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ABSTRACT. Poisson regression models for count variables have been utilized
in many applications. However, in many problems overdispersion and zero-
inflation occur. We study in this paper regression models based on the general-
ized Poisson distribution (Consul (1989)). These regression models which have
been used for about 15 years do not belong to the class of generalized linear
models considered by McCullagh and Nelder (1989) for which an established
asymptotic theory is available. Therefore we prove consistency and asymptotic
normality of a solution to the maximum likelihood equations for zero-inflated
generalized Poisson regression models. Further the accuracy of the asymptotic
normality approximation is investigated through a simulation study. This allows
to construct asymptotic confidence intervals and likelihood ratio tests.

Key words: central limit theorem, likelihood, maximum likelihood estimator, overdispersion,
zero-inflated generalized Poisson regression.

1 Introduction

Poisson regression models are often used to analyze count data. However count regression
data often exhibit substantial overdispersion which is present when the data has higher
variability as is allowed by the model. In particular, equality of mean and variance for
count data analyzed under a Poisson assumption is often violated. Various reasons such
as missing covariates and correlation among the measurements make counts overdispersed.
Consequently, a number of different regression models in the literature have been proposed,
which commonly handle overdispersion in two general approaches:

1) inclusion of random effects;

2) extension of the parametric model by extra parameters to allow for a more general
variance structure.
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Excellent surveys on this topic can be found in Cameron and Trivedi (1998) as well as in
Winkelmann (2003).

One way to extend a parametric model is to consider a distribution with a more flexible
variance function. A negative binomial (NB) and a generalized Poisson (GP) distributions
are standard count distributions used in analyzing overdispersed data. Lawless (1987) first
systematically studied the NB regression model and showed asymptotic normality of its max-
imum likelihood (ML) estimator. Consul and Famoye (1992) introduced the GP regression
model and applied it to several data sets. However they did not examined the asymptotic
properties of the ML estimator in the GP regression and this has remained an open problem.

It became popular over the past decade to model overdispersed data with a large fre-
quency of zeros using a mixture of a count distribution with a degenerate distribution sup-
ported at zero. This is another way to treat overdispersion by introducing an additional
parameter in regression model. Zero-inflated Poisson (ZIP) regression is one of frequently
used models for count data with large proportion of zeros. Lambert (1992) investigated the
asymptotic properties of the ML estimator in ZIP regression models. However she stated
asymptotic results without giving rigorous proofs and exact assumptions required. Jansakul
and Hinde (2002) derived score tests for ZIP models and investigated their power via a sim-
ulation study. Famoye and Singh (2003) have recently proposed score tests for a k-inflated
GP regression model where k is a fixed nonnegative integer. Gupta, Gupta, and Tripathi
(2004) independently studied score tests for a zero-inflated generalized Poisson (ZIGP) re-
gression model. Asymptotic properties of the ML estimator in the ZIGP regression model
have also not been investigated.

The objective of this paper is to derive the appropriate asymptotic theory for ZIGP
regression models and to examine the accuracy of the normal approximation for the ML
estimator. It should be noted that our results remain valid for GP and ZIP regression
models. The paper is organized as follows. In Section 2 we introduce zero-inflated and GP
distributions. Their basic properties will be also briefly discussed. The ZIGP regression
model will be defined in Section 3. Section 4 gives the asymptotic existence, the consistency
and the asymptotic normality of the ML estimators in ZIGP regression model. Results of a
simulation study are reported in Section 5. Computation of the Fisher information matrix
and the proof of Theorem 1 are given in Appendix.

2 Zero-inflated count distributions and the gen-

eralized Poisson (GP) distribution

Suppose that we observe realizations of a count random variable Y and we believe that Y

has a specified discrete count distribution. Further suppose that the observed data exhibits
an excess of zeros which can not be modelled by the assumed model. This means that
we cannot rely anymore on our hypothesis. But an assumption, that zeros arise from a
mixture of a Bernoulli distribution and the conjectured distribution, makes it possible for us
to investigate our conjecture. More precisely, we assume that the probability mass function
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of the observed response Y is given by

P (Y = y) =

⎧⎨
⎩ω + (1 − ω)P (Ỹ = 0) y = 0,

(1 − ω)P (Ỹ = y) y = 1, 2, . . . , 0 ≤ ω ≤ 1,

where Ỹ is distributed according to the conjectured distribution with finite second moment.
Simple calculations show that mean and variance of the zero-inflated random variable Y are
given by

E(Y ) = (1 − ω)E(Ỹ ) (1)

and

V ar(Y ) = (1 − ω)V ar(Ỹ ) + ω(1 − ω)
(
E(Ỹ )

)2

. (2)

Throughout this paper, we assume that the conjectured distribution of the response
variable Y , i.e. the distribution of Ỹ , is a generalized Poisson (GP) distribution with two
parameters μ and ϕ denoted by GP (μ, ϕ). This distribution was first introduced by Consul
and Jain (1970) and subsequently studied in detail by Consul (1989). The probability mass
function of the GP distribution is given by

Pμ,ϕ(y) :=

⎧⎨
⎩μ(μ + y(ϕ − 1))y−1ϕ−ye−(μ+y(ϕ−1))/ϕ/y! for y = 0, 1, . . .

0 for y > m, when ϕ < 1
(3)

and its real-valued parameters μ and ϕ satisfy the following constraints:

• μ > 0;

• ϕ ≥ max{1/2, 1 − μ/m}, where m (m ≥ 4) is a largest natural number such that
μ + m(ϕ − 1) > 0 when ϕ < 1.

If ϕ < 1 then (3) does not correspond to a probability distribution. The lower limit, imposed
on ϕ in this case, guarantees us that the total error of truncation is less than 0.5% (see
Consul and Shoukri (1985)). Since all discrete distributions are truncated under sampling
procedures this is a quite reasonable condition.

One particular property of the GP distribution is that the variance of this distribution
is greater than, equal to or less than the mean according to whether the second parameter
ϕ is greater than, equal to or less than 1. More precisely (for details see Consul (1989), page
12 ), if Y ∼ GP (μ, ϕ) then mean and variance of Y are given by

E(Y ) = μ (4)

and

V ar(Y ) = ϕ2μ. (5)

This implies that a regression model associated with the GP distribution can be used to fit
count regression data which has overdispersion or underdispersion or as well as equidisper-
sion. In the sequel this regression model will be called a GP regression. It should be noted
that the GP regression does not belong to well-studied generalized linear models (GLM)
(see for example McCullagh and Nelder (1989)) and consequently, there is no asymptotic
theory available at the moment.
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3 Zero-inflated generalized Poisson regression

A random variable Y is said to be distributed according to the zero-inflated generalized
Poisson (ZIGP) distribution with parameters μ, ϕ and ω, which we further denote by
ZIGP (μ, ϕ, ω), if its probability mass function is given by

Pμ,ϕ,ω(y) := P (Y = y)

