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Several decades after the discovery of selenium as an
essential trace element in vertebrates approximately
20 eukaryotic and more than 15 prokaryotic seleno-
proteins containing the 21 proteinogenic amino acid,
selenocysteine, have been identified, partially charac-
terized or cloned from several species. Many of these
proteins are involved in redox reactions with seleno-
cysteine acting as an essential component of the
catalytic cycle. Enzyme activities have been assigned
to the glutathione peroxidase family, to the thioredoxin
reductases, which were recently identified as sele-
noproteins, to the iodothyronine deiodinases, which
metabolize thyroid hormones, and to the selenophos-
phate synthetase 2, which is involved in selenopro-
tein biosynthesis. Prokaryotic selenoproteins cata-
lyze redox reactions and formation of selenoethers
in (stress-induced) metabolism and energy produc-
tion of E. coli, of the clostridial cluster XI and of other
prokaryotes. Apart from the specific and complex
biosynthesis of selenocysteine, selenium also re-
versibly binds to proteins, is incorporated into seleno-
methionine in bacteria, yeast and higher plants, or
posttranslationally modifies a catalytically essential
cysteine residue of CO dehydrogenase. Expression of
individual eukaryotic selenoproteins exhibits high
tissue specificity, depends on selenium availability, in
some cases is regulated by hormones, and if impaired

contributes to several pathological conditions. Dis-
turbance of selenoprotein expression or function is
associated with deficiency syndromes (Keshan and
Kashin-Beck disease), might contribute to tumorigen-
esis and atherosclerosis, is altered in several bacterial
and viral infections, and leads to infertility in male
rodents.
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Introduction: Some Historical Landmarks

The element selenium, discovered in 1817 and named
after the Greek goddess of the moon by Berzelius, gained
biomedical interest after Schwarz and Foltz (1957) report-
ed that it is an essential trace element for mammals. The
link between nutritional science and enzymology was,
however, established appreciably later when Flohé et al.
(1973), intrigued by a preliminary report from Hoekstra’s
group (Rotruck et al., 1972), identified selenium as a stoi-
chiometric, covalently bound component of glutathione
peroxidase (GPx), an enzyme previously demonstrated to
dominate mammalian hydroperoxide metabolism (Sies
etal., 1972). Selenium proved to be present in this enzyme
as a selenocysteine residue (Forstrom et al., 1978, Wendel
et al., 1978) that is integrated into the amino acid chain
(Glinzler etal., 1984). The selenocysteine residue in GPx is
responsible for the catalytic efficiency, as demonstrated
by site-directed mutagenesis (Rocheretal., 1992), and the
X-ray analysis performed by Epp et al. (1983) enabled a
detailed understanding of the catalytic mechanism (Au-
mann etal., 1997; see also Figure 1A).

Starting in the mid-eighties, further selenoproteins were
discovered that broadened the scope of selenium bio-
chemistry from antioxidant defense to multiple aspects of
mammalian metabolism. The metabolic activation (Behne
etal., 1990; Arthur et al., 1990; Davey et al., 1995), as well
as degradation of thyroid hormones (Croteau et al., 1995),
were shown to depend on selenium-containing deiodi-
nases. Most surprisingly, selenium was also discovered in
awell-documented enzyme of basic metabolic relevance,
inthioredoxin reductase (Tamura and Stadtman, 1996). Fi-
nally, a homolog of GPx, the phospholipid hydroperoxide
glutathione peroxidase (PHGPX) originally described by
Ursini etal. (1982), proved to be involved in sperm matura-
tion (Ursini et al., 1999). Further surprises may be anti-
cipated from the growing number of mammalian seleno-
proteins.
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Fig. 1 Diversity of Reaction Centers of Selenoproteins.

(A) Active site of the classical mammalian glutathione peroxidase in its ground state, as modeled by Aumann et al. (1997) based on the
X-ray crystallographic analysis of Epp et al. (1983). The dissociated selenol function of selenocysteine (Sec 52) forms a catalytic triad with
Trp*®® and GIu®¥’, as demonstrated for PHGPx by Maiorino et al. (1985). The basic residues Arg®” 193 184185 gnd | ys®! from the second
subunit contribute to the optimum orientation of the reducing substrate GSH (Aumann et al., 1997).

(B) Reaction center of CO dehydrogenase from Oligotropha carboxidovorans according to Dobbeck et al. (1999). A molybdenum cofac-
tor is buried in the center of the large subunit of CO dehydrogenase. The geometry of the first coordination sphere around the Mo
ion forms a distorted square pyramid containing the dithiolene group of molybdopterin cytosine dinucleotide (MCD), two oxo- and one
sulfido-group. The CO dehydrogenase preparations obtained from the bacteria contain active (sulfido-group present) and inactive
enzyme (sulfido-group replaced by a hydroxy-group). The apical oxo-group is in hydrogen-bonding distance to the N2 of the conserved

GIn®*, The other oxo-group is in hydrogen-bonding distance to the O1 of the conserved Glu’®. The sequence Val-Ala-Tyr-Arg-Cys
, which has been post-translationally modified to S-selanylcysteine. The S-selanyl-

Phe-Arg at the active site contains the residue Cys®®

388‘Ser'

cysteine is catalytically essential and in a distance of 2.2 A to the sulfido-group. For further details see Dobbek et al. (1999).
Color codes: C, brown; N, blue; O, red; S, yellow; Se, magenta; P, dark red; grey backbone indicate second subunit of GPx. The figure was

kindly prepared by H.-J. Hecht, GBF, Braunschweig, Germany.

