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Abstract. Evidence for variable selection bias in classification tree al-
gorithms based on the Gini Index is reviewed from the literature and
embedded into a broader explanatory scheme: Variable selection bias in
classification tree algorithms based on the Gini Index can be caused not
only by the statistical effect of multiple comparisons, but also by an
increasing estimation bias and variance of the splitting criterion when
plug-in estimates of entropy measures like the Gini Index are employed.
The relevance of these sources of variable selection bias in the different
simulation study designs is examined. Variable selection bias due to the
explored sources applies to all classification tree algorithms based on em-
pirical entropy measures like the Gini Index, Deviance and Information
Gain, and to both binary and multiway splitting algorithms.

1 Introduction

The aim of this paper is to review previous publications on empirical evidence
of variable selection bias from simulation studies by Kim and Loh (2001) and
Dobra and Gehrke (2001), and to give a more broad statistical explanation of
variable selection bias than those publications, integrating all sources of variable
selection bias in tree algorithms based on the Gini Index.

Since the Gini Index is still the default splitting criterion in all classification
tree algorithms based on the CART approach, i.e. the commercial version of
CART by Salford Systems, the tree function in S-Plus and the tree and rpart
functions in R, a thorough investigation of the properties of this splitting cri-
terion is crucial. Additionally, mechanisms corresponding to the ones described
in the following sections also hold for the Deviance and Information Gain crite-
ria employed in the above and other classification tree algorithms (cp. Breiman
et al., 1984; Quinlan, 1993). However, due to space constraints, these results
have to be omitted here.

In the course of this paper Section 2 will provide the necessary background
on splitting rules in classification tree algorithms. Section 3 will review empirical
� I would like to thank Anne-Laure Boulestix for the stimulating discussion.
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evidence of variable selection bias from simulation studies. These results will be
explained by means of the statistical mechanisms underlying variable selection
bias in Section 4.

2 Splitting rules in classification tree algorithms

Classification tree algorithms can be categorized by their splitting rules deter-
mined firstly by the choice of the number of nodes produced in each split and
secondly by their split selection criterion. The number of nodes produced in each
split can follow three rationales: An algorithm can produce binary splits (for con-
tinuous and categorical predictors), produce as many nodes as categories in the
predictor selected for the current split (for categorical/categorized predictors)
or produce as many nodes as categories in the response. Different split selection
criteria include approaches of impurity reduction (based on empirical entropy
measures) and statistical measures of association strength.

Here we will restrict the considered range of splitting rules to those with
binary splits or multiway splits with as many nodes as categories in the predictor,
and to those employing empirical entropy measures as split selection criteria. The
standard classification tree algorithms work on this basis.

2.1 Binary vs. multiway splitting

All classification tree algorithms based on the CART (Breiman et al., 1984)
approach produce binary splits in both categorical and continuous predictors.
The split selection in these algorithms is performed in two steps:

1. Within the observed range of each predictor the cutpoint that minimizes the
criterion value is selected.

2. The predictor variable for which the minimally selected criterion value is
lowest is selected for the next split.

Other tree algorithms like C4.5 by Quinlan (1993) perform multiway splits
with as many nodes as categories in the predictor for categorical predictors.

It is important to note that in any splitting rule that produces less nodes
than the number of values of the splitting variable, i.e. in binary splitting of cat-
egorical predictors with more than two categories and in splitting of continuous
predictors, cutpoint selection is critical in split selection.

2.2 Impurity reduction

The approach of impurity reduction chosen in CART for split selection is based
on the following idea: The nodes produced by a split should be more pure (in
a yet to be defined manner) than the preceding node. The splitting variable
that produces the highest impurity reduction with respect to the current node
is selected for the next split.
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In the following, we will treat the case of a binary response Y , for which Y =
c, with c ∈ {1, 2}, denotes the class membership. Let Xj , j = 1, . . . , p, denote
categorical or continuous predictor variables. For the categorical predictors let
Xj = k, with k ∈ {1, . . . , K}, denote the category.

The following notation applies to the first split of the root node: The starting
set is denoted by Sj , holding nj observations not missing in the predictor variable
Xj currently evaluated in split selection. The subsets SjL and SjR are produced
by splitting Sj into two subsets at a cutpoint in the range of predictor Xj . For
continuous predictors the subset SjL results by means of splitting in cutpoint tj
and assigning all observations with xij ≤ tj to SjL, and the remaining to SjR.
For categorical predictors SjL and SjR characterize any binary partition of the
categories. The empirical impurity reduction1 is a function of these quantities:

ΔÎ(Sj , SjL, SjR) = Î(Sj) −
[
njL

nj
· Îj(SjL) +

njR

nj
· Îj(SjR)

]
, (1)

where Î(Sj) is the empirical impurity measure for the set Sj before splitting,
while Î(SjL) is the empirical impurity measure for the subset SjL. The propor-
tion of observations assigned to subset SjL is denoted as njL

nj
(and respectively

for the other subset SjR).
As a possible empirical impurity measure Î(·) Breiman et al. (1984) introduce

the Gini Index. For two response classes the Gini Index (denoted here exemplarily
for the subset SjL to exploit the notation) reduces to

Ĝ(SjL) = 2 · njL1

njL

(
1 − njL1

njL

)
(2)

where the relative frequency njL1
njL

denotes the proportion of class 1 individuals
in the subset SjL, which holds njL observations.

The empirical Gini Gain, analogous to the empirical impurity reduction in
Equation 1, is

ΔĜ(Sj , SjL, SjR) = Ĝ(Sj) −
[
njL

nj
· Ĝj(SjL) +

njR

nj
· Ĝj(SjR)

]
. (3)

3 Empirical evidence of variable selection bias with the
Gini Index

Recent publications on variable selection bias in classification tree algorithms
based on the CART approach with the Gini Index provide empirical evidence
from simulation studies documenting that the selection probability of a predictor
variable is affected by features other than its discriminatory power.
1 Note that throughout this paper all empirical quantities will be denoted as estimators

of theoretical quantities by adding a hat to the symbol.
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3.1 Study designs

Features found relevant for variable selection bias with empirical entropy mea-
sures like the Gini Index are:

1. The number of possible cutpoints for binary splits, which is determined
by the number of categories (abbreviated as #categories in the following
schemes) in categorical predictors or the number of distinct, non-missing
observations (inverse to #missing) in continuous predictors. The number of
cutpoints determines the number of comparisons of criterion values to be
conducted (#tests).

2. The sample size (#sample), which is determined by the number of missing
values (#missing) in each predictor.

3. The number of nodes (#nodes) produced in each split in the case of mul-
tiway splits in categorical predictors with different numbers of categories
(#categories).

Table 1 gives an overview over the dependencies between these features. The
number of categories in categorical predictors (#categories) and the number of
missing values in continuous predictors (#missing) were experimentally varied
between the available splitting variables in simulation studies on variable selec-
tion bias with the Gini Index. The corresponding study designs by Kim and Loh
(2001) and Dobra and Gehrke (2001)2 are resumed in Table 2.

binary splits multiway splits

# categories ↑ #tests ↑ #tests =
(categorical predictor) #nodes = #nodes ↑

#sample = #sample =

# missing ↑ #tests ↓
(continuous predictor) #nodes =

#sample ↓
Table 1: Dependencies between features found relevant for variable selection bias.

The variable selection performance of a split selection criterion can be eval-
uated by means of the following simulation study design: Several uninformative
predictor variables are generated by random sampling. The predictor variables
are sampled such that they only differ in one feature, which is expected to gener-
ate variable selection bias. The relative frequencies of simulations in which each
variable is selected by the split selection criterion, out of the number of all sim-
ulations, are estimates for the selection probabilities, which should be equal (at

2 Precursors of the study design of Dobra and Gehrke (2001) can be found in White
and Liu (1994) and Kononenko (1995). However, Dobra and Gehrke (2001) give an
additional statistical background.
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binary splits multiway splits

# categories Kim and Loh (2001) Dobra and Gehrke (2001)
(categorical predictor)

# missing Kim and Loh (2001)
(continuous predictor) Strobl (2004)

Table 2: Study designs of simulation studies on variable selection bias.

random choice probability 1/number of variables) for uninformative predictor
variables if no selection bias occurs.

Figure 1 displays estimated variable selection probabilities for the Gini Index.
In this simulation study design the percentage of missing values in one of ten
predictor variables is varied, while the rest of the variables remain complete. The
variables are all uninformative.
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Fig. 1: Estimated variable selection probabilities for the Gini Index, the p-value ad-
justed risk criterion and the p-value adjusted Fisher criterion. All variables are unin-
formative.

3.2 Results

The results of the simulation studies were the following: Dobra and Gehrke
(2001) show for multiway splits that variables with a higher number of cate-
gories are preferred in split selection. Kim and Loh (2001) report for binary
splits that categorical predictors with a higher number of categories and contin-
uous predictors with a higher number of misisng values are preferred in variable
selection.

The latter results were replicated by Strobl (2004) (cp. again Figure 1): For
uninformative predictor variables the estimated selection probability increases
with the number of missing values in the regarded variable (and thus decreases
in all other variables due to competition) when using the Gini Index for split
selection, indicating variable selection bias. With an unbiased criterion the the
estimated selection probability is supposed to remain at chance level.
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4 Sources of variable selection bias

The publications on the empirical evidence presented in the previous section
either lack a satisfactory statistical explanation of the mechanisms underlying
the variable selection bias, or leave some results unnoticed.

Kim and Loh (2001) give a vague explanation for their finding that continu-
ous predictors with a higher number of misisng values are preferred in variable
selection: the authors state that if missing values randomly replace some of the
observations, the Gini Index automatically decreases, because in the most ex-
treme case where only one observation per node is not missing, the criterion
takes on the minimum value 0, guaranteeing that the corresponding predictor
variable is chosen in variable selection. However, in less extreme cases there can
be both situations in which the criterion value decreases with randomly miss-
ing values, and situations in which the criterion value increases with randomly
missing values. We choose a more appropriate probabilistic approach to explain
this effect in Section 4.2.

Dobra and Gehrke (2001) do accurately accredit their findings to the statis-
tical fluctuation in empirical entropy measures used in split selection. However,
they do not interpret their computational results with respect to the statistical
theory of estimation, and ignore results for binary splitting relevant for a wide
range of classification tree algorithms.

In the following we want to point out that two mechanisms interact in vari-
able selection bias in all CART-like classification tree algorithms: the effects
of multiple comparisons in cutpoint selection and the effects of limited-sample
plug-in estimation of the entropy measures.

4.1 Multiple comparisons

The common problem of multiple comparisons refers to an increasing type I
error-rate in multiple testing situations. For variables with a higher number of
possible cutpoints the probability of choosing an uninformative split by chance
increases - as in any multiple testing situation, where multiple statistical tests
are conducted for the same data set. In the context of split selection a type I error
occurs when a variable is selected for splitting even though it is not informative,
and the number of tests conducted increases with the number of distinct values
of the predictor variable, which determines the number of possible cutpoints to
be evaluated.

The problem of multiple comparisons is relevant in cutpoint selection, i.e.
in any splitting rule that produces less nodes than the number of values of
the splitting variable. Note here that Dobra and Gehrke (2001) state that the
variable selection bias for categorical predictor variables was not due to multiple
comparisons. However, the authors use the Gini Gain for multiway splits with
as many nodes as categories in the predictor, which is not employed in any of
the standard classification tree algorithms.
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4.2 Estimation bias and variance

Empirical entropy measures as the Gini Index used in classification tree algo-
rithms are naive plug-in estimators of the respective theoretical entropy mea-
sures. The plug in estimators are based on the relative class-frequencies as
maximum-likelihood estimators of the class probabilities. The quality of an es-
timator Ĥ for the theoretical entropy measure H can be evaluated by its esti-
mation bias and variance. The bias of an estimator BiasH(Ĥ) = EH(Ĥ)−H is
the deviation of the expected value of the estimator Ĥ from the true value H.
We will show in the following, that the plug-in estimator of the Gini Index and
the derived Gini Gain is biased.

For variable selection bias in classification tree algorithms it is relevant that
the sample size and number of nodes produced in each split affect both the
expected value and variance of the splitting criterion.

Bias of the empirical Gini Index
We derive the expected value of the empirical Gini Index with respect to the

true class 1 probability p1 for the exemplary subset SjL of size njL:

Ep1

(
Ĝ(SjL)

)
= G − 2

p1(1 − p1)
njL

= G
njL − 1

njL
.

The empirical Gini Index underestimates the true Gini Index by factor njL−1
njL

.
From the line before the last it also becomes obvious that the estimation bias
is BiasG(Ĝ) = E(Ĝ) − G = − G

njL
. The estimation bias increases for small

sample sizes njL. The effect is most pronounced for p1 → 0.5, which is reasonable
because in this case the true impurity can only be underestimated. Note however,
that the true response class probabilities do not vary between predictors, and
thus variable selection bias does not rely on the class probabilities.

Bias of the empirical Gini Gain
Under the the null hypothesis of an uninformative predictor Xj the true Gini

Index G = 2p1(1−p1), depending on the true class 1 probability p1, is supposed
to be equal in each subset. Thus, the true Gini Gain ΔG(Sj , SjL, SjR) abbrevi-
ated in the following by ΔG, which is the Gini Index of the complete set minus a
weighted sum of the true Gini Indices in the subsets (which is equal to the Gini
Index of the complete set under the null hypothesis, cp. Equation 3) is equal
to 0. However, the expected value of the empirical Gini Gain ΔĜ(Sj , SjL, SjR)
abbreviated by ΔĜ is
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Ep1

(
ΔĜ

)
= G − 2p1(1 − p1)

nj
−

−
[
njL

nj
·

(
G − 2p1(1 − p1)

njL

)
+

njR

nj
·

(
G − 2p1(1 − p1)

njR

)]

= 2
p1(1 − p1)

nj

overestimating the true Gini Gain under the null hypothesis by the value of
BiasΔG(ΔĜ) = E(ΔĜ) − ΔG = G

nj
independent of the partition.

It is plain to see that the same principle applies in classification tree algo-
rithms with multiway splits, where the bias increases with the number of cat-
egories of the splitting variable determining the number of nodes produced in
each split: for each additionally created node the bias increases by adding G

nj
.

Our results on the expected value of the empirical Gini Gain correspond
to those of Dobra and Gehrke (2001) adopted for binary splits. However, the
authors do not elaborate on the interpretation as an estimation bias induced by
the plug-in estimation based on a limited sample size.

We have shown above that the estimation bias for the empirical Gini Gain is
a relevant source of variable selection bias in multiway splits (cp. the results of
Dobra and Gehrke (2001) reviewed in Section 3), when variables differ in their
number of categories. However, the effect of estimation bias for the empirical
Gini Gain applies in binary splitting only if the overall sample size nj varies
between variables, i.e. in simulation study designs with missing values (cp. the
results of Kim and Loh (2001) and Strobl (2004) also reviewed in Section 3).

Variance of the empirical Gini Index
The variance of the empirical Gini Index can be approximated by means of the

delta method (cp. e.g. Rice, 1995): In the following notation the empirical Gini
Index, again computed for the exemplary subset SjL of size njL, is considered
as a function of the unbiased estimator p̂1 = njL1

njL
of the true class 1 probability

p1 with E(p̂1) = p1. The first derivative G′(p1) (from a truncated Taylor series
expansion of G(p̂1) about p1 for a linear approximation) applied to p̂1 is used in
the delta method to approximate the variance of of the empirical Gini Index by
V̂ ar(G(p̂1)) ∼= [G′(p̂1)]

2
V ar(p̂1). Thus, under the null hypothesis the variance

of the empirical Gini Index in each node increases with decreasing sample size:

V̂ ar(G(p̂1)) ∼=
[
4p1 − 16p2

1 + 16p3
1

] (1 − p1)
njL

.

Dobra and Gehrke (2001) derived the variance of the empirical Gini Gain.
From their results we can see that the variance of the empirical Gini Gain de-
pends on the overall sample size nj in the denominator. Note that in the multiway
split case derived in Dobra and Gehrke (2001) the variance depends also on the
number of nodes produced in multiway splits.
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5 Conclusions

The empirical Gini Gain is derived from the emprirical Gini Index as a split-
ting criterion in classification tree algorithms based on the CART approach. The
true Gini Index is underestimated by the empirical Gini Index, which is a plug-in
estimator based on the relative class frequencies as estimators of the class prob-
abilities. Under the null hypothesis that the predictor variable is uninformative
for the response, we could show that the empirical Gini Gain overestimates the
true Gini Gain. The estimation bias increases with a decreasing sample size for
each splitting variable, and a higher number of nodes produced in each split.
The effect of estimation bias is thus relevant for variable selection bias in clas-
sification tree algorithms in the case of different amounts of missing values in
the predictors or for multiway splits when the predictors vary in their number
of categories. In addition we have seen that the variance of the empirical Gini
Index increases with decreasing sample size. The variance of the empirical Gini
Gain also increases with decreasing sample size and increasing number of nodes
created in each split for multiway splits (Dobra and Gehrke, 2001). For binary
splits multiple comparisons are another relevant source of variable selection bias.

Considering again Tables 1 and 2 we conclude that the results on variable
selection bias displayed there can be explained in the following way: For mul-
tiway splits producing as many nodes as categories of the predictor, and the
categorical predictors varying in their number of categories as simulated in Do-
bra and Gehrke (2001), sources of variable selection bias are the estimation bias
and variance of the splitting criterion. Both increase with the number of nodes
produced in each split. For binary splits, with the categorical predictors varying
in their number of categories as simulated in Kim and Loh (2001), the source of
variable selection bias is exclusively due to the effect of multiple comparisons.
For binary splits, with the metric predictors varying in their number of missing
values as also simulated in Kim and Loh (2001), two possible sources of variable
selection bias seem to counteract: For binary splits the multiple comparisons
effect in cutpoint selection is supposed to penalize variables with more missing
values and thus less possible cutpoints. On the other hand, a decrease in sample
size due to the missing values promotes the estimation bias and variance of the
splitting criterion.

The results of Kim and Loh (2001) and Strobl (2004) document that variables
with more missing values are preferred rather than punished. We conclude that
the overestimation of the splitting criterion and the greater variance of the cri-
terion values in variables with more missing values outbalance the disadvantage
in multiple comparisons. Under the null hypothesis extreme criterion values are
still more likely to be detected by chance in variables with more missing values
due to their increase in bias and variance.
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