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Abstract. In this article analogues of the Hilbert Basis Theorem, the Artin-Rees Lemma and
the Krull Intersection Theorem are shown for modules with ascending chain condition for
finite matrix subgroups. The generalized Hilbert Basis Theorem yields an interesting con-
struction principle of ) -pure-injective modules over polynomial rings.
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Introduction and preliminaries

In this article we shall prove three theorems on modules with maximum condition
for finite matrix subgroups which generalize resp. modify three classical theorems on
noetherian modules over a commutative ring [4, 1.9 Theorem 10, 4.6 Theorem 18,
4.7 Theorem 20]. To give an idea of the class of modules with maximum condition
for finite matrix subgroups we note that in case the ground ring is commutative
and noetherian it comprises the finitely generated and the flat modules, and with a
module M all its pure sub- and factormodules, direct sums M ¥ and products M.
Matrix subgroups have initially been introduced in order to characterize pure-
injective and ) -pure-injective modules. For instance it has been proved that a
module M is ) -pure-injective (i.e. every direct sum M) is pure-injective) if and
only if it satisfies the minimum condition for finite matrix subgroups ([2], [9,
Folgerung 3.4]). Because of this easy-to-use description and other striking properties
of ) -pure-injective modules mainly the last-mentioned chain condition has been
explored up to now. But we will give reasons to pay attention to the opposite
condition as well. First we recall that both conditions have successfully been applied
in the representation theory of artinian rings [1, 6, 10]. Further we point out that
basically it does not matter which of the two is studied because they are connected
by a good duality principle (e.g. see [6], [10, Proposition 3], or [11, Corollary 1.6]).
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However, our most striking argument is the hope that the wide knowledge of
noetherian rings and modules might be a source of inspiration for the study of
modules with maximum condition for finite matrix subgroups. To some extent this
opinion is confirmed by the results of this paper. — It should be noted that matrix
subgroups and their use in module theory are a current area of research in model
theory as well. In our article [11] we have quoted some relevant literature and
exposed how matrix subgroups and the above mentioned duality principle are
viewed at by the model theorists. As these aspects are irrelevant for the present
paper we do not repeat them here.

In the first section we show a generalization of the Hilbert Basis Theorem. It states
that if a module My has ascending chain condition for finite matrix subgroups then
the polynomial module M ®g R[U]gu; has this property and even every tensor
product M ®x Wy where R[U,, ..., U] - W is a ring homomorphism such that
W is a finitely generated left module over R[ Uy, ..., U;]. Applicating the duality
principle we can show a similiar construction of ) -pure-injective modules in Sec-
tion 2: If My has descending chain condition for finite matrix subgroups and W
is finitely generated as a right module over R[U,, ..., U;] then Hom(Wy, My)w
also has descending chain condition for finite matrix subgroups.

The main result of Section 3 is a modification of the Artin-Rees Lemma: If
My has maximum condition for finite matrix subgroups, 7 is a finite matrix
subgroup of M and A a finitely generated ideal of the center of R then we have
MA" "' AT = (MA"T)A for all sufficiently large n. A consequence is a generali-
zation of the Krull Intersection Theorem which we deduce in Section 4. Assuming
in addition that all End (M )-submodules of (), MA" are finite matrix subgroups
we have

() MA"= {xeM|3fe End(M)A: (1 — f)x =0} .

n>1

All our assumptions are satisfied by a noetherian module M over a commutative
ring and using an integrality argument our equality can be given the well-known form

() MA"= {xe M|JaeA:x(1 —a) =0}.

n>1

Since the question when all End (M)-submodules of a module My are finite matrix
subgroups is also of interest in other contexts we give some aspects of this problem
in Remark 4.3. In an Appendix we have compiled some general facts on the be-
haviour of modules with chain conditions for finite matrix subgroups under ring
extensions. To conclude this summary we note that probably there are analogues
of Theorems 1.4 and 3.1 for skew-polynomial rings resp. non-central ideals. This
shall be reserved for future research.
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For the ease of the reader we gather some notations and facts needed in the follow-
ing; for completeness see [9] and [11].

We begin by recalling that given a ring R and a set I a pair (X, x) with a left
R-module X and an I-tuple x = (x;);c; € X' is called an I-pointed left R-module.
Every such pair defines two functors Ty , and Hy , as follows. For every module
My (resp. xN) Ty..(M) is the kernel of the map 7,: MY — M ®x X given by
(M) =m® x=)Y;c;m® x; for m = (m;)e MD, whereas Hy (N) is the image
of the map ¢, : Homg (X, N) —» N, ¢ (h) = h(x) = (h(x;)). The functors Tx., resp.
Hy, , which are predominantly used are those associated with a finitely pre_sented
module X and a finite tuple x. In this case it is optional which of the functors Ty ,
or Hy , are used because for each n-pointed finitely presented module (g X, x) there
is an n-pointed finitely presented module (Yg,y) such that Ty, = Hy, and
Hy . = Ty, [11, Lemma 1.1]. It follows that say for a right module My the set of
subgroups Ty (M) coincides with the set of all Hy (M), the (X, x) resp. (Y, »)
running through all 1-pointed finitely presented left resp. right modules. These
subgroups are precisely the finite matrix subgroups of M (f.m. subgroups for short)
and the object of this work are modules with the ascending resp. descending chain
condition for subgroups of this type (sometimes abbreviated as acc(fm) resp.
dcc(fm)). We list some characterizations of these modules to which we refer later on.