The selenium biochemistry of mammalian systems was
paralleled, in fact often preceded, by related discoveries in
prokarya. Already in 1954 selenium was rated as a growth
factor of certain bacteria (Pinsent, 1954). The first bac-
terial selenoproteins were described in 1973 (Andreesen
and Ljungdahl, 1973; Turner and Stadtman 1973), and the
growing diversity of enzymatic functions of such prokary-
otic enzymes remains a valuable guide to unraveling the
roles of less accessible mammalian enzymes. The present
understanding of selenoprotein biosynthesis could not
have been achieved without the aid of microbial genetics.
The key observation, though, was made with a mouse
gene: it obviously encoded a mouse GPx and displayed
the stop codon TGA precisely at the position that should
encode selenocysteine inthe homologous bovine enzyme
(Chambers et al., 1986) that had been previously com-
pletely sequenced by protein chemistry (Glnzler et al.,
1984). Withinthe same year Zinoni et al. (1986) established
that TGA also encoded the selenocysteine discovered in
bacterial formate dehydrogenase by Jones et al. (1979).
Starting from these observations, the complex biosynthe-
sis of selenoproteins was unraveled for bacteria in a

transatlantic cooperation that remains inseparably asso-
ciated with the names of Stadtman and Bdck (Zinoni et al.,
1986; Bock and Stadtman, 1988; Bock et al., 1991a,b).
The attempts to understand eukaryotic selenoprotein
biosynthesis has revealed homologies but also marked
differences (Berry etal., 1991, 1993), and has not yet yield-
ed a satisfying comprehensive view.

Identified Selenoproteins

Selenium usually exerts its influence on physiology as an
integral component of proteins, into which itis incorporat-
ed in the form of selenocysteine (Cone etal., 1976; see be-
low). Selenoproteins can be selectively labeled by "°*Se in
selenium-deficient animals and autoradiographically vi-
sualized after electrophoretic separation (Behne et al.,
1996). According to such experiments, the number of se-
lenoproteins in mammals has been estimated to reach
30-50. Less than 20 of such bands have been character-
ized by sequence analysis up to now and an enzymatic
function was assigned to more than ten of them. Among



Table 1 Mammalian Selenoproteins.
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Selenoprotein (common abbreviations)

Key references

Glutathione peroxidases (GPx)
Cytosolic or classical GPx (cGPx, GPx-1)
Phospholipid hydroperoxide GPx (PHGPx, GPx-4)
Plasma GPx (pGPx, GPx-3)
Gastrointestinal GPx (GI-GPx, GPx-Gl, GPx-2)

lodothyronine deiodinases
5'-deiodinase, type | (5'Dl)
5’-deiodinase, type Il (5'Dll)
5-deiodinase, type Ill (5-Dlll)

Thioredoxin reductases
Thioredoxin reductase (TrxR)
Mitochondrial thioredoxin reductase (TrxR-2)

Thioredoxin reductase homologs (SelZf1; SelZf2)
Selenophosphate synthetase-2

Functionally undefined
15 kDa selenoprotein of T cells
Selenoprotein P 10 (SelP)
Selenoprotein P 12
Selenoprotein W (Selw)
Selenoprotein R (SelR)
Selenoprotein T (SelT)
Selenoprotein X (SelX)
Selenoprotein N (SelN)

Mills 1957; Flohé et al., 1973

Ursini et al., 1982; Brigelius-Flohé et al., 1994
Takahashietal., 1987

Chuetal.,, 1993

Behne etal., 1990; Arthur et al., 1990
Davey etal., 1995
Croteau etal., 1995

Tamura and Stadtman, 1996

Leeetal., 1999; Watabe et al., 1999;
Miranda-Vizuete et al., 1999; Gasdaska et al., 1999
Lescure etal., 1999

Guimaraes et al., 1996

Gladyshev etal., 1998

Motsenbocker and Tappel, 1984

Saijoh etal., 1995

Vendeland et al., 1995; Whanger et al., 1997
Kryukov et al., 1999

Kryukov et al., 1999

Lescure etal., 1999

Lescureetal., 1999

the identified and relatively well-characterized selenopro-
teins are four glutathione peroxidases (GPx), the cytosolic
GPx (cGPx), the gastrointestinal GPx (GI-GPx), plasma
GPx (pGPx) and phospholipid hydroperoxide GPx (PHG-
Px), at least three thioredoxin reductases (TrxR), three
deiodinases (D), the selenophosphate synthetase-2, the
selenoprotein P (SelP) present in plasma and a related
variant in bovine brain (SelP12), the selenoprotein W in
muscle, and some others of unknown function (Table 1).

In the majority of known mammalian selenoproteins,
selenium occurs in the form of selenocysteine, which has
proved to be essential for efficient catalysis (Maiorino
etal., 1995; Gromer et al., 1998; Kohrle, 2000b; Lee et al.,
2000). If selenocysteine is substituted by cysteine, the ac-
tivity of the selenoenzymes falls by 2 to 3 orders of magni-
tude. Accordingly, the natural cysteine-containing PHGPx
homolog from Plasmodium falciparum is approximately
1000-fold less active than ‘true’ Se-PHGPx (Sztajer et al.,
2000).

In prokarya, enzymes that were post-translationally
modified with selenium were characterized. The carbon
monoxide dehydrogenase, for instance, is an extremely
complex molybdopterine-containing iron-sulphur-flavo-
protein (Dobbek et al., 1999), in which a selanyl group is
bound to a cysteine residue (Figure 1B). Such seleno-

proteins have not yet been described in vertebrates. How-
ever, in prokarya the overwhelming number of selenopro-
teins contain selenocysteyl residues (Table 2). They com-
prise selenoproteins that are present in eukarya as sulfur
homologs like the peroxiredoxins (Rhee et al., 1999; Flohé
et al., 1999). Most prokaryotic selenoproteins, however,
are unique and catalyze highly-varied processes that
have not been discovered in eukarya. In the clostridial
cluster XI (Kreimer and Andreesen, 1995; Wagner et al.,
1999; Kabisch et al., 1999), selenoproteins are vital for en-
ergy production, particularly under stress, and appear
to be important for additional metabolic performances
and pathogenicity. A better understanding of such unique
pathways in clinically relevant microorganisms might pro-
vide arational basis for therapeutic intervention.

