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to estimate the trend for the most recent periods of a time series. However, the Hodrick-

Prescott filter suffers from an increasing excess variability at the margins of the series

inducing a too flexible trend function at the margins compared to the middle. This paper

will tackle this problem using spectral analysis and a flexible penalization. It will show that

the excess variability can be reduced immensely by a flexible penalization, while the gain

function for the middle of the time series is used as a measure to determine the degree of

the flexible penalization.
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1 Introduction

The Hodrick-Prescott filter (Hodrick/Prescott, 1997) is one of the most popular tools for

trend estimation in economics. Its advantages are clearly an easy and numerical fast and

stable implementation, while the shape of the estimated trend completely depends on the

choice of a single penalization parameter λ. In most applications λ is set to 1600 for quar-

terly data according to the suggestion of Hodrick/Prescott (1997), which can be seen as

an "industrial standard" (Flaig, 2012) for economic trend estimation. However this choice

is often criticized in literature as dubious (Danthine/Giradin, 1993), not data driven (e.g.

Schlicht, 2005; Kauermann et al., 2011) and too low for most time series (Mc Callum, 2000;

Flaig, 2012). As an alternative Schlicht (2005) described how the Hodrick-Prescott filter

can be incorporated into a mixed model framework in order to derive a data driven esti-

mation of λ. This approach is based on the assumption of a white noise business cycle, but

it was shown that this approach can be extended to account for correlated residuals (e.g.

Proietti, 2007; Proietti/Luati, 2007). Another possibility to choose λ is suggested by Flaig

(2012), who proposed to select λ such high, that the trend component doesn’t feature any

cyclical behaviour any more.

Nevertheless the choice of λ = 1600 can be justified by spectral analysis. Using quar-

terly data this selection implies that the trend approximately consists of oscillations with

periodicities of above nine to ten years (Tödter, 2002; Maravall/del Rio, 2001), which is

reasonable according to economic conceptions of trend and cycle (e.g. Baxter/King, 1999).

Especially if the selection of λ is based on frequency domain aspects, a further arising

problem of the Hodrick-Prescott filter is the increasing excess variability at the margins

of a time series. A rising excess variability means that the filter cannot suppress high

frequencies for the first and last few estimations any more. This induces that the volatility

at the margins of the estimated trend increases compared to the rest of the series, making

the trend estimation for the first and last periods more flexible than desired. This is a

drawback as researchers and politicians are mainly interested in the trend of the most

recent periods that is deterred by the excess variability.

An often applied approach to solve the problem of the excess variability is to use ARIMA

models. ARIMA models are used to derive forecasts, that are attached to the time series.

This way the original margin of the series moves closer to the middle of the data and is thus

less affected by the excess variability. However, this method exhibits the drawback that the

forecasts feature failures, that rise with an increasing forecast horizon. Consequently also

the estimated trend is subject to this uncertainty.

This paper will tackle the problem of the excess variability using a flexible penalization

and spectral analysis. A changing penalization was already introduced for the HP-filter

by Razzak/Richard (1995) in order to account for structural breaks and by Crainiceanu

et al. (2005) for penalized splines (O’Sullivan, 1986) within an mixed model framework.

It is shown that the volatility at the margins can be reduced by letting λ increase to the
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margins of the series. In order to determine the degree of the rise of the penalization, the

gain function of the Hodrick-Prescott filter in the middle of the data is taken as a measure.

The flexible penalization is selected such that the gain function for the estimations at the

margins is adjusted to the one in the middle.

This paper will not discuss the selection of λ in general. Instead it will stick to the standard

choice of λ = 1600 and show how the excess variability can be reduced for this selection.

The first section of this paper will briefly review the Hodrick-Prescott filter. Afterwards the

features of the filter in the frequency domain will be examined, especially its characteristics

at the margins. Then it will be shown how the gain function can be used as a measure for

the excess variability and how flexible penalization can reduce the increasing volatility at

the margins. Finally the paper will give some empirical examples and point out the different

implications between the results of the flexible penalization and the standard approach.

2 The Hodrick-Prescott filter

2.1 General framework

The Hodrick-Prescott filter (HP-filter) decomposes a time series {yt}
T
t=1 in two components

yt = µt + ct, (1)

where µt is the trend and ct is the business cycle. µt is estimated by solving te following

minimization problem:

min
µt

T
∑

t=1

(yt − µt)
2 + λ

T−1
∑

t=2

[(µt+1 − µt)− (µt − µt−1)]
2. (2)

The minimization problem consists of two parts. The first one is the squared deviation

of the trend from the original series. Minimizing the first part only yields a trend that

is identical to {yt}
T
t=1. The second part consists of the squared second differences and is

a measure for the volatility of the trend. Minimizing the second part only would yield a

linear trend. Thus there is clearly a trade off between both parts. This trade off is solved

by the so called penalization parameter λ that puts weight on the second part. Thus the

smoothness of the estimated trend can be completely regulated by the selection of λ. A low

value of λ will generate a flexible trend whereas high values make the trend become linear

(Stamfort 2005). While the positive features of the HP-filter are clearly its easy and fast

numerical implementation as well as its ability to derive estimations at the margins of the

series, it suffers from shortcomings like phase shifts (King/Rebelo 2003), spurious cycles

(Cogley/Nason 1995) and that there are no general rules for the selection of λ.

Solving the minimization problem in (2) yields the solution of the filter in matrix notation

(Mc Elroy 2008):

µ̂ = (I − λ∆′∆)−1y, (3)
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with µ̂ = (µ̂1, ..., µ̂T )
′ and y = (y1, ..., yT )

′. ∆ is a (T − 2)× T differencing matrix,

∆ =













1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 −2 1













,

where the product of ∆ and y yields the second differences of y.

2.2 The Hodrick-Prescott filter in the frequency domain

It is useful to consider the HP-filter in the frequency domain, as its gain function will be

applied as a measure to describe the excess variability at the margins. To this point, first

of all the structure of the filter weights is considered. Given formula (3) the filter weights

are contained in the matrix (I − λ∆′∆)−1=̂H ∈ R
T×T , where the tth row of H contains

the weights for the estimation µ̂t, i.e.

µ̂t =
T
∑

j=1

htjyj . (4)

htj is the jth element of the tth row of H. An important feature of this weight matrix is,

that the filter weights have a very similar, almost symmetric structure for estimations in

the middle of the data, while this structure changes to the margins. This can be seen in

Figure 1 that plots the weights for different estimations for a HP-filter with λ = 1600 that

is applied to a series with 100 observations.
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Figure 1: Filter weights in the middle and at the margin
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Clearly the filter weights in the middle look similar and converge symmetrically to zero. To

the margins the filter weights become more and more asymmetric. Furthermore the highest

weight of the estimations at the margins is far above of those around the middle. That

means that the estimations at the margins are much more affected by single observations

than the estimations closer to the middle of the data. This behaviour of the filter weight

structure causes the so called excess variability at the margins, as a single observation can

heavily influence the estimated trend.

The change in the weight structure to the margins also becomes obvious, when the HP-filter

is considered in the frequency domain. In the frequency domain a time series is interpreted

as the overlap of oscillations with different frequencies (for a detailed discussion see Harvey

(1993), Hamilton (1994) or Mills (2003)), where the trend as the long run development of

a series is supposed to consist of those oscillations with a high periodicity. The HP-filter

as a tool for trend estimation extracts oscillations with high periodicities and eliminates

oscillations with lower periodicities. This behaviour can be described by the gain function.

Given the filter weights htj that arise for a certain value of λ, the gain for estimation µ̂t

and frequency ω can be calculated as (e.g. Mills, 2003)

gt(ω, λ) =

√

√

√

√

√





T−t
∑

j=1−t

ht,j+t cos(ωj)





2

+





T−t
∑

j=1−t

ht,j+t sin(ωj)





2

. (5)

The gain is interpreted as the factor by which the amplitude of an oscillation with a certain

frequency is damped or amplified by a filter. In order to show the effects of the changing

filter weight structure, Figure 2 displays the gain functions for different estimations.
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Figure 2: Gain functions for different estimations

For the 50th and 75th estimation the gain functions are very similar as they are induced by

an almost equal weight structure. However, as one approaches the margins of the series, the
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gain function starts to change like for the 95th and 100th estimation. For the estimations

at the margins high frequencies can not be completely eliminated any more, which causes

an increasing volatility of the resulting trend function. This increase of the volatility is

known as the excess variability. It is not practicable to consider the gain functions for all

estimations of the time series. Thus a measure is desirable that allows to easily describe

and quantify the rise of the volatility in the trend estimation. Such a measure can be

the deviation of the gain function of a certain estimation µ̂t from the one of the medium

estimation. Let gm(ω, λ) denote the gain for frequency ω for the medium estimation µ̂m,

where m = ceiling(T/2), and gt(ω, λ) the one for estimation µ̂t, then a loss can be defined:

l(t, λ) =

π
∫

0

[gm(ω, λ)− gt(ω, λ)]
2dω. (6)

l(t, λ) is the squared deviation of the gain for estimation µ̂t from the one for the medium

estimation in the interval [0, π]. The calculation of (6) for continuous frequencies is difficult,

however it can be easily approximated by a sufficient high number of discrete frequencies,

e.g. for ω = (0, 0.001, 0.002, ..., π)′:

l(t, λ) =
n
∑

i=1

[gm(ωi, λ)− gt(ωi, λ)]
2 · δ. (7)

n is the number of elements in ω and δ is the distance between the elements in ω, i.e.

