | 129.187.254.47

Heruntergeladen am | 18.11.13 14:23



tional powers, e.g., Yosida [60, Chapter IX.11], in the sense that

A�x
a�jD�A� � ÿ�ÿA�ajD�A�; 0 < aW 1:

In fact, as it was shown in [53], we have even

�3:4� D�A f � � u A Lp�or Cy� : lim
k!y

�y
0

�Ttuÿ u�mk�t� dt exists strongly

( )

where mk�t� �
� k

0 eÿrtr�dr�. (A similar result is due to F. Hirsch [22].)

As in the case of fractional powers, subordination gives rise to a functional calcu-
lus that is in agreement with the classical Dunford-Taylor-integral, cf. Dunford-
Schwartz [12, VII.9]. The next theorem collects some general results on CBF as well
as material from [52, 53] on the functional calculus.

Theorem 3.2 A. CBF is a convex cone that is stable under pointwise limits and com-

position of functions.

B. A f � ÿf �ÿA� with the resolvent of ÿf �ÿA� being given by the Dunford-

Taylor-integral.

C. Aaf � aA f , A f�g � A f � Ag, A f �g � �Ag� f , Aa�x�f � ÿa id� A� A f .

D. If f � g A CBF then A fg � ÿA f Ag � ÿAgA f .

E. If f A CBF then g�x� � x

f �x� A CBF and A � ÿA f Ag � ÿAgA f .

F. If fn A CBF for any n A N and fn ! f ( pointwise) then f A CBF and

A fn u! A f u strongly.

The above equalities have to be understood as equalities between closed operators, their

domains being given by (3.4).

Remark 3.3 A. Subordination has a nice stochastic interpretation: if there is a sto-
chastic process related to �Tt�tX0, then �T f

t �tX0 gives rise to a stochastic process and
this process is obtained by a random time-change of the original process.

B. It is possible to extend Theorem 3.2 to the algebra generated by CBF. For such f,
however A f is, in general, not any longer a generator of a semigroup but merely a
closed operator. This was investigated in [53].

4 The G-transform of Lp-sub-Markovian semigroups

As before, �T � p�t �tX0 denotes an Lp-sub-Markovian semigroup, 1 < p <y. For
u A Lp and r > 0 we de®ne the gamma-transform of �T �p�t �tX0 by
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V �p�r u :� 1

G
r

2

� ��y
0

tr=2ÿ1eÿtT
� p�

t u dt:

According to our considerations in Section 3, �V �p�r �rX0 is an Lp-sub-Markovian
semigroup obtained from �T �p�t �tX0 by subordination in the sense of Bochner. The
corresponding Bernstein function is given by f �s� � 1

2 log�1� s�, and the corre-
sponding convolution semigroup �ht�tX0 is given by

ht�ds� � w�0;y��s�
1

G
t

2

� � st=2ÿ1eÿs ds:

Thus we have kV �p�r ujLpkW kujLpk and V
�p�

r1 V
�p�

r2 � V
� p�

r1�r2
: Moreover, according to a

result of A. Carasso and T. Kato, see [9], the semigroup �V �p�r �rX0 is always analytic.

Theorem 4.1. Let �A�p�;D�A�p��� be the generator of the Lp-sub-Markovian semigroup

�T � p�t �tX0. For all r > 0 and all u A Lp we have

V �p�r u � �idÿ A�p��ÿr=2
u:

In particular, each of the operators V
�p�

r is injective.

Proof. Denote by f the Bernstein function f �s� � 1
2 log�1� s�. We already know that

V
�p�

r � T
� p�; f

t . On D�A�p�� the resolvent at l > 0 of �A�p�;D�A�p��� satis®es

��l� 1� idÿ A�p��ÿ1u �
�y

0

eÿ�l�1�tT �p�t u dt; u A D�A�p��:

From the Dunford-Taylor calculus for unbounded operators we have

�4:1� �idÿ A�p��ÿsu � 1

2pi

�
G

xÿs��x� 1�idÿ A�p��ÿ1u dx;

for any arc G extending from ÿy to �y inside the resolvent set of �idÿ A�p��. By
standard techniques for analytic (operator valued) integrals we get from (4.1) the
representation

�idÿ A�p��ÿsu � sin sp

p

�y
0

lÿs��l� 1�idÿ A�p��ÿ1u dl

see T. Kato [39, V.11, Lemma 3.4] for the Hilbert space case or [37, Lemma 6.1] for
the Banach space situation. Taking 0 < s < 1 we obtain
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�idÿ A�p��ÿsu � sin sp

p

�y
0

lÿs
�y
0

eÿ�l�1�tT �p�t u dt

 !
dl

� sin sp

p

�y
0

�y
0

lÿseÿ�l�1�tT �p�t u dt dl:

Observe that for 0 < s < 1 the term lÿseÿ�l�1�t is positive. By Tonelli's theorem we
get �y

0

�y
0

lÿseÿ�l�1�t dt dl �
�y

0

�y
0

lÿseÿ�l�1�t dl dt

�
�y

0

�y
0

m

t

� �ÿs

eÿmeÿt dm

t
dt

�
�y

0

mÿseÿm dm

�y
0

tsÿ1eÿt dt <y:

Since klÿseÿ�l�1�tT �p�t ujLpkW lÿseÿ�l�1�tkujLpk, we ®nd for 0 < s < 1 that

�idÿ A�p��ÿsu � sin sp

p

�y
0

�y
0

lÿseÿ�l�1�tdlT
�p�

t u dt

� sin sp

p

�y
0

�y
0

lÿseÿlt dleÿtT
�p�

t u dt

� sin sp

p

�y
0

�y
0

mÿseÿm dmtsÿ1eÿtT
�p�

t u dt

� 1

G�s�
�y

0

tsÿ1eÿtT
�p�

t u dt � V
� p�

2s u:

Thus we have proved for 0 < r < 2 that

�4:2� �idÿ A�p��ÿr=2
u � V �p�r u; u A D�A�p��:

Due to the semigroup property of V
�p�

r and the well-known functional calculus, see
N. Dunford and J. Schwartz, [12, VIII.9, Theorem 8] we may extend equality (4.2) to
all r > 0. The strong continuity of �V �p�r �rX0 ®nally shows (4.2) also for r � 0. r

Since each of the operators V
�p�

r is injective we may de®ne for 1 < p <y the spaces

�4:3� Fr;p :� V �p�r �Lp� and kujFr;pk :� kvjLpk for u � Vrv:

Clearly �Fr;p; k � jFr;pk� is a separable Banach space.
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Corollary 4.2. In the situation of Theorem 4.1 we have Fr;p � D��idÿ A� p�� r=2�.

Proof. Clearly, u A Fr;p if, and only if, u � V
�p�

r v for some v A Lp. Since V
�p�

r �
�idÿ A�p��ÿr=2, we have u A Fr;p if, and only if, u � �idÿ A�p��ÿr=2v which implies
that D��idÿ A�p��r=2� �Fr;p. r

Remark 4.3. In the Hilbert space case, i.e. p � 2, and if �A�2�;D�A�2��� is a selfadjoint
generator, the results of Theorem 4.1 and its corollary are well known (see our com-
ments in the next section) and are proved by the spectral theorem for selfadjoint
operators.

We want to give some representation formulae for the generator �A�p�; f ;D�A�p�; f �� of
the semigroup �V �p�r �rX0. The next result is contained in Theorem 4.1 and Example
4.2 of [52].

Corollary 4.4. For all u A D�A� p�� it follows that

A�p�; f u � 1

2

�y
1

1

l
A�p��l idÿ A�p��ÿ1u dl

� 1

2

�y
0

1

l� 1
A� p���l� 1� idÿ A�p��ÿ1u dl:

The very de®nition of the logarithm of an operator in Banach space, cf. V. Nollau
[47], proves the following auxiliary result.

Corollary 4.5. For u A D�A�p�� we have A�p�; f u � ÿ 1

2
log�idÿ A� p�u�.

We will now examine the domain of the operator A�p�; f in greater detail.

Proposition 4.6. For all a > 0 we have D��A�p��a�HD�A�p�; f �.

Proof. By Corollary 2.10 in [52] it is su½cient to show that for u A D��A�p��a� the
integral �y

1

1

l
A�p��l idÿ A�p��u dl

converges strongly. According to V. Nollau [46, Lemma 2] we have for l > 0

k�A�p��1ÿa�l idÿ A�p��ÿ1kL p!Lp W 2
sin p�1ÿ a�

p�1ÿ a�
lÿa

a
:

If u A D��A�p��a� then
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1

l
A�p��l idÿ A�p��ÿ1ujLp





 




W

1

l
k�A�p��1ÿa�l idÿ A�p��ÿ1kL p!Lpk�A�p��aujLpk;

which yields

kA� p�; f ujLpkW ca

�y
1

lÿaÿ1 dlk�A�p��aujLpk

and this proves the proposition. r

Corollary 4.7. We have
S

a>0 D��A�p��a�HD�A�p�; f � and

A�p�; f jS
a>0

D��A� p��a� � ÿ
1

2
log�idÿ A�p��jS

a>0

D��A� p��a�:

5 Re®nements for analytic Lp-sub-Markovian semigroups

Given an Lp-sub-Markovian semigroup �T �p�t �tX0, 1 < p <y, it is of course possible
to de®ne for any Borel set AHRn with ®nite Lebesgue measure l�n��A� <y the
function pt�x;A� � T

�p�
t wA�x�. As an element in Lp, the function x 7! pt�x;A� is only

almost everywhere determined; it is therefore not possible to use the family pt�x;A�,
tX 0, x A Rn, A A Bn, in order to construct a Markov process. However, if it would
be possible to ®nd for each A A Bn, with l�n��A� <y, and all t > 0 a unique repre-
sentative ~pt��;A� of x 7! pt�x;A� such that the Chapman-Kolmogorov equations

~pt�s�x;A� �
�

Rn

~pt�y;A�~ps�x; dy�

hold, we could construct a Markov process starting in every point x A Rn. Clearly, if
T
�p�

t maps for all t > 0 the space Lp into C XLp (in the sense that T
�p�

t u is considered
to be a uniquely determined continuous function), i.e., if �T �p�t �tX0 is strongly
Lp-sub-Markovian in the sense of De®nition 1.11.B, then we are done.