Metabolic Function of Mammalian
Selenoproteins

Glutathione peroxidases are found in all mammalian tis-
sues in which oxidative processes occur. By reduction of
hydroperoxides to the corresponding alcohols, these
enzymes can prevent the production of reactive oxygen
radicals and thus may contribute to the protection of the
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Table 2  Selenoproteins in Prokaryotes®.

Selenoprotein (gene hame)

Function

References

Glycine reductase

Glycine/sarcosine/betaine reductase
Selenoprotein A (grdA)

Glycine reductase selenoprotein B (grdB)

Betaine reductase selenoprotein B (grdH)
Proline reductase (prdB)

Formation of a selenoether
Redox function,

transfer of a selenoether
Formation of a selenoether
Sarcosine reductase selenoprotein B (grdF) Formation of a selenoether
Formation of a selenoether
Redox function,

Arkowitz and Abeles, 1990
Andreesen et al., 1999

Wagner et al., 1999
Andreesen et al., 1999
Andreesen etal., 1999
Kabisch etal., 1999

formation of a selenoether

Heterodisulfide reductase (HdrA)
Seleno-peroxiredoxin (prxU)

Redox function
Redox function (peroxidase) Andreesenetal., 1999
Putative redox active selenoprotein (prpU) Redox function

Wilting et al., 1997

Andreesen etal., 1999

Formate dehydrogenase (fdhF) Hydrogen donor Boyington et al., 1997

Formylmethanofuran dehydrogenase Redox function Vorholtetal., 1997
(fwuB)

NiFeSe-hydrogenase (hydV) Hydrogen donor Garcinetal., 1999

F420 non-reducing hydrogenase Redox function Pfeiffer et al., 1998
(vhuU, vhuD)

F420 reducing hydrogenase (fruA) Redox function Wilting etal., 1997

Selenophosphate synthetase (selD)

Formation of key metabolite Lacourciere and Stadtman, 1999

for selenoprotein synthesis

CO dehydrogenase (coxL)

selenide
Nicotinic acid hydroxylase Unknown
Xanthine dehydrogenase Unknown

Formation of a carbon oxide Dobbek etal., 1999

Gladyshev etal., 1996
Schréaderetal., 1999

2 Adapted from Flohé et al. (2000).

organism’s macromolecules and biomembranes against
oxidation (Siesetal., 1972; Flohé, 1989; Ursinietal., 1995).
The role of the cytoplasmic GPx as an ‘emergency en-
zyme’ to fight oxidative stress was verified by reverse ge-
netics (Ho et al., 1997; Cheng et al., 1998; de Haan et al.,
1998; Fu et al., 1999; Jaeschke et al., 1999) and, in this
role, cGPx cannot be substituted by any of the other
selenoproteins. Glutathione peroxidases, in particular the
less ubiquitously distributed isozymes, are engaged in re-
dox regulation of many metabolic processes (Brigelius-
Flohé, 1999) and appear to be involved in peroxinitrite
scavenging (Sies et al., 1997). PHGPx may, e. g., regulate
the biosynthesis of leukotrienes, thromboxanes and pros-
taglandins and thus modulate inflammatory processes
(Smith and Lands, 1972; Haurand and Flohé, 1988;
Schnurretal., 1996; Weitzel and Wendel, 1993; Imai et al.,
1998). Glutathione peroxidases, in particular PHGPX,
have further been shown to dampen cytokine-induced
transcriptional gene activation (Brigelius-Flohé et al.,
1997), e. g. by inhibiting phosphorylation of IkB (Kretz-
Remy etal., 1996).

All of the three deiodinase isoenzymes identified up to
now appear to contain selenocysteine (Figure 2). These
enzymes catalyze the activation of the prohormone thyr-
oxine (T4), which is secreted by the thyroid, to the active
thyroid hormone 3,3’,5-triiodothyronine (T3) (type | and
type Il 5’'-deiodinase) or the deiodination of T4 and T3 to
metabolites (type lll 5-deiodinase) that are not hormonally
active. These three isozymes are encoded by different

genes and show distinct specificities, tissue- and devel-
opment-specific expression patterns and regulation. Es-
sentially they control the local availability and concentra-
tion of the highly active thyroid hormone T3 (reviewed in
Kohrle, 19994, b, 2000a,b).

In contrast to prokaryotic homologs, thioredoxin reduc-
tase of mammals was identified as a selenoprotein (Tamu-
ra and Stadtman, 1996). It needs selenocysteine as the
penultimate amino acid residue for its appropriate enzy-
matic function (Marcocci et al., 1997; Gromer et al., 1998;
Lee et al., 2000; Gorlatov and Stadtman, 2000). Recently,
two more tissue-specifically expressed isoenzymes were
also identified as selenoproteins (Gasdaska et al., 1999;
Lee et al., 1999; Watabe et al., 1999) and related proteins
were identified by ‘in silico’ cloning (Lescure et al., 1999).
Various natural and synthetic compounds, apart from
disulfide groups in peptides and proteins, can be reduced
by TrxR (Holmgren and Bjornstedt, 1995; Bjornstedtetal.,
1995). The natural substrate of TrxR, thioredoxin (Trx), is a
central regulator of the cellular redox status (Follmann and
Haberlein, 1995). Itis, e. g., required for the redox-regulat-
ed function of transcription factors and hormonally-regu-
lated nuclear receptors. Furthermore, ribonucleotide re-
ductase needs reduced Trx for the production of deoxynu-
cleotides. Thus, TrxR enables a basic metabolic process
and regulates multiple metabolic events in eukaryotic cells
(Hayashietal., 1993; Bjornstedt et al., 1997; Makino et al.,
1999; Holmgren, 2000). Likely, it is the pivotal role of sele-
nium in TrxR that explains why a knock-out of the seleno-