δ = ωj−ωj−1. Calculating the loss for all t = 1, ..., T gives an overview of which estimations

are affected by the increase of the variability. An important question is which factors

influence the excess variability. To shed light on this issue first of all a HP-filter with

λ = 1600 is applied to time series of length 50, 100, 150 and 200. Then the loss is

calculated for each element of these series, which is defined as the loss function.
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As Figure 3 shows, the loss is very similar and almost zero for the estimations in the middle

of the data and starts to increase abruptly at the margins, which is in line with Figures 1

and 2 that indicate, that the gain of the HP-filter only changes for the first and last few

estimations. Independent of the data length, the first and last ten or eleven estimations

exhibit a rise of the loss. Consequently the excess variability does not depend on the

number of observations.

However it can be shown that the number of affected estimations depends on the value of

λ. To this regard Figure 4 displays the loss for HP-filters with different values of λ, that

are applied to a series with 100 observations:
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Figure 4: loss function for different values of λ

In contrast to the length of the series, the value of λ affects the number of estimations that

show an increased excess variability. This number rises with the value of λ. For λ = 10

about the first and last three estimations are affected, for λ = 500 about the first and last

eight estimations and for λ = 10000 more than the first and last 20 estimations show an

increased loss. But while the number of affected estimations rises with increasing values

of λ, the degree of the excess variability is worse for lower values of λ. For λ = 10000 the

loss of the last estimation is about 0.15, while for λ = 10 it is about 0.6. However, the fact

that the excess variability depends on λ is of subordinate importance here, as this paper

only focuses on the standard case of λ = 1600.
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3 Introducing a flexible penalization

Given the loss function it is possible to quantify and describe the excess variability. The

next step is to find techniques to reduce this variability. To this point a flexible penalization

for the HP-filter is introduced that allows selecting different values of λ for different points

in time. According to Figure 3, the first and last ten or eleven estimations show an increased

loss, when a HP-filter with λ = 1600 is applied. Consequently the penalization should rise

for the estimations at the margins of the series. This can be done easily by changing the

model framework of the HP-filter slightly. Given formula (3) the scalar λ has to be replaced

by a vector λ ∈ R
T−2×1, where λ′ = (λ1, ..., λT−2) and one constructs K = diag(λ). Then

the HP-filter with a flexible penalization can be written as

µ̂ = (I −∆′K∆)−1y. (8)

As the HP-filter is equal to a penalized spline of order one with a truncated power basis

and as many knots as observations (e.g. Proietti/Luati, 2007), it can be interpreted as a

continuous connection of lines, where the slope of the lines changes at the points in time

t = 2, 3, ..., T − 1. To this regard the penalization regulates to what extend the slope can

change at these points in time. High values of λ let the slope only change slightly which

results in a smooth trend estimation whereas low values for the penalization allow large

changes of the slope inducing a flexible trend function. λ1 regulates the degree to what

the slope of the trend function can change at t = 2 and λT−2 determines the change of the

slope at the point in time T −1. In general λt regulates the change of the slope at the point

in time t+1. Thus it becomes obvious how the flexible penalization by the vector λ allows

to vary the degree of smoothness over time.

A question that arises is how the penalization should increase to the margins. The general

aim is to reduce the loss at the margins without increasing it in the middle of the data. To

this point another criterion is defined, which will turn out to be suitable for this purpose.

The penalization at the margins is increased such, that the cumulative loss of all estimations

is minimized. This is reasonable as one is usually not just interested in the trend in the

middle but in the whole series. Moreover it will be shown that this criterion will lead to a

reduced excess variability at the margins without strongly affecting the estimations in the

middle of the series. Defining the cumulative loss in dependence of λ as L(λ), it can be

written as:

L(λ) =
T
∑

t=1

l(t,λ), (9)

where l(t,λ) =

n
∑

i=1

[gm(ωi, λ)− gt(ωi,λ)]
2 · δ. (10)

Here gt(ωi,λ) is the gain of the tth estimation for frequency ωi using the flexible penaliza-

tion and gm(ωi, λ) is the gain for the medium estimation when a single fixed penalization

parameter is used. This criterion is subject to the conditions that the penalization is 1600
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in the middle and that it rises to the margins of the series. Considering the loss function

over all estimations suggests, that a linear increase of the penalization to the margins might

be appropriate. As a consequence the last k values of λ rise by

λT−2−k+j = 1600 + αj, j = 1, ..., k. (11)

The intercept can be seen as given, as λ is set to 1600 for the estimations in the middle.