The following conditions are equivalent for a module My [11, Lemma 2.1 and
Theorem 2.5]:

(a) M has ascending chain condition for f.m. subgroups.

(b) Given n e N the set of subgroups Ty (M) of M" has ascending chain condition,
the (X, x) running through all (resp. all finitely presented) n-pointed left modules.

(c) For all modules g X and sets / the map
M @ X - (M@ X)', p((m)® x)=(m® x),
is injective.

For the dual case we assume that My in addition is considered as a left module
over some rings S such that ¢My is a bimodule (S =7 or S = Endg(M) do).
Then the following are equivalent ([11, Lemma 3.2 and Theorem 3.8] and [9,
Folgerung 3.4]):

(a") M has descending chain condition for f.m. subgroups.

(b’) Given ne N the set of subgroups Hy, ,(M) of M" has descending chain con-
dition, the (Y, y) running through all (resp. all finitely presented) n-pointed
right modules.
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(¢") For all modules Yy and all injective modules ¢} the map
v: Y @g Homg(M, V) — Homg(Homg (Y, M), V), v(y ® ¢)(h) = ¢ (h(y))
is injective.
(d') M is ) -pure-injective.

The meaning of the maps p and v will be maintained throughout. Finally we want
to agree upon writing (M, N) or (Mg, Ng) instead of Homg (M, N) say for right
R-modules M and N.

1. Generalization of the Hilbert Basis Theorem

We begin with an easy lemma implicitly occuring in [8, p. 98] which immediately
yields the classical Hilbert Basis Theorem and together with a result on matrix sub-
groups the extension we have in view. First we have to introduce some notations. As
usual Z[ U] denotes the polynomial ring in the indeterminate U over Z. If M is an
abelian group we put M[U] = M ®, Z[U]; the elements of M[U] are written as
polynomials with coefficients in M, i.e. instead of ) {_,m; ® U’ we simply write
Yi_ o m; UL Now we assume that M is a left module over some ring S. Then M [U]
is a left module over the polynomial ring S[U]=S ®,Z[U] and obviously
M[U]=S[U] ®s M. There is a natural filtration of M[U] defined by the S-
submodules M[U]Y = Pj_, MUY, i > 0; the induced filtration of a subgroup T
of M[U]isgivenbythe T® = TAn M[U]®,i > 0. Furthermoreletgq;: T® — T+
be the inclusion, p;: T® — M the projection onto the last factor, i.e.
pi(Yi_om;U’) = m; and T the image of p;.

Lemma 1.1. 1) The diagram of S-modules

0 7@ qi T+ Pi+1 Th+1) 0

Qul QUl A

0 T+ 9i+1 T+2) Pita Ti+2) 0
is commutative and has exact rows (oy means multiplication by U ).

2) Given i >0 we have T®*Y = T2 if and only if T¢*? = T+ L T+ Dy,

3) Supposing that there is some k>0 with T"*V = T2 for all i >k we have
T: ijo T(K+1)Uj.

Proof. 1) and 2) are checked by elementary calculation, 3) is a consequence of 2)
and the equality 7= ( );. o 7?. ©
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For completeness we infer the classical Hilbert Basis Theorem for modules.
Corollary 1.2. In case ¢M is noetherian the S[U]-module M [ U] is noetherian as well.

Proof. Letting T be an S[U]-submodule of M[UT] there is some x > 0 such that
TED =TE*2 for all i >« and Lemma 1.1 yields T=) ;. T* DU/ As M
is noetherian the S-submodule 7 *Y of M[U]**V is finitely generated, hence T
is finitely generated over S[U]. O

During this article we shall sometimes say that a subgroup 7 of M[U] is finitely
determined if there is some k > 0 with T=) ;. , T®U".