Fig. 2 Metabolism of Thyroid Hormone by 5’ and 5-Deiodinases.
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Reductive 5’-(phenolic ring) deiodination of the prohormone L-thyroxine (3,3',5,5’-tetraiodo-L-thyronine, T,) to thyromimetically active
3,3’-5-triiodo-L-thyronine (T3) is catalyzed by the two deiodinase selenoenzymes, type | and type Il 5’-deiodinase (— 5'D). Type llI
5-deiodinase (5-D ==-%) removes iodide in 5-position from the tyrosyl ring of T, and forms thyromimetically inactive 3,3’,5’-triiodo-L-
thyronine (reverse Ts, I'T3). Figure 2 illustrates the conformational aspects of thyroid hormones and the bulky iodine atoms (black) of the
non-planar diphenylether aromatic ring system (modified from Cody et al., 1986). Whereas T4 and T3 occupy a skewed conformation, the
inactive metabolite rT3, lacking the iodine atom in the 5-position, has an antiskewed orientation of the two phenolic rings. The physiolog-

ical cofactor(s) of these deiodinase selenoenzymes is (are) unknown.

cysteyl-tRNA geneis lethal in mice (Bdsl etal., 1997), since
targeted disruption of the thioredoxin gene proved to be
equally lethal (Matsui et al., 1996).

Approximately 60-70% of the plasma selenium is
bound in the selenoprotein P. The function of this protein
is not yet clear. It is assumed to be an extracellular anti-
oxidative protein which contributes to the decomposition
of peroxinitrite (Arteel et al., 1998; 1999) or might exhibit
some in vitro peroxidase activity (Sies et al., 1999) like
many natural and synthetic selenocysteine-containing
proteins (Haring and Schreier, 1999). However, it could
equally well bind heavy metals (Burk and Hill, 1994). The
role of the selenoprotein P as a transport protein of seleni-
um in plasma has meanwhile been questioned, because
selenocysteine could only be released by destroying the
protein (Burk and Hill, 1994). Selenoprotein P is presumed
to exert its antioxidative effect particularly in the vascular
system, where it is bound to endothelial cells with high
affinity (Hill and Burk, 1997), probably via its histidine-rich
domains as shown by in vitro interaction with heparin
(Arteel et al., 2000) . The inhibition of the activity of the hu-
man selenoprotein P promoter and the protein expression
through pro-inflammatory cytokines and TGFB in liver
cells characterizes selenoprotein P as a negative acute
phase protein (Dreher et al., 1997, Mostert et al., 1999).

Recently, selenoprotein P has further been reported to
promote neuron survival in vitro (Yan and Barrett, 1998).

The Biosynthesis of Selenoproteins

The biosynthesis of selenoproteins in prokaryotes has
been largely clarified (Bock, 2000; Figure 3). Related stud-
ies were mainly conducted with formate dehydrogenase
in E. coli, which also contains selenium as a selenocys-
teine residue integrated in the peptide chain. The insertion
of the selenocysteine is encoded by the triplet TGA, which
usually functions as a stop codon (Zinonietal., 1986; Bock
and Stadtman, 1988; Béck etal., 1991a). Recoding of TGA
as a selenocysteine codon requires an mRNA second-
ary structure called SECIS (for selenocysteine-insertion
sequence), which, in bacteria, is localized immediately
downstream of the UGA codon. This secondary structure
isrecognized by a special translation factor, SelB (Baron et
al., 1993), which directs a special tRNA®®5¢¢ encoded by
the SelC gene, to the ribosome, where the latter enables
the incorporation of selenocysteine by means of a UGA
anticodon (Leinfelder et al., 1988; Forchhammer et al.,
1991). The selenocystyl-loaded tRNAS5¢¢js synthesized
from a seryl-loaded tRNA ©®75¢¢ by means of selenophos-
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A) Formation of the selendonor, selenophosphate

SELD

ATP+H,Se = —>» HPOSe

B) Formation of selenocysteine-loaded tRNA(sense

H,PO,Se + @ @
o—l Si% (—==Sel

C) Formation of the putative complex for the cotranslational
incorporation of selenocysteine

Fig. 3 Model of Selenocysteine Incorporation in Eukarya.
Decoding of the UGA codon as selenocysteine and its subse-
quent incorporation requires a complex multicomponent system
and several reactions. These include: (A) the formation of the se-
lenium donor, selenophosphate, from ATP and selenide, cat-
alyzed by the selenophosphate synthetase-2 (SELD), which is a
selenoenzyme by itself; (B) a specific tRNA, called tRNASe)Se or
SelC, which s first loaded with serine and then converted into se-
lenocysteine (Sec) by selenocysteine synthase (SELA) using se-
lenophosphate as selenium source; (C) a putative translation
complex in analogy to the established complex in prokarya. The
mRNA forms a characteristic secondary structure in the 3’ non-
translated region, the selenocysteine incorporating sequence
(SECIS). The selenocysteine-loaded tRNAS®S¢ s transferred to
the ribosome A site and recognizes the UGA codon by its anti-
codon ACU. The complex is stabilized via the interaction of puta-
tive SECIS-binding proteins (‘SelB’) with the SECIS and the tRNA.
These components of the translational complex remain to be
identified.

phate (Leinfelder et al., 1990), which is generated from
H,Se and ATP (Lacourciere, 1999; Lacourciere and Stadt-
man, 1999).