Another approach is to use capacities and to de®ne the process only up to a set N of
capacity zero in the state space. The drawback of this method is thatÐunless the set
N is the empty setÐthe process is only de®ned on RnN, i.e., it can only start at
points outside N. This was the idea of M. Fukushima in [16] where he used Dirichlet
forms to construct Hunt processes.

In this section we will ®rst discuss conditions for an Lp-sub-Markovian semigroup to
be strongly Lp-sub-Markovian, and then the theory of �r; p�-capacities and its appli-
cation to analytic Lp-sub-Markovian semigroups.
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The concept of �r; p�-capacities was introduced by P. Malliavin in [44], see also [45],
and many investigations have been done in the context of sub-Markovian semigroups
by M. Fukushima and H. Kaneko, see [17, 18], [20] and [38].

In order to study capacities we need further properties of the spaces Fr;p de®ned in
Section 4, (4.2)±(4.3).

Lemma 5.1 A. For all s; rX 0 we have Fr�s; p HFr;p.

B. For k A N the space Fk�2;p is dense in Fk;p.

Proof. A. Since Fr�s;p � V
�p�

r�s �Lp� � V
�p�

r V
�p�

s �Lp�, we have Fr�s;p � V
� p�

r �Fs;p�.
Using V

�p�
r � �idÿ A�p��ÿr=2, we ®nd

kujFr;pk � k�idÿ A�p��r=2ujLpk

� k�idÿ A�p��ÿs=2�idÿ A�p���r�s�=2ujLpk

W k�idÿ A�p���r�s�=2ujLpk

� kujFr�s;pk;

where we used that V
�p�
s is a contraction.

B. We know from Corollary 4.2 that the space Fk;p is given by �idÿ A�p��ÿk=2�Lp�.
Let u A Fk;p with the representation u � �idÿ A�p��ÿk=2f , f A Lp. Since D�A�p�� is
dense in Lp we ®nd for every e > 0 some oe A D�A�p�� such that k f ÿ oejLpk < e.

Set he :� �idÿ A�p��oe. Then we have he A Lp and oe � �idÿ A�p��ÿ1he. It follows

�idÿ A�p��ÿk=2oe � �idÿ A�p���ÿkÿ2�=2he A Fk�2;p:

Furthermore,

kuÿ �idÿ A�p���ÿkÿ2�=2
hejFk;pk

� k�idÿ A�p��ÿk=2� f ÿ �idÿ A�p��ÿ1�hejFk;pk

� k f ÿ �idÿ A�p��ÿ1hejLpk

� k f ÿ oejLpk < e

which proves the lemma. r

The spaces Fr;p should be considered as abstract Bessel potential spaces associated
with the generator �A�p�;D�A�p��� of �T � p�t �tX0. Clearly one can try to associate the
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corresponding Riesz potential spaces. This was done in [15, Section 1.5] and we just
quote the important estimates

gr;p�kujLpk � k�ÿA�p��rujLpk�W kujFr;pkW ~gr;p�kujLpk � k�ÿA�p��rujLpk�

which hold for all rX 0 and all u A D��ÿA�p���r��1� � D��idÿ A�p���r��1�.

De®nition 5.2. Let �T �p�t �tX0 be an Lp-sub-Markovian semigroup and Fr;p as above.
We call Fr;p regular if Fr;p XC is dense in �Fr;p; k � jFr;pk�.

Proposition 5.3. Let k A N and suppose that the set C XD��A�p��k� is an operator core

for �A�p��k. Then F2k;p is regular.

Proof. First note that D��idÿ A�p��k� � D��A�p��k�, hence we have

C XF2k;p � C XD��A�p��k�:

Since C XF2k;p is an operator core for �A�p��k, we may choose for every u A F2k;p a
sequence �un�n AN, un A C XF2k;p, which converges in the graph norm of �A�p��k to u.
This implies

rkunÿujF2k;pk � k�V �p�2k �ÿ1�unÿu�jLpk � k�idÿA�p��k�unÿu�jLpk ! 0:

Thus the regularity problem for Fr;p can be reduced to ®nd a good operator core
for A�p� or �A�p��k. Our next theorem gives a ®rst answer when one can ®nd a good
version of pt�x;A�.

Theorem 5.4. Let �T �p�t �tX0 be an analytic Lp-sub-Markovian semigroup with genera-

tor �A�p�;D�A�p���. If for some k0 A N the space D��A�p��k0� is contained in C XLp,
then all the spaces Fr;p, r > 0, are regular, and �T �p�t �tX0 is a strong Lp-sub-Markovian

semigroup, i.e., maps Lp into Lp XC.

Proof. Because of the analyticity of �T �p�t �tX0 we ®nd T
�p�

t u A
T

k AN D��A� p��k�: By
assumption, there is some k0 A N such that D��A�p��k0�HC XLp; hence, F2k0;p is
regular, and for all t > 0 we have T

�p�
t u A C XLp. From Lemma 5.1.B we deduce

further that in this situation Fr;p is regular for all r > 0. r

Let us give a ®rst instructive example for an application of Theorem 5.4. It is well
known that many second order elliptic di¨erential operators

L�x;D�u�x� � Pn
k; l�1

akl�x� q2u�x�
qxkqxl

�Pn
j�1

bj�x� qu�x�
qxj

� c�x�u�x�

are Lp-Dirichlet operators, see [35], and extend to generators A�p� of analytic Lp-
contraction semigroups, see [42]. Under mild regularity assumptions on the coe½-
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cients one can prove that the domain D�A�p�� of the generator is the Sobolev space
W 2

p , see again [42]. By the Sobolev embedding theorem,

W 2
p ,! Cy for p >

n

2
:

and the analyticity of �T �p�t �tX0 for p >
n

2
implies

T
�p�

t u A
T

kX0

D��ÿA�p��k�HW 2
p HCy:

This, however, means that �T �p�t �tX0 is already a strong Lp-sub-Markovian
semigroup.

This example suggests a strategy to ®nd strong Lp-sub-Markovian semigroups:
Determine the domain of its generator in terms of function spaces and prove good
embedding results for these function spaces.

Clearly one cannot expect every Lp-sub-Markovian semigroup to be strongly Lp-
sub-Markov. Therefore we aim to ®nd good representatives of T

�p�
t wA��� on a subset

RnnN where N is negligible in an appropriate sense. This can be achieved by in-
troducing a capacity capr;p in each of the spaces Fr;p.

Let us recall some results due to M. Fukushima and H. Kaneko. For an open set
G HRn we de®ne the �r; p�-capacity by

capr;p�G� :� inffkujFr;pkp : u A Fr;p and uX 1 a:e: on Gg:

De®ning for an arbitrary set E HRn

capr;p�E� � inffcapr;p�G� : E HG and G openg;

capr;p extends to an outer capacity. The following lemma can be found in [20].

Lemma 5.5. Let �T �p�t �tX0 be an Lp-sub-Markovian semigroup.

A. For any measurable set E HRn we have: l�n��E�W capr;p�E�.
B. Whenever E JF HRn, rW r 0, or pW p 0 then capr;p�E�W capr 0;p 0 �F �.
C. For any sequence �Ej�j AN of subsets of Rn we have capr;p�

Sy
j�1Ej�WPy

j�1 capr;p�Ej�.

Using capr;p we may introduce the concepts of exceptional sets and quasi-continuous
functions.

De®nition 5.6. Let �T �p�t �tX0 be an Lp-sub-Markovian semigroup.
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A. A set N HRn satisfying capr;p�N� � 0 is called �r; p�-exceptional (w.r.t.
�T � p�t �tX0).

B. A statement is said to hold �r; p�-quasi-everywhere (w.r.t. �T �p�t �tX0) if there exists
an �r; p�-exceptional set N such that the statement holds on RnnN. We will use the
abbreviation �r; p�-q.e. for �r; p�-quasi-everywhere.

C. A real valued function u de®ned �r; p�-quasi-everywhere on Rn is called �r; p�-
quasi-continuous (w.r.t. �T �p�t �tX0) if for any e > 0 there exists an open set G HRn

such that capr;p�G� < e and ujG c is continuous.

The following theorem is again taken from [20].

Theorem 5.7. Let �T �p�t �tX0 be an Lp-sub-Markovian semigroup and assume Fr;p is

regular.

A. If u is �r; p�-quasi-continuous and uX 0 a.e. on an open set G, then uX 0 �r; p�-q.e.

on G.

B. Each u A Fr;p admits an �r; p�-quasi-continuous modi®cation denoted by ~u, and we

have

capr;p�fj~uj > %g�W 1

%p
kujFr;pkp; % > 0:

Further we have, see [20],

Proposition 5.8. For any AHRn with ®nite �r; p�-capacity there exists a unique

function eA A fu A Fr;p : ~uX 1 �r; p�-q:e: on Ag minimising the norm k � jFr;pk. The

function eA is non-negative and satis®es

capr;p�A� � keAjFr;pkp:

For the next results of this section one should note that the semigroup �T �p�t �tX0 has
to be symmetric and analytic. The next proposition is due to H. Kaneko, see [38].

Proposition 5.9. Let �T �p�t �tX0 be a symmetric, analytic Lp-sub-Markovian semigroup

and suppose that Fr;p is regular. For each u A Lp we can choose a function
g

T
� p�

t u such

that the function �x; t� 7! g
T
�p�

t u�x� has the following properties:

(i) For each t > 0 the function x 7!g
T
� p�

t u�x� is an �r; p�-quasi-continuous version of

T
�p�

t u. Moreover, for any e > 0 there exists an open set G independent of t such

that capr;p�G� < e and the functions x 7!g
T
�p�

t u�x� are continuous on RnnG for all

t > 0.

(ii) For �r; p�-quasi-every x A Rn the function t 7!g
T
�p�

t u�x� is analytic.
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For our purposes it is important to note that Proposition 5.9 allows to select a nice
representative for the function pt�x;B� � T

�p�
t wB�x�. In particular, suppose that

we can ®nd a real number r0 such that capr0;p
�A� � 0 implies A � j. Then it follows

that we have even a continuous representative for x 7! T
�p�

t u�x�, u A Lp, and
�T � p�t �tX0 is strongly Lp-sub-Markovian. This proves

Theorem 5.10. Let �T �p�t �tX0 be a symmetric, analytic Lp-sub-Markovian semigroup

and suppose that for some r0 > 0 the space Fr0;p is regular and that for every AHRn

such that capr0;p�A� � 0 it follows that A � j. Then �T �p�t �tX0 is a strong Lp-sub-

Markovian semigroup, i.e., each T
� p�

t maps Lp into Lp XC.

