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Introduction

In these notes we give a complete and detailed presentation of all results

connected with the notions " partially invertible" (=pi) and "the total" . We

include also some results about regularity .

The questions , notions and most of the results originate from the authors of
these notes (see [1], [2] , [S]) . Some interesting results were also
contributed by A. Zollner ( especially II. 3.4 and in IV. 3. the ideal-property
of TOTg, and TOTy, ; see [7], [8] ) . One of the authors had also very
stimulating conversations with H. Kleisli and B. Pareigis . Bspecially , B.
Pareigis gave a nice characterization for pi (1. 2.4. (3) ) and collaborated with
us to get 1. 6.5 and I. 6.6 . For the example at the end of 1.7 we owe thanks
for a hint to H. Zoéschinger . Finally , the interesting theorem I 4.8.1 was
proved by T. Martin .

We use several well-known results from the literature without mentioning
always the sources . Especially, for regularity (in the sense of von Neumann)
the paper [6] of J . Zelmanowitz was a foundation . Very stimulating for us
were the results of M. Harada about what we call "Harada-modules" (see
lecture notes of F. Kasch [3] ) . For some well-known results about exchange
modules , which we include here for completeness with proofs , we give no
references (References are for example in [5]). The definition of the radical of
a category and IV. 1.2 is taken from G.M. Kelly [4] .
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For the reader of these notes it will be obvious that our ideas and results can
be extended and generalized in several directions . These notes may be a
foundation to do that and may stimulate further work in this connection .

Dr. Friedrich Kasch Dr. Wolfgang Schneider
Ulrichstr. 16 Rugendasstr. 6

(8021) ICKING (8900) AUGSBURG
GERMANY GERMANY

July 1992 .
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I. General foundation in a Morita-context

§1. Assumptions and examples

We consider rings S, T with 1-element and unitary bimodules A = SAT ,

B = 1Bg
Let further
c:AxB - S , 7T:BXA > T

be mappings , for which we assume first only the properties (M1) and (M2) .

M1) o(sa,b)

so(a,b) , o(a,bs) = o(a,b)s ,

o(atb) = ofa,tb) ,
7(tb,a) = tr(b,a) , Tt(b,at) = 7(ba) ,
7(bs,a) = 7(b,sa)

for acA , beB, seS, teT .

(M2) Associative laws :
o(a,b)a; = ar(b,ay) , 7y = bo(a,by)
fora,a;e A, b,b €B.

If there is no danger of confusion , we write for abbreviation
ab := o(a,b) , ba:= 1(ba) .

if we have a meaningful product of elements of A,B,S,T, by (M2) we can
avoid using brackets . For further considerations ¢ and 7 have also to be
additive .

(M3)  Additivity :
cr(a+a1,b+b1)
T(b + b1 ,a+ al)

o(a,b)+0(aby) +o(ag,b) +o(ag,by)
7(b,a) + 7(b,a1) + 7(by,a) + 7(by,a1)

If M1),(M2),(M3) are satiesfied, then these conditions define a Morita-context
and the mappings o and 7 can be factorized via the tensor products A®B resp.
T

BoA .
S
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The induced homomorphisms we denote by & and % :
8: A®B —» S s 2:BA > T
T

First we assume only (M1) and (M2) , in which case A and B have only to be
sets and S and T multiplicative monoids. Our fundamental notions can be
defined under these week conditions and this fact may be of some relevance
for semi groups.

To have later the possibility for short quotations , we mention here three
examples for a Morita-context.

(E1) Ring case

For a ring R with 1€R let A=B=S=T := R and o(ry,1))=7(ry,15)=111 ,

r; , 1, € R . Then all conditions are satisfied .

(E2) Hom case

Let R be a ring with identity and let My , Ny be unitary R-modules . Denote
S := End(Ngp) s T := EndMp) ,
sAr := Homp(M,N) , Bg := Homg(N,M)

and o(f,g) :=fg , 7(8,f) ;= gf , feA,geB.

Then (M1) , (M2) , (M3) are satisfied .

(E3) Dual module case
Let T be a ring with identity and let At be a unitary T-module . Denote
S:= Bod(Ap) , B:= A* = HompyA,T)
Then gAt , 1Bg are bimodules . For acA , geB define
o(a,g) := ag : Asx b ag(x) € A
hence ag € S . Further define
7(g:a) 1= ga = g(a)
( g applied on a ), hence ga € T .
Then again (M1) , (M2) , (M3) are satisfied . By a slight change , this
situation can also be considered as a special case of (E2) .
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To see this , one has to substitute gAq by the S-T-isomorphic module
Hom(T,A) with the isomorphism

¥ : Asa b (Tax » axe€A) € Hom(T,A)
By this substitution ¢ and 7 change to the mappings in (E2). In the following
it is easy to see that the isomorphism ¢ preserves all the notions defined in
this paper.

§2. Definitions and multiplicative properties

In the following we have to make use of idempotents of a ring . Here we
mention some properties of idempotents . An element d of a ring S is called
an idempotent , iff d2 = d . Then also 1-d is an idempotent and we have the
decompositions
S=dS® (1-dS , S =Sd@ S(1-d)

in right resp. left ideals . Contrary , if S = U @ V is a decomposition in right
ideals and if 1 = u+v, uel, veV', then u and v are idempotents and v =
1-u , uS=U , v§S = V. We use these facts without any quotation .

In this section we assume only (M1) , (M2) .

2.1 Lemma

For a€ A the following properties are equivalent :

(i) 3 beB [ ab is an idempotent + 0 in S ]

(ii) 3 byeB [ bya is an idempotent * 0 in T |

(iii) 3 ceB [ ac is an idempotent + 0 in S A
ca is an idempotent ¥ 0 in T ]

Proof:

(y»(),(iii) : ab=d=d240 = abd=d A (bda)(bda)=bd(ab)da=bd3a=bda . Also
a{bda)b=d3=d+0 = bda+(C . Hence (i) and (iii) are saticfied witk by=c=bd .
Similar proof for (i) = (i),(iii) and (iii) = (i),(ii) is obvious .



2.2. Definition
Let be acA.
1) a is called partielly invertible , abbreviation pi ,
& the conditions of 2.1 are satisfied .
2) The total of A = Tot(A) := set of elements of A , which are not pi .
3) a is called regular :© 3 beB [aba=a]

We underline the fact , that these notions are independent of the side and that
there is a close relation to regularity .

Remark :
If a is pi and ab is an idempotent , then b is in general not uniquely
determined by this property . Also in the definition aba = a of regularity b is
in general not uniquely dtermined . But if b is uniquely determined , then
ab=1€8 , ba=1¢€T since

aba = a(b+ 1-ab)a = a(b + 1 -ba)a

If we use these notions for rings, then always in the sense of example (E1) .
For example se S is pi iff there exists s’ € S such that ss’ is an idempotent ¥ 0
in S. Our notion for regularity coincides in the ring case with the classical
notion .

2.3. Corollary
Let be a€A , beB , seS, teT .

(1) If sat is pi, then s,a,t are pi (in S resp. B resp. T).
(2) If ab is pi, then a,b are pi (in B resp. A). If ba is pi, then a,b are pi .
(3) STot(A)T = Tot(A) , TTot(B)S = Tot(B) ,

Tot(A)B ¢ Tot(S) , ATotB) ¢ Tot(S) ,

BTot(A) ¢ Tot(T) , Tot(B)A c Tot(T) ,

Tot(S)A ¢ Tot(A) , ATot(T) c Tot(A) ,

BTot(S) ¢ Tot(B) , Tot(T)B c Tot(B) ,

STot(S)S = Tot(S) , TTot(T)T = Tot(T)



Proof :

(1) : Since sat is pi, there exists beB such that satb=d=d2+0 . Then d=s(atb) ,
hence s is pi. Similar on the other side for t . By d=(sa)(tb) and the proof of
2.1 we see, that (tbd)(sa)=(tbds)a is an idempotent * 0 , hence a is pi .

(2) : ab is pi = 3 seS [abs and sab are idempotent ¥ 0] = a,b are pi. Similar
for ba .

(3) : If aeTot(A), se€S, teT, then by (1) sat cannot be pi , hence sate Tot(A) =
STot(A)T c Tot(A). Since 1€S, 1€T also Tot(A) ¢ STot(A)T . Similar in all
other cases .

Obviously implies (3): If in a meaningful product of elements of A,B,S,T
at least one factor is in the Tot , then the product is in Tot .

2.4. Corollary
Notation as before .

(1) If aba = a # 0, then ab and ba are idempotents ¥ 0. Hence regular
elements * 0 are pi .

(2) Ifab=d =d2+0resp.ba =e =¢e2+ 0, thenda,bd,eb, ae are
regular elements ¥ 0 .

(3) aispi ©® 3 ceB [cac = ¢ + 0]

(4) If aba = a = a(bab)a = a , (bab)a(bab) = bab

(1) :aba = a # 0 > abab = ab ¥ 0 = a is pi . Similar for ba .

(2) : (da)b(da) = d3a = da = da regular . dab =d2=d*0=>da+0.
Similar in the other cases.

(3:ab =d =d2 %+ 0= (bd)alpd) = bd3 = bd . a(bd) = d2+0=>bd ¥ 0.
For ¢ ;= bd (3) is satisfied .

(B cac=c*¥0>caca =ca*0=>aispi.

’

(4) : Compute .

By (2) we see that we can produce regular elements by pi elemeats. (3) shows
that the pi elements are exactly those who occure in the definition of regular
elements in the "middle".
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By (4) we see that in the definition of regular elements the element in the
middle can always be taken from the two-sided ideal generated by a and to be
a regular element .

2.5. Corollary
If aba = a,d:= ab, e := ba, then
Sa > sa > sd € Sd
aT o at > et € eT
are isomorphisms , hence Sa resp. aT are projective S- resp. T-modules .

Proof:

The given mappings are obviously epimorphisms. If sd = sab = 0, then saba
= sa = 0, hence also injective. Since Sd resp. eT are projective, also Sa resp.
aT are projective.

2.6. Corollary
For ae A we have

(1) aispi © 3 deS, d=d2#0 [dS C aB A dA C aT]
< 3 eeT, e=e2+0 [Te c Ba A Ae C Sa]
(2) a is regular & 3 deS, d=d2 [dS = aB A dA = aT]
& 3 eeT, e=e? [Te = Ba A Ae = Sa

(1)»:aispi » 3 beB, d=d2+0 [ab=d] = dS = a(S) c aB A dA =
a(bA) c aT .
& dS c aB = 3 beB [ab=d=d2#0] > aispi.
Similar for the second "&" .
(2y>: a is regular = 3 beB [aba=a] . For d := ab we have d=d2 and
dS = abS ¢ aB A aB = abaB ¢ abS = dS = dS = aB . Similar proof
for dA = aT .
€ dS = aB > 3 beB [d=ab] . dA = aT = 3 a;eA [da;=a] =
d?a;=da;=da=a . Then aba=da=a .
Similar for the second "&" .
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§3. Additive properties

Now , we assume (M1) , (M2) , (M3) , that is , we have a Morita-context .

Further, we have to use the following homomorphisms (with a€A , beB) :
(-b)a: Aa3x P (xbaeSa |,
a(b-) : A ax P alx) € aT

If f is a homomorphism, then we denote by Ke(f) the kernel of f and by Im(f)
the image of f .

3.1. Theorem
Ifae A,be Bandif aba = a, then
A = Sa ® Ke((-b)a) = aT & Ke(a(b-))

Proof :
Let v : Sa — A be the inclusion and 1g, : Sa — Sa the identity , then the
diagramm

Sa —&+— A

1N l (-b)a

Sa
is commutative . Hence A = Im() @ Ke((-b)a) . Similar for the second
decomposition .

3.2. Corollary
If a € A is regular , then Sa resp. aT are projective, direct summands of gA
resp. Ar

Later we will consider the question if the converse of this statement is true .
Here we continue first in our general considerations .

Mathematisches Institut
ger Universitiat Miinchon
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3.3. Corollary
letae A,beBand ab=d =d2, ba =e = e2 , then

A = Sda @ Ke((-b)da) , Sa = Sda @ S(1-d)a ,
A = aeT @ Ke(ae(b-)) , aT = aeT @ a(l-e)T .

Since (da)b(da) = d3a = da , we have the first decomposition by 3.1

Sa = Sda + S(1-d)a is obvious. Assume sda = sq(l1-d)a , s,s;€ S, then
multiplication with b from the right implies sd? = sd = sy(1-d)d = 0 . Hence
Sa = Sda @ S(1-d)a . Similar for the other side .