The eukaryotic system of selenoprotein synthesis ap-
pears to be homologous in part (Figure 3). The selenocys-
teine codon is TGA (UGA) again; the tRNAS®Se¢ (Lee et al.,
1989) and the selenophosphate synthetase (Low et al.,
1995; Guimaraes et al., 1996; Lacourciere and Stadtman,
1999) are closely related. The essential difference of the
eukaryotic selenocysteine biosynthesis system consists
in the position of the SECIS element. In eukarya, itis locat-
ed in the 3’ nontranslated region and thus decoding from
an appreciable distance is necessary (Berry et al., 1993;
Low and Berry, 1996). In this respect the archaeal seleno-

protein biosynthesis is more similar to the eukaryotic sys-
tem than to the bacterial system (Wilting etal., 1997). Con-
sidering the similarity of the systems, a SelB-orthologous
translation factor is also postulated for eukarya, which
should have affinity to both SECIS and tRNA®*° (Flohé
et al., 1997), and should control the correct decoding of
the distant UGA codon by competing with the termination
factor (Nasimetal., 2000). Up to now, the eukaryotic SelB-
ortholog could not yet be identified. Using gel shift exper-
iments, various proteins that bind to eukaryotic SECIS
structures were detected. The bands, however, differ in
molecular masses (from 48 - 120 kDa) and their affinities to
SECIS elements of a given selenoprotein mRNA could
usually not be compared to that of other SECIS elements
(Shenetal., 1995, 1998; Yamada, 1995; Hubertet al., 1996;
Lesoon et al., 1997). A protein of 120 kDa was reported
to be required for eukaryotic selenoprotein biosynthesis
(Copeland et al., 2000). It does not, however, display any
homology with bacterial SelB and appeared to be only part
of a larger complex. Most of these SelB candidates can
therefore equally be considered as nucleic acid-binding
proteins that regulate, e.g. tissue-specific expression of
certain selenoproteins or mMRNA stability and the functions
of bacterial SelB, i.e. binding of the SECIS element and
tRNASESe¢ aswell as selenocysteine incorporation, might
be exerted by two (or more) different proteins in archeae
and mammalia (Rother et al., 2000) .

Regulation of Selenoprotein Expression

Tissue-Specific Expression

The more common selenoproteins display an expression
pattern that reflects the metabolic activity of the tissue,
whereas others are more selectively distributed.

Type | 5’'-deiodinase is found primarily in thyroid, liver,
kidney and pituitary, type I 5’-deiodinase in brown fat tis-
sue of rodents, in placenta, thyroid, pituitary, and in the
central nervous system, type Il 5-deiodinase in skin,
placenta and also in the central nervous system (Kdhrle,
2000b). The testicle is the tissue containing the highest
amount of PHGPx (Maiorino et al., 1998). In Schistosoma
mansoni, PHGPXx is found in the female genitals (Maiorino
etal., 1996). GI-GPx is expressed only in the gastrointesti-
nal tract (Chu et al., 1993, Mork et al., 1998; Wingler and
Brigelius-Flohé, 2000), whereas pGPx is secreted and
preferentially formed at metabolic surfaces (proximal tu-
bulus of the kidney, intestinal epithelium, skin, lung, epi-
didymis, vas deferens, chorioidal plexus; Brigelius-Flohé,
1999). The extracellular selenoprotein P displays a similar
expression pattern but is highly expressed in liver and,
surprisingly, also in testicular Leydig cells and the Purkinje
layer of the cerebellum (Steinert et al., 1998). Among the
selenoproteins, which are not yet defined functionally
or structurally, selenoprotein W is found in heart and ske-
letal muscle, other poorly characterized selenoproteins in
testis, prostate and pancreas (Behne et al., 1997).



The sometimes unusual expression pattern certainly
points to highly-specialized roles. In none of the cases has
the molecular basis for tissue-specific expression so far
been elucidated and, apart from PHGPx and the deiodi-
nases (see below), the tissue-specific biological role of the
selenoproteins remains obscure.

Hormone-Dependent Regulation

In fetal osteoblast-like cells (hFOB), human thioredoxin re-
ductase is rapidly induced, like an immediate-early gene,
through 1,25-dihydroxy vitamin D3, certain cytokines and
growth factors; here also the selenium status modulates
the expression of TrxR (Schiitze etal., 1998a, b). The three
deiodinase isoenzymes are regulated by thyroid hormones,
retinoids, sexual hormones, gluco- and corticosteroids
and a series of growth factors and cytokines, as verified by
promoter studies for individual deiodinase isoenzymes
(Jakobs et al., 1997; Schmutzler et al., 1998, for an over-
view see Kohrle, 2000b).

Hormone-dependent expression of PHGPXx, which had
been assumed to be mediated by putative hormone-
responsive elements in the promoter or in the introns
(Brigelius-Flohé et al., 1994), could not be verified by re-
porter gene constructs. PHGPx rather is preferentially ex-
pressed in round spermatids. These cell’'s developmentin
turn depends on testosterone (Maiorino et al., 1998). The
androgen-dependent expression of pGPx in epididymis
might be based on the same principle of hormone-mediat-
ed growth and differentiation of the producing cell type
(Schwaab et al., 1998).

Regulation by Oxidative Stress

An induction of GPx genes by oxidative stress was often
postulated but has never been convincingly demonstrat-
ed in vivo. The induction of cGPx through an oxygen-re-
sponsive element has only been described in vitro (Cowan
etal., 1993; for areview see Flohé et al., 1997).

Selenium-Dependent Regulation

Biosynthesis of selenoproteins, of course, depends on the
bioavailable selenium. Their biosynthesis, however, fol-
lows a strict hierarchy in the case of limited selenium sup-
ply (Burk and Hill, 1993; Sunde, 1994; Gross et al., 1995;
Flohé et al., 1997). Even within the family of glutathione
peroxidases there are enormous differencesin the expres-
sion in response to selenium (Brigelius-Flohé, 1999). In all
examined cases the PHGPx activity in selenium deficien-
cy was stable for a long time, whereas the activity of cGPx
declined quickly and substantially (Lei et al., 1995). This
loss of activity upon selenium deprivation is not only
caused by reduced protein synthesis, but also by en-
hanced degradation of the pertinent mMRNA. The mRNA
stability of the cGPx s the lowest, that of the PHGPx is rel-
atively unchanged and reduced only under severe sele-
nium deficiency. That of GI-GPx is extremely high. The
MRNA even increases under poor selenium provision
(Wingler et al., 1999). The reasons for this phenomenon
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are not clear at all. Itis likely that the mRNA stability is reg-
ulated by selenium-responsive RNA-binding proteins in
an analogous way as has been demonstrated for mRNA of
proteins involved iniron metabolism (Hentze, 1991). It has
not yet been examined in detail whether mRNA stability
responds to selenium in a tissue-specific manner.

Medical Implications

The characteristics of selenium deficiency, but also of
selenium toxicity, are largely known from epidemiological
studies. At present, a daily intake of 70 wg for adults
is considered normal, while daily intakes below 20 pg
are rated as insufficient. The toxicity limit is estimated at
800 g per day (Bahr et al., 1999).

Comprehensive analyses of selenium deficiency in live-
stock production and agriculture were conducted in the
US, New Zealand and other regions with varying selenium
supply, as reviewed extensively by the National Research
Council (1983) of the United States. As a consequence,
selenium supplementation of animal food or the use of
mineral fertilizers has become routine in many selenium-
deficient countries, although the basic biochemical pro-
cesses causing the deficiency symptoms remain to be
worked out. Human selenium supply relies on such ani-
mal-mediated enrichment of the food chain in many re-
gions of the world, where selenium, like iodine, has been
eluted from agriculturally-used soils and earth surfaces
and is no longer supplied to the food chain via assimilation
by plants.

Manifest Selenium Deficiency

While typical selenium deficiency syndromes of livestock,
like white muscle disease in cattle, mulberry heart disease
in pig, and exsudative diathesis in poultry, have been rec-
ognized in many countries, manifest selenium deficiency
is commonly not a problem for humans living in developed
countries, where people have access to varied food de-
rived from diverse sources. Human diseases unambigu-
ously attributed to, or associated with, selenium deficien-
cy have been reported to occur only in remote rural areas
with extreme selenium deficiency.

In a cooperation between Chinese and American
groups, the pathophysiology of the exemplary Chinese
selenium deficiency syndrome, Keshan disease, was
largely clarified: against the background of a selenium de-
ficiency, coxsackie viruses become virulent. This etiology
of Keshan disease has recently been corroborated by
compelling animal experiments. In both selenium-defi-
cient and cGPx(-/-) mice, avirulent Coxsackie strains
mutated into virulent ones (Beck et al., 1998). Selenium
deficiency, thus, is a necessary but not a sufficient condi-
tion to cause disease manifestation.

Detailed concepts for the pathogenesis of the myx-
oedematous cretinism have been developed from epi-
demiological and intervention studies by Dumont’s team
in Brussels in cooperation with Central African and Asian
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teams. The resulting hypotheses are now being tested in
animal experiments. This disease occurs in the case of
a serious simultaneous selenium and iodine deficiency,
whereas iodine deficiency alone leads to a neurological
type of cretinism (Dumont et al., 1994; Kohrle 1999a).
Whether the Kashin Beck osteoarthropathy is also caused
by selenium deficiency or combined selenium and iodine
deficiency is still the topic of scientific controversy. In any
event, further pathogenic factors, e.g. mycotoxins, ap-
pear to contribute to this peculiar syndrome (Ge and
Young, 1993; Moreno-Reyes et al., 1998).

Selenium and Tumor Incidence

The relationship between selenium supply and cancer
incidence is supported by epidemiological surveys, and
cohort and case control studies, as well as by retrospec-
tive and prospective prevention or intervention studies
(National Research Council, 1983). Different approaches
from several regions (e.g. China, USA, Scandinavia) al-
most unanimously demonstrated low selenium intake to
be associated with a higher incidence of mammary, thy-
roid, prostate, lung and colorectal carcinoma (for recent
overviews see Combsetal., 1997; Combs and Gray, 1998;
Knekt et al., 1998). Animal experiments on initiation, pro-
motion and proliferation of tumors tended to support a
beneficial effect of selenium. In animal experiments, how-
ever, individual selenium compounds differed in their effi-
cacy (Ip and Ganther, 1990; Ip, 1998). The protective effect
of selenium is not readily explained in terms of prevention
of oxidative DNA damage, since, as arule, higher dosages
of selenium than those optimizing peroxide metabolism
are required (Combs et al., 1997; Combs and Gray, 1998;
Ganther, 1999). Accordingly, topical discussions presume
a direct antiproliferative effect of pharmacological sele-
nium concentrations, be it due to enhancement of apop-
tosis by excess selenium supply or to distinct inhibition
of proliferation-enabling enzymatic processes by certain
selenium metabolites (Ganther, 1999).

A pivotal prospective, placebo-controlled, double-
blind study conducted with more than 1100 patients over
4.5 years on average and a selenium supplementation of
200 p.g/d in the form of selenium-enriched yeast remained
ambiguous in failing the main endpoint, i. e. lowering the
recurrence of non-melanoma skin cancer, but surprised in
meeting secondary endpoints beyond expectations: total
cancer incidence and cancer mortality were significantly
lowered by supplementation. Particularly the incidence
of colorectal, pancreatic and lung tumors decreased dur-
ing the intervention and the 6.5-year follow up-period in
the selenium-supplemented group (Clark et al., 1996). To
comply with biometric rules, however, the observations
have to be verified in dedicated examinations.

Selenium and Intensive Care Medicine

Critically ill patients, above all those with systemic inflam-
matory response syndrome (SIRS), have lower serum se-
lenium levels and GPx activity already when they are ad-

mitted to intensive care units (Hawker et al., 1990; Gartner
et al., 1997). In SIRS patients, the abundant H,O, forma-
tion necessitates adequate protection by glutathione per-
oxidases (Prabhaetal., 1991). Low serum selenium levels
correlate with the low GPx activity and are almost consis-
tently found during the hyperdynamic septic phase of
shock, after surgery, or in patients with liver diseases
(Robinson etal., 1992). Also, serum selenium levels corre-
late inversely with mortality (Forceville et al., 1998). The
reason is still not clear. Selenium-deficient nutrition is dis-
cussed as a predisposing factor for SIRS (Richard et al.,
1991; Ringstad et al., 1993). But also a rapid redistribution
of selenium in the body or an excretion through the kidney
at the beginning of the disease has been supposed, but
could not yet be analytically verified (Forceville et al.,
1998). During longer parenteral nutrition and continua-
tion of the disease the selenium level further decreases
(Hawker et al., 1990; Sando et al., 1992). It is equally un-
clear how a selenium supplementation mightinterfere with
the septic syndrome. Normalization of peroxide metabo-
lism is most frequently discussed. But a mechanistically
unclear improvement of the immune response that is ob-
served upon selenium supplementation (McKenzie et al.,
1998), comprising inter alia enhanced activity of natural
killer cells (Dimitrov et al., 1986), might be of particular
relevance in the late phases of SIRS.

First pilot studies have addressed the effect of selenium
on septic diseases with promising results (Gartner et al.,
1997; Zimmermann et al., 1997; Angstwurm et al., 1999).
In these conditions, the usual parenteral nutrition, which
contains low dosages of selenium (35 ug/day), neither
leads to a normalization of serum selenium levels nor to an
increase of GPx activity. Based on the preliminary data,
controlled prospective studies examining the efficiency of
selenium at different dosages in an adequate number of
patients appear mandatory, because SIRS still has one of
the highest mortality rates (40% on average) among the
acute diseases.

Selenium and Thyroid Function

The human thyroid contains a high amount of selenium
because it produces H,O, for oxidative thyroid hormone
synthesis and has to protect itself from oxidative damage
by the expression of selenoperoxidases. Moreover, it
needs selenium for activating the prohormones of T4 to
T3 catalyzed through the 5’-deiodinases. As mentioned
above, serious selenium deficiency combined with iodine
deficiency leads to a myxedematous type of cretinism. In
iodine deficiency, the production of H,0, is stimulated by
pituitary thyrotropin (Dumont et al., 1994). In this condi-
tion, the thyroid is postnatally damaged and becomes
fibrotic under the influence of TGFB (Contempre et al.,
1996). But there are also hints that the selenium status
influences the progress of auto-immune diseases of the
thyroid (1/6 of all women have thyroid auto-antibodies) by
unclear mechanisms (Schmidtetal., 1998; Kéhrle, 1999a).
Also, lower selenium concentrations can be found in thy-



roid tumor tissue (K6hrle, 1999a). In a large-scale Norwe-
gian study, a significantly higher incidence of thyroid tu-
mors correlated with prediagnostical low selenium levels
(Glattre et al., 1989). The role of the individual selenopro-
teins in pathologically altered thyroid tissue is, however, as
unclear as their contribution to auto-immune diseases
and tumor development. Neither is it evident whether
there is a direct link between the low selenium status in
critically ill patients (e. g. SIRS) and the simultaneously ob-
served low T3-production due to inefficiently expressed
hepatic selenoprotein type | 5’ deiodinase in the ‘Low-T3-
Syndrome’ (K6hrle et al., 2000b).

Selenium and Male Fertility

The necessity of adequate selenium provision for male
fertility is known particularly from veterinary medicine (see
National Research Council, 1983, and Flohé, 1989 for
older literature). Yet the precise role of selenium in male
fertility remained an enigma for decades. In sperm, seleni-
um is largely associated with the keratin-like material that
embeds the helix of mitochondria in the midpiece of sper-
matozoa. A protein derived from this so-called mitochon-
drial capsule was reported to contain selenium and ac-
cordingly termed ‘mitochondrial capsule selenoprotein
(MCS)’ (Pallini and Bacci 1979; Calvin et al., 1981). The
pertinent genes of rats and mice, however, did not contain
any TGA codons within the translated regions (Adham
etal., 1996; Cataldo et al., 1996). Accordingly, MCS could
no longer be considered the selenoprotein essential to
sperm function. More recent studies showed that PHGPx
is abundantly expressed in spermatogenic cells (Maiorino
etal., 1998, 1999; Mizuno et al., 2000) but exists as an en-
zymatically-inactive structural protein in mature sperm,
where it contributes to the formation of the mitochondrial
capsule (Ursini et al., 1999). In spermatozoa, PHGPx thus
replaces MCS, which had mistakenly been considered a
selenoprotein. Because the morphological defects of
sperm under selenium deficiency primarily affect the mito-
chondrial capsule, reduced fertility can conceivably be
explained by insufficient PHGPx synthesis. The relevance
of further selenoproteins that are specifically expressed
in the male genitalia (Behne et al., 1997) has yet to be
clarified.