We have already remarked that the regularity problem for Fr;p can be solved by

characterising these spaces or the spaces D��ÿA�p��k� in terms of function spaces. A
criterion for the condition

�5:1� capr;p�A� � 0 implies A � j:

can also be derived when characterising the spaces Fr;p or the spaces D��ÿA�p��k� in
terms of function spaces. Thus if Fr;p ,! Cy for some values of r and p then we have

inffcapr;p�E� : j0E HRng > 0;

i.e., every statement which holds �r; p�-quasi-everywhere reduces already to a state-
ment which holds everywhere. Therefore we are looking for Sobolev±type embed-
dings for the spaces Fr;p. Conversely, (5.1) already implies the inclusion Fr;p HCy.

Remark 5.11. We may combine Proposition 5.9 and Corollary 4.2 with H. Kaneko's
construction of Hunt processes associated to a symmetric, analytic Lp-sub-Markovian
semigroup to ®nd that if D�A�p�� is regular, then the process is determined up to a
cap2;p-exceptional set. In particular, for p � 2, i.e., the Dirichlet form situation, it
follows that the process is always determined up to an exceptional set determined by
the regular domain of the generator, not only up to an exceptional set determined by
the domain of the Dirichlet form.

6 Lp-domains of generators of LeÂvy processes

In this section we recall some results from [15] and outline possible applications. Let
c : Rn ! R be a ®xed continuous negative de®nite function with representation

�6:1� c�x� �
�

Rnnf0g
�1ÿ cos�x � x��n�dx�

where n is a LeÂvy measure integrating the function x 7! 15jxj2. For any R > 0 we
decompose c according to c�x� � cR�x� � ~cR�x� where
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cR�x� :�
�

Rnnf0g
�1ÿcos�x � x��wB�0;R��x�n�dx� and ~cR�x� :� c�x�ÿcR�x�:

Both cR and ~cR are continuous and negative de®nite. Moreover, cR is smooth and
polynomially bounded, whereas ~cR is just bounded. We de®ne on S the norm

kukc;R;p :� k�id� cR�D��ujLpk; R > 0; 1 < p <y:

The following result can be found in [15].

Theorem 6.1. For R > 0 and S > 0 the norms k � kc;R;p and k � kc;S;p are equivalent

and each of these norms is equivalent to the norm k�id� c�D��ujLpk.

Further, let us de®ne the space

H c;2
p :� fu A Lp : kujH c;2

p k <yg

where

kujH c;2
p k :� k�id� c�D��ujLpk:

Then we ®nd that S is dense in H c;2
p and, in addition, the next theorem holds.

Theorem 6.2. The generator of the Lp-sub-Markovian semigroup associated with the

continuous negative de®nite function (6.1) has as its domain the space H c;2
p .

Using Theorem 6.2 we may extend H c;2
p now to the scale

H c; s
p :�Fs;p;c; 0W s <y;

where Fs;p;c is the (abstract) Bessel potential space associated with the Lp-generator
ÿc�D�. Again it is possible to prove that S is dense in H c; s

p and for the purposes of
this paper we have the following important embedding results.

Theorem 6.3. Let c : Rn ! R be a continuous negative de®nite function as in (6.1),
1 < p <y, and s > 0. Then H c; s

p ,! Cy if, and only if,

�6:2� Fÿ1��1� c����ÿs=2� A Lp 0 ;
1

p
� 1

p 0
� 1:

Note that (6.2) means that �1� c����ÿs=2 must be a Fourier multiplier of type �p;y�.
Here is a su½cient criterion for (6.2) to hold:

Theorem 6.4. Suppose that c : Rn ! R is a continuous negative de®nite function with

representation (6.1) and such that
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�6:3� 1� c�x�X c0�1� jxj2�r0 ; x A Rn;

holds for some constant c0 > 0 and some 0 < r0 W 1. For 0 < e < 1 and
1

2ÿ e
< y < 1

we have the following continuous embedding

H c;yn=r0
p ,! Cy if p � pe;y :� 1� ye

1� �eÿ 1�y :

Let us point out by a simple but concrete example that Theorem 6.4 gives indeed
non-trivial results. Choose e � 1

2, y � 3
4, and r0 � 34

8 . It follows that H
c;2
11=5 is embedded

into Cy provided n � 1; 2.

The last fact which we need about the spaces H c; s
p is that they are compatible under

complex interpolation �� ; ��y.

Theorem 6.5. Let c : Rn ! R be a continuous negative de®nite function as in (6.1), let

s0; s1 X 0, let 1 < p0, p1 <y, and 0 < y < 1. Set

s � �1ÿ y�s0 � ys1;
1

p
� 1ÿ y

p0

� y

p1

:

Then

�H c; s0
p0

;H c; s1
p1
�y � H c; s

p :

One should note that the representation (6.1) excludes the continuous negative de®-
nite function x 7! jxj2. However, this function leads to the classical Bessel potential
spaces H s

p , see e.g. [56], and these spaces are well understood. Observe that in this

case the homogeneity of x 7! jxj2 leads to sharper results. For example, we have the
embedding

H s
p ,! Cy for s >

n

p
:

Let us point out the di¨erence between the Hilbert space �p � 2� and the Banach
space settings. The norm in H c; s

p is given by

k�id� c�D��s=2ujLpk � kFÿ1��1� c���� s=2û �jLpk:

In the Hilbert space case we may apply Plancherel's theorem to get

kujH c; s
2 k � k�1� c����s=2ûjL2k;

and in this case estimates for c directly imply to norm estimates! This makes the
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Hilbert space case much easier to handle. As in our previous papers we will write
H c; s � H

c; s
2 .