In preparation of the proof of the main result of this section we need some further
preliminaries. We start with a module My over a ring R. Letting act S = Endgz (M)
on the left side M becomes an S-, R-bimodule and M = M[U] an S[U]-, R[U]-
bimodule. Given a left R[U]-module X and an n-tuple x = (xq, ..., x,) € X" we
want to analyze the subgroup 7, X,x(M ) of M". First we note that in fact it is an
EndR[U](M )-submodule hence an S[U]-submodule of A", It is convenient to iden-
tify M" with M"[U] in the following. As before we have the filtrations
M"[U]D = @i—oM"U’ i >0, and Ty (M) = Ty (M)A M"[U]?, i >0, both
consisting of S-submodules. Now we consider the S-isomorphism

T=1gs (MNN > M"[U], (m));so — Z m;U7.

j=0

In order to identify the preimages of TX,E(M) and the TX&(M)“), i >0, we introduce
the elements x¥ = (x, Ux,...,U'x)e(X")'*!, i>0, and x* = (x, Ux, U?x,...)
€ (X™"o, Furthermore we let X = X/<(x®) where (x> denotes the R-submodule
of X generated by the components U’x,, 0 <j<i,1<k<n, of x?.
Lemma 1.3. 1) t induces S-isomorphisms

10 Ty oo (Mg) > Ty (M)D,i>0, and

17 Ty oo (M) = Tx (M).

These maps are natural transformations, i.e. they commute with morphisms of
n-pointed left R[ U]-modules.

2) Given i = 0 the sequence
0—— TX,;(M)(” i, TX,E(]V[)”“’ Lty Ty givi (M) —— 0

is exact, q; denoting the inclusion and p; , | the projection onto the coefficient of U' 1.
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Proof. To keep things clear we recall the definition of the groups in question.
TX’x(ZVI) is the set of n-tuples p € M" with p ® x = 0in M ® g X Ty, w0 (M) the set
of (i + 1)-tuples (my, ..., m;) with componentsin M" such that Y’ _, m; ® U'x =0,
and Ty (M) the union of the chain Ty y (M), i > 0.

1) Using the canonical isomorphism M ® g1 X ~ M @ X, mU' ® y > m ® Uy,
we have the following equivalences for an n-tuple p = t(mo,...,m;,0,0,...)€
M"[UT:

BETX&(M)“) < pR®x=0< Z m; ® Uj§=0

j=0
g (ﬂm teo ﬂl) € TX,E(") (M) .
This settles our assertion for the t®, i > 0, and t®, the naturality being obvious.
2) It has been proven in [11, Lemma 1.3] that the sequence
0 — TX’i(l')(M) L) TX,E(”'U(M) M) TX(i)’Ui+1£(M) — 0
is exact, where ¢; is the injection (m, ..., m;) > (my, ..., m;,0) and p;,, the pro-
jection (my, ..., ;1) — m;, . By 1) we may substitute Tx .« (M) by Ty (M)®
and Ty i+0 (M) by Ty (M)"*" whence our assertion is proved. O

Theorem 1.4. The following conditions are equivalent for a module Mg.

1) M has ascending chain condition for finite matrix subgroups.

2) MU ]g; has ascending chain condition for finite matrix subgroups.

3) Given a left R{LU]-module X, a number n > 1 and x = (x4, ..., x,) € X" the group
Ty, (M[U]gp) is finitely determined.

Proof. We adhere to the notations introduced above.

1) = 3) It is easily seen that the diagram of S-modules

0 — Ty (M) Lo Ty (M) Lty Ty pivi (M) — 0

Qvl Qul a)

0— TX’E(M)(iJrl) h? TX,E(M)(iJrZ) M TX(i+1),Ui+2£(M) — 0

is commutative; its rows are exact by the preceding lemma. Condition 1) implies
that there is some x>0 with Tyw yi+1,(M) = Tya+n yi+25(M) for i >, hence
Lemma 1.1 establishes the equation Ty (M) =) ;. Ty (M)* VUL
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1) = 2) Let (X;, x;), i > 1, be a family of 1-pointed left R[U]-modules satisfying
TXi,xi(M) c Txi+1,xi+1(]‘7f) for all i >1. Using [11, Remark to Lemma 1.2] we
may assume that there are morphisms (X, x;) > (Xi4+1,x;4,), i >1. Letting
X, x) = llml> 1 (Xi, x;) we have Ty, (M) = Uis1 Txoxi (M) [11, Corollary 1.7] and
accordmg to 1) = 3) there is some x > 0 satisfying Ty (M) = Y ;5 o Ty (M)® U
Condition 1) implies that the chain Ty, .o (M), i > 1, is ultimately constant, i.e.
there is a number 4 >1 with Ty, xoc)(M) Ty, ., xvo (M) for i >/ (recall that
x = (x;, Ux;, ..., U*x;)). As the r“) i>0,are natural isomorphisms we also have
Txl-,xi(M)(K) = TX,~+1,x,~+1(M)(K) for i > /. Because Ty (M)® = | )i 1 Ty, .., (M)™ we
may conclude Ty (M)™ = Ty, . (M)® hence Ty (M) =Y ;20 Tx,..,(M)PU =
TX;,,x,I(M)’ i.e. the chain Ty, ,, (M), i > 1, is stationary.

)= 1)If M rruj has acc(fm) then M has acc(fm) (see Appendix) hence My has
as it is a direct summand of M.

3) = 1) We start with a chain Ty, (M) < Ty, .,(M) < --- given by a family of
1-pointed left R-modules (X}, x;), i > 1; as noted in the proof of 1) = 2) we may
assume that they are connected by morphisms «; : (X;, x;) = (X;41, X;+1),i>1.To
apply condition 3) we construct a 1-pointed left R[U]-module (X, x) as follows.
We let X = [ [;~ X; with the canonical injections ¢; : X; — X, x = ¢, (x,), and define
an R[U]-module structure on X by U ¢;(y) = ¢;+12;(y) for y € X;. We note that
U™t x=gq(x;) for i>1, TX.x(M) = @jZOTXj+1,xj+1(M)Uj and Tx,x(M)(i) =
@Bi=o0Tx,. .5, (M)U’ for i > 0. Our assumption implies that there is x > 0 with

TX,X(M): Z TX,X(M)(K)Uk: Z Z TXj+1,Xj+1(M)Uk'

k>0 k>0 0<j<min{k,x}

Letting k>x +1 and comparing coefficients of U*™' we get Ty, . (M) =
Yh5=0Tx;,1x0 (M) = Ty, x..,(M). This shows that our chain is ultimately con-
stant. O

Next we extend Theorem 1.4 to polynomial modules in several indeterminates. Let
Z[U, ..., U] be the polynomial ring in s commuting indeterminates Uy, ..., U;.
Again we consider a module My with endomorphism ring S as a bimodule ¢Mpg
and the group M[U,, ..., U]l=M®,Z[U,, ..., U] as a bimodule over the rings
S[U;,...,U0]=8S®,7Z[U,...,U] and R[U,,...,U]=R®,Z[Uy,...,U].
Given natural numbers k; >0, ..., k> 0 we denote the set of polynomials

Z mjl ..... stlhljsjs il’l M[Ul,,ljs:l by

and we let T®v-") = TAM[U,..., U]* ") for every subgroup T of
M[Uy, ..., U]
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Corollary 1.5. Let My be a module with ascending chain condition for finite matrix
subgroups.

1) The R[ Uy, ..., U]-module M[ Uy, ..., U] has ascending chain condition for finite
matrix subgroups.

2) For every left R[U,, ..., U )-module X and every n-tuple x = (x4, ..., x,) € X" the
S-module Ty (M[Uy,...,U]) is finitely determined, i.e. there are numbers
Ky =0,...,%6,=>0 with

TX,I(M[UD ) []s:l)

= > Ty (M[Uy, ..., U)o U - - U
0

Jj1=20,...,js>

Proof. Both statements are shown by induction the first one being plain. As for 2)
we let R; = R[Uy,...,U;]] and M; = M[U,, ..., U] for 1 <i<s, hence we have
R,=R,_[U;] and M= M,_,[U;]. By 1) the R, _,-module M,_, has acc(fm)
hence Theorem 1.4 yields a number x, > 0 with Ty (M) =) ;.5 o Tx, . (M)* U*;
here Ty ,(M,)* is the set of n-tuples of polynomials whose U,-degrees are at most
K. We have seen that the map

..... USKSE)(Ms—l) d TX,E(MS)(KS)a

T T, X,(x.Usx

Ks
(mo, ....me) = Y m;Ui,
j=0

is an S[U,..., U;_;]-isomorphism. To simplify matters we let
y=(x, Uyx, ..., U x). Using the induction hypothesis for Ty ,(M,_ ) we see that
there are numbers k; >0, ..., k,_; >0 with -

TX,x(Ms—l): ) z TX,{(]‘/[s—l)(Kl """" KS_l)Uljl'“" Usjs—_11~

Now an application of t{*) immediately yields
TX,{(MS) = tho,...,jszoTx,g(Ms)(K‘ """ KS)Ulj1 Tt Usjs~ O

Corollary 1.6. Let R[U,, ..., U] — W be a ring homomorphism such that W is
finitely generated as a left R[ Uy, ..., U]-module. If M g has ascending chain condition
for finite matrix subgroups then the right W-module M @ r W satisfies the same
condition.
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Proof. Let Ry= R[U,, ..., U;]. By Corollary 1.5 the right R,-module M ®3 R;
has acc(fm) and it follows from Corollary A.3 that M @ g W ~ (M @ R,) @z W
has acc(fm) as a right W-module. O

Typical examples for rings W as in Corollary 1.6 are epimorphic images of
R[U,, ..., U]

2. A construction of ) -pure-injective modules over polynomial rings

An application of the well-known dualization principle for modules with chain
conditions for f.m. subgroups ([10, Proposition 3] or [11, Corollary 1.6]) to Co-
rollary 1.6 yields our next result. Keep in mind that a module is ) -pure-injective
if and only if it satisfies the descending chain condition for finite matrix subgroups.

Theorem 2.1. Let R[ Uy, ..., U] - W be a ring homomorphism such that W is finitely
generated as a right module over R[ Uy, ..., U]. If My satisfies the descending chain
condition for finite matrix subgroups then the right W-module (Wy, Mg)w does as well.

Proof. For any module L we let L™ = (L, Q/Z). Our assumption on My implies
that kM * has acc(fm) hence the left W-module W ®x M * satisfies the same con-
dition by Corollary 1.6. Further dualization shows that the right W-module
(W®rM™)" =~ (Wg, Mg *) has dec(fm). As M is ) -pure-injective the evaluation
mapc: My — Mg * isasplitmonomorphism, hence the induced W-homomorphism
(1,¢) : (W, Mg) — (Wg, Mg ) splits as well. This shows that (Wg, Mg)y has
dec(fm). O

We want to connect Theorem 2.1 with results on inverse power series (for instance
see [5]) and therefore take a closer look at the special case W= R[U,, ..., U;]. We
show that the right R[ Uy, ..., U;]-module (R[ Uy, ..., U]g, Mg) is isomorphic to
the module of inverse power series M[[U; L, ..., U, 1]]. As an R-module this is
the product M™s whose elements (M}, ....i)Gi.....ipeng are written as power series
Yiisonge=om, . U7 - - U7 with non-positive exponents. This product is
a right R[U,, ..., U]-module if we define U /*-...- U 9 - Uk -...- Uk to be
Uik gtk G0 <k <y ..., 0<ky<j,and 0if ky, ... kg, jis ..., Js
are elements of N, such that there is some i with k; > j;. It is easily checked that
the map

(R[Ula ] Us]R7 MR) - M[[U1715 ] l]s71]]
ho— Z h(UlJ.l..“.Ung)Ul_jl..“.(]S_js
0

J1=0,...,js>

isan R[ U, ..., U/]-isomorphism.
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3. A variant of the Artin-Rees Lemma

Theorem 3.1. Let M be a module with maximum condition for finite matrix subgroups,
(X, x) a 1-pointed left R-module and T = Ty (M). Furthermore let A be the ideal
of the center of R generated by central elements ay, ..., a, of R. Then there exists
some k € Ng such that MA" "' T= (MA""T)A for n> k.

This result is shown by an application of Corollary 1.5. By use of T and the tuple
a=(ay,...,a) we shall define a certain finite matrix subgroup 7 of M[U;, ..., U]
and the desired number x is obtained from the fact that T is finitely deter-

mined. As in Section 1 we will use the abbreviations R, = R[Uj, ..., U;] and
My=M[Uy,....U]; if f(Uy,....U) = ZleO,...,jszomjl ..... st_lli oo Usis a
polynomial in M, we let f(a) = jso0.... j.>0Mj,. . .4} ... al>. Now let R[V]

be the polynomial ring in a further indeterminate V and X[V] = R[V] ®z X;
again we write V*y for V¥ ® y. We define a left R,-module structure on X[ V'] by
fixing - Vky = f(a,V,...,a,V)V*y for f=f(U,...,U)eR, and V¥ye X[V].
Note that /- V¥y = f(a)V/"*y in case f is homogeneous of degree j. The finite
matrix subgroup we aim at is 7'= T xv1.x(M;). For better insight into its structure
we recall that it is the kernel of the map 7,.: My — M, @, X[ V]. Using the identi-
fication M, ® g, X[V]1 > M Qg X[V], f ® V¥y > f(a) ® V/**y, where f is homo-
geneous of degree j, the map 7,,: My, > M ®x X[ V] can be calculated as follows:
Let fe Mg and f = f,+ -+ f; be the decomposition into its homogeneous com-
ponents (i.e. f; is zero or homogeneous of degree /) thent,(f) = > 9 fj(a) ® V’'x.

Lemma 3.2. 1) A homogeneous polynomial f € M is an element of T iff f(a)e T.

2) The subgroup T is homogeneous, i.e. a polynomial f € M is an element of T if and
only if all its homogeneous components are.

Proof. 1) We have the following equivalences:
feT = 1()=0 = f(@@Vix=0 < (@) ®x=0 = f(@)eT.

2) Let fe My and f = f,+ - - + f; be the homogeneous decomposition. We have

d
feT = ()= Y f@®Vix=0 <= VY0<j<d: fi(a)eT
j=0
< V0<j<d:fieT. O

Proof of Theorem 3.1. Let T = Txvy.<(M,) be the subgroup just defined. As My
has acc(fm) this group is finitely determined by Corollary 1.5, hence there are
numbers x; >0,...,x,>0 such that T=Y ;.0 jsoT® ") -Ujr-. .. - U
where T'®t:++%) is the set of all fe T whose U;-degree is at most x; for 1 <i<s.
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We will show that the number k = k; + ... + Kk, meets our assertion. Letting n > k
and 0 # me MA"" ! A T there is a homogeneous polynomial f'e M, of degree n + 1
such that m = f(a) e T. By Lemma 3.2 we may infer e T hence there is a family
(fisevoiiditee.risens Of polynomials in T (1% almost all of which are zero and for
which holds f=> ;.0 js0/fi... . ,U{" ... U¥ By Lemma 3.2 we may in
addition assume that the non-zero f;,
U;-degree is < k;, its total degree is <x; + ... + Kk, = k, hence there is some
1 <i<s with j; > 1. It follows that the degree of f;, . ; U/* ... - U#~'-...- U}
is n hence f;, . ;(@aj ... ali ™' -afe MA"NT

and f;, ;. (@)al*-...-aj e (MA" " T)A. Because this holds for every non-zero
summand of f/ we have m = f(a) e (MA"nT)A. O

.....

4. An extension of the Krull Intersection Theorem

Theorem 4.1. Let My have maximum condition for finite matrix subgroups, let A be
a finitely generated ideal of the center of R and Dy(M) = ﬂnleA".

1) For every finite matrix subgroup T contained in Dy(M) we have TA=T. In
particular Dy(M)A = D,(M) if Dy(M) itself is a finite matrix subgroup.

2) Assuming that every S-submodule of Dy,(M) is a finite matrix subgroup we have
Dy(M)={xeM|3feSA:(1—f)x =0} and even Dy(M) = 0 if SA is contained in
the Jacobson radical of S.

As before S denotes the endomorphism ring of M. Regarding the additional as-
sumptions in 1) and 2) we shall exhibit in Remark 4.3 a class of modules for which
they are valid.

Proof. 1) If T is an f.m. subgroup of M contained in D,(M) then we have
MA" ' T = (MA"~ T)Afor all sufficiently large n by Theorem 3.1, hence T = TA.

2) Observing 1) and the assumption that the Sx are f.m. subgroups for all
xeD,(M) we have the following equivalences: xe D,(M) < Sx=Sx4 <
dfeSA:(1—f)x=0. If SA is contained in the radical of S then an equation
(1 —f)x =0 with fe S4 obviously implies x =0. O

In the next Corollary we shall sharpen the characterization 2) of D, (M) by imposing
further conditions on the modules Sx, x € D,(M). In case M is a noetherian module
over a commutative ring all assumptions of the Corollary are satisfied, in particular
every element of SA4 is integral over A4, hence we obtain a well-known theorem by
Krull.
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Corollary 4.2. Let My, A and Dy(M) be as in the preceding theorem. Furthermore
we assume that M has maximum condition for finite matrix subgroups, every S-sub-
module of Dy(M) is a finite matrix subgroup, and being given x € Dy(M) and f € SA
with (1 — f)x = 0 the endomorphism Sx — Sx, sx > fsx, is integral over A. Then
Dy(M)={xeM|JaeA:x(1—a)=0}.

Proof. We only have to show that every element of D,(M) is annihilated by some
1—a,ae A. Letting x € Dy(M) there is some fe SA with (1 — f)x = 0. As a result
of the additional assumption the map ¢ : Sx — Sx, sx — f5x, satisfies an equation
O+ ey + -+ ey +1-co=0 with coefficients ¢g,...,c,_1€A. As
@(x)=fx=xthisyields x(1 + ¢+ +¢c)=0. O

Remark 4.3. We conclude this section with some comments on those modules Mg
for which every cyclic S-submodule (S = Endg (M)) is a finite matrix subgroup, a
condition required in Theorem 4.1. We do not have a pleasing characterization of
these modules which we call cfm-modules for a moment.

1) It is obvious that a cfm-module having acc(fm) is noetherian over its endomor-
phism ring.

2) We give an example of a module with acc(fm) which is not a cfm-module. Let
R = K[U;];c;/B? where K[U;];.; is the polynomial ring in an infinite family of
indeterminates over a field K and B the ideal of K[U;];.; generated by the inde-
terminates. R is a local ring with radical J = B/B? hence the injective hull E of
R/J is an injective cogenerator with simple socle. It is well-known that the f.m.
subgroups of R are the finitely generated ideals together with J and that R has
dcc(fm) (for instance see [9, Satz 6.5]). It follows that (Rg, Eg) ~ Ey has acc(fm).
Assuming that Ey is a cfm-module our first remark shows that E is noetherian
over its endomorphism ring S. It follows that the module g(Jg, Eg), being an epi-
morphicimage of gE, is noetherian as well contradicting the fact that it is isomorphic
to (sSoc E)'.

3) To give a positive result we exhibit a class .# of cfm-modules which is likely to
be very close to the class of all cfm-modules. The members of .# are the modules
My satisfying M-dcc, a property introduced in [11, p.18]. The most striking de-
scription which also shows that a module M in .# is a cfm-module reads as follows:
For all ne N and x € M" there is an n-pointed finitely presented module (D, d) such
that End(M) - x = Hp 4(M). The class .4 contains the modules with dcc(fm) and
the pure-projective modules. It is obvious that it is closed under direct sums; more-
over it has the following properties:
a) If M’ is a finitely generated pure submodule of some M € .# then M’ and
M/M’ belong to .4 as well.
b) Every direct sum M® of a module M e .# belongs to ..
¢) Supposing that a module M € .4 also has acc(fm) every product M’ belongs
to M.
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Proof. a) If M has M-dcc then M has M'-dcc andM /M’ has M-dcc, hence M’ and
M/M' are in .

b) Letting M € .4, I be a set and gV an injective module (S = Endg (M)), we have
the commutative diagram

M(I)®R(SM9SV) —— (SSIaSV)

T; TA

(M @g(sM,sV)? s p®

where 2 is the monomorphism given by A((v;))((s;)) = Y ics siv; for (v;) € VP and
(s;) € S. The lower map v is injective by assumption hence the upper map v is as
well. This shows that M has M %-dcc, hence MDY has M‘P-dec by [11, Lemma 3.2].

c¢) This time we consider the commutative diagram

M'Q@r(sM,sV) —— (s(M',M),sV)
al &

(M ®g(sM, V) !

in which ¢ is defined by &(F) = (F(p;))icr» pi : M' — M denoting the i-th projec-
tion. We want to show that M has M!-dcc hence have to show that the upper map
v is mono. The maps v/ and u are mono because M belongs to .# and has acc(fm),
hence v is mono. Now [11, Lemma 3.2] establishes that M’ has M'-dcc. ]

Appendix: Chain conditions for f.m. subgroups under ring extensions

The following general results are added because we have used part of them in the
preceding sections and there does not seem to exist a systematic account of these
questions. Some of the statements are well-known and only listed for completeness.

We begin with recalling that in case ¢ : R — R’ is a ring homomorphism and Mpg.
a module having one of the chain conditions for f.m. subgroups then M as an
R-module has so as well. This may for instance be seen by noting that f.m. subgroups
of My resp. My are describable by R’-resp. R-matrices and that every R-matrix is
an R’-matrix via ¢.

Lemma A.1. Let 3 Bs be a bimodule, b = (by).x a generating system of gB and (X, x)
a 1-pointed left S-module. Then we have Ty (M g Bs) = 1y Tp e x, (0 v (M) for
every module My and Hy g x ¢, x)(N) = ey, Hx (s(gB, rN)) for every module gN.
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Proof. The given data give rise to the following commutative diagram with exact rows

0 > Tx . (M®gBs) - MQ@rBs > MQ@rBQ®sX

Al [

0 - ThesxpronM) - M® SULLN MRrB®sX

As 1, is surjective the first formula is readily inferred. The second formula is proved
in a similar way; it should be noted that ¢, : (g B, gN) — N*¥ is injective. O

Corollary A.2. 1) If gB is finitely generated and My has acc(fm) then M ® g Bg has
acc(fm) as well.

2) If gB is finitely presented and My has dcc(fm) then M ® g Bs has the same chain
condition.

3) ([9, Satz 6.1]) If gB is finitely generated and gN has dcc(fm) then ¢(gB, gIN) also
has dce(fm).

4) If gB is finitely presented then acc(fm) goes over from gN to s(gB, gN).

Proof.- We only show 1) and 2) the remaining items being analogously proven by
use of the second formula of Lemma A.1.

1) Let gB be generated by a finite system b = (by,..., b,). As M has acc(fm)
the product M" has acc for subgroups of the form Ty, x k.0 x (M), the (X, x)
running through the 1-pointed left S-modules. As 7, is a natural epimorphism the
first formula of Lemma A.1 shows that M @ Bs has acc for the subgroups
Ty (M ®p Bs).

2) Now let gxB be finitely presented and My have dcc(fm). This time we restrict
ourselves to finitely presented pointed modules (X, x). Then the (B ® s X, (b, ® X))
are finitely presented n-pointed left R-modules, M" has dcc for the T g x, (b, x) (M)
and it follows as in the preceding proof that M ®z By has dcc for the
Ty \((M®rB). O

Corollary A.3. Let R —> R’ be ring homomorphism.

1) If R’ is finitely generated and My has acc(fm) then M ® g Ry has acc(fm).

2) If gR' is finitely presented and My has dcc(fm) then M ® g Ry has dcc(fm).

3) If xR’ is finitely generated and gN has dcc(fm) then g.(xR', gN) has dcc(fm).

4) If R’ is finitely presented and g N has acc(fm) then g.(gxR’, gN) has acc(fm). 0O
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Lemma A4. Let My be a bimodule and Fs a flat module. Then we have
FRsTy (M)=Tx . (F®sM) for every 1-pointed left R-module (X,x) and
F®s Hy, (M) = Hy ,(F®s M) for every 1-pointed finitely presented right R-module
(Y,y).

Proof. Tensoring the exact sequence 0 — Ty (M) - M —>—» M ®z X with F
gives the exact sequence 0 » F ®g Ty (M) » FQsM —=— F @5 M ® X hence
the first formula. Letting (Y, y) be finitely presented there is a finitely presented
module (gX,x) with Hy, =Ty, ([11, Lemma 1.1]), hence F®gHy , (M) =
FsTx(M)=Tx  (F®sM)=Hy,(F®sM). O

Our next result is a direct consequence of this lemma; note that the first part already
occurs in [11, Corollary 2.3].

Corollary A.5. 1) If M has acc or dcc for f.m. subgroups then F ® s My has the same
property.

2) If Fy is faithfully flat and F ® ¢ Mg has acc or dcc for f.m. subgroups then My has
this chain condition as well. 0O

The usefulness of the first part of this corollary will be illustrated by an example
in the end of this Appendix. Here an application of the second part. Let R be a
commutative ring and R — R’ a ring homomorphism such that R’ is a faithfully
flat R-module. If M ® g R’ has acc or dcc for f.m. subgroups as an R’- or R-module
then My satisfies the same condition.

For the next lemma we bring to mind that a ring homomorphism is called a ring
epimorphism if the multiplication map R’ ® g R" — R'is bijective [7, Chap. XI,§1].

Lemma A.6. Let R — R’ be a ring epimorphism and (X, x) a 1-pointed left R'-module.
Then we have Ty .(My)= Ty (Mg) for every module My, and Hy (' N) =
Hy . (gN) for every module g N.

Proof. These formulae follow from the fact that in the present situation the canonical
maps M @g X > M @ X and (X, g N) — (gX, gN) are isomorphisms. O

Corollary A.7. Let R — R’ be a ring epimorphism and M a right R'-module. Mg
has acc resp. dcc for f.m. subgroups iff Mg has the respective property. 0O

As an illustration we apply Lemmata A.4 and A.6 to show a well-known result on
central localization of finite matrix subgroups [3, Lemma 6.31]. Let C be the center
of R and X a multiplicatively closed subset of C; as usual Ly denotes the module
of quotients of a C-module L with denominators in X. Then we have
Tx.«(My) = Ty .(My)s for all My and all pointed left Ry-modules (X, x), and
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Hy (Nyg) = Hx .(Ng)s for all g N and all finitely presented pointed left Ry-modules
(X, x). [We deduce the second formula: As R — Rjy is a ring epimorphism Lemma
A.6 gives Hx (N5) = Hx .((Ns)g). On the other hand, since Ny ~ C; ®¢ N and Cy
is a flat C-module we have Hy ((Ns)r) = Cs ®¢ Hyx . (Ng) = Hy (Ng)s by Lemma
A.4]. These formulae obviously imply that the Ry-module My inherits acc(fm) or
dcc(fm) from My.

References

[1] Crawley-Boevey, W.W.: Modules of a finite length over their endomorphism ring; in
Representations of Algebras and Related Topics, p. 127184, ed. by H. Tachikawa and
S. Brenner. London Math. Soc. Lecture Notes Series 168, Cambridge Univ. Press, 1992

[2] Gruson, L. and C.U. Jensen: Deux applications de la notion de L-dimension. C.R.
Acad. Sci. Paris 282, Série A (1976), 23-24

[3] Jensen, C.U. and H. Lenzing: Model Theoretic Algebra. Algebra, Logic and Applica-
tions Series Vol. 2, Gordon and Breach Science Publishers 1992

[4] Northcott, D.G.: Lessons on Rings, Modules and Multiplicities. Cambridge Univ. Press,
1968

[5] Northcott, D.G.: Injective envelopes and inverse polynomials. J. London Math. Soc. (2),
8 (1974), 190-196

[6] Prest, M.: Duality and pure-semi-simple rings. J. London Math. Soc. 38 (1988), 403—409

[7] Stenstrom, B.: Rings of Quotients. Grundlehren der mathematischen Wissenschaften
217, Springer-Verlag, Berlin, Heidelberg, New-York 1975

[8] Swan, R.G.: Algebraic K-theory. Lecture Notes in Mathematics 76, Springer-Verlag
Berlin, Heidelberg, New York 1968

[9] Zimmermann, W.: Rein injektive direkte Summen von Moduln. Comm. Algebra 5 (1977),
1083-1117

[10] Zimmermann-Huisgen, B. and W. Zimmermann: On the sparsity of representations of
rings of pure global dimension zero. Trans. Amer. Math. Soc. 320 (1990), 695-711
[11] Zimmermann, W.: Modules with chain conditions for finite matrix subgroups. J. Algebra

190 (1997), 68—87

Received September 26, 1996; in final form April 14, 1997

Wolfgang Zimmermann, Mathematisches Institut der Universitdt, Theresienstr. 39, D-80333
Miinchen, Germany