Selenium and Atherogenesis

Fatty acid and cholesterol ester hydroperoxides, as pres-
entinoxidized LDL (oxLDL), are believed to initiate athero-
genesis (Steinberg, 1997). In atherosclerotic lesions, hy-
droperoxides as well as the 15-lipoxygenase were found
(Yl&-Herttuala, 1991), and lipid hydroperoxides can in-
duce adhesion molecules in cultivated endothelium cells
(Friedrichs et al., 1999). Both oxLDL-induced foam cell
formation and smooth muscle cell proliferation and hydro-
peroxide-induced presentation of adhesion molecules are
considered to synergize in the initiation of atherogenesis.
A prophylactic role of selenium in the prevention of car-
diovascular disturbances was observed in epidemiologi-
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cal studies (National Research Council, 1983; Salonen,
1987). Inview of the oxidative processes implicated in ear-
ly atherogenesis, the selenium effect is tentatively attrib-
uted to the optimization of glutathione peroxidase activi-
ties. Possible candidates would particularly be the pGPx
as an extracellular enzyme and PHGPXx, which efficiently
reduces hydroperoxides in oxidized LDL. This seeming-
ly straightforward hypothesis, however, suffers from at
least two inconsistencies: pGPx lacks a sufficient supply
of reducing capacity in the extracellular compartment
(Brigelius-Flohé, 1999) and does not have the optimum
specificity (Yamamoto and Takahashi, 1993), PHGPx does
display the optimum specificity to reduce all kinds of
hydroperoxy groupsin oxLDL (Ursinietal., 1982, 1995) but
is not present extracellularly, where LDL is oxidized, and
does not readily decline in moderate selenium deficiency.
Clearly, the link between selenium and atherogenesis, if
real, has still to be identified. Itis likely that the redox regu-
lation of lipid mediator synthesis and cytokine-dependent
signaling is more relevant to the initiation of atherogenesis
than the mere antioxidant potential of selenoperoxidases
(Brigelius-Flohé, 1999).

Conclusions

The exponential progress in selenium biochemistry over
the last two decades led to the identification, cloning and
functional characterization of more than a dozen seleno-
enzymes with widely varied catalytic potential, and the key
events of selenoprotein biosynthesis have been elucidat-
ed. This review is, however, not primarily meant to cele-
brate these achievements, it rather aims at underscoring
that most of the roles of the essential trace element in biol-
ogy still remain as obscure as they have been for most of
the last century. This is because the trace element typical-
ly hides in ‘trace enzymes’. In fact, the present state of
the art could not have been achieved without advanced
molecular biology techniques and most sophisticated
physicochemistry.

For a long time, the selenium biochemistry was mis-
interpreted as the search for biological curiosities that
might detract serious scientists from central biological
problems. This view can no longer be maintained: as an
integral moiety of the thioredoxin reductases it is relevant
to basic steps of nucleic acid synthesis; it proved to be
essential for male fertility in mammals; and the knock-out
of the selenocystyl-tRNA gene in mice was lethal (Bosl
et al., 1997) and thus revealed that at least one of the se-
lenoproteins must be indispensable for mammalian life in
general.

Most of the known selenoproteins were detected in
either bacteria and archaea or in mammals, but seleno-
proteins are definitely also present in lower eukarya
(Maiorino et al., 1996). Little is known about the role of se-
lenium in the remaining living kingdom. Plants appear not
to depend on selenoenzymes, yet they contain numerous
low molecular weight selenocompounds of nutritional,



858 J.Kohrleetal.

pharmacological, and toxicological interest (Lauchli, 1993;
Neubhierl et al., 1999). Together with bacteria, which may
also ‘dissimilate’ bioavailable selenite to elementary sele-
nium (Garbisu et al., 1995), plants, by assimilation of inor-
ganic selenium, certainly contribute to the maintenance of
the geo-ecological selenium homeostasis that is equally
important for livestock and human health (National Re-
search Council, 1983).

As a rule the catalytic potential of known bacterial sele-
noenzymes is not paralleled by mammalian selenopro-
teins and vice versa, selenophosphate synthetase being
the only known exception. Our fragmentary knowledge
does not, however, exclude the possibility that the highly
complex catalytic centers comprising selenocysteine,
pterine cofactor-bound molybdenum and flavin or seleno-
cysteine-coordinated iron/nickel/sulfur clusters are not
used in eukaryotes. New sequences of mammalian se-
lenoproteins are being detected at high speed by ‘in silico
cloning’ (Lescure et al., 1999; Kryukov et al., 1999), and
pulse-label experiments with radioactive selenium sug-
gest the existence of another dozen or two, giving ample
room for further surprises when the catalytic potentials
and structures of these proteins emerge. It can also not be
taken for granted that selenium exerts its catalytic role in
mammals exclusively as a selenocysteine residue that is
integrated into proteins. The chemical nature of the ‘acid-
volatile selenium’ (Diplock et al., 1973) of rat liver has nev-
er been worked out. Certainly, H,Se eventually could be
generated from acid-denatured selenocysteine-contain-
ing proteins by B-elimination, but liberation of H,Se by
acid from a selanyl-bond, as presentin bacterial CO dehy-
drogenase, or from iron/selenide clusters, must be rated
as more likely.

As to the medical implications of selenium research, we
may safely state that severe selenium deficiency requires
supplementation, as is suggested from the eradication of
Keshan disease in supplemented areas in China and the
prevention of analogous symptoms in patients on supple-
mented parenteral nutrition. As evident from the experi-
ments with cGPx(-/-) mice, the cardiac complication in
selenium deficiency likely results from a disturbed hydro-
peroxide metabolism. Evidence is also emerging that
selenium deficiency specifically complicates iodine defi-
ciency by increasing the oxidative challenge to the thyroid.
In all other pathological conditions for which selenium
supplementation is currently discussed, neither a satisfy-
ing rationale nor compelling clinical data are available.
Nevertheless, the beneficial effects of selenium inferred
from softer data, e. g. epidemiological surveys on cancer
incidence and cardiovascular disease, small-scale clinical
trials with critically ill patients, the unexpected accidental
observations in large-scale cancer prevention trials, or
veterinary experience with selenium responsiveness of in-
flammatory diseases, should notbe ignored. They certain-
ly demand validation by dedicated prospective studies. In
chronically developing multifactorial diseases like onco-
genesis and cardiovascular disease such trials are hard to
design, if they are feasible at all. Rather, these problems

may be rationally approached by studying the potential
relevance of individual selenoproteins and their depen-
dency on the selenium status. Thereby, selenium-respon-
sive disease-related surrogate endpoints could be de-
fined, which then may be tested in short-term clinical trials
with manageable sample sizes.
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