For later considerations the following characterization of pi resp. regular is
useful. For this we need the following notation: A operates faithfully on B
iff for each xeA , x¥0 also xB+0 .

3.4. Theorem
Assume a € A, then
(1) aispi ® 3B, 62 Bg , 0+ D G®Sg
[By 2y P ay e D is an isomorphism ]
(2) aisregular » 3 Bg =B, ® By , DG®Sg
[B,2y  ay e D is an isomorphism A aB; = 0]
If A operates faithfully on B , also the converse of this implication is true.

Proof

(1» : Let be ab = d = d2 # 0, then 3.3 (for bd) implies B, := bdS G® B .

IfD:=dS, then B, > bds +> abds = ds € D

obviously is an isomorphism and D % 0

(1)¢ : Since 0 # D G® Sg there exists d € S, d = d2 # 0, D = dS. Then

there exists b € By such that ab = d .

(2 : By 2.4. (4) we can assume aba = a , bab = b . By 3.1. for B we have
B = bS @ Ke(b(a-))
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Define B, := bS , d := ab, D := dS, then
B,2bs b abs =dse D
is an isomorphism . For y € Ke(b(a-)) we have
ay = (abaly = a(b(ay)) = 0 ,
hence with B; := Ke(b(a-)) the proof is complete .
(2)¢ : Since D 6® Sg we have D = dS , d = d2 . By the isomorphism there
exists b € By such that ab = d . Since b € B, , also bS G B, and since
bS 3 bs  abs =dse dS =D
is already an isomorphism , we get B, = bS . Then elements y € B can be
written in the form y = bs + y; , y; € By .
Then by the assumption aB; = 0 we have
ay = abs + ay; = ds = d?s = (aba)bs = (aba)bs + (aba)y; = (aba)y |,
hence (a - aba)y = O for all y € B . Since A operates faithfully on B , this
implies a = aba .

Now we have to consider Tot(A) = the set of all elements of A, which are not
pi . As shown in 2.3. (3) Tot(A) is closed under multiplication with elements
of S and of T , that is STot(A)T = Tot(A) . But in general Tot(A) is not
closed under addition . For example Tot(Z) = Z \{-1;1} . It is a
fundamental question of our considerations, under which conditions Tot(A) is
closed under addition . Then Tot(A) is a S-T-submodule of A . In the ring
case Tot(S) is then a twosided ideal of S .

3.5. Definition
If Tot(A) is closed under addition, then A is called a total module (with
respect to the given Morita-context) .

If Sis a ring and if Tot(S) is closed under addition, then S is called a total
ring .

As mentioned before, Tot(A) is in general not additively closed, but there is
always an important closure property .
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To state this, we need the radical of A resp. Ap , denoted by Rad(sA) resp.
Rad(A1) . As wellknown , Rad(sA) is the sum of all small (=superfluous)
submodules of gA .

3.6. Proposition
(1) Rad(sA) + Tot(A) = Rad(A1) + Tot(A) = Tot(A)
(2) Rad(sA) + Rad(Ag) ¢ Tot(A)

Proof :
(1) : Rad(gA) + Tot(A) ¢ Tot(A) :
Let u € Rad(¢A) , v € Tot(A) and assume u + v ¢ Tot(A) , that is u + v pi .
Then there exists (u + v)b = d = d2 ¥ 0 . Since

sA3x b xbeS
is 2 homomorphism , Rad(sA)b ¢ Rad(S) . Therefore ub € Rad(S) and then
Sub is a small submodule of ¢S . This implies

S = Sd @ S(1-d) = Sub + Svb + S(1-d) = Svb + S(1-d)
=2 Sd = Svbd = 3 seS [ d = svbd | . Since d is pi , by 2.3. v must be pi , in
contradiction to v € Tot(A) . Hence we have Rad(gA) + Tot(A) c Tot(A) .
Since 0 € Rad(sA) the inclusion in the opposite direction is also satisfied .
Similar proof for Rad(Ar) .
(2) : Since 0 € Tot(A) (1) implies

Rad(¢A) ¢ Tot(A) , Rad(Ay) ¢ Tot(A)
and then (1) implies (2) .

3.7. Proposition
If Sor T is a total ring , then A and B are total modules .

Let S be a total ring and let u , v € Tot(A) . Assume u + v is pi . Then
there exists b € B, d € S such that

(u+vb=ub+vb=d=d2#0
By 2.3. ub, vb € Tot(S) and by assumption ub + vb € Tot(S) , but d ¢ Tot(S) 4.
Similar for the other cases .
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§4. Morita-equivalence

We defined a ring S as a total ring iff Tot(S) is additively closed, that means ,
Tot(S) is a twosided ideal in S . Further we know by 3.6. that Rad(S) c Tot(S) .
We define now two special types of total rings .

4.1. Definition
1) S is called a radicaltotal ring :& Rad(S) = Tot(S) .
2) S is called totalfree & Tot(S) = 0

Obviously a totalfree ring is radicaltotal and - since Rad(S) is a twosided ideal -
a radicaltotal ring is total . Now we study total rings and the just defined
interesting special cases of total rings .

In this section we intend to prove, that the notions "total" , "radicaltotal" and
"totalfree" are preserved under Morita-equivalence . If the rings S and T are
Morita-equivalent , we write S = T . In this case , there exists a progenerator
Ar such that S = End(At) . Since our notions are obviously preserved under
ringisomorphisms , we assume S := End(Ar) and the case (E3) , where B=
A* = Homp(A,T) . If A is a progenerator , then Im(¢) = S, Im(?) = T .
But we have not to use always all the properties , which are given by the
assumption S = T . We state in each case , what we really need .

4.2. Lemma

If S = Bnd(Ap) , Im(8) = S and Tot(A) additively closed , then S is a total
ring .

Proof :
Let sy , s, € Tot(S) and assume s; + s, & Tot(S) . Then there exists s € S
such that

s +8)) =d=d2%0
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Since ss;A , ss;A € Tot(A) by 2.3. , then by assumption also dA ¢ Tot(A) .
Then by Im(8) = S this implies dS ¢ Tot(S) , hence d € Tot(S) & .

4.3. Corollary
If S = T and T is total , then S is total .

Proof :
Since S = T we have AA* = S . Since T is total , by 3.7. A is additively
closed . Then we can apply 4.2 .

4.4. Lemma

1) If T is radicaltotal and Ay is projective , then Rad(Aq) = Tot(A) .

2) If S = Bnd(Ap) and At is finitely generated and projective and if
Rad(Ap) = Tot(A) , then S is radicaltotal .

Proof :

1) . Since Rad(Ag) c Tot(A) , we have only to show : Tot(A) ¢ Rad(Ar) .
Let a € A, then since Ag is projective , we can write a with'a dual basis :
a = ) ay(a) , aj € A, y; € A* . For a € Tot(A) by 2.3. follows
¥i(a) € Tot(T) = Rad(T) . Since ARad(T) ¢ Rad(A7) , then a;y;(a) € Rad(Ay) ,
hence a € Rad(Arp) .

2) : Again , only Tot(S) ¢ Rad(S) is to prove . For s € Tot(S) follows
sA = Im(s) ¢ Tot(A) = Rad(Ar) . Since A is finitely generated , Rad(Ay) is
small in At , hence sA is small in Ap . Since Ay is projective , that implies
s € Rad(S) .

4.5. Corollary
If S = T and if T is radicaltotal , then S is radicaltotal .

Proof : By 4.4 .
4.6. Lemma

If T is totalfree and A is projective , then Tot(A) = 0 and S = End(Ar) is
totalfree .
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Proof :

Assume a € Tot(A) . Then in the dual basis representation a = ) a;y;(a) all
¥;@) € Toy(T) = 0, hence a = 0 . Assume s € Tot(S) , then for all a € A
s(a) € Tot(A) = 0, hence s = 0 .

4.7. Corollary
If S = T and T is totalfree , then S is totalfree .

Proof : By 4.6.

Until now , we transfered properties from T to A and S . But also the
converse is possible . By 3.7. we know already : If S is a total ring , then
Ar is a total module .

4.8. Proposition
1) If A is projective and S = End(Aq) is radicaltotal, then Rad(Ar) = Tot(A) .
2) If At is a generator and S = End(Aq) is totalfree , then Tot(A) = 0 .

Proof :
1) : We have only to prove Tot(A) ¢ Rad(Ar) . Assﬁme a € Tot(A) and let
U G Aq such that

A =aT + U
If (u; | iel) is a family of generators of U , then there exists a dual-basis of
At of the form ( (@, u; | i€l ), (¥ , ¥; | i€l ) ) where 9 belongs to a and v,
to u; . Since a € Tot(A) ay € Tot(S) = Rad(S) . Since Ay is projective ,
Im(ay) = ayP(A) is small in A . Then

A = aP(A) + Z uPi(A) = ) u(A) ¢ U,

i€l
hence U = A . This implies aT is small in Ay, hence a € Rad(Ay) .
2) : Assume a € Tot(A) , then aA* c Tot(S) = 0 . Since Ay is a generator
this implies aT = 0, hencea = 0 .
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§5. Simple properties of total , radicaltotal and totalfree rings

5.1. Proposition
If S is a total ring , then S/Tot(S).is totalfree .

Proof : Let S € S:= S/Tot(S) , S * 0, then s ¢ Tot(S) . Then there exists
re Ssuch thatstr = d = d2 % 0. Since d ¢ Tot(S), we havesTt = d =
d2 %0, hences ¢ Tot(S) , therefore Tot(S) = 0 .

5.2. Proposition
Let be v:S —»S/Rad(S) and s € S . Then

1) sispi = v(s) is pi
2) If idempotents can be lifted from S/Rad(S) to S, then :
sispi & u(s) is pi

HD:sispi=>3Ist=d=4d2%0,teS = vt =vd =vd?*0,
since d ¢ Rad(S) = wv(s) is pi .

2) : We have only to prove : v(s) is pi > s is pi

v(s) is pi = 3 v(s)u(t) = v(e) = v(e)2 ¥ 0 . By assumption there exists an
idempotent d € S with v(d) = v(e) . Then we have v(s)u(t) = v(st) = v(e) = v(d)
>st=d+u,ueRad)=>d = -u + st. Assume s is not pi = st € Tot(S)
= -u + st € Tot(S) by 3.6 . But d & Tot(S) , since d is an idempotent ¥ 0 4.

5.3. Corollary
Assumptions as in 5.2 . Then

1) Tot(S/Rad(S)) c v(Tot(S))

2) If idempotents can be lifted from S/Rad(S) to S, then
Tot(S/Rad(S)) = v(Tot(S))

3) If idempotents can be lifted from S/Rad(S) to S and if Tot(S/Rad(S)) = 0,
then S is radicaltotal . »
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Proof :

1) :

By 5.2. 1) we have v(s) € Tot(S/Rad(S)) = s € Tot(S) . Then follows

v(s) € v(Tot(S)) , hence 1) .
2) : By 5.2. 2) we have s € Tot(S) & v(s) € Tot(S/Rad(S)) . Then follows
v(Tot(S)) ¢ Tot(S/Rad(S)) . The converse inclusion is 1) .

3)

: By assumption and S5.2. 2) we have Tot(S/Rad(S)) = v(Tot(S)) = 0 =

Tot(S) ¢ Rad(S) = Rad(S) = Tot(S) .

5.4. Remarks and examples

1) It is well-known, that idempotents can be lifted from S/Rad(S) to S if

2)

Rad(S) is a nilideal .
Semi-simple and - more general - regular rings are totalfree . The
converse is not true . We give an example for a totalfree ring , which is
not regular . Let K be a field and R a subring ¥ 0 of K which is not a
field (for example : @ and Z ) . Then we consider the following subring
of KN :

S:={(x)eKN | 3 meN,reR Vizm [x=1]} .
Since R is not a field , there exists 0 # r, € R with r,1 ¢ R . Define
(fo) = (IgTo Ty . . .) » then (r,) is not a regular element in S :
Assume (1)(x)(T,) = (fy) , then rorry =71, for i2m , hence r =r, 1 €R 4.
Therefore S is not a regular ring , but we show Tot(S) = O :

Assume 0 # (x;) € S and x; ¥ 0, then

o). .. oxto..)y=(@...010...)

is an idempotent ¥ 0 . Hence every element * 0 is pi .

3) If S is f-semi-perfect (= semi-regular) , then S/Rad(S) is regular and

4)

idempotents can be lifted from S/Rad(S) to S . Hence by 5.3. 3) these
rings are radicaltotal . But there exist radicaltotal rings , which are not
f-semi-perfect . An example for this is again the ring in 2) since Tot(S) =
Rad(S) = 0 and S/Rad(S) = S is not regular .