Now let us indicate how one can use the results from this section provided a good Lp-
theory for the operators q�x;D� does exist. For this, suppose that ÿq�x;D� extends

to a generator of an Lp-sub-Markovian semigroup �T �p�t �tX0 with domain H c;2
p

where c is a ®xed continuous negative de®nite function. If, in addition, c satis®es the
assumptions of Theorem 6.3, or the more concrete assumptions of Theorem 6.4, and
if the semigroup �T �p�t �tX0 is analytic, then �T �p�t �tX0 is a strong Lp-sub-Markovian
semigroup and we may associate with ÿq�x;D� a Hunt process without any excep-

tional set.

Remark 6.6. Much work has been done for parabolic pseudo-di¨erential operators
with symbols in some classical symbol classes, for example for operators of type
q

qt
ÿ q�x;D�, with q A S m

rd. Clearly, under the assumption that q�x; �� : Rn ! C is a

continuous negative de®nite function and q A S m
rd, we can apply the existing parabolic

theory of pseudo-di¨erential operators to construct sub-Markovian or Feller semi-
groups and processes. For this we refer to the monographs of H. Kumano-go [40] and
that of G. Grubb [21] as well as to the survey of S. D. Ejdel'man [14]. The simplest
example is the operator �1ÿ D� t, 0 < t < 1, which is an Lp-Dirichlet operator with
domain H 2t

p ; obviously, x 7! �1� jxj2� t is a continuous negative de®nite function.

7 Subordination of second order elliptic di¨erential operators

We start with a result which follows from the estimates for elliptic di¨erential
operators given by F. Browder in [8]. A detailed treatment can be found in [36], in
particular Theorem 6.1.44.

Theorem 7.1. Let

L�x;D� � Pn
k; l�1

akl�x� q2

qxkqxl
�Pn

j�1

bj�x� q

qxj
� c�x�

be a uniformly elliptic operator of second order with coe½cients akl � alk A C 2
b , bj A C1

b

and c A Cb. In addition suppose that c�x�W 0 and

Pn
j�1

q

qxj
bj�x� ÿ

Pn
k�1

q

qxj
akj�x�

� �
X 0:

Then �L�x;D�;W 2
p � generates an Lp-sub-Markovian semigroup for 1 < p <y.

For convenience we denote the Lp-generator �L�x;D�;W 2
p � by �A�p�;W 2

p � and the

corresponding Lp-sub-Markovian semigroup by �T �p�t �tX0. In particular, the semi-
group �T �p�t �tX0 is a strongly continuous contraction semigroup on Lp.
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According to H. Triebel, [57, page 91], the operator ÿ�A�p� ÿ l id� is for l > 0 posi-

tive in the sense that

k�k idÿ �A�p� ÿ l id��ÿ1kW cl

1� k
; k > 0;

holds. Moreover, �A�p� ÿ l id;W 2
p � is also the generator of an Lp-sub-Markovian

semigroup, namely the semigroup �T �p�l; t �tX0 where T
�p�

l; t � eÿltT
�p�

t : Consequently,
A
�p�
l :� A�p� ÿ l id has a positivity preserving resolvent and �eÿltT

�p�
t �tX0 is of nega-

tive type since

keÿltT
� p�

t kLp!Lp W eÿlt; tX 0:

From Example 4.7.3.(c) in H. Amann [1] we deduce that A
�p�
l , 1 < p <y, has

bounded imaginary powers,

k�A�p�l �ikkLp!Lp W c�1� k2�epjkj=2; k A R:

Now we may apply Theorem 1.15.3 from [57] to deduce

Theorem 7.2. Suppose L�x;D� ful®ls the assumptions of Theorem 7.1 and let l > 0 be

®xed. Each of the operators �A�p�l ;W 2
p � generates an Lp-sub-Markovian semigroup and

the same holds for the fractional powers ÿ�ÿA
� p�
l �a, 0 < a < 1. The domains of these

operators are determined by complex interpolation leading to

D��ÿA
�p�
l �a� � �Lp;W 2

p �a � H 2a
p :

Moreover, since 0 A r�ÿA
�p�
l � the operator ÿ�ÿA

�p�
l �ÿb, 0 < b < 1, maps Lp into H 2b

p .

Denote by �T �p�;al; t �tX0 the Lp-sub-Markovian semigroup generated by �ÿ�ÿA
�p�
l �a;

H 2a
p �: From the results of A. Carasso and T. Kato [9] it follows that these semigroups

are analytic.

Corollary 7.3. Let L�x;D� and l > 0 be as in Theorem 7.2 and �T �p�;al; t �tX0 be the

Lp-sub-Markovian semigroup generated by �ÿ�ÿA
�p�
l �a;H 2a

p �. Then for all u A Lp we
have

T
� p�;a

l; t u A H 2a
p :

In particular, for p >
n

2a
the semigroup �T �p�;al; t �tX0 is strongly Lp-sub-Markovian.

Clearly, Cy
0 HH 2a

p for all 1 < p <y and therefore

ÿ�ÿA
�p�
l �au A H 2�1ÿa�

p for any u A Cy
0 :
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Thus for p >
n

2�1ÿ a� each of the operators ÿ�ÿA
�p�
l �a maps Cy

0 into Cy. Therefore

we may apply Theorem 2.6 implying that for 0 < a < 1 the operator ÿ�ÿA
�p�
l �ajCy

0
is

indeed a pseudo-di¨erential operator

ql;a�x;D�u�x� � �2p�ÿn=2

�
Rn

eix�xql;a�x; x�û�x� dx

with negative de®nite symbol ql;a�x; x�. Of course for q�x; x� � c�x� we have
ql;a�x; x� � �c�x� � l�a. In the general situation one should expect an asymptotic
expansion of type

ql;a�x; x� � �q�x; x� � l�a � lower order remainder:

We close this section with the following

Conjecture 7.4. Let f be a complete Bernstein function and A
�p�
l be as in Theorem

7.2. We should expect

D�ÿ�ÿA
�p�
l � f � � H f �j�j2�;2

p :

8 On regularising e¨ects of powers of generators in the Hilbert space case

We have already seen in the previous sections that good knowledge of the spaces
D��A�p��k� does help to decide whether an analytic Lp-sub-Markovian semigroup is
strongly Lp-sub-Markovian. In this section we will discuss how the improvement of
the regularity of the coe½cients will turn an analytic Lp-sub-Markovian semigroup
into a strong Lp-sub-Markovian semigroup. The result depends essentially on the fact
that higher regularity of the coe½cients allows us to determine the domains of (large
integer) powers of the generator in terms of function spaces.

Due to the massive problems in the Lp-analysis of pseudo-di¨erential operators with
negative de®nite symbols we restrict ourselves to the Hilbert space case. The results
we discuss here are closely related to earlier considerations of M. Fukushima, H.
Kaneko and the second named author in [19], as well as in [32]. Our point of view,
however, is now somewhat di¨erent.

First let us ®x the class of operators. For this let q : Rn �Rn ! C be a continuous
function such that x 7! q�x; x� is negative de®nite. Further assume that c : Rn ! R
is a ®xed continuous negative de®nite function satisfying

�8:1� 1� c�x�X c0�1� jxj2�r0 ; c0 > 0; 0 < r0 < 1:

Assumption 8.1. The pseudo-di¨erential operator q�x;D� maps H c;2 continuously into

L2 and �ÿq�x;D�;H c;2� is the generator of a symmetric L2-sub-Markovian semigroup

�T �2�t �tX0.

Feller and sub-Markovian semigroups 83

Bereitgestellt von | Universitaetsbibliothek der LMU Muenchen
Angemeldet | 129.187.254.47

Heruntergeladen am | 18.11.13 14:23



Remark 8.2. Due to a result of E. M. Stein [55], �T �2�t �tX0 is an analytic semigroup.

There are many concrete examples of operators satisfying Assumption 8.1. Essen-
tially, one starts with the symbol q�x; x� and imposes suitable analytic conditions. In
particular we refer to [30]±[33], [28], as well as to the results of W. Hoh [23], [24],
[25]±[27].

The fact that q�x;D� : H c;2 ! L2 is continuous, i.e., the estimate

kq�x;D�ujL2kW ckujH c;2k;

requires some regularity and boundedness properties of x 7! q�x; x�. Let us discuss
the question under which circumstances we can prove

�8:2� D�q�x;D�k� � H c;2k:

From the general theory of (selfadjoint) operators we know that

�8:3� D�q�x;D�k� � fu A D�q�x;D�kÿ1� : q�x;D�kÿ1u A D�q�x;D��g

� fu A D�q�x;D�� : q�x;D�u A D�q�x;D�kÿ1�g:

By induction, we are lead to the problem to assure that f A L2 and q�x;D�ku � f
implies u A H c;2k. If ql�x;D�k is invertible, we need, in particular, estimates of the
type

kq�x;D�kujL2kW ckujH c;2kk:

for u A H c;2k. But (8.3) requires for larger k A N more regularity of x 7! q�x; x�. The

condition (8.1) implies that H c;m ,! Cy for m >
n

2r0
and this last fact combined with

Theorem 5.4 leads to

Theorem 8.3. Suppose that q�x;D� satis®es Assumption 8.1 and that (8.1) as well as

(8.2) hold for 2k >
n

2r0
. Then the semigroup �T �2�t �tX0 is strongly L2-sub-Markovian.

The simplest and already quite instructive examples to study regularity e¨ects caused
by coe½cients were constructed in [28]. These operators are of form

q�x;D� �Pn
j�1

bj�x�cj�Dj�

where cj : Rn ! R are ®xed continuous negative de®nite functions and the coe½-
cients bj are Ly-functions independent of the variable xj. Under the assumption
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bj�x�X d0 > 0 it follows that ÿq�x;D� generates a symmetric Dirichlet form with
domain H c;1, c�x� �Pn

j�1 cj�xj�. Thus we may associate with ÿq�x;D� a Hunt
process which is de®ned up to an exceptional set in H c;1. If, in addition, the oscil-

lations of the coe½cients are controlled by
d0

2n
, then H c;2 is the domain of q�x;D�,

and we may construct the process up to an exceptional set in H c;2. In order to
identify D�q�x;D�k� with H c;2k we need bounds for certain iterated commutators

�cj0
�Dj0�; �cj1

�Dj1�; �� � � �cjkÿ1
�Djkÿ1

�; bj � � � ����

which require regularity of the coe½cients bj! It is thus obvious that stronger regu-
larity assumptions on the coe½cients will guarantee the strong L2-sub-Markovian
property provided we have for some m A N the embedding H c;m ,! Cy; now we can
construct a process associated to ÿq�x;D� without any exceptional set!

Let us ®nally point out that in an Lp-setting the condition on k in Theorem 8.3

should read 2k >
n

pr0
. This means that there is a trade-o¨ between k (i.e. regularity of

the coe½cients) and p (i.e. integrability): better integrability requires less regularity.
This holds at least for some cases of negative de®nite functions.

9 Some perturbation results

In this section we will discuss how we may apply the results from Section 5 to simple
perturbations of generators. We want to start with an unperturbed generator A�p� of
an Lp-sub-Markovian semigroup �T �p�t �tX0 which is analytic. Moreover, we suppose
that D�A�p�� is explicitly known as a function space. So far we have seen two
examples, namely the operators �ÿc1�D�;H c;2

p � with c1�D� � id� c�D� and a con-
tinuous negative de®nite function c : Rn ! R (cf. Section 6), and the operator
�ÿ�ÿL�x;D��r � id�;H 2r

p �, 0 < r < 1 (cf. Section 7).

We will now only consider the operator �ÿc1�D�;H c;2
p �, all results have an analogue

for �ÿ��ÿL�x;D��r � id�;H 2r
p �. Actually, they carry over to any �A�p�1 ;H c;2

p �, A
�p�
1 �

A�p� ÿ id, generating an Lp-sub-Markovian semigroup. Our main purpose is, again,
to show how the regularity of the coe½cients determines which type of re®nement
result one can apply.

Considering ÿc1�D� or ÿ��ÿL�x;D��r � id� rather than ÿc�D� or ÿ�ÿL�x;D��r is
just a technical point; clearly we have H

c1; r
p � H c; r

p .

From H. Amann [1, Theorem V.1.2.4, page 259] we deduce for any 0W s < 1 the
estimate

kcs
1�D�ujLpkW ekc1�D�ujLpk � c�e�kujLpk

for all e > 0 and suitable constants c�e�. In particular, for a A Ly we have
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kaujLykW ekc1�D�ujLpk � c�e�kujLpk;

that is,

�9:1� kaujLykW ekujH c;2
p k � c�e�kujLpk:

If aW 0 it follows that�
Rn

�au���uÿ 1���pÿ1
dx �

�
uX1

�au��uÿ 1�pÿ1
dxW 0

and from (9.1) we get that �ÿc1�D� � a;H c;2
p � generates an analytic Lp-

sub-Markovian semigroup �T �p�a; t �tX0 for a A Ly, aW 0. In general, the operator
u 7! au does not map Cy

0 into Cy and therefore ÿc1�D� � a will not map Cy
0 into

Cy. This shows that, in general, we cannot expect ÿc1�D� � a to be the generator of
a Feller semigroup (with Cy

0 in the domain of its generator).

By the general theory of H. Kaneko, see Section 5 for a brief review, we can associate
with �ÿc1�D� � a;H c;2

p � a Hunt process up to an cap
H

c; 2
p

-exceptional set. If

H c;2
p ,! Cy;

then we do not have any exceptional set at all, but as we know this embedding does
not hold for general c and p.

Let us examine the problem of determination D�ÿ�c1�D� � a�k�. We will restrict
ourselves to k � 2. In order to verify

D�ÿ�c1�D� � a�2� � H c;4
p

we need (to calculate and) to estimate ÿ�ÿc1�D� � a��ÿc1�D� � a�u for u A H c;4
p .

Formally,

ÿ�ÿc1�D� � a��ÿc1�D� � a�u � ÿc2
1�D�u� ac1�D�uÿ a2u� c1�D��au�:

It is only the last term that could cause trouble: for a A Ly and u A H c;4
p the operator

u 7! c1�D��au� is not bounded in Lp and we do not have the estimate

kc1�D��au�jLpkW ckujH c;4
p k:

(With the classical theory in mind one should look for kc1�D��au�jLpkW
~ckujH c;2

p k:)
However, if we could bound the commutator �c1�D�; a�u :� c1�D��au� ÿ ac1�D�u,

k�c1�D�; a�ujLpkW kujH c;2
p k;
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(we should expect k�c1�D�; a�ujLpkW kujH c;1
p k) then we can identify

D�ÿ�c1�D� � a�2� with H c;4
p . Since the embedding H c;4

p ,! Cy holds often for a

larger range of p (depending of c and n) than the embedding H c;2
p ,! Cy, we see

that higher regularity of a will give smaller exceptional sets which might even vanish
at all.
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