As the penalization needs to increase to both margins the first k values of the penalization

are defined as

λ1 = λT−2, λ2 = λT−3, ..., λk = λT−1−k. (12)

Besides a linear increase of the penalization also other functions like a quadratic or cubic

increase or a polynomial of degree two could be assumed. However the results would hardly

change, but especially the polynomial function would make the calculation much more

expensive. Minimizing (9) with respect to (11) and (12) can be done by algorithms like

fisher scoring or Newton-Raphson. However the minimization by these algorithms can only

be done for α as k is an integer. Thus one has to minimize the cumulative loss for different

k’s and use the one that yields the lowest value of L(λ).

Applying this algorithm to a simulated time series with 100 observations yields k = 27

and α = 1294.72. The penalization parameter for the last 27 λ’s then rises by λ71+j =

1600 + 1294.72 · j, j = 1, ..., 27, while λ1, ..., λ27 are defined according to (12) (This paper

focuses on the case of λ = 1600 but a table with corresponding values for k and α for

other values of λ is provided in the appendix). Table 1 shows the loss for the fixed and the

flexible penalization for the middle of the data and the margin (50thand 100th estimation)

as well as L(λ).

Table 1: loss for series with 100 observations

penalization 50thestimation 100thestimation L(λ)

fixed 0 0.23956 1.76382

flexible 0.00015 0.09078 1.16872

As Table 1 shows, the flexible penalization reduced the loss for the 100th estimation as

well as L(λ), while it increased the one for the 50th estimation only slightly. L(λ) could

be reduced by around 34 percent and for the 100th estimation the loss even declined by

62 percent. This indicates, that the excess variability can be reduced without affecting

the estimations in the middle of the data. However, to get a complete picture of how the

flexible penalization changes the gain function of all estimations, Figure 5 displays the loss

for the whole series for the fixed and the flexible penalization.
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Figure 5: loss function for a fixed and a flexible penalization

Clearly the loss strongly decreased for about the first and last six estimations. While

the loss was strongly reduced at the margins, it was slightly increased by the flexible

penalization for about the estimations 10-20 and 80-90. However the decrease at the margins

outweighs this slight increase which results in the strong decrease of the cumulative loss.

Thus the flexible penalization combined with spectral analysis offers a tool to reduce the

excess variability without strongly affecting the trend in the middle of the data (note that

a simpler approach to reduce the excess variability of the HP-filter was already suggested

by Bruchez (2003)). The next section will apply this method to some real time series and

shortly discuss the implications that arise when one switches from a fixed to a flexible

penalization.

4 Empirical application

In this section the flexible penalization is applied to empirical time series in order to point

out how results might change when one allows for a flexible instead of a fixed penalization.

First of all the seasonally adjusted quarterly real GDP of Switzerland is considered1. The

data start in the first quarter 1980 and end in the third quarter 2013 so that there are

135 observations. The minimization of the cumulative loss L(λ) with respect to α and k

yielded α = 1304.22 and k = 27. The trend is also estimated by a HP-filter with a fixed

penalization of λ = 1600. The results are shown in Figure 6:

1The data are from the Swiss State Secretariat of Economic Affairs, http://www.seco.admin.ch.
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Figure 6: Estimated trend for the Swiss real GDP and first differences of the trend

As one can see the growth of the trend according to the fixed penalization has strongly

decreased since about 2007. The trend of the flexible penalization exhibits only a slight

decline of its growth since 2007 and its growth rate is clearly above the case of the fixed

penalization for the last three years. This can also be seen when the first differences on the

right plot are considered. Furthermore the trend of the flexible penalization is clearly above

the one of the fixed penalization for the most recent years. A further interesting feature

of the flexible penalization becomes obvious, when the resulting estimates of the business

cycle are considered.
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Figure 7: Estimated business cycles for fixed and flexible penalization
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As Figure 7 shows, the output gap at the end of the series is much smaller for the fixed

penalization. This smaller output gap is a direct consequence of the excess variability. As

Figure 1 shows, the filter weights for estimations at the margins are very high for the last

observation. Thus the last observation is the most influential for these estimations which

induces that the estimations at the margin are deterred to the value of the last observation.

As a result in this example the excess variability in trend leads to a rather too low output

gap at the margin of the series. The cyclical component of the flexible penalization instead

shows a far larger output gap at the end of the series, as the excess variability could be

reduced.

Next the seasonally adjusted quarterly real GDP of Denmark is considered2. The data start

in the first quarter 1991 and end in the third quarter 2013 so that there are 91 observations

in this series. Minimizing the cumulative loss L(λ) yields α = 1242.48 and k = 27. The

trend of the real GDP is estimated using both the flexible and a fixed penalization. The

results are shown in the left plot of Figure 8.
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Figure 8: Estimated trend for the Danish real GDP and first differences of the trend

There are clear differences between the estimations. In both cases the growth rate of the

trend decreases from about 2005, but the decline is much larger for the fixed penalization.

The right plot of Figure 8 shows the first differences of the trend estimations. Here the

differences become even more obvious. One can see that according to the fixed penalization

the growth of the trend even tuned negative for the years 2008-2012. In contrast the trend

growth rate according to the flexible penalization declined from the year 2005, but seems

to have stabilized on a lower level during the last three years.

2The data are from the national census bureau of Denmark, http://www.statbank.dk.
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5 Conclusion

The Hodrick-Prescott filter is the probably most widespread instrument for trend estimation

in economics. Compared to the competing Baxter-King filter (Baxter/King, 1999) it offers

the advantage of yielding estimates for the most recent periods. However, the fact that

the filter weights strongly change at the margins leads to an increased excess variability for

these periods. This means, that compared to the estimation in the middle of the data the

trend at the margins is too volatile. Especially as researchers are predominantly interested

in the most recent periods, the excess variability turns out to be a serious problem of the

Hodrick-Prescott filter. An existing method to overcome this problem is to use ARIMA

models in order to prolong the time series by adding forecasts at the margins. Nevertheless,

the predictions exhibit failures that increase with a rising forecast horizon. As for λ = 1600

more that ten periods have to be predicted, this method seems to be of limited practicability.

This paper combined spectral analysis with a flexible penalization in order to reduce the

excess variability at the margins. To this point the loss, i.e. the squared deviation of the

gain function from the one in the middle of the series was used as a measure to describe

and quantify the excess variability. To reduce the increased volatility of the estimations at

the margins the penalization was allowed to increase linearly to the margins. The exact

rise of the penalization was determined such that the cumulative loss is minimized. In this

regard it was shown that this criterion not only leads to a lower cumulative loss, but that

it reduces the excess variability at the margins without strongly affecting the estimations

closer to the middle of the series.

To show the empirical implications that can arise when the flexible penalization is used

instead of a fixed one the HP-filter with a flexible penalization was used to estimate the

trend of the real GDP of Switzerland and Denmark. It was shown that in both cases the

estimated trend according to the flexible penalization considerably differed from the trend

estimation with the fixed penalization. Especially the estimation for Switzerland using the

flexible penalization showed, that the current data of the Swiss real GDP do not allow to

conclude that the trend growth rate has decreased immensely since 2007, like the HP-filter

with the fixed penalization suggests.

Thus, this paper offered an approach to improve estimations at the margins. Although

the excess variability could not be completely eliminated it was reduced by more than 62

percent for the last estimation. As the empirical examples showed, the results of the flexible

penalization can strongly differ from the standard approach with a fixed λ of 1600. Given

this, the flexible penalization might be an interesting tool for researchers as it allows to

increase to precision of the estimations for the most recent periods.
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A Flexible penalization for different values of λ

The following table provides the corresponding values of k and α for different values of λ.

Please note that the values can vary slightly for series of different length. The table also

shows the length of the series to which the values refer, which is denoted as Tref . However,

in most cases the results only change slightly when these values are used for series with a

length that deviates from the reference length in this table as long as the series are not too

short.

Table 2: values for k and α for different values of λ

λ k α Tref λ k α Tref

5 5 19 100 1000 24 880 125

10 6 44 100 1250 25 1165 150

20 8 47 100 1500 26 1414 150

30 9 66 100 1750 27 1617 150

40 10 72 100 2000 27 2279 150

50 10 126 100 2500 28 3198 150

60 10 210 100 3000 29 4073 150

70 12 99 100 3500 31 3713 150

80 12 134 100 4000 32 4207 150

90 12 179 100 4500 33 4606 150

100 13 144 100 5000 34 4904 150

200 15 325 100 6000 38 3617 200

300 17 403 100 8000 41 4452 200

400 19 412 100 10000 43 5611 200

500 20 513 100 12000 46 5673 200

600 21 590 125 14000 47 7133 250

700 21 853 125 16000 50 6660 250

800 22 881 125 18000 51 7752 250

900 23 887 125 20000 52 8796 250
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