=

⎧⎪⎪⎨
⎪⎪⎩

ω + (1 − ω)Pμ,ϕ(0), if y = 0

(1 − ω)Pμ,ϕ(y), if y = 1, 2, . . . ,

0 for y > m when ϕ < 1,

(6)

and zero otherwise, where 0 ≤ ω ≤ 1, μ > 0, ϕ ≥ max{1/2, 1 − μ/m} and m (m ≥ 4) is a
largest natural number for which μ+m(ϕ−1) > 0 when ϕ < 1. Thus, the ZIGP distribution
is a mixture of a Bernoulli distribution with parameter 1− ω and the GP distribution with
parameters μ and ϕ. Equations (1), (2), (4) and (5) imply that mean and variance of the
ZIGP distribution are connected with its parameters as follows

E(Y ) = (1 − ω)μ (7)

and

V ar(Y ) = E(Y )
(
ϕ2 + μω

)
. (8)

One of the main benefits of considering a regression model based on the ZIGP distribu-
tion is that it gives a large class of regression models for count response data. In particular,
it reduces to Poisson regression when ϕ = 1 and ω = 0, to GP regression when ω = 0 and
to the zero-inflated Poisson regression when ϕ = 1. Moreover, by virtue of (7) and (8) this
regression can be used to fit count regression data exhibiting overdispersion or underdisper-
sion.

Analogously to GLM, we now introduce a regression model with response Yi and (known)
explanatory variables xi = (xi0, xi1, . . . , xip)t with xi0 = 1 for i = 1, . . . , n:

1. Random components:
{Yi, 1 ≤ i ≤ n} are independent where Yi ∼ ZIGP (μi, ϕ, ω).

2. Systematic component:
The linear predictors ηi(β) = xt

iβ for i = 1, . . . , n influence the response Yi. Here β =
(β0, β1, . . . , βp)t are unknown regression parameters. The matrix X = (x1, . . . ,xn)t

is called the design matrix.

3. Parametric link component:
The linear predictors ηi(β) are related to the parameter μi of Yi by μi = exp(ηi(β))
for i = 1, . . . , n.

Here and in the sequel, At and at denote the transpose of the matrix A and the vector a,
respectively. To stress the fact that the distribution of the responses Yi’s does not belong
to the exponential family, this regression will be called the ZIGP regression model. Further,
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we denote the joint vector of the regression parameters β and the parameters ϕ and ω of
the ZIGP distribution by δ, i.e. δ := (βt, ϕ, ω)t.

The following abbreviations for i = 1, . . . , n will be used throughout in the paper:

μi(β) := exp
(
xt

iβ
)

fi(β, ϕ) := exp (−μi(β)/ϕ)

gi(δ) := ω + (1 − ω)fi(β, ϕ) = Pμi(β),ϕ,ω(0).

For observations y1, . . . , yn, the log-likelihood l(δ) derived from the ZIGP regression can be
written as

ln(δ) =
n∑

i=1

1l{yi=0} log (gi(δ))

+
n∑

i=1

1l{yi>0}

(
log(1 − ω) + xt

iβ − 1
ϕ

μi(β) + (yi − 1) log [μi(β) + yi(ϕ − 1)]

−yi log ϕ − yi
1
ϕ

(ϕ − 1) − log(yi!)
)

.

The maximum likelihood (ML) equations for estimating the true δ0 = (βt
0, ϕ0, ω0)t are

obtained by equating to zero the score vector which has the following representation:

sn(δ) = (s0(δ), . . . , sp(δ), sp+1(δ), sp+2(δ))t
, (9)

where

sr(δ) :=
∂ln(δ)
∂βr

=
n∑

i=1

sr,i(δ)

with

sr,i(δ) := −xir1l{yi=0}
(1 − ω)fi(β, ϕ)μi(β)

ϕgi(δ)

+ xir1l{yi>0}

(
1 +

μi(β)(yi − 1)
μi(β) + (ϕ − 1)yi

− μi(β)
ϕ

)
(10)

for r = 0, . . . , p,

sp+1(δ) :=
∂ln(δ)

∂ϕ
=

n∑
i=1

sp+1,i(δ)

with

sp+1,i(δ) := 1l{yi=0}
(1 − ω)fi(β, ϕ)μi(β)

ϕ2gi(δ)

+ 1l{yi>0}

(
yi(yi − 1)

μi(β) + (ϕ − 1)yi
− yi

ϕ
+

μi(β) − yi

ϕ2

)
, (11)

sp+2(δ) :=
∂ln(δ)

∂ω
=

n∑
i=1

sp+2,i(δ)
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with

sp+2,i(δ) := 1l{yi=0}
1 − fi(β, ϕ)

gi(δ)
− 1l{yi>0}

1
1 − ω

, (12)

for i = 1, . . . , n.
A solution of the ML equations sn(δ) = 0 will be denoted by δ̂ if it exists. If there

are more than one local maxima of the log-likelihood then we take any of them as the
ML estimator δ̂. Otherwise set δ̂ as an arbitrary constant in the interior of the set Kδ

(for a definition of Kδ see Assumption (A3) of the next section). Further, the expected
Fisher information matrix will be denoted by Fn(δ), i.e. Fn(δ) = Eδ (sn(δ)(sn(δ))t) and
computations of its entries are given in Appendix 1.

4 Asymptotic theory for the maximum likeli-

hood estimator in ZIGP regression

Fahrmeir and Kaufmann (1985) proved consistency and asymptotic normality of the ML es-
timator in GLM for canonical as well as noncanonical link functions under mild assumptions.
Their method can be adapted for proving similar results for the ZIGP regression.

Analogously to Fahrmeir and Kaufmann (1985), we use the Cholesky square root matrix
for normalizing the ML estimator. The left Cholesky square root matrix A1/2 of a positive
definite matrix A is the unique lower triangular matrix with positive diagonal elements such
that A1/2

(
A1/2

)t
= A (see Stewart (1998), p. 188). For convenience, set At/2 :=

(
A1/2

)t
,

A−1/2 :=
(
A1/2

)−1
and A−t/2 :=

(
At/2

)−1
. In this paper we deal only with the spectral

norm of square matrices denoted by ‖ · ‖. The spectral norm of a real-valued matrix A is
given by

‖A‖ =
(
maximum eigenvalue of AtA

)1/2 = sup
‖u‖2=1

‖Au‖2 ,

where ‖ · ‖2 denotes the L2– norm of vectors. We drop subindex 2 in ‖ · ‖2 since the spectral
norm is generated by the L2–norm of vectors and arguments of considered norms are always
clearly defined. The minimal (maximal) eigenvalue of a square matrix A will be further
denoted by λmin(A) (λmax(A)).

Now denote by

Nn(ε) = {δ : ‖Ft/2
n (δ0)(δ − δ0)‖ ≤ ε} (13)

a neighborhood of the unknown true parameter δ0 for ε > 0.
For convenience, we drop the arguments δ0, β0 and ϕ0 as well as the subindex δ0 in

μi(β0), fi(β0, ϕ0), gi(δ0), Pδ0 , Eδ0 etc. and write μi, fi, gi, P , E etc. Constants will be
further denoted by C and c, with subindexes or without them. They may depend on δ0

but not on n. The same C’s and c’s in different places denote different constants. Finally,
the k-dimensional unit matrix will be denoted by Ik and an admissible set for a regression
parameter β will be denoted by B.

In the paper we make the following assumptions.
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(A1)
n

λmin(Fn)
≤ C1 ∀ n ≥ 1,

where C1 is a positive constant.

(A2) {xn, n ≥ 1} ⊂ Kx, where Kx ⊂ R
p+3 is a compact set.

(A3) Assume that B ⊂ R
p+1 is an open set and δ0 is an interior point of the set Kδ :=

B × Φ × Ω, where Φ := [1,∞) and Ω := [0, 1].

Now we state our main theorem which is the analogue to Theorem 4 of Fahrmeir and
Kaufmann (1985).

Theorem 1. Under the assumptions (A1)–(A3), there exists a sequence of random variables
δ̂n, such that

(i) P (sn(δ̂n) = 0) → 1 as n → ∞ (asymptotic existence),

(ii) δ̂n
P−→ δ0 as n → ∞ (weak consistency),

(iii) Ft/2
n (δ̂n − δ0)

D=⇒ Np(0, Ip+3) as n → ∞ (asymptotic normality).

The proof is given in Appendix 2.
Remarks

(i) Assumption (A1) is more restrictive than the corresponding condition (D) of Fahrmeir
and Kaufmann (1985).

(ii) Assumption (A2) simply means that we deal with compact regressors.

(iii) If δ0 lies on the boundary of parameter space Kδ, i.e. (A3) is violated, then state-
ments of Theorem 1 do not hold anymore. However, one may investigate asymptotic
properties of the ML estimator δ̂ using results of Self and Liang (1987) and Moran
(1971).

(iv) Theorem 1 allows to construct confidence intervals for ϕ0 and ω0 and tests based
on them. However, we cannot test the adequacy of the Poisson regression, the GP
regression or the ZIP regression models, i.e. ϕ0 = 1 and/or ω0 = 0, using Theorem 1.

(v) It is not difficult to see that the asymptotic results of Theorem 1 remain valid in
GP or ZIP regression models subject to appropriate changes are performed in the
log-likelihood, the ML equations and the Fisher information matrix as well as in
Assumption (A3).

5 Simulation study

We investigated the accuracy of the normal approximation based on Theorem 1 by per-
forming a small simulation study in S-PLUS for samples of size n = 50, 100 and 200.
We use a similar simulation setup as Stekeler (2004). It should be noted here that the
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maximization routine have been written by Stekeler (2004) and can be downloaded (www-
m4.ma.tum.de/Diplarb/). A simple model with intercept and single covariate x was consid-
ered for the linear predictors ηi(β)’s, i.e. ηi(β) = β0+β1xi for i = 1, . . . , n. The values of the
covariate x were chosen equally spaced between −1 and 1. Further we examined two choices
for β1 and set β0 = −1. In the first case we put β1 = 2 while β1 = 3 was set in the second
case, which will be in the sequel called Setting-1 and Setting-2, respectively. This allows us
to compare models with a small (Setting-1) and large (Setting-2) range of the parameter μ of
the ZIGP distribution. Since we are mostly interested in the case when Poisson regression
does not satisfactorily fit the count regression data, the following values of ω and ϕ were
considered: ω = 0.1, 0.25 and ϕ = 1.25, 3. For each combination of sample size n, setting, ω

and ϕ we simulated 100 samples of responses Yi’s, i.e. Yi ∼ ZIGP (exp(β0 + β1xi), ϕ, ω) for
i = 1, . . . , n.

We computed the average estimate and the estimated mean squared error (MSE) of the
ML estimators β̂0, β̂1, ϕ̂ and ω̂ in 100 replications for each considered case. Simulation
results for Setting-1 are a bit more accurate than for Setting-2 but they demonstrate similar
patterns. This is natural to expect since μ has an influence on the range the of data. Here
we present the results only for Setting-2 given in Table 1. Standard errors of the average
estimate and estimated MSE are given in parentheses. From Table 1 we see as expected
that the bias and MSE always decrease as the sample size n increases. An opposite pattern
is observed with respect to ϕ. If ϕ increases, while n and ω remain fixed, the accuracy
of the estimates becomes worse. This is explained by allowing for more dispersed data for
larger ϕ. A similar pattern holds for ω. If ω increases, while n and ϕ remain fixed, then the
accuracy becomes worse. Since a larger ω increases the overdispersion in the data this is
to be expected. Note that in our simulation study ϕ has a larger influence on the accuracy
of ML estimators than ω. This can be seen from the estimated MSE’s. For instance, the
estimated MSE of β̂1 is equal to 0.09 when ϕ = 1.25, ω = 0.1 and n = 200. Now if ω is
increased by 2.5 times then the estimated MSE approximately increases 20% while if ϕ is
increased by 2.4 times then the estimated MSE approximately increases 110%.

To draw a normal quantile-quantile (QQ) plot for the empirical distribution of each com-
ponent of the random vector Ft/2

n (δ̂n−δ0) considered in Theorem 1 and the standard normal
distribution, the ML estimators β̂0, β̂1, ϕ̂ and ω̂ were centered by the corresponding true
value and normalized by the corresponding square root of diagonal element of the inverse of
the Fisher information matrix evaluated at the true values of parameters (ϕ, ω, β0, β1). The
normalized and centered ML estimators are further denoted by β̂st

0 , β̂st
1 , ϕ̂st and ω̂st. Figures

1 (ω = 0.1) and 2 (ω = 0.25) display the QQ–plots for Setting-2. For a better visualization
we connected points of QQ–plots with different type of lines. The solid, dotted and dashed
broken lines correspond to sample sizes n = 50, n = 100 and n = 200, respectively. The
straight line corresponds to 450 degree line and indicates where the points of a standard
normal distribution in a normal QQ–plot would fall.

From these plots we see that the normal approximation for β̂st
0 and β̂st

1 is quite satis-
factory. This is only partially true for ϕ̂st and ω̂st since we observe horizontal segments in
the left bottom corner of the corresponding QQ-plot. A reason of the above anomaly is the
closeness of the true values of ϕ and ω to their left boundary values 1 and 0, respectively.
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Therefore the log-likelihood reaches its maximum at ϕ = 1+10−99 and ω = 10−99 which are
the lower bound for ϕ and ω in the maximization routine. The standard normal QQ-plots
for ϕ̂st in Figure 1 and ω̂st in Figure 2 justify this fact. Note that the normal approximation
for ω̂st in Figure 2 is worse for ϕ = 3 than for ϕ = 1.25. This occurs since data becomes
more dispersed for large ϕ. The above anomaly is resolved when a higher sample size is
used in these cases. This can be seen by comparing the first column of QQ-plots in Figure
1 with the corresponding QQ-plots in Figure 3 for n = 500.

Since Theorem 1 covers such important regression models as ZIP and GP regressions,
we were also interested in investigating the accuracy of the normal approximation in these
special models. In the case of a ZIP regression we simulated 100 samples of responses Yi’s
from ZIP (exp(β0 +β1xi), ω) for i = 1, . . . , n, where sample size n, the parameters ω, β0, β1

and the covariate x were defined as in the case of the ZIGP regression simulation. Table 2
displays the average estimate and estimated MSE of the ML estimators β̂0, β̂1 and ω̂ in 100
replications for the ZIP regression simulation study. Their standard errors are also given
in parentheses. Figure 4 displays the corresponding QQ-plots of empirical distributions of
normalized and centered ω̂st, β̂st

0 , β̂st
1 and the standard normal distribution. From estimated

MSE’s in Table 2 we see that ω̂ is more accurate estimated in Setting 2 while β̂0 and β̂1 is
more accurate estimated in Setting 1. This is natural to expect since if range of μ gets larger
then data becomes more overdispersed and zeros from Poisson distribution occur rarer. In
general, patterns discussed for the case of the ZIGP regression model are also valid here.

In the case of a GP regression we simulated 100 samples of responses Yi’s from GP (exp(β0+
β1xi), ϕ) for i = 1, . . . , n, where sample size n, the parameters ϕ, β0, β1 and the covariate
x were set as in the case of the ZIGP regression. Table 3 displays the average estimate
and the estimated MSE of the ML estimators β̂0, β̂1 and ϕ̂ in 100 replications for the GP
regression simulation study. Figure 5 displays the corresponding QQ-plots of empirical dis-
tributions of normalized and centered ϕ̂st, β̂st

0 , β̂st
1 and the standard normal distribution.

From Table 3 we see that the accuracy of the ML estimators becomes better as n gets larger
and becomes worse as ϕ increases. Since μ does not bear an influence on overdispersion (see
(4) and (5)), there is not much difference in the accuracy of the ML estimators for Setting-1
and Setting-2.

We also investigated the coverage of the true values of the parameters ϕ, ω, β0 and β1

of asymptotic confidence intervals based on Theorem 1 for sample size n = 500. Results
of simulations show good agreement with true values of ϕ, ω, β0 and β1. More detailed
research on this topic will be carried out in the future.

Using a negative binomial regression model Czado and Sikora (2002) analyzed data on
patents US high-tech firms in 1976 from Wang, Cockburn, and Puterman (1998). Czado and
Sikora (2002) rejected Poisson model in favor of negative binomial model using a p–value
approach. We applied a ZIGP regression model to their model setup for the patent data.
Since [2.098, 3.263] and [−0.03, 0.06] were obtained as asymptotic 95% confidence intervals
for ϕ and ω, respectively, we reject the Poisson regression model in favor of a GP regression
model. Zero-inflation is not present in this data set. An application of a GP regression to
the patent data produces [2.152, 3.342] as an asymptotic 95% confidence interval. Thus, the
GP regression is preferred over the Poisson regression model.
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Table 1: Average estimate and estimated MSE of ϕ̂, ω̂, β̂0, β̂1 in Setting-2 for a ZIGP

regression model on the basis of 100 replications replications (estimated standard errors are
given in parentheses).
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Figure 1: Normal QQ-plots of centered and normalized ML estimators in Setting-2
for a ZIGP regression model with ω = 0.1 based on 100 replications

11



Quantiles of Standard Normal

−2 −1 0 1 2

−
2

−
1

0
1

2
3

n=50
n=100
n=200

Quantiles of Standard Normal

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Quantiles of Standard Normal

−2 −1 0 1 2

−
4

−
2

0
2

Quantiles of Standard Normal

−2 −1 0 1 2

−
2

−
1

0
1

2
3

4

Quantiles of Standard Normal

−2 −1 0 1 2

−
2

−
1

0
1

2
3

n=50
n=100
n=200

Quantiles of Standard Normal

−2 −1 0 1 2

−
2

−
1

0
1

2

Quantiles of Standard Normal

−2 −1 0 1 2

−
6

−
4

−
2

0
2

Quantiles of Standard Normal

−2 −1 0 1 2

−
2

0
2

4
6

ϕ̂
st

ϕ̂
st

ϕ = 1.25 ϕ = 3

ω̂
st

ω̂
st

β̂
st 0

β̂
st 0

β̂
st 1

β̂
st 1

Figure 2: Normal QQ-plots of centered and normalized ML estimators in Setting-2
for a ZIGP regression model with ω = 0.25 based on 100 replications
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Table 2: Average estimate and estimated MSE of ω̂, β̂0, β̂1 for a ZIP regression model on
the basis of 100 replications (estimated standard errors are given in parentheses)
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Figure 4: Normal QQ-plots of centered and normalized ML estimators for a ZIP

regression model based on 100 replications
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Table 3: Average estimate and estimated MSE of ϕ̂, β̂0, β̂1 for a GP regression model on
the basis of 100 replications (estimated standard errors are given in parentheses).

P
ar

a-
T
ru

e
n

S
et

ti
n
g-

1
P
ar

a-
T
ru

e
n

S
et

ti
n
g-

2
m

et
er

va
lu

e
E
st

im
at

e
M

S
E

m
et

er
va

lu
e

E
st

im
at

e
M

S
E

ϕ
1.

25
50

1.
22

1
(0

.1
92

)
0.

03
8

(5
·1

0−
5
)

ϕ
1.

25
50

1.
20

4
(0

.1
76

)
0.

03
3

(2
·1

0−
5
)

10
0

1.
22

2
(0

.1
23

)
0.

01
6

(4
·1

0−
6
)

10
0

1.
22

4
(0

.1
51

)
0.

02
3

(1
0−

5
)

20
0

1.
23

9
(0

.0
94

)
0.

00
9

(1
0−

6
)

20
0

1.
24

5
(0

.0
93

)
0.

00
9

(1
0−

6
)

β
0

-1
50

-1
.0

41
(0

.3
89

)
0.

15
3

(0
.0

01
)

β
0

-1
50

-1
.1

12
(0

.3
73

)
0.

15
1

(0
.0

01
)

10
0

-1
.0

53
(0

.2
45

)
0.

06
3

(9
·1

0−
5
)

10
0

-1
.0

37
(0

.2
89

)
0.

08
5

(3
·1

0−
4
)

20
0

-1
.0

15
(0

.1
87

)
0.

03
5

(2
·1

0−
5
)

20
0

-1
.0

16
(0

.1
62

)
0.

02
7

(2
·1

0−
5
)

β
1

2
50

1.
99

0
(0

.5
40

)
0.

29
1

(0
.0

02
)

β
1

3
50

3.
12

0
(0

.4
68

)
0.

23
3

(0
.0

01
)

10
0

2.
02

6
(0

.3
92

)
0.

15
4

(0
.0

01
)

10
0

3.
04

6
(0

.3
73

)
0.

14
1

(5
·1

0−
4
)

20
0

2.
00

6
(0

.2
50

)
0.

06
3

(6
·1

0−
5
)

20
0

3.
00

7
(0

.2
34

)
0.

05
5

(6
·1

0−
5
)

P
ar

a-
T
ru

e
n

S
et

ti
n
g-

1
P
ar

a-
T
ru

e
n

S
et

ti
n
g-

2
m

et
er

va
lu

e
E
st

im
at

e
M

S
E

m
et

er
va

lu
e

E
st

im
at

e
M

S
E

ϕ
3

50
2.

72
0

(1
.1

82
)

1.
47

7
(0

.0
37

)
ϕ

3
50

2.
69

9
(0

.9
21

)
0.

93
9

(0
.0

25
)

10
0

3.
11

4
(0

.9
3

)
0.

87
8

(0
.0

24
)

10
0

2.
94

1
(0

.8
24

)
0.

68
3

(0
.0

10
)

20
0

3.
02

5
(0

.5
91

)
0.

34
9

(0
.0

03
)

20
0

2.
93

1
(0

.5
04

)
0.

25
8

(0
.0

01
)

β
0

-1
50

-1
.3

23
(0

.8
41

)
0.

81
2

(0
.0

35
)

β
0

-1
50

-1
.1

95
(0

.7
18

)
0.

55
4

(0
.0

21
)

10
0

-1
.1

01
(0

.4
96

)
0.

25
6

(0
.0

01
)

10
0

-1
.0

60
(0

.4
71

)
0.

22
6

(0
.0

01
)

20
0

-1
.0

52
(0

.3
08

)
0.

09
8

(2
·1

0−
4
)

20
0

-1
.0

31
(0

.3
19

)
0.

10
3

(5
·1

0−
4
)

β
1

2
50

2.
11

6
(0

.9
82

)
0.

97
8

(0
.0

4
)

β
1

3
50

3.
08

0
(0

.8
56

)
0.

74
0

(0
.0

24
)

10
0

2.
08

5
(0

.6
19

)
0.

39
0

(0
.0

02
)

10
0

3.
03

3
(0

.5
99

)
0.

36
0

(0
.0

03
)

20
0

2.
09

4
(0

.4
10

)
0.

17
7

(0
.0

01
)

20
0

3.
00

1
(0

.3
89

)
0.

15
1

(0
.0

01
)

16



Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−2−101234

n
=

5
0

n
=

1
0

0
n

=
2

0
0

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−3−2−1012

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−2−10123

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−2−10123

n
=

5
0

n
=

1
0

0
n

=
2

0
0

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−4−3−2−1012

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−3−2−10123

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−2−101234

n
=

5
0

n
=

1
0

0
n

=
2

0
0

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−4−202

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2
−2024

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−2024

n
=

5
0

n
=

1
0

0
n

=
2

0
0

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−6−4−202

Q
u

a
n

ti
le

s
 o

f 
S

ta
n

d
a

rd
 N

o
rm

a
l

−
2

−
1

0
1

2

−2024

ϕ̂
st

ϕ̂
st

ϕ̂
st

ϕ̂
st

β̂
st
0

β̂
st
0

β̂
st
0

β̂
st
0

β̂
st
1

β̂
st
1

β̂
st
1

β̂
st
1

S
et

ti
n
g-

1,
ϕ

=
1.

25
S
et

ti
n
g-

2,
ϕ

=
1.

25
S
et

ti
n
g-

1,
ϕ

=
3

S
et

ti
n
g-

2,
ϕ

=
3

Figure 5: Normal QQ-plots of centered and normalized ML estimators for a GP

regression model based on 100 replications
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6 Conclusions

This paper shows that solutions to the ML equations in ZIGP (GP, ZIP) regression models
possess analogous asymptotic properties as they do in GLM. General results of Fahrmeir
and Kaufmann (1985) for noncanonical links in GLM have been adopted for this purpose.
Simulation study illustrates that the normal approximation is satisfactory for moderate and
large sample sizes. In particular for moderate overdispersion (ϕ = 1.25) and moderate
zero-inflation (ω = 0.25) sample sizes of n = 200 are sufficient.
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Appendix 1: Derivation of the Fisher informa-

tion matrix for ZIGP regression

In order to compute the Fisher information matrix we need the following lemma derived in
Stekeler (2004), pp. 80–81. For the reader’s convenience we provide its proof here.

Lemma 1. If Ỹ ∼ GP (μ, ϕ) then

E

(
Ỹ (Ỹ − 1)

[μ + (ϕ − 1)Ỹ ]2

)
=

μ

ϕ2(μ − 2 + 2ϕ)
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and

E

(
Ỹ 2(Ỹ − 1)

[μ + (ϕ − 1)Ỹ ]2

)
=

μ(μ + 2ϕ)
ϕ2(μ − 2 + 2ϕ)

.

Proof. We give a proof for the second assertion of Lemma 1. The first one can be proven in
the same way. Using (3), (4) and making change of variable y = ỹ + 2, we find

E

(
Ỹ 2(Ỹ − 1)

[μ + (ϕ − 1)Ỹ ]2

)
=

∞∑
y=2

y2(y − 1)
[μ + (ϕ − 1)y]2

Pμ,ϕ(y)

=
μ

ϕ2(μ + 2(ϕ − 1))

∞∑
ỹ=0

(ỹ + 2)Pμ+2(ϕ−1),ϕ(ỹ)

=
μ

ϕ2(μ + 2(ϕ − 1))
(μ + 2(ϕ − 1) + 2)

=
μ(μ + 2ϕ)

ϕ2(μ − 2 + 2ϕ)
.

The following lemma will be directly used for computing entries of the Fisher information
matrix.

Lemma 2. If Y ∼ ZIGP (μ, ϕ, ω) and Ỹ ∼ GP (μ, ϕ) then for any measurable function u

Eδ

(
1l{Y >0}u(Y )

)
= (1 − ω)Eδ

(
u(Ỹ )

)
− u(0)(1 − ω) exp

(
−μ

ϕ

)
and

Eδ

(
1l{Y =0}u(Y )

)
= u(0)

(
ω + (1 − ω)e−μ/ϕ

)
.

If furthermore the function u is non-negative on [0,∞) then

Eδ

(
1l{Y >0}u(Y )

) ≤ (1 − ω)Eδ

(
u(Ỹ )

)
.

Proof. Let us prove the first statement of Lemma 2.

Eδ

(
1l{Y >0}u(Y )

)
=

∞∑
y=1

u(y)Pμ,ϕ(y)

= (1 − ω)E
(
u(Ỹ )

)
− u(0)(1 − ω)Pμ,ϕ(0)

= (1 − ω)E
(
u(Ỹ )

)
− u(0)(1 − ω) exp

(
−μ

ϕ

)
.

The second statement of Lemma 2 is obvious. The third statement follows from the first
one.

The Fisher information matrix will be computed via the Hessian matrix. Simple calcu-
lations show that the Hessian matrix is given by

Hn(δ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

h0,0(δ) h0,1(δ) . . . h0,p(δ) h0,p+1(δ) h0,p+2(δ)
...

...
. . .

...
...

...
hp,0(δ) hp,1(δ) . . . hp,p(δ) hp,p+1(δ) hp,p+2(δ)

hp+1,0(δ) hp+1,1(δ) . . . hp+1,p(δ) hp+1,p+1(δ) hp+1,p+2(δ)
hp+2,0(δ) hp+2,1(δ) . . . hp+2,p(δ) hp+2,p+1(δ) hp+2,p+2(δ)

⎞
⎟⎟⎟⎟⎟⎟⎠
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with entries:

hr,s(δ) :=
∂2ln(δ)
∂βr∂βs

= −
n∑

i=1

1l{yi=0}xirxis(1 − ω)μi(β)

× [1 − fi(β, ϕ)/ϕ] gi(δ) + (1 − ω) [fi(β, ϕ)]2 μi(β)/ϕ

ϕ [gi(δ)]2

−
n∑

i=1

1l{yi>0}xirxisμi(β)

(
1
ϕ
− yi(yi − 1)(ϕ − 1)

[μi(β) + (ϕ − 1)yi]
2

)

for r, s = 0, . . . , p ;

hp+1,r(δ) = hr,p+1(δ) :=
∂2ln(δ)
∂βr∂ϕ

= −
n∑

i=1

1l{yi=0}xir(1 − ω)fi(β, ϕ)μi(β)

× gi(δ) [μi(β)/ϕ − 1] − (1 − ω)fi(β, ϕ)μi(β)/ϕ

ϕ2 [gi(δ)]2

+
n∑

i=1

1l{yi>0}xirμi(β)

(
1
ϕ2

− yi(yi − 1)

[μi(β) + (ϕ − 1)yi]
2

)

for r = 0, . . . , p ;

hp+2,r(δ) = hr,p+2(δ) :=
∂2ln(δ)
∂βr∂ω

=
n∑

i=1

1l{yi=0}
xirfi(β, ϕ)μi(β)

ϕ [gi(δ)]2

for r = 0, . . . , p ;

hp+1,p+1(δ) :=
∂2ln(δ)
∂ϕ∂ϕ

=
n∑

i=1

1l{yi=0}(1 − ω)fi(β, ϕ)μi(β)
gi(δ) (μi(β) − 2ϕ) − (1 − ω)fi(β, ϕ)μi(β)

ϕ4 [gi(δ)]2

−
n∑

i=1

1l{yi>0}

(
y2

i (yi − 1)
[μi(β) + (ϕ − 1)yi]

2 + 2
μi(β) − yi

ϕ3
− yi

ϕ2

)
;

hp+2,p+1(δ) = hp+1,p+2(δ) :=
∂2ln(δ)
∂ϕ∂ω

= −
n∑

i=1

1l{yi=0}
fi(β, ϕ)μi(β)

ϕ2 [gi(δ)]2
;
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hp+2,p+2(δ) :=
∂2ln(δ)
∂ω∂ω

= −
n∑

i=1

(
1l{yi=0}

[1 − fi(β, ϕ)]2

[gi(δ)]2
+ 1l{yi>0}

1
(1 − ω)2

)
.

Now set

Hn(δ) = −Hn(δ).

It is well known (see for example Mardia, Kent, and Bibby (1979), p.98) that under mild
general regularity assumptions Fn(δ) = EδHn(δ). Thus, using Lemmas 1 and 2, the Fisher
information matrix can be straightforward compute and is given by

Fn(δ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f0,0(δ) f0,1(δ) . . . f0,p(δ) f0,p+1(δ) f0,p+2(δ)
...

...
. . .

...
...

...
fp,0(δ) fp,1(δ) . . . fp,p(δ) fp,p+1(δ) fp,p+2(δ)

fp+1,0(δ) fp+1,1(δ) . . . fp+1,p(δ) fp+1,p+1(δ) fp+1,p+2(δ)
fp+2,0(δ) fp+2,1(δ) . . . fp+2,p(δ) fp+2,p+1(δ) fp+2,p+2(δ)

⎞
⎟⎟⎟⎟⎟⎟⎠

with entries:

fr,s(δ) = fs,r(δ) =
n∑

i=1

xirxis(1 − ω)μi(β)

× [1 − fi(β, ϕ)/ϕ] gi(δ) + (1 − ω) [fi(β, ϕ)]2 μi(β)/ϕ

ϕgi(δ)

+
n∑

i=1

(1 − ω)xirxisμi(β)
(

μi(β) − 2ϕ + 2ϕ2

ϕ2(μi(β) − 2 + 2ϕ)
− 1

ϕ
fi(β, ϕ)

)

for r, s = 0, . . . , p ;

fp+1,r(δ) = fr,p+1(δ) =
n∑

i=1

xir(1 − ω)fi(β, ϕ)μi(β)

× gi(δ) [μi(β)/ϕ − 1] − (1 − ω)fi(β, ϕ)μi(β)/ϕ

ϕ2gi(δ)

−
n∑

i=1

(1 − ω)xirμi(β)
(

2(ϕ − 1)
ϕ2(μi(β) − 2 + 2ϕ)

− fi(β, ϕ)
ϕ2

)

for r = 0, . . . , p ;

fp+2,r(δ) = fr,p+2(δ) = −
n∑

i=1

xirfi(β, ϕ)μi(β)
ϕgi(δ)

for r = 0, . . . , p ;

fp+1,p+1(δ) = −
n∑

i=1

(1 − ω)fi(β, ϕ)μi(β)
gi(δ) (μi(β) − 2ϕ) − (1 − ω)fi(β, ϕ)μi(β)

ϕ4gi(δ)

+
n∑

i=1

2(1 − ω)μi(β)
(

1
ϕ2(μi(β) − 2 + 2ϕ)

− fi(β, ϕ)
ϕ3

)
;
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fp+2,p+1(δ) = fp+1,p+2(δ) =
n∑

i=1

fi(β, ϕ)μi(β)
ϕ2gi(δ)

;

fp+2,p+2(δ) =
n∑

i=1

(
[1 − fi(β, ϕ)]2

gi(δ)
+

1 − fi(β, ϕ)
1 − ω

)
.

Appendix 2: Proof of Theorem 1

The proof of Theorem 1 follows the proof of Theorem 4 given in Fahrmeir and Kaufmann
(1985). In particular, we have to prove asymptotic normality of the normalized score vectors
Ft/2

n sn (Lemma 5) and show (Lemma 6) that

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ε > 0,

where Vn(δ) := F−1/2
n Hn(δ)F−t/2

n for n = 1, 2, . . .

We start the appendix with two preliminary lemmas. Recall that we drop the depen-
dency on δ0,β0, ϕ0 and use μi, Fn, etc.

Lemma 3. Let Ỹi ∼GP(μi, ϕ0) for i = 1, . . . , n be a sequence of random variables. Then
under assumptions (A2) and (A3),

max
i=1,...,n

E

(
1

(μi + (ϕ0 − 1)Ỹi)k

)
≤ C1,

max
i=1,...,n

E(Ỹ k
i ) ≤ C2

for any finite integer k > 0, where C1 and C2 are positive constants depending only on k

and δ0 .

Proof. Let us show the first inequality of the Lemma. It is evident using (A3) that

E

(
1

(μi + (ϕ0 − 1)Ỹi)k

)
≤ 1

μk
i

.

Now it follows

max
i=1,...,n

1
μk

i

= max
i=1,...,n

1
exp (kxt

iβ0)

≤ max
x∈Kx

1
exp (kxtβ0)

≤ C1(β0, k),

since Kx is a compact and exp (kxtβ0) is a continuous function of x. It should be noted
that C1(β0, k) is continuous with respect to β0 and well defined for all β0 ∈ B.

Now we show the second inequality of the lemma. First, we reparameterize the GP
distribution by introducing new parameters θi := μi/ϕ0 and λ0 := (ϕ0−1)/ϕ0, i = 1, . . . , n.
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Consul and Shenton (1974) gave the following recurrence formula for the noncentral moments
of the GP (θi, λ0) distribution:

(1 − λ0)mi,k+1 = θimi,k + θi
∂mi,k

∂θi
+ λ0

∂mi,k

∂λ0
, k = 0, 1, 2, . . . ,

where mi,k := E(Ỹ k
i ).

Solving this recursion for fixed k shows that mi,k is a polynomial in θi, λ0 and 1/(1−λ0).
Thus, mi,k is a continuous function with respect to (θi, λ0) and consequently, it is also
continuous with respect to (μi, ϕ0). It follows now that

max
i=1,...,n

E(Ỹ k
i ) = max

i=1,...,n
mi,k (θi, λ0)

= max
i=1,...,n

mi,k (μi/ϕ0, μi(ϕ0 − 1)/ϕ0)

≤ max
x∈Kx

mk

(
extβ0/ϕ0, e

xtβ0(ϕ0 − 1)/ϕ0

)
≤ C2(δ0),

where mk := E(Ỹ k) and Ỹ ∼ GP (exp(xtβ0), ϕ0). It is not difficult to see that C2(δ0) is
continuous with respect to δ0 and well defined for all δ0 ∈ Kδ.

Lemma 4. Let Qk(y) be a polynomial of a finite order k (k ∈ N) whose coefficients are
positive continuous functions of x, δ and δ0. Further, let Yi ∼ ZIGP (exp(xt

iβ0), ϕ0, ω0)
for i = 1, . . . , n. If (A1)–(A3) hold then

max
δ∈Nn(ε)

max
i=1,...,n

E
(
1l{Yi>0}Qk(Yi)

)
< C,

where C is a positive constant depending on k and δ0.

Proof. Note that under (A1) the neighborhood Nn(ε) is a compact for any n ∈ N and
shrinks to δ0 for any ε > 0 as n → ∞. Using Lemmas 2 and 3 and the continuity of the
coefficients of Qk, it follows now that

max
δ∈Nn(ε)

max
i=1,...,n

E
(
1l{Yi>0}Qk(Yi)

) ≤ max
δ∈Nn(ε)

max
i=1,...,n

(1 − ω0)E
(
Qk(Ỹi)

)
≤ max

δ∈N1(ε)
max
x∈Kx

(1 − ω0)E
(
Qk(Ỹ )

)
≤ C,

where Ỹi ∼ GP (exp(xt
iβ0), ϕ0) and Ỹ ∼ GP (exp(xtβ0), ϕ0).

Lemma 5. Under assumptions (A1)–(A3), F−1/2
n sn

D⇒ Np+3(0, Ip+3) as n → ∞, where
Np+3(0, Ip+3) is a (p+3)-dimensional normal distribution with mean vector 0 and covariance
matrix Ip+3.

Proof. According to the Cramer-Wald device, it is sufficient to show that a linear combi-
nation atF−1/2

n sn converges in distribution to N(0, ata) for any vector a ∈ R
p+3 (a �= 0).

Without loss of generality, we set ‖a‖ = 1.
Now observe that sn can be written as a sum of independent random vectors, namely

sn =
n∑

i=1

sni,
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where sni = (s0,i, . . . , sp,i, sp+1,i, sp+2,i)t with sk,i := sk,i(δ0) defined in (10), (11) and (12)
for k = 0, . . . , p + 2 and i = 1, . . . , n, respectively. Further, define independent random
variables ξin by ξin := atF−1/2

n sni. Since E(ξin) = 0 and V ar (
∑n

i=1 ξin) = 1, it is enough
to show that the Lyapunov condition is satisfied, i.e.

Ls :=
n∑

i=1

E|ξin|s n→∞−→ 0, for some s > 2,

say s = 3 (see for example Hoffmann-Jørgensen (1994), p. 393). Noticing that ‖F−1/2
n ‖2 =

1/λmin (Fn), it follows from (A1) that

L3 ≤
n∑

i=1

E

(∥∥at
∥∥3
∥∥∥F−1/2

n

∥∥∥3

‖sni‖3

)

≤ C

n3/2

n∑
i=1

E ‖sni‖3

≤ C√
n

max
i=1,...,n

E ‖sni‖3
.

Using an extension of the cr-inequality given by

E

∣∣∣∣∣
m∑

i=1

ζi

∣∣∣∣∣
k

≤ mk−1
m∑

i=1

E|ζi|k ( k > 1, k ∈ R), (14)

to m arbitrary random variables ζ1, . . . , ζm ( see, for example, Petrov (1995), p.58) yields
that

E ‖sni‖3 ≤ C
(
E |s0,i|3 + . . . + E |sp,i|3 + E |sp+1,i|3 + E |sp+2,i|3

)
.

Thus, it remains to establish that maxi=1,...,n E |sr,i|3 is uniformly bounded in n for
r = 0, . . . , p + 2. This will be shown for case r = 0, . . . , p. The remaining cases can be
treated similarly. Without loss of generality, set r = p. Using now (14) with m = 2, we have

max
i=1,...,n

E |sp,i|3 ≤ 22 max
i=1,...,n

E

∣∣∣∣xip1l{yi=0}
(1 − ω0)fiμi

ϕ0gi

∣∣∣∣
3

+ 22 max
i=1,...,n

E

(∣∣∣∣xip1l{yi>0}

(
1 +

μi(yi − 1)
μi + (ϕ0 − 1)yi

− μi

ϕ0

)∣∣∣∣
3
)

=: 4Ap(δ0) + 4Bp(δ0).

The last step in the proof is now to show that

Ap(δ0) < C1 and Bp(δ0) < C3, (15)

where C1 and C3 are some constants depending on δ0.
For proving (15) note that Lemma 2 implies

Ap(δ0) ≤ max
x∈Kx

‖x‖3

∣∣∣∣ (1 − ω0)fiμi

ϕ0gi

∣∣∣∣
3

gi

≤ C1.
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Let us now consider Bp(δ0). Using Lemma 2, Inequality (14), Cauchy-Schwarz inequality
and Lemma 3, respectively, gives

Bp(δ0) ≤ max
i=1,...,n

E

⎛
⎝(1 − ω0) |xir |3 ·

∣∣∣∣∣1 +
μi(Ỹi − 1)

μi + (ϕ0 − 1)Ỹi

− μi

ϕ0

∣∣∣∣∣
3
⎞
⎠

≤ C max
x∈Kx

(1 − ω0)‖x‖3

⎛
⎝13 + E

∣∣∣∣∣ μi(Ỹ − 1)
μi + (ϕ0 − 1)Ỹ

∣∣∣∣∣
3

+
(

μi

ϕ0

)3
⎞
⎠

≤ C1(δ0) + C2(δ0) max
x∈Kx

E
∣∣∣Ỹ − 1

∣∣∣3

≤ C1(δ0) + C2(δ0) max
x∈Kx

√
E
(
Ỹ − 1

)6

≤ C3(δ0),

where Ỹi ∼ GP (μi, ϕ0) for i = 1, . . . , n and Ỹ ∼ GP (exp(xtβ0), ϕ0).

Lemma 6. Under the assumptions (A1)–(A3),

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ε > 0. (16)

Proof. We have a.s.

‖Vn(δ) − Ip+3‖ =
∥∥∥F−1/2

n [Hn(δ) − Fn]F−t/2
n

∥∥∥
≤ 1

λmin(Fn)
‖Hn(δ) − Fn‖

≤ C

n
‖Hn(δ) − Fn‖

≤ C

∥∥∥∥ 1
n

(Hn(δ) − EHn(δ))
∥∥∥∥+ C

∥∥∥∥ 1
n

(EHn(δ) − Fn)
∥∥∥∥ .

Thus, conditions

max
δ∈Nn(ε)

∥∥∥∥ 1
n

(Hn(δ) − EHn(δ))
∥∥∥∥ P−→ 0 (17)

and

max
δ∈Nn(ε)

∥∥∥∥ 1
n

(EHn(δ) − Fn)
∥∥∥∥ −→ 0 (18)

imply (16).
In order to show (17) it is enough to establish that the maximum over δ ∈ Nn(ε) of the

absolute value of the (r, s)-element of the random matrix [Hn(δ)−EHn(δ)]/n converges to
zero in probability, i.e.

max
δ∈Nn(ε)

|hrs(δ) − Ehrs(δ)|
n

P−→ 0.

Recall that the Hessian matrix has 6 different types of entries. We shall illustrate the above
convergence in the case of 0 ≤ r, s ≤ p. The remaining cases can be treated similarly.
Without loss of generality, we only show

max
δ∈Nn(ε)

∣∣∣∣ 1n (hp,p(δ) − Ehp,p(δ))
∣∣∣∣ P−→ 0. (19)
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Let Zi := 1l{Yi>0}Yi(Yi − 1), Ui(β, ϕ) := μi(β) + (ϕ − 1)Yi, qi,p(δ) := x2
ipμi(β)(ϕ − 1) and

vi,p(δ) := x2
ip(1 − ω)fi(β, ϕ)μi(β)

[1 − μi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)μi(β)/ϕ

ϕ [gi(δ)]2
.

It easy to see that (19) will follow from the next three conditions:

max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

vi,p(δ)
(
1l{Yi=0} − E(1l{Yi=0})

)∣∣∣∣∣ P−→ 0,

max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

qi,p(δ)
ϕ

(
1l{Yi>0} − E(1l{Yi>0})

)∣∣∣∣∣ P−→ 0

max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

qi,p(δ)

[
Zi

[Ui(β, ϕ)]2
− E

(
Zi

[Ui(β, ϕ)]2

)]∣∣∣∣∣ P−→ 0. (20)

Since they have a similar structure we only establish the validity of the last relation. It is
worth to recall that the dependency on δ0, β0 and ϕ0 is always dropped.

Observe that the right hand side of (20) may be bounded by a sum of

An = max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

qi,p(δ)

(
Zi

[Ui(β, ϕ)]2
− Zi

U2
i

)∣∣∣∣∣ ,
Bn = max

δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

qi,p(δ)

[
E

Zi

[Ui(β, ϕ)]2
− E

(
Zi

U2
i

)]∣∣∣∣∣ ,
Dn = max

δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

qi,p(δ)
[

Zi

U2
i

− E

(
Zi

U2
i

)]∣∣∣∣∣ .
For An we have the following bounds:

An ≤ max
δ∈Nn(ε)

1
n

n∑
i=1

|qi,p(δ)Zi|
μ2

i (β)μ2
i

· |Ui(β, ϕ) + Ui| |μi(β) − μi + (ϕ − ϕ0)Yi|

≤ max
δ∈Nn(ε)

1
n

n∑
i=1

|qi,p(δ)Zi|
μ2

i (β)μ2
i

· |(Yi + 1)(μi(β) + μi + ϕ + ϕ0 − 2)|

× |μi(β) − μi + (ϕ − ϕ0)Yi|

≤ C1

n

(
n∑

i=1

Zi(Yi + 1)

)
max

δ∈Nn(ε)
max
x∈Kx

∣∣exp(xtβ) − exp(xtβ0)
∣∣

+
C1

n

(
n∑

i=1

ZiYi(Yi + 1)

)
max

δ∈Nn(ε)
|ϕ − ϕ0|

=: ABn + ACn. (21)

It is not difficult to see that
1
n

n∑
i=1

Zi(Yi + 1)

converges in probability as n → ∞ to

lim
n→∞

1
n

n∑
i=1

E (Zi(Yi + 1))
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which is finite by Lemma 4.
These facts and the continuity in β of the function maxx∈Kx |exp(xtβ) − exp(xtβ0)| with

value zero at β = β0 yield that ABn converges to 0 in probability as n → ∞. Convergence
of ACn to 0 in probability may be proven in the same way.

Using similar arguments as above one can show that Bn converges to 0 in probability.
To prove Dn → 0 in probability, observe that the function maxi=1,...,n |qi,p(δ)− qi,p(δ0)| can
be bounded from above by the following continuous function of δ

C max
x∈Kx

∣∣exp(xtβ)(ϕ − 1) − exp(xtβ0)(ϕ0 − 1)
∣∣

with zero at δ = δ0. The desired result now follows from the law of large numbers and
standard arguments.

It remains to show (18). We will show

max
δ∈Nn(ε)

∣∣∣∣ [EHn(δ) − Fn]rs

n

∣∣∣∣→ 0 (22)

and again restrict ourself to the case r = s = p. It easy to see that condition (22) will follow
from the next three conditions :

max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

(vi,p(δ) − vi,p)E(1l{Yi=0})

∣∣∣∣∣→ 0, (23)

max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

(
qi,p(δ)

ϕ
− qi,p

ϕ0

)
E(1l{Yi>0})

∣∣∣∣∣→ 0, (24)

max
δ∈Nn(ε)

∣∣∣∣∣ 1n
n∑

i=1

(
qi,p(δ)E

(
Zi

[Ui(β, ϕ)]2

)
− qi,pE

(
Zi

U2
i

))∣∣∣∣∣→ 0. (25)

Now we see that the same technique used for deriving (20) can be employed to establish the
convergence results (23)–(25).
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