Please remember in this connection for the well-known fact: For rings hold
the following implicaticns: artivian = perfect = semi-perfect = f-semi-perfect .
Therefore , all these rings are radicaltotal .
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Now we would like to consider for an idempotent e € S the ring eSe which
has e as 1-element . It is well-known that

(1) eRad(S)e = Rad(S) N eSe = Rad(eSe)

holds . The same relation is true for Tot (without the assumption that S is a
total ring ) .

5.5. Proposition
If e € S is an idempotent , then

(2) eTot(S)e = Tot(S) N eSe = Tot(eSe)

Proof :
We prove first for s € S :
(3 eseispiin eSe & eseispiin S
=>: This is obvious , since an idempotent in eSe is also an idempotent in S .
& Let ese be pi in S and

eset =d = d2 %0
then esetd = d = ed . This implies dede = d?e = de , hence de = (ese)(etde)
is an idempotent in eSe . Further ded = d2 = d * 0, hence de # 0 . That
means , that (3) is true . For s € S (3) implies

ese € Tot(eSe) ® ese € Tot(S)
and this means

Tot(eSe) = Tot(S) N eSe
For t = ese € Tot(S) N eSe follows t = ete € eTot(S)e . Since STot(S)S =
Tot(S) we have conversely : For s € Tot(S) , hence ese € eTot(S)e follows
ese € Tot(S) N eSe . Therefore we have also

Tot(S) N eSe = eTot(S)e

5.6. Corollary
Let e € S be an idempotent , then

1) Total S = total eSe ,
2) Radicaltotal S = radicaltotal eSe |,
3) Totalfree S = totalfree eSe
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Proof :
1) and 3) follow from (2) in S.5 .
2) follows from (1) and 2) in 5.5 .

We would like to mention that 5.6. also can be derived from 4.2. , 4.4. and
4.6. (with S in place of T) by using the finitely generated and projective
module Ag := eS .
In this connection, it is useful to realize the following fact: If e € S := BEnd(AR)
is an idempotent ¥ 0,1 and if v:e(A) > A is the inclusion and n: A = e(A)
is the projection belonging t0 A = e(A) @ (1-e)(A), thene=1n and lgay=m .
Whaf is Bnd(e(A)) ? It is not eSe , since this is a subring of S and for s € S
_dom(ese) = codom(ese) = A
and not e(A) . To be precise :
End(e(A)) = nSu .
But there exists the ringisomorphism
p : Bnd(eS)  nst b u(nsu)n = ese € eSe
and for x € A
nsu(e(x)) = ese(e(x)) ,
where on the left side e(x) is considered as an element in e(A) and on the
right side as an element in A .
If we have an idempotent * 0 in End(e(A)) , then the image under this
isomorphism is an idempotent + O in eSe , hence also in S .
Now we do the same , what is done very often in the literature , we write
End(e(A)) = eSe .
This is not correct , but convenient and cannot imply confusions . By this , we
can avoid to deal always with the ringisomorphism p . The same holds for
End(eS) = eSe .

Now we intend to consider some properties of totalfree rings .
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The right- resp. left-socle of the ring S we denote by Soc(Sg) resp. Soc(sS) .

5.7. Proposition
If S is totalfree , then Soc(Sg) = Soc(sS) .

Proof :

The endomorphismring of a simple module (¥0) is a division ring . If e € S
is an idempotent , then eSe = End(eS) . Therefore , if eS is simple , then eSe
is a division ring with the 1-element e . We intend to show that also Se is
simple . Consider se ¥ 0 , s € S . Since S is totalfree there exists t € S such
that tse is an idempotent * 0 , that is tsetse ¥ 0 , hence etse + O . Then
there exists eae € eSe with eaeetse = e , which implies Sse = Se , therefore
Se is simple . The same is true for the other side . Then follows Soc(Sg) =
Soc(sS) .

5.8. Lemma
If e and d are idempotents of S, then
eS §dS & S(1-d) € S(1-e)

=: Since eS ¢ dS we have de = e . Then (1-d)e = 0 , hence S(1-d) is
contained in the left-annihilator S(1-e) of e . Assume S(1-d) = S(1-e) , then
follows d = ed , hence dS c eS in contradiction to the assumption .

< Same proof .

5.9. Proposition
If the totalfree ring S satisfies the maximum condition for rightideals (or
leftideals) , which are direct summands , then S is semi-simple .

Proof :
We assume the maximum condition for the right side .

1. Part : We show first , that every leftideal # O contains a simple leftideal of
the form Se , e = e2 .
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The proof for this is indirect . Assume A; is a leftideal , which does not
contain a simple leftideal. Let a € A , a ¥ 0, then there exists b € S such
that ba = e; = ;2 * 0 . Since Se; is not simple , there exists a proper
subideal A, & Se; . Let 0 ¥ e, € A, be an idempotent , then Se, is not
simple . By induction , there exists a sequence
Se; P Sep P Seg 2 ...
with idempotents e; , e, , e3, . . . By 5.8. follows
(1-e1)S § (1-e))S § (1-e3)S & ...
in contradiction to our assumption .
If B is a simple leftideal and b € B, b # 0 , there exists s € S such that
sb=e=¢e2%0 and B = Se .
2. Part : The proof of 5.9. is indirect . Assume S is not semi-simple (that is :
not a direct sum of simple leftideals). Then we prove by induction :
For every n € N there exists a decomposition
(4) S =88 ... @ Se, ® Sd,,
with orthogonal idempotents e; , . . . , e, , dy,; and simple Se; , . . ., Se, .
By the 1. part we have a simple leftideal Se; . With d, := 1-e; the case n=1
is satisfied . In the case n ( see (4) ) Sd,,1 cannot be 0 or simple since then S
would be semi-simple . Therefore Sd,,; contains a simple leftideal Se , e =e2.
Then
Sdps1 = Se @ (S(1-e) N Sdyyq )
Let dpy; = €qyr + dpyy 5 €pyg € Se , dpyy € S(1-€) N Sdjyy
then Se = Se,,; is simple and d,,, ¥ 0 . Since ep,; , dgyy € Sdy,q we have
en+19n+1 = €41 5 dpyadpey = dpuo
By this follows , that e,,; , d,4, are orthogonal idempotents and further

en416; = 0 , dpye; =0 , i=1,...,n
Also

eidps1 = 0 = eepyq +€dpyn , i=1,...,0
implies ejepy; = edpyy = 0 . With this , induction n = n+1 is complete .
Realize also that the e; , . . . , e, did not change by going from n to n+1 .
To the sequence e; , e, , e3 , . . . of orthogonal idempotents we consider the

sequence of rightideals
els g (e1+e2)S g_ (e1+e2+e3)S E o
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These are direct summands of Sg , since by the orthogonality e;+...+e, is
an idempotent . This is a contradiction to our assumption .

This result includes the well-known fact , that regular , onesided noetherian
rings are semi-simple .

As an example , we consider Z/nZ ,n>1 . Let be

n=npk .. pypkm , k21
the primnumber decomposition of n . Denote by ¥(n) the Buler-function , by
v(n) the number of regular elements and by k(n) the number of pi elements of
Z/0Z . Since Z/nZ is artinian , it is a radicaltotal ring . Hence x(n) is also
the number of elements not in Rad(Z/nZ) .

5.10. Proposition
For a € Z holds :

(i a+nZ isregular & Vi=1,...,m [pjla = pkila]

() vm) = 77 (k) + 1)

i=

(if) a+nZ ispi & 3ie{l,...,n) [pta]

(iv) x(n) = n(1 m‘-p—m)

Proof :

(i): a + nZ is regular iff there exists b € Z such that
(a+nZ)b+nZ)a+nZ) = a+nZ & aba = a (mod n) &
a(ba-1) = 0 (mod n)

3. Ifpjla = pjt(a-1); since piki |a(ba-1) , we get piki|a .

& For a € Z , which satisfies the condition in (i) , we define

I:={ilief1,...,m}) Apki|a) ,
I’:={1,...,m}~I

and

1 i= Ky (with rg=1) , s§:=2 =71, , a, =2
RS T p=1) e o = &
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Then by assumption ged(a,,s;) =1 and also ged(a,s;) = 1 . Then there exist
b, ¢ € Z such that

ba + cs;p =1 = aba + acs; = a
Since acs; = rlaocfrl_ = a,cn = aba = a (mod n)

1

(ii): We have to count the integers a with 1<a<n and which satisfy the condition
in (i) , that is , which are of the form

a =ra, , gedy,sy) =1
For fixed r; there exist exactly ¥(s;) such integers .
Now we consider I; ,I, ¢ {1, ..., m}, I; # I, . We show that

r,ap = ray o, ged(ag,sy) = ged(ag,sy,) = 1
is not possible . Since I; # I, , we can assume , that there exists i € I; ,i¢1,.
Then pXi | ry, , p*i 1, , hence p¥i| a; , which contradicts ged(ay,sp,) =1 .
Therefore :Y(sll) and j’(sb) do not count the same regular element twice .

If T runs through all subsets of {1, ..., m} , then also I’ and sy = rp .
Therefore
v(n) = ¥ 3G
Ic{1,...,m}

= 3 3D = T (S&) +1)

1c{1,...,m} i=1
For the second equation the multiplicative property of the f-function is used
and the fact , that $(rg) = J(1) = 1.

(iii),(iv): Immediate consequences of the fact that
ToW(Z/nZ) = Rad(Z/nZ) _
is the ideal generated by p,...py + 0Z .

§6. Partially invertible and regular elements in Hom

Now we consider the Hom case (E2) , where
SAT = HomR(M,N) N TBS = HOHIR(N,M)
S = Bnd(Ng) , T = End(Mp)
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6.1. Lemma
If h € B is regular and
hfh =h , fe A ,
then
¢s) M = h(N) ® (1-hf )(M)

Denote e := hf , then e = ¢2 € T . Consider

eM) = hf(M) ¢ h(N) = hfh(N) c hf(M) = e(M) ,
hence e(M) = h(N) and therefore

M = eM) @ (1-e)(M) = h(N) & (1-hf)(M)

Iffe Aispiand fg =d =d2+ 0, g € B, then h := gd is regular and
hfh = h . By (5) we have now
® M = gdN) & (1-gdf)(M)

6.2. Proposition
Assume f € A, then

1) fispi ® 3 MgG®M , 0% N,G® N
[M, 2 x P f(x) € Ny is an isomorphism ]
2) fisregular ® 3 M =M,®M; , N;G® N
[ Mg 2 x b f(x) € N, is an isomorphism A f(M{) = 0]

Proof :
1)» : Define M, := gd(N) as in (6) and N, := d(N) . Then for y € N we have
flgd(y)) = d2(y) = d(y) € N, . Further f(gd(y)) = 0 implies gd(y) = 0 .
Therefore

My, 2 X, P f(xg) € Ng
is an isomorphism and Ny, ¥ 0 , sinced * 0
1) : Denote with 1y, : M, = M the inclusion , ny, the projection N = N,
belonging to N = N, @ N; and ¢ := f-1, where f is the given isomorphism .
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Then fory = yo +y1, ¥o € Ng » y1 € Ny follows

Frpe® Mo Go + Y1) = fiy @ 00) = f(dGa) = ¥o
and this implies , that fuy ¢ny ~is an idempotent ¥ 0 . Hence f is pi .
2)» : Assume fgf = f . Take the same isomorphism as in the proof of 1) .
Then also

f(1-gdf)M) = (f - fgfgf)(M) = (f - £)(M) = 0
Hence with My := (1 - gdf M) we have the statement .
2)& . We consider the same situation as in the proof of 1) and further
M= M, ® M; with {M{) = 0. For x = X, + X1 , X, € My, x; € M; we
have by the given isomorphism f(x,) € N, and then

fup @ f (%o + x1) = Fuy dmy, (%) = f(x) = flx, + %)
hence f (v ¢my, )f = f . Therefore f is regular

This result is similar to 3.4. , but realize the difference !

If f e Tot(Homg(M,N)) , then by 6.2. f does not induce an isomorphism
between any direct summands ¥ 0 of M and N . Therefore we called f a
total nonisomorphism . The total of Homp(M,N) is then the set of all total
nonisomorphisms . In this way the word "total" came into the game .

Later we have to use 6.2., since it is a good tool to check if a homomorphism f

is a total nonisomorphism or not .

Now we consider the question : Under which conditions for Mg , Np is the
converse of 3.2. satisfied ? We show first that it is always true in the dual case
(E3) , where'Ar is arbitrary and S = End(Ap) , B = (Ap” .

6.3. Proposition

Assume a € A such that aT is a projective , direct summand of Ap , then a is
regular with respect to B=A*, that is there exists h € (AT)’ such that ah(a)=a .
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Proof :
Since aT is projective the epimorphism

Tat » ateaT
splits . That implies that there exists a decomposition T = eT @ (1-e)T ,
e = e2 , such that

eT s et  aet € aT
is an isomorphism and a(l1-e)T = 0 . This implies a = ae . The inverse
isomorphism we denote by

¥ : aT 2 at = aet H et € eT
Then 4(a) = e . By assumption we have a decomposition A = aT & A, .
Denote by v : eT — T the inclusion , then we define h e (AT)’ by

hiagt = v, h(A):=0
Then h(a) = e and ah(a) = ae = a , what we had to show .

Now we come back to the general case (E2) . For g € Homg(N,M) , we
consider the right T-homomorphism
g* : HompM,N)r 2 f b gf € Ty = HomgM,M)y .
Then
A tHomp(NM) 3 g + g* € Homp(Homp(M,N)t , Tp)
is a left T-homomorphism .

6.4. Remark
Assume f € Homp(M,N) and fT is a projective direct summand and A is
surjective , then f is regular .

Proof :
By 6.3. there exists h € (HomR(M,N)T)* such that fhf = f . Since A is
surjective , there exists g* = h, hence fg*f = fgf = f .
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6.5. Proposition

1) If My is a generator and N is arbitréry , then A is an isomorphism .
2) 1f MK = N® U witi k € N, then A is an epimorphism .

1) A is surjective : Given ¢y € Homqp(Homg(M,N)y, Ty) , then we intend to
define g € Homp(M,N) such that gf(x) = ¥(f)(x) for all f e Homp(M,N) and
x € M . Since Mg is a generator , every y € N can be written in the form

y = r}% fi) » f; € Homg(M,N) , x; € M . Also 1 € R has a representation
1 =‘§hj(mj) , hj € Homp(M,N) , mj e M
We‘cjl:;fine
80 := §1¢<fi)<xi)
Then —

T T 9E)xhm) = F T 9(Exh))m)

=1 i=1j=1

gy) = ’f_lw(fi)(xil) =
i=

[
—

since xih; € T . We continue
g0) = & ¥Om)(m)
j=
and this equation shows , that g(y) ist independent of the representation

y = rf fi(xj) . One can easily verify , that g is an R-isomorphism .
i=1

For f € Homg(M,N) follows by the definition of g
gf(x) = Y(F)x)
hence gf = g*f = ¥(f) .
A is injective : If g0 and g(y) ¥ 0 , then if y = E f;(x;) , then gf; + 0 for
. =1
at least one i . Therefore g* + 0 .
2) We denote
m : MK 5 N the projection along Mk=N@®U ,

iw ¢ N - MK the inclusion s
n o MK o5 M; the projection on the i-th‘ comp. ,
1 : M; - MK the inclusion ,

«; : M - M; the isomorphism
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Then oo = 1y kzz.ini = 1yk , mgly = 1y . For 9 as before , we
define g by o
k
gy) = ¢ ¥(meod(egingyy) ., y €N
i=1

Again , it is easy to check , that g € Homp(N,M) . For f € Homg(M,N) ,

x € M follows
gf(x) = %1¢("N"i°(i)(°‘i-1"iLNf(X)) = 1P(:‘§1ﬂnbi°‘i°<i'1“ibnf)(x) = P

since o~ Inf € T . Again we have gf = y(f) .

It is a natural question if similar or "dual" results hold for S = End(Ng) in
place of T . For the 2) statement in 6.5. this is true , but not for 1) .

6.6. Proposition
If Nk = M @ U with k € N , then for every ¥ € Homg(Homp(M,N) , ¢S)

there exists g € Homp(N,M) such that fg = 9(f) for every f € Homp(M,N) .

Proof :

Similar notations as in in the proof of 6.5. 2) . Now we define g by

80) 1= T M Ime)O)

i=1

then
fg(y)

5 it mina)) = ¥CE s Ining)®) = $OO)

since fmyt;0 € S . Therefore fg = ¥(f) .

Not always are A and the corresponding mapping for S surjective .
Counterexample :

R=Z ,M=Q , N=Q/Z , then Homz(@Q,Q/Z) = Q , Homz(Q/Z,Q® =0,
End(Qz) = Q , End(Q/Z)z) = Q , Homg(Homz(Q,Q/Z),Q) = Q + 0
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We have the following conjecture :
If for fixed My and all Ng A is an isomorphism , then Mp is a generator .

§7. The dual case

In the following we assume B = A* (E3) . In §4. we proved already several
results in this case in connection with Morita-equivalence . Further in 3.2 and

6.3 we proved already under this assumption the following result .

7.1. Proposition

Assume a € Ap . Then a is regular iff aT is a projective direct summand
of AT .

We repeat one part of the proof . Let be afa=a , f € A* and denote e:=fa,
then e = €2 € T . The mapping

aT » at b fat = et € eT
is then an isomorphism and ae = afa = a . Since eT is projective , also aT is
projective . Further

A = aT @ Ke(af-)

We use these properties in the following .

7.2. Proposition
For an arbitrary module At one of the following conditions is satisfied :

i A

Tot(A)

n
i) A .@1 a,T® U withn21 , Uc Tot(A) and a;T = ;T , where e; is an
i= )
idempotent ¥ G in T and ae;=2a; , i=1,...,n (T is projective) .

(iii) A contains a locally direct summand of the form ;@71 a;T , where the a;T
have the same properties as in (ii) .



- 32 -

Proof :
If A = Tot(A) , then (i) is satisfied . Assume now Tot(A) ¥ A . Then there
exist a € A , f € A* such that fa =: e; is an idempotent ¥ 0 in T . Then
a; := aeq is regular by 2.4. and hence we have
A=aT® U , 4T =z ¢T , aje; = a4
If Uyc Tot(A) , we have (ii) . If Uy ¢ Tt(A) , there exists a regular element
a, € Uy with the properties as a; and ‘
A = a, T ® By
Since a,T G Ujp this implies
U; = a;T @ (Uy N By)
With the notation U, := U; N By , we get
A=2T®a,T® U,
If U, ¢ Tot(A) we continue by induction . Either this construction stops with
U, = U c Tot(A) , that is (ii) , or continues indefinitely , that is (iii) . If
I +¢ is a finite subset of N and if n = max{ilieI} , then the decomposition

in (ii) shows , that .Z)ﬂlai’l" is a locally direct summand of A .
i=

7.3. Corollary
If A # 0 is a projective , radicaltotal module , then one of the following

conditions is satisfied :
1) condition (ii) with U = 0
2) condition (iii) .

Proof :
For a projective module A * 0 always Rad(A) ¥ A , hence (i) cannot occure .
Now , consider (ii) . Since U 6® A , U is also projective and Rad(U) = U N
Rad(A) . By assumption we have

U 6 Tot(A) = Rad(A) ,
hence Rad(U) = U , hence U = 0 .

In this connection it is good to know by 4.4. , that for a radicaltotal ring T
every projective module A is radicaltotal .
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7.4. Corollary
If Ap *# 0 is directly indecomposable , then exactly one of the following

conditions is satisfied :

(i) Tot(A) = A ,

(ii) A =aT , A is projective and there exists an idempotent e € T , e ¥ 0
such that aT = eT , ae = e , a ¢ Tot(A) .

This implies that a directly indecomposable module , which is not projective or
not cyclic , satisfies Tot(A) = A .

Now , we consider the situation u € U ¢ Ap . Then u is pi as an element of
A iff there exists f € A* such that fu (= f(u)) is an idempotent # 0 in T .
Then u is also pi as an element of U , since fl[y € U* . This implies
Tot(U) ¢ Tot(A) , hence

Tot(U) ¢ U N Tot(A)
In general , the converse inclusion is not true . But if U G® A or if Tp is
injective , then it is satisfied .
If Uc® A , then this follows from the fact , that every g € U* can be
extended to an element in A* .

With the injective case we deal in the following proposition .

7.5. Proposition
Let T be a right-injective ring . Assume ue U G Ap , then : uis pi in A

iff uispiin U .

Proof :

=: Already proved by the foregoing remark .
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&: Assume that there exists g € U* such that gu = e = e2 + 0 . Then by 2.4.
ue is a regular element and ueT = eT . Since Tt is injective , also eT and
ueT are injective . Then the inclusion

v:ueT - A
splits : A = ueT @ B . We define f € A* by
flueT = BlueTr -+ flB:= 0
Then fue = gue = e and this implies
(efu)(efu) = efu
and
efue = e ¥ 0
hence efu is an idempotent + 0 .
With f € A* also ef € A* . Therefore u is pi as an element of A .

As an immediate consequence , we have

7.6. Corollary
Assumption as in 7.5 . Then

Tot(U) = U N Tot(A)
If A is total (that is Tot(A) G A) , then Tot(Tot(A)) = Tot(A) .

It is well-known , that there exist modules At with Rad(A) = A (for example
Qz ) . But if Ap is a projective module + 0 , then Rad(A) * A . Is the same
true for Tot(A) ? We show by an example , that the answer is "no" . We give
this example with all details , in spite of the fact that some properties could be
taken from more general results in the literature .

1. Remark:
In a commutative ring T without =zerodivisors any ideal is directly
indecomposable
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Proof :

Assume the ideal A ¥ 0 has a decomposition
A=A®A, , A *0

For oy € A;, oy ¥ 0 and oy € A, follows
Wy = oy € A N Ay =0

hence @y = 0, hence A, = 0 .

Now we consider the ring T = Z[J/-5] , which is a subring of the field of
complex numbers . Then T is a commutative ring without zerodivisors . We
apply the norm of the complex numbers on T . If a+by/-5 e T, (a,be Z),
then N(a+by/-S) = a2 +5b2. InT we consider the ideal A generated by 3 and
1+ )-S5 . The elements of A have then the form
3(a; +a5)/-5) + (1 +V-5)(by + by)/-5)
(3a; +by-5by) + (Bay+by+by)) V-5 , aj,a;,b;,bp € Z
Denote ¢ := 3a; + by -5by , ¢y := 3a,+by+b,
then N(x) = ¢;2 + 5c¢y2
We intend to show

N() 25 for 0 F x € A
fcy 0 ,then Nw) 2S5 . Ifcg=0, ¢ 0
then ¢ = 3a3+b;+by =0 =

by =-3a,-b, =

¢y = 3ay - 3a; - by - 5by = 3(ay- a; - 2by)
hence N(o) 2 9 .

o

2. Remark : A is not cyclic .

Assume A = «,T , then there exist 8 , v € T such that
B =3 , o7y =1+ V-3

These imply A
N(xoB) = N(xo)N@®B) = 9 ,
N(xo7) = N(oto)N(7)
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Therefore N(x,) is a common divisor of 9 and 6 , that is 1 or 3 , in

contradiction to N(x,) 2 S

Since A is directly indecomposable and not cyclic , 7.4. implies already Tot(A)
= A . Since T is a Dedekind-ring , A must be projective . We give a proof in
this special case .

3. Remark : A is projective .

Proof :
We show , that A has a dual basis . First we have

3(1-—2 _)=2+})5 €T ,
1+V-5
(1+V5)(1- —2 _)=-1+V35 €T
1+V-5
Denote by f; the multiplication of A by 1- 2 and by f, the multiplication
1+ -5

of Aby-1,then f;,f, € A* and for x € A follows
(Bfy + A+V-5)f)e) = (2 +V-5-1-V-5)u = «

Hence
3f1 + (1+V-—5)f2 = lA ,

that is , we have a dual basis and A is projective

In III. §3 we give further results in the dual case for direct decompositions .
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I1. Total properties and exchange properties

§1. Exchange properties

Before we go in the details , we mention one of the main goals of this
chapter : A module with a total endomorphismring can be characterized by an
exchange property , which is somewhat weeker than the well-known 2-exchange
property . This includes that the 2-exchange modules have total
endomorphismrings . Especially are the 2-exchange rings total rings . This
shows that the class of total rings is a fairly interesting class of rings .

In this § we state some notions and results about exchange properties . To
make these selfcontained , we include the proofs for the facts which we need
in the following .

1.1 Definition

1) A module Ap has the exchange property (= EP) resp. the n-exchange
property (= n-EP) forn € IN
& for every situation

) M=A®B-= @] C; with I arbitrary resp. I = {1,...,n}
ie

b

there exists C; 6 C; such that
@) M=A®( ® C)
i€l

2) A module Ap has the D2-exchange property = D2-EP

= for every A, G® A , A, * 0 and for every situation
® M=A,8B=C@D

at least one of the following conditions is satisfied :

() there exist ALG® A, , AL #0 and C G C such that
@) M=A86C®®eD

(ii) there exist Ay G2 A, , A3# 0 and D’ G D such that
) M=Aj;®@CeD
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In these definitions it would be possible to write for A resp. A, a module
isomorphic to A resp. A, . At the first sight , that looks more general , but at
the second , it is to realize , that it gives the same mnotions . By the
substitutionprinciple’) all these exchange properties are preserved under
isomorphisms . Our notation is easier since we have not always to handle with
a superfluous isomorphism . It is also trivial , that direct summands of
modules with D2-EP have also this property .

The modular law implies that in the definitions C} , C’ and D’ are not only
submodules but direct summands of C; resp. C resp. D .

1.2. Corollary
For a module A the following conditions are equivalent :

(i) A has the D2-EP

(ii) every nonzero direct summand of A has the D2-EP

(iii) every nonzero direct summand of A contains a nonzero direct summand ,
which has the D2-EP

Proof : (i) = (ii) = (ii) is trivial .

(iii) ® (i) : Consider 0 + A, 6® A and the situation
M=A,@&B=C@&D

By assumption there exists 0 # A; G® A, , which has the D2-EP . Let

A, = Ay ® A, , then ‘
M=A,0(A,®B)=C®D

Now , there exists 0 # A} G® A; , such that
M=Al®C®D , CcC ,

or there exists 0 # A} G® A; , such that
M=A®C@®D , DD

This proves (i) .

*) Substitutionprinciple : If My is a R-module , if U 6 Mg and if f : U » A
is a R-isomorphism , then there exists a R-module Np with A G Ny and a R-
isomorphism F : Mg = Ng with Fjy = f .
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We are here only interested in the 2-EP and D2-EP . But we would like to
mention that the 2-EP implies the n-EP for every n € N, n>2 . It is still an
open question if the 2-EP implies the general EP .

We give now the proofs for two wellknown results about modules with 2-EP .

1.3. Lemma

Assume A has the 2-EP and

(6) M=U®8A®B=U®C®D
Then there exist C G C , D’ G D such that
) M=U®ABCOD

Proof :
Denote by n the projection of M onto C @ D along (6) . Then the restriction of
nonto A@B , thatis n|pagp , is an isomorphism . Therefore
(8) n(A) ® n(B) =C @D
and also n(A) has the 2-BP . Therefore exist C’ G C , D’ 6 D such that
9 n(A) ® n(B) = n(A) e C @& D
We claim
M=U®ABCO®D
First we have by (s) and (9)
(19) M=U@énA) e COD
Ifin6a=u+c+d,aec A,uelU,ceC,deD, then n@)=c+d=
-u + 2 and a =u + n@) . Therefore U ® n(A) = U ® A . This and (10
imply (7) , what was to show .

1.4. Lemma
Assume A = A; @ A, . Then: A has 2-BP & A, and A, have 2-EP .

Proof

= Assume M = A; ® B = C ® D , then consider
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MILA, =A;®A;®B=A38COD with A=Ay , A; ® Az =
A; ® A, = A . We use now the 2-BP of A; @ A3 in the decomposition
MLl A, = (A3 & C)® D . There exist U G A;® C, D’ 6 D such that
MILA, =(A1®A;))OUBD
By A; @ Uc A; ® C follows A3 @ U = A3 & (C N (A3 + U)) . For
C=Cn(A3+U) follows MU A; = A1 ©®A;6C OD .
The projection of M 1L A, onto M then delivers
M=A86CO8D
& Assume M = A ®@ B= C® D . Since Ay has the 2-EP , there exist
C G C,D G D such that
M=A8A,8B=A8CoD
Now since A, has 2-BP we apply 1.3 . Then there exist C' G C’, D" 6 D’
such that
M=A A, 0C' @&D"
Therefore A has 2-EP .

1.5. Proposition
If A has the 2-EP , then A has the D2-EP .

Proof :
If A has 2-EP by 1.4. every direct summand A, of A has also 2-EP . Without
loss of generality we can therefore assume
M=A®B=C@®D
and by assumption there exist C=C' @ C', D =D’ ® D" such that
M=ABCOD
If C = CorD = D, then the proof is finished . We assume now D’ + D .
From
M=A®COeD=CoeD=CaeC"®D & D"
follows
A=zC"@®D"
and therefore C" has also 2-EP . We apply this now on the decomposition
M=CeC'eD=ABCOD
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in the sense of 1.3 . Then there exist Af G A,D* g D with

M=A"8C®6CY®D*=A"0C®o D*
In this equation A’ = 0 is not possible , then A’ = 0 would imply D*=D’=D .

§2. Partially invertible endomorphisms and exchange properties

Now we study connections between our notions and exchange properties .

For a module Mp we consider two decompositions

(11) M=A®@B , A0 ,
(12) M=C@®D
We denote

ta: A > M the inclusion

n,: M — A the projection belonging to (11)

€. M->M resp. eg: M- M

the projector on C resp. D belonging to (12) .
Then npeci, » mpepis € S := End(A) and

Iy = €. + ¢p

14 = malyta = Mpoly + Malplp

2.1. Proposition

Notations as before . Then
1) maect, is pi ¢ there exist decompositions
(13) M=A@®@C®D , 0A'cA , CcC,
(14) M=¢eA)Y®A"®B , A"G A
2) mueci, is invertible (= automorphism of A) < there exist decompositions
(1s) M=A®(BNC)®D '

b

(6) M = e(A) ®B
3) If nseci, is invertible , the mapping
17) A 3 x - ex) € el(A)

is an isomorphism .
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1)=: By assumption there exist g,d € S such that gnsect, = d =d2 0.
For the idempotent d holds
(18) A = dA) e (1-d)A) , dA)*F0
Denote by
v: d(A) » A the inclusion and
n: A — d(A) the projection belonging to (18)
Then d = un l4a) = ™t and
(19) ngnaeotal = ndi = lg(a)
This gives the commutative diagram

which implies
(20) M = Im(,t) @ Ke(ngnaec) = d(A) ® Ke(ngn,el)

Since Ke(ec) = D G Ke(ngn,e.) and by the modular law we get by (12)
Ke(ngnec) =C @D , C g C

Denote still A’ := d(A) , then we have (13) .

By (19) follows similarly
M =Im(eqt ) @ Ke(ngny,) = e(d(A) @ A" @ B=e(A") @A"®B,

which i (14) .

2)>: Now , mse-i, is invertible in S , that means , that there exists an

ngna€c

d(A)

Lal

dA) — M
't

|

N

automorphism g € S such that gn,est, = 1, . This implies
M = Im(,) ® Ke(gn,ec) = A @ (Ke(gnA) NnC)eD =
=A®(BNC)®D
and
M = Im(ect,) ® Ke(gn,) = e(A) @ B
1)&: We intend to show , that m,e.t, induces an isomorphism between the
direct summands A’ and m,e-(A’). First , by 13) and the modular law follows

that A’ is a direct summand of A . Since B = Ke(n,) by (14) follows
A = meA) @ A" , hence also m,e(A’) is a direct summand of A . Since
D = Ke(ec) and by (13) we see that e, induces a monomorphism from A’ to

M . Since B = Ke(n,) and by (14) we see that n, induces a monomorphism
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from e (A’) to A . Together we have the result , that m,e.t, induces an
isomorphism between A’ and n,ec(A’) . By L 6.2. msect, is pi .

2)e: Now , as before , n,e.t, induces an isomorphism between A and
nae(A) . By (16) nieci(A) = A, therefore mect, is now an automorphism .
3) . That the mapping (17) is an isomorphism follows from (15) and Ke(ec)=D .

2.2. Corollary
Let A ¥ 0. If S = End(A) is a total ring , then A has the D2-exchange

property .

Proof :
If 0% A, G® A , then by L 5.6. Bnd(A,) (= eSe) is also a total ring .
Therefore , in the following proof we can assume A, = A and also (11) and (12).
Since 1, = mseqt, + muept, at least one of mect, or muepi, must be pi . In
the first case we have (13) . Similar , in the second case holds

M=A ®8C®D; , 0+A;GA , D;jsD
That means , that the D2-EP is satisfied .

2.3. Corollary
Let A ¥ 0 and assume (11) and (12) . If S = End(A) is a radicaltotal ring ,

then one of the following conditions is satisfied :

i) M=A®@BNC)®D =e(A)OB

(i) M=AB®CO®BND)=¢,(A)@B

(iii) M = A’@C’@D=ec(A’)®A"®B , 0FA°GA,A"GA,CqgC
AM=A"@COD =e,(A")OA"@®B , 0+A"GA,A”GA,DGD.

Proof :
We consider again 1, = maect, + muept, and distinguish three cases .
1) case : mnpept, € Tot(S) = Rad(S) , then
14 - mgbply = ﬁAecLA
is an automorphism (since Rad(S) is quasi-regular) . (i) follows then from
2.1.2).
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2) case : mueqt, € Tot(S) = Rad(S) . Similar , this implies (ii) . _
3) case : muect, and mgepl, are both pi . Now 2.1. 1) implies (iii) .

Later , we will prove , that the converse of 2.3. is true , if we assume (i) ,
(ii) , (iii) for certain modules A,B,C,D .

§3. Exchange properties imply total properties

One of the main results of this paragraph is , that the converse of 2.2. is true.
Together with 2.2. we have then the result : S = End(Ag) is a total ring iff
Ap has D2-exchange property . Since S is the endomorphism ring of itself (by
left-multiplication) , this includes the special case : S is a total ring iff Sg has
D2-exchange property .

The foundation for the following considerations is a lemma for which we need
some notations . Given Ap and let be S := End(Ap) . Assume f € S and
write g 1= 1, - f . Further define

M:= AXA ={(g,3)]aj,ape A} ,

Ar={(@0]aecA} ,

Ay:={(0,a)]acec A},

C:i={ (fa),-g@) |aeA) ,

D:={(a,a)|ae A}

Then we consider the following mappings :
®g: A3a b (a,0) e Ay ,

P (0,a) € A, ,

A3a b (f(a),g)eC ,

6 - Aaa b (@a)eD

x A >3a
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It is obvious , that «; , «; , 6 are isomorphisms . But also 7y is an
isomorphism ; for this we have only to chéck the injectivity. Assume (f(2),-g(a))
=(0,0), then f(a)= 0 and -g2)=f(a)-a=-a=0.
Further we have M = A; ® A, . Also M = C® D is true: Fora;,a,eA
we have

(a1,ay) = (f(ag-23),-g(ag-ay)) + (a;-f(as-ay), ag - flaz-ay)) ,
hence M= C + D ; assume (f(a),-g(a)) = (a;,21) € C N D , then f(a) = a,,
-g(a) = f(a) - a = a; and this implies a = 0, a; = 0 . Together we have

(21) M=A1®A2=C@D, A5A1§A25C§D

3.1. Lemma

i) M=C®A’® Ay with A’G Ay , AYG A, , Ay ¥0 , then
fis pi (in S = Bnd(Ag)) ,

(i) M=C® A;’® Ay with A’ GA; , CcgC , C#*0 , then
fispi ,

(i) M=C ® A; ® Ay with Ay’ G A,
g is pi

, g C , C#*0 , then

Proof :
For the proof we use 1. 6.2 , that is we show , that f induces an isomorphism
between nontrivial direct summands of A .
(i) : By the modular law and the assumption follows A; = Ay’ @ (C @ A);
denote A" = A; N (C® Ay’). Then
A= o I(AY) @ i l(AY") L wi(AY) # 0
Let np be the projection of M onto D belonging to M = C @ D . Since Ke(np)
= C and by (i) np induces an isomorphism of Ay’ @ A,’ onto D , therefore
D = np(Ay’) @ np(Ay) , mp(AY) # 0
Then
A = 51(D) = 6lnp(Ay’) ® 6lnp(Ay) , 6lnp(A) # 0
We intend to prove , that { induces an isomorphism from o, 1(AL) onto
§-Inp(Ay)
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via
&2 ﬁD ,5\'1
a7 1(AY) Ay > mp(Ay) T 5 lnp(AR)

with the isomorphisms &, , fip , 6-1 induced by «, , np , 61 . For x € «y1(A,)
we have
(22) o) = (0,x) = (f(-x), x + f(-x)) + (f(x),f(x))
with (f(-x), x + f(-x)) € C , (f(x),f(x)) € D
then follows
mpo(x) = (((x),f()) = &lmpayx) = fx)
hence
0 l(A) 3 x b () € 5lmp(Ay)
is an isomorphism and therefore f is pi .
(ii) : Similar proof as for (i) . Now (ii) implies C=C' @ C", C":= CN (A +A,) .
Then follows
A=yIiCye rIiC) , vHC)*0
and
(23) Ay = 07 I(C) @ o7 I(CY) . o I(C) 0
By n we denote the projection from M onto C"@ D belonging to M=C’@C"®D ;
then Ke(n)= C’. By (ii) n induces an isomorphism between A;’® A, and C"®D,
hence by (23)
(24) C'®D = n(A)®n(Ay) = nop7 (C)BL , nopyy }(C) # 0
with L := noyy}(C") ® n(A{")
We claim : noayy1(C) 6 D . For x € v 1(C) follows
70) = (fx), x + f(x)) € C = -7(x) e C
This and (22) imply
(25) nop(x) = n(0,x) = n(f(-x),x + f(-x)) + n(f(x),f(x))
= n(-v(x) + n(f(x),{(x) = (f(x),f(x)) € D
Now , we can apply the modular law on (24) to get
D = npyi(C)® (DNL) , ny7yi(C) %0
Finally , we show that f induces an isomorphism between the nonzero direct
summands 7-1(C’) and §-1neyr-1(C)
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via
&, & §-1

T HC) —— o7 UC) 7 mayyI(C) T §lnagyy ()
with the isomorphisms &, , & , §-! induced by «, , n, 6-1 . For x € 7-1(C)
we have by (25)

§-1noy(x) = 6-1(f(x),f(x)) = f(x) ,
hence

7TIC) > x b f(x) € §lnoy71I(C)
is an isomorphism and therefore f is pi .
(iii) : The proof is similar to the proof of (ii) ., but not symmetric , since in C
(f(x),-g(®)) is not symmetric with respect to f and g = 1-f . Now , we have
in place of (23)

Ay = 7 I(C) @ 7 I(C) . o7 I(C) %0
Then n denotes the projection from M onto C"@® D belonging to M= C @C"@D.
Then n induces an isomorphism between A; @A, and C'@®D . In place of (24

we have now
C'"®@D = n(A)) @ n(Ay) = ny7 I (CYBL , ney7I(C) *0
with L 1= noy7 1(C") @ n(Ay)
Again holds ney7~1(C’) € D: For x € 7°1(C’) follows 7(x) =(f(x),-x + f{(x)) e C;
then
(26) noy(x) = n(x,0) = n(f(x),-x +f(x)) + n(x-f(x),x - {(x))
= n(7(9) + n(g().8() = (8(x).g()) € D
Therefore
D = neyri(C) ® (DNL) , muyr i(C) # 0
Now we consider the induced isomorphisms
& A §-1
77HC) — o7 HC) > oy 7 I(C) T b lnay 7 I(C)
For x € 7-1(C’) follows by (26)
6lnoy(x) = 671(g(x),8() = BX)
hence g is pi .
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3.2. Proposition
Given Ap and S := End(Ag) .
If AR has D2-exchange property , then S is a total ring .

Proof :
Indirect proof . Assume f, g € Tot(S) and f +g & Tot(S) , hence f + g is pi .
Then there exists h € S such that h(f+g) = e = e2 % 0 . :
We assume first e = 1 and use the construction M= AX A = A;8A, =C@®D
with hf in place of f and hg in place of g . Since A has D2-EP and A = C also
C has D2-EP . We apply this on M = A; @ A; = C®.D and get either
M=COA’®@A, or M=CB®ABA)y , 0%Cg®C
Then by 3.1.(ii) resp. 3.1.(iiij follows hf or hg is pi and therefore f or g is pi4.
In the general case h(f+g) = e = e2 # 0 we denote by ¢ : e(A) P A the
inclusion and by n : A b e(A) the projection belonging to A = e(A) ®(1-e)(A).
Then 1gay = mt , € = un and by h(f+g) = e follows nh(f+g) = meL = lega) -
With A also e(A) has the D2-BEP . Now we are again in the case e = 1 and
know nhfu or nhge is pi in End(e(A)) = eSe , hence forgispiin S 4 .

By 3.2. and 2.2. together we have one of our main results , where we use
that for a ring S with 1 € S End(Sg) = S holds .

3.3. Theorem

(i) Let be Ag and S := End(Ar) , then:
S is a total ring iff Ag has D2-EP .

(ii) Let be S a ring with 1 € S , then :
S is a total ring iff Sg has D2-EP .

There is another interesting theorem , which connects exchange properties with
total properties .
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3.4. Theorem

(i) If Ap is a module with 2-EP , then S.:= Bnd(Ag) is a radicaltotal ring .

(ii) If S is a ring with 1 € S and if Sg has 2-BP , then S is a radicaltotal ring
(Short : Exchange rings are radicaltotal rings) .

Proof :
(i): Since Rad(S) € Tot(S) we have only to show : If f € Tot(S) , then f € Rad(S).
Since for f € Tot(S) also fS ¢ Tot(S) , we have only to prove , that f is quasi-
regular , that is , 1-f is an automorphism of A . We use again the construction
in 3.1. with f and g = 1-f . Since with A also C has the 2-EP , there exist
Ay G Ay, Ay G Aysuch that M=C@® A,;"® A, . Since f is not pi by 3.1(i)
follows Ay =0, that is M= C @ A" . Now the 2-EP will be used for A, and
the decompositions
M=A;8A,=CO Ay
Then
M=C®A{"®A, , CcC, A{"G A
But now by 3.1. (ii) follows C’ = 0 , since otherwise f would be pi . Therefore
M= A"@A,
Since M = A; @ A, , this implies
A" = A = Ay
and we have
@21 M=C®A;’=C@® A,
With this decomposition we show , that g = 1-f is an automorphism . 1-f is

surjective : For x € A, there exist y,z € A such that
(0,-x) = (fG),fy)-y) + (2,0) = x=(1-f)y)
1-f is injective : Assume (1-f)y) =0 = (f(y),.fy)-y) = (f(y),0) e CNA;=0
=>fy)=y=0.
The proof for (i) is complete and (ii) is a special case of (i) .

If there is an implication , there is always the question , if the converse is
true . We show later by an example , that the converse of 3.4. is not true .
But a converse of 2.3. is satisfied .
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3.5. Proposition
If A is a R-module and S := End(Ar ) . Then the following conditions are
equivalent :

(I) S is radicaltotal

(I) For every situation

M=A"@B=U®@YV with A’z A

one of the following conditions is satisfied :

(i) There exists U’ 6 U such that
M=A"e U 8V

(ii) there exists V' G V such that
M=A"@dUBV

(iii) there exist 0 # A’ 6 A*, U’ G U such that
M=A@dU®®YV
and there exist 0 * A" 6 A*, V' G V such that
M=A"6 U8V

Proof
)= Al): By23., where A=A, C=U,D=V
(I1) = () : For f € Tot(A) we consider (21) and identify A* = C , B = B,
U=A; , V=A, , then C= A
By assumption we have now three cases :
i) : M=C® A @® A, ; then by 3.1. (i) f would be pi
(i) : M =C@® Ay & Ay ; then by 3.1. (i) Ay’ must be 0, then otherwise
f would be pi . Hence we have now M = C @ A, , which is (27) .
gif): M =C®A’® A, , C#0 and .

M=C"®&A; & Ay , C"+ 0. But by 3.1. (ii) the first equation
would imply that f is pi .
There is only (27) left over . We proved already , that (27) implies , that 1-f
is an automorphism . Since with f € Tot(S) also fS ¢ Tot(S) , this is a quasi-
regular right ideal , hence f € Rad(S) .
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§4. The special case : Directly indecomposable modules

First we repeat some well-known facts about directly indecomposable modules
and local rings . A ring S is called a local ring iff the set of noninvertible
elements in S is closed under addition or , what is the same , is a two-sided
ideal of S .

Now , we have the following connection between Ap and S := Bnd(Ag) -

4.1. Remarks

The following conditions are equivalent :

1) Apg is directly indecomposable

2) S contains only the idempotents 0 and 1

3) Tot(S) = set of not invertible elements of S

Proof :
Only 3) = 2) : If 0 £ e is an idempotent , then e is pi , hence by 3)
invertible : es =1 = e = e2s = es = 1

4.2. Proposition
For a directly indecomposable module Ap and S := End(Ap) the following
conditions are equivalent :

1) S is a local ring ,

2) S is a total ring ,

3) S is a radicaltotal ring ,
4) Ag has 2-EP ,

5) Apg has D2-EP

Proof :
(1) ® (2) : By 4.1.
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(3) » (2) : Clear . .

(2) 2 (3) : We have always Rad(S) ¢ Tot(S) . Now , for t € Tot(S) we consider

1-t . This cannot be in Tot(S) since then by (2) 1 € Tot(S) 4 . Therefore

1-t is pi , which means now , that 1-t is invertible . Therefore Tot(S) is

a quasi-regular ideal , hence Tot(S) ¢ Rad(S) .

2) & (5): By 3.3.

(4) = (5): By 1s.

(5) » (4) : Since Ap is directly indecomposable , every nonzero direct

summand of A is A itself . Hence by (S) in the situation
M=A®88B=C@&D

wehave M=AB8C®D , CcC or M=A®@C®D , DgD,

which shows , that (4) is satisfied .

If Ay is directly indecomposable , but S is not a local ring , then Rad(S) *
Tot(S) . For example , Zy is directly indecomposable , End(Zz) = Z
(leftmultiplications) and Rad(Z) = 0 , Tot(Z) = Z \ {-1;1} .

§5. An example for a radicaltotal ring , which is not regular and not a

2-BP ring

For the example we need a special case of a result about exchange modules .
In order to have these notes self-contained , we give a proof for this special
case . First we have to introduce some notations . Let again S be a ring with
1 €S andleta € S. Then consider
(28) 82 = SxS = $,8S, = UeV
with ‘

Sy :={(s,0)1s€S} , S:={(0,;s)]seS} ,

U := {(as ,(1-a)s) | sesS)

V := {(s,s)lseS}
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and isomorphisms

6i: S3s b (5,0) € §
6 Sas b (0,8) €S,
u : S>s B (as,(1-a)s) € U

v : S8 B (s,-8) eV
The modules Sy , S, correspond to A; and A, in §3 , but U and V do not
correspond to C and D by having the negative sign in the second coefficient .

The proofs for (28) and the isomorphisms are as simple as in §3 . Further we
need the epimorphism

p : S23(sq,8y) P sytsy €S
for which Ke(p) =V, By L, 2 s, s by 5 by We denote the inclusions of §; ,
S, , U, Vin S2. Then follows
(29) weiy = 1y y pigu = 1Ig
We néed also
py @ S=3s r—)(as,O)eSl s
By © Sas b (0,(1-a)) €S,
for which uy+ py = o .

5.1. Lemma
Sg is a 2-EP ring &
VaeS 3deS [d=d2 A deSa A 1-de S(1-2a)]

Proof :

= : Since Sg is a 2-EP ring and Sg = Ug , there exist S;” G Sy, S’ G S, such
that

(30) $2=U85S6eSsy

By the modular law follows S G®S; , S’ G®S, . Let be

S =88®5S" , §=88%8,

and if T := §" @ S,"

then
(1) $2=T&S; 88

Denote by n the projection of S2 onto T belonging to (31) , then Ke(m) =
Sy’ ® Sy’ and by (30) n induces an isomorphism T := 7|y between U and T .
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Further let wy , w, be the projections of T = S;" @ S," onto S;" resp. S," and
vy . 1y the inclusions of S;" resp. S;" in T . Then e; := yw; , i = 1,2 are
idempotents in Bnd(Tg) with
(32) ejep = e = 0 , ey +e = Ip
Now we define '
(33) dj := oyrlegTe , i=12
and compute with (29) and (32)
di? = puymleT(npry)TleTu = d;

d1d2 = d2d1 =0 s dl + d2 = 1S
We define d := dq(1) , then
dy(1)?2 = dy(1d;(1)) = dy(d1(1)) = dy2(1) = dy(1)

and

dy(1) + dy(1) = 1,
hence dy(1) = 1-d
We still have to prove d € Sa and 1-d € S(1-a). Denote by nj the projection
of $; =8 @ S" , i=12 onto§", then we show first
(34) wiTh = mu; o, 1= 1,2
Let be

(as , (1-a)s) = (x,0) + (0,y’) + (x',0) + (0,y")
with (x,0) € S¢°, (x,0) € $;", (0,y’) € Sy’ , (0,y") € Sy" ,
then

wira(s) = wyr(as,(1-2)8) = wi((x",0) + (0,y") =

(x",0) fori=1
= { (0,y") fori=2
my(as,0) = (x',0) fori=1

mip(s) = { ny(0,(1-2)s) = (0,y") fori=2 4
Therefore we have (3a) . With (34) we get

di = pog7 ly(wite) = ergT ly(mmy) = (erg7lymb)8 ey, i=1,2
The mapping in the bracket is an element in End(Sg) , which is induced by
leftmultiplication of S by an element s; € S , i = 1,2 . Therefore

d = dy(1) = 5167 tug(1)) = 516171(a,0) = s2 ,

1-d = dy(1) = 50657 up(1)) = 5,6,71(0,1-2) = sp(1-2)



- 55 -

& : In this direction , we prove the lemma not only for a ring S, but for a R-
rightmodule Ag with S := End(Ag) . Consider the situation
M=A®B=C ®C,
with R-rightmodules A , B, C; , C, . By e; (i=1,2) we denote the projectors
on C; and by ny resp. 15 the projection of M to A resp. the inclusion of A in
M . Then
e + e = 1y
Define f; := npeps ((=1,2), then f; ,f, € S and fy + f, = 1, , hence f, =
14 - f; . Now , f; is the element a in our assumption .
Then there exist s; , sp such that
d; := sf; (i=1,2)
are orthogonal idempotents with dy + dy = 14 .
Finally we define
gi = disinae; ((=12) , g:=g1+g
then it follows easily
gita8; = 88 (i=1,2) ,
8La8 = 8 » Bla = la
and this equations imply
M = Im(s) ® Ke(g) = A ® (Cy nKe(gy)) @ (Cy N Ke(gy)
what we had to prove .

Now we come to the example . Let K be a field and R + 0 a subring of K with
1 € R, which is not a local ring (for example K=Q , R =Z) . Then the ring
S is defined by

Si={(x) e KN|3meN,xeR Vizm [x=x]}
with

) + ) = i+y) 0 GO = &y
Then (1) = (111 .. .) is the 1-element of S .
First we show : Bvery element # 0 in S is pi . If in (%) x # 0 , then with
s=0...0x,10...) follows (x)s=(0...010...) and this is an
idempotent + 0 in S . Hence

Rad(S) = Tot(S) = 0 ,
that is , S is radicaltotal .
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Then we prove , that S is not a regular ring . Since R is not local , R is not a
field . Therefore exists 0 ¥ re R, 1 ¢ R(rleK) Then t)=(rrr..)
is not regular . Assume (r)(x;)(r) = (r) with x; = x for i2m , then

ryr = Ixr =1 -, i2m
Since r * 0 also xr + 0 . Then follows

xt = rx = 1
hence x = rleR 4.
Finally we show S is not a 2-BP-ring . Since R is not local , there exist not-
invertible a; , a, € R such that a; + a, is invertible in R : (a;+axb =1,
b e R. Then also r :=a;b , 1-r = ajb are not invertible in R and r# 0,
1-r % 0. Assume Sq'is a 2-EP ring , then by 5.1. there exist (x;) , (y;) € S
such that . A

GO . @D -M) = G(-1)
are idempotents with
(35) XD+ )t-np=1=111...)
Since (x;)(r) = (x;r) is an idempotent , for i2m with x; = x holds

X IXjI = XIXr = XTI A
If xr # 0, then xr = 1 , hence x =r1 € R 4 . Therefore ;=0 , i2m .
Similar for (y;}(1-r) y; =0, izn . But then (35) cannot be satisfied & .
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I11. Direct decompositions

§1. RTE-decompositions

1.1. Definition

Let be Mg a R-module and R a ring with 1 € R . Denote T := End(Mg) .
Then Mg is called a LE- resp. TB- resp. RTB-module :& T is a local
resp. total resp. radicaltotal ring . A decomposition

) M= @ M
: i€l

is called a LE- resp. TE- resp. RTE-decomposition : & all M;, i€l are LBE-
resp. TB- resp. RTE-modules .

We know already , that direct summands of TE- resp. RTE-modules have
again this property (I. 5.6. ; the endomorphismring of a direct summand of M
is of the form eEnd(M)e with an idempotent e € End(M)) . Now we come to
the question if for a TE- resp. RTE-decomposition (1) M is a TE- resp. RTE-
module . This question is open for TE-decompositions even if I is finite . We
are able to show , that the direct sum of a RTE-module and a TE-module
is a TE-module . If 1) is a RTE-decomposition , then M is a TE-module and
if 1 in (1) is finite , then M is again a RTE-module . There are also examples
that for infinite I M is a RTE-module . For LE-decompositions , this case was
already considered by Harada .

For the following proofs , it is useful to put II.1.2. and II. 3.3. (i) together to
the following lemma .

1.2. Lemma
The module Mp is a TBE-module & every nonzero direct summand of Mp
contains a nonzero direct summand , which is a TE-module .
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1.3. Proposition
If in
M=A®B
A is a RTE-module and B a TE-module , then M is a TE-module .

Proof :

We can assume A ¥ 0 . Assume M = C ® D with C + 0 . Then we consider
the different cases in 11.2.3 .

case (i) : Now , A®@(BnC) = C ; therefore C contains a direct summand
isomorphic to A , hence a RTE-module .

case (ii) : Now , B=C @ (B n D) ; therefore C is isomorphic to a direct
summand of B , hence a TE-module .

case (iii) : Now , A’ ® C’ = C ; therefore C contains a direct summand
isomorphic to A’ , which is a direct summand # 0 of A (by the modular law) ,
hence a RTE-module .

1.4. Theorem

Assume , that (1) is a RTE-decomposition and
M=C®D , C#*0

Then there exists iy € I and
0+L; 6® M, , Lyg®M; , C,6®C

such that _
() M=L1@C°®D=ec(L1)@L2@(i(€DI M;)
i*iy

Proof :
Letbece C, c#* 0 and

c=cy t oG CiJGMi,
with different iy, ...,1i, € I . Since in the following we need only the Mij ,
j=1,...,m, wewritejforijand

BOZ'-"- (] Mi

i€y, ... ip}
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Then c = ¢y + ... +¢; , ¢ € M; . Now, we consider
IMJ = nMJeCLMj + nMjeDLM’ , j=1,...,m
If one myecty, is pi , then we have the result by II.2.1. 1) . Therefore we
assume , that all
'nMjecLMj € Tot(End(M;)) = Rad(End(My) , j=1,...,m
and derive a contradiction . By this assumption all
"MFD"MJ = le - nMjecLMj , j=1,...,m
are automorphisms . By II. 2.3. (i) (with A = My , B = igl M;) we get

® M=¢epM)®M;® ... M, @B, . iy
Induction over j = 1,...,m with 3) as the case j=1 implies
(a) M = eD(Ml) ®... 0 CD(Mm) (©] Bo

By II. 2.1. 3) we know that all mappings
(s) Mj 3x B epx) € eD(Mj)
are isomorphisms . Since ¢ = ¢y + ... + ¢, € C it follows that
0 = ep(c) = eplcy) + ... + eplcy)
Since (4) is a direct sum , this implies ep(¢;) = 0 , j = 1,...,m . Then by (s)

we have ¢ = 0,j=1,...,m ,hencec=04.

In the special case that (1) is a LE-decomposition , 1.4. is the key for the proof of
the Krull-Remak-Schmid-Azumaya-theorem . This gives reason for the following
question : If () is a RTE-decomposition and if M=j(€9J o
decomposition , do there exist refinements of both decompositions , which are

is an arbitrary

isomorphic ?

1.5. Corollary
Assumptions and notations as in 1.4 .

Further let D be a maximal direct summand of M, then M=L;®D ,L;2C.

That means , that a refinement of (1) complements a maximal direct summand .
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1.6. Corollary

Assume , that (1) is a RTE-decomposition . Then :

(i) : Bvery nonzero direct summand of M contains a direct summand , which is
isomorphic to a nonzero direct summand of one of the M; , i € I

(i) : M is a TE-module .

Proof .
(i) : From (2) follows C = L; @ C, and L1 6® M;_ .
(ii): By (i) and 1.2 .

For a finite set I in (1) , M is even a RTE-module . To prove this and other
interesting facts , we need two lemmas .

1.7. Lemma

If Az , Bg are R-modules and f € Homp(A,B) , g € Homg(B,A) , then :
15 + gf is an automorphism of A &
1g + fg is an automorphism of B

It is easy to check , that if 1, + gf is an automorphism , then
(1g+fg)" = 15 - f(1 + gf) g 5

if 1g+fg is an automorphism , then

(1o + gf)! = 15 - g(1p + fg)!f .

1.8. Lemma

Assume , that (1) is a RTE-decomposition . Denote T := End(Mg) and by e; € T

the projector of M onto M; with respect to (1) . Then for all ie ‘
e;Tot(T) c Rad(T) , Tot(T)e; ¢ Rad(T)

Proof :
Denote by T; := End(M;) and by e; resp. n; the projector resp. projection of M
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onto M; along (1) . Further let be i; the inclusion of M; in M and 1; the
identity of M; . Then |
Li=myy , € =ym , mWE =M, €l =
By I.2.3. follows
mTot(T); ¢ Tot(T;) = Rad(T;)
By multiplication from the left with 1; and from the right with n; follows
e;Tot(T)e; ¢ ;Rad(T))m;
Now , we show that each element of y;Rad(T;)n; is quasi-regular . Let
f € Rad(T;) , then there exists g € T; such that
(1i+ g = 1; = (& + yfm)ugn = ¢ =
(I - & + e + enifme )Ty - e + epgnie;) = Iy-e +e = 1y
Then also each element of e;Tot(T)e; is quasi-regular . Now , let be h € Tot(T) ,
then e;hT is a right ideal of T contained in e;Tot(T) . We show that e;hT is a
quasi-regular right ideal , hence e;hT ¢ Rad(T) . We use 1.7 . Since for te T
Iy + ejhte; is an automorphism , also 1y + e(ejht) = 1y + ejht is an
automorphism (Take in 1.7 g = ejht , f = e;) . We have now e;Tot(T) ¢ Rad(T) .
Similar is the proof for Tot(T)e; ¢ Rad(T) .

1.9. Corollary
If (1) is a RTE-decomposition and I = {1,...,n} , then M is a RTE-module .

Proof :
m e; , i=1,...,n the projectors of M onto M; and T := End(My) . Then
IMm=e+...+e, and 1.8. implies
Tot(T) = ]'}gle{rotm ¢ Rad(T) ,
hence Tot(T) = Rad(T)

1.10. Corollary
Assume , that (1) is a RTE-decomposition and T = End(Mg) .

(@) If Rad(T) = 0 , then Toy(T} =0 .
(ii) If f € Tot(T) , then 1y, -f is a monomorphism .
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Proof :

For x € M , there exists a finite subset I, C I , such that e(x) = x for e:= iglei .
If f € Tot(T) , then f(x) = fe(x) , with fe € Rad(T) . °
(i) If Rad(T) =0 , then f(x) = fe(x) = 0 , hence f = 0

(ii) Assume (1p4-f)(x) =0 . Then (1jy-f)x) = (1y-fe)(x) = 0 . Since fe € Rad(T)
1) -fe is an automorphism , hence x = 0 .

1.11. Corollary
If Mg is an artinian or noetherian module , then there are equivalent :

(i) M is a RTE-module ,
(ii) M is a TE-module ,
(iii) M has a finite LE-decomposition .

Proof :
An artinian or noetherian module has a decomposition

M = iéri)l M; , M directly indecomposable
(i) = (i) : Ok.
(i) v (i) = (iii) : Since a direct summand of a RTE- resp. TE-module is again
such a module , (iii) follows by I11. 4.2 .
(iii) = (1) : By 1.9 .

§2. Connection with "Harada"-properties

If (1) is a LE-decomposition , then this is a special RTE-decomposition. In the
literature - mainly by Harada - there are several interesting characterizations
for the case , that T = End(M) is a radicaltotal ring (and not only a total ring) .
Harada used a more special definition for Tot(T) (and not our notation) . We
show first , that the definition of Harada and our definition are equivalent for
LE-decompositions .
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We need the following lemma .

2.1. Lemma
Iff: A - B,g:B - C are modulehomomorphisms and A * 0, B directly
indecomposable and gf an isomorphism , then f and g are isomorphisms .

Since gf is an isomorphism , f is injective , g is surjective and

B = Im(f) ® Ke(g)
Since A # 0 and B is directly indecomposable , we have B = Im(f) and Ke(g)=0,
hence f is also surjective and g injective .

Now we consider LE-decompositions , which are special RTE-decompositions .
Assume , that (1) is now a LE-decomposition (with all M; # 0) and that

€
is also a LB-decomposition of R-modules . We use the same notation as in 1.6 :
T := End(Mg) , S := End(Np)

Further we denote by
1y - M; - M the inclusion ,
n o M —> M; the projection belonging to (1) ,
€ = LT the projector

Similar notations for (6)
‘j .
p;j: N — N; the projection belonging to ) .

Nj - N the inclusion ,

d; = xjp; the projector

2.2. Proposition
Assumptions as before aad { € Homg(M,Nj . Then :

fispi ® 3iel,jel] [pfy; is an isomorphism]
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& : Since pjfl.i is an isomorphism , we have
N = Im(f;;) @ Ke(o) = f(M;) @ Ke(p))
and
M; 3 x b f(x) e f(M;)
is an isomorphism . Then I. 6.2 implies , that f is pi .
= By I. 6.2 there exist
M=C@®D , C*0 , N=P@®AQ
(C for M, and P for Ny in I.6.2) ,
such that
) Cax b fx)eP
is an isomorphism . Now , we apply 1.6 (i) ; since the M; are directly
indecomposable , there exist M;  and a decomposition
C=C®C, , Ci=M
The isomorphism (7) implies
P = f(Cy) ® £(Cy)
and the isomorphism
Ciax b f(x) e f(Cq)
Denote by
g M,
v: C; - M the inclusion

- C; an isomorphism ,

and by
p: N - f(Cy)
the projection belonging to
N = f(C;) @ f(C,) ® Q
Then pofig : M;, — f(C{) is an isomorphism . Denote by h the inverse
isomorphism , then
lMio = hpfig
For x € Mio , x*¥ 0 letbe I, c 1, J,c ] finite subsets , such that
2 eigx) = gix)
i€l

0
and

2 difs(x) = fg(x)
jEJ.

[o]
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Denote t € End(M; ) by
t:=1 - hp dfep
Mio j§101§1oj 8
then t(x) = 0 and

(8) Iv; = hp X 2 djfeibg + t
to JET i€1,

Since End(M; ) is local , there must be at least one summand in (8) , which is
an automorphism . Since t(x) = 0 , this cannot be t . Assume

hpdjfeix,g = hp)cjpjft,inibg
is an automorphism . By 1.10 follows , that hpc;pfi; is an isomorphism and
again by 1.10 we get , that pjfi; is an isomorphism , what we had to show .

By 2.2 it is easy to give an example for a LB-decomposition , for which T is

not a radicaltotal (but a total) ring .

Assume R = Z , p a primnumber |,

My = & Z/p"Z , T = EndM)
nenN

Then End(Z/pRZ) = Z/pRZ (since this is a ring with 1-element) and Z/pRZ
is local with Rad(Z/pRZ) = Tot(Z/pBZ) = pZ/p"Z and (Z/p2Z)/(pZ /P Z) =
Z/pZ . Denote by ’
i ¢ Z/pRZ - M  the inclusion
n,i M - Z/pRZ tﬁe projection
Then is (vp(1+pRZ) | ne N) a generating family of M . We define f € T by
fua(z + pRZ)) = 1y(pz +p2+1Z) , z € Z
Obviously n,,1fL, is not an isomorphism for all ne IN , since it is not surjective .
Further mfi, = 0 for i # n+1 . Then by 1.11. f € Tot(T) .
But f ¢ Rad(T) , since 1) -f is not an automorphism . If
x=(zy+pZ ,2y+p?Z,...,2¢+Dp'2,0,0,0,...)
with pt{z, is an element + 0 of M , then (1y,-f)(x) =
=(2y+pZ , z,-p4+P*Z , . . . , 24-p2t.1+P'Z , -pz+p'*1Z ,0,0,0,...)
and this shows , that 14(1 +pZ) ¢ Im(1y-f) .
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As mentioned before , in the case , that (1) is a LE-decomposition , there exist
several characterizations of the property , that T = End(M) is radicaltotal . The
total was there defined as the set of all f € T , such that mfi; is not an
isomorphism for all i, j € I . We ask here , if these characterizations can also
be applied for RTE-decompositions (1) . There is at least one important
difference : For a LE-decomposition (1) the M; are directly indecomposable ,
but for RTE-decompositions this is not the case ; even more : There exist RTE-

modules which are not direct sums of LE-modules (see example after 2.3) .

We consider first locally direct summands of M . These are submodules of M
of the form jgr B; , where for every finite subset J, C J j?Jij is a direct
summand of M .

We use the fact 1.10. (ii) , that for f € Tot(T) 1p,-f is a monomorphism .

2.3. Proposition
If (1) is a RTE-decomposition and f € Tot(End(Mg)) , then

(i) Im(ly-f) = @I (I -f)M;) is a locally direct summand of M ,
ie
(ii) if every locally direct summand of the form Im(ly,-f) is a direct summand ,
then M is a RTE-module .

Proof :

(i) : Since 1y - f is a monomorphism
Im(1y-f) = @ (1y-1)M;p)

i€l
For a finite I;c 1 and e := 2 e; , we have
i€l

@ (1y-)M;) = @ (1)- fe)(M;
ielo(M (M;) ielo(M Y(M;)

and since 1y - fe is an automorphism

M= @ (v-DM) O (8 (M)
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hence Im(1y-f) is a locally direct summand .
(ii) . If Im(1y-f) is a direct summand , then 1, -f has a left inverse g € T
such that

gl - =1y = g=1y-(Cgf
Since for f € Tot(T) also (-g)f € Tot(T) there exists h € T such that

hg = h(ly - (-8)f) = 1y
Therefore g1 = h = 1yy-f = (ly-f)g =1y , thatis , 1p-f is an
automorphism and f € Rad(T) , hence Tot(T) = Rad(T)

For a LE-decomposition (1) the following is true : If M is a RTE-module then
every locally direct summand of the form

jgj B; , End(B;) local
is a direct summand . We show by an example , that a similar result is not
true for RTE-decompositions . We consider the ring S , defined in II. 5.,
for which Rad(S) = Tot(S) = 0 . Then Sg itself is a RTE-decomposition . The
ideal K™ of S has a RTE-decomposition , even a LE-decomposition , and is a
locally direct summand of Sg . Since K(N) is obviously large in Sg , it cannot
be a direct summand of Sg .
For a LE-decomposition (1) End(M)/Tot(BEnd(M)) is a ring with 2-exchange
property (= EP) . Here for the ring S we have End(Sg) = S , Tot(S) = 0,
but Sg does not have the 2-EP (II. 5.) . Therefore , Sg does not have a LE-
decomposition .

§$3. Decompositions with duality properties

Already in 1.7.2. and 1.7.3. we had results about direct decompositions with
duality properties . We get here some more informations .
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Let be
(9) MR = @ Mi

i€l
a decomposition , where we have "total properties" of the M; resp. M with
respect to M;* resp. M* (E3) . Especially m € M is pi iff there exists ¥ € M*
such that ¥(m) is an idempotent ¥ 0 in R and Tot(M) is the set of all not pi

elements in M .

3.1. Lemma

(i) If f € Homp(M,N) , then f(Tot(M)) ¢ Tot(N) .

(ii) If in (» M is total (that is Tot(M) is additively closed) , then
Tot(M) = igl Tot(M;) .

Proof :
(i) : We show : If for me M f(m) is pi , then m is pi. If f(m) is pi , then there
exists v € N* such that yf(m) = e = e2 # 0 . Then yf € M* , hence m is pi .
(ii) : For the inclusion i; : M; - M resp. the projection n; : M - M; follows
by (i)
(o)  1i(Tot(M;)) c Tot(M)
a1 m(Tot(M)) c Tot(M;) , i€l
For x,y € Tot(M;) follows by (10) and the assumption x +y € Tot(M) and by (11)
x + y € Tot(M;) . Therefore , also the M; are total . Agai'n by (10) and the
assumption follows

ig)ITot(Mi) c Tot(M) .
If u e Tot(M) and u = Lu; (u; € M;) in (9 , then by (1) u; € Tot(M;) , hence
also

TotM) ¢ & Tot(M;) .

i€l

3.2. Corollary
(@) If in (9) all M; are radicaltotal (that is Rad(M;) = Tot(M;)) , then M is

radicaltotal .
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(b) If (9 is a RTE-decomposition and all M; , i € I are projective , then M is
radicaltotal .

Proof :

(a) : Since Rad(M;) = Tot(M;) , we have
@ To(M) = @ Rad(M;) = Rad(M) C Tot(M)
1 1

In the proof of 3.1. we showed (without any assumption) : If u € Tot(M) and
u="=CLuy;,y €M, then uy; € Tot(M;) . This implies
Tot(M) ¢ G)ITot(Mi) = Rad(M) .
i€
hence Rad(M) = Tot(M) .

(b) : The assumption in (b) and I. 4.8. 1) imply Rad(M;) = Tot(M;) . Then (b)
follows by (a) .

For example , (b) is satisfied if (9) is a projective LE-decomposition .

3.3. Corollary
Assume , that (9) is a RTE-decomposition . Then :

TotM) + M & Fijel [M; ., has a nonzero , projective direct summand | .

Proof :
By 1.6. (i) M is a TE-module and them by 1. 3.7. (for (E3)) M is total . Then by
3.1. (ii)
(12) Tot(M) = ngOt(Mi) .
1

=>: Now assume Tot(M) ¥ M . Then there must exist at least one i€ 1 with
Tot(M;_ ) # M;_ . Then 1.7.2. implies the statement .

¢: On the other side , if C # 0 is a projective , direct summand of M;_, then
with M;  also C is a RTB-module and by I. 8.4.1) Tot(C) = Rad(C) . Since C is
a nonzero projective module Rad(C) # C , hence Tot(M; ) ¥ M;_, hence by (12)
TotM) + M .
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IV. The relative total in the category of R-modules

§1. Semi-ideals and ideals in the category of R-modules

For a ring R with 1 € R we consider the category Mod-R of all unitary R-
right modules . By Wl we denote the class of objects of Mod-R .

1.1. Definition
1.) A semi-ideal I of Mod-R is given by a set
(1) I(M,N) ¢ Homp(M,N) forallM, N e @y ,
such that the following property is satisfied :
Homg(N,Y)I(M,N)Homg(X,M) c I(X,Y)
forall M, N, X ,Y € Wty .
2.) A semi-ideal I is called an ideal of Mod-R if further
(2) I(M,N) is additively closed for all M , N € dly

If for one pair M,N I(M,N) ¥ @, then by 1 0 € I(X,Y) for all X,Y € Wy -
We add to the definition of a semi-ideal 1, that it is not empty .

If I is an ideal, I(M,N) is not only additively closed but by (1) even a subgroup
of Homp(M,N) and a End(N)- End(M)-bimodule .

If 1,J are two semi-ideals , then we write 1C J resp. 1 =7 resp. 1 27 iff for
all M, N € Wlp
IM,N) c JIM,N) resp. IM,N) = J(M,N) resp. I(M,N) > JIM,N) .

The following lemma shows , that a semi-ideal 1 is uniquely determined by
IM,M) for all M € Wiy .
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1.2. Lemma

For semi-ideals I , J the following is true :

@ Icl] & VMe %Wy [IMM)c IMM)]
) 1=J & VMe g [IMM) = IM,M)]

Proof :

> : Clear .

(i), €: Consider A, B € g and f € I(A,B) . Define M = A® B with the
inclusions v, , tg and the projections nn , ng . Then by (1) tgfny € I(M,M) C
J(M,M) . Then again by (1) ngigfrigiy = 1gflp = f € J(A,B) ,hence I ¢ J .
@) ,=: IM,M) = JM,M) implies IcJand Jc I, hencel =17J.

Our main goal in this chapter is to define semi-ideals and ideals in Mod-R by
using a modified notion of the total relative to certain classes of R-modules .

First we give two examples for ideals in Mod-R .

1. BExample :
Denote by Q a (proper or inproper) subring of the centre of R . Then every

Homg(M,N) is a Q-right-module by the definition
fqx) := fx)g ., xeM , qe€Q
Then it is easy to see , that
Rad(Homp(M,N)q) for all M, N e Ty
is an ideal in Mod-R . For g € Homp(X,M) the mapping
g : HomgM,N) > f + fg € Homg(X,N)
is obviously a Q-module homomorphism , hence
Rad(Homg(M,N))g ¢ Rad(Hompg(X,N))
The same is true for the other side . That means that (1) holds . (2) is anyway
satisfied for a radical .

2. Bxample :
The Jacobson-radical in Mod-R .
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1.3. Definition
RadM,N) := {f € Homg(M,N) | V g € Homg(N,M) [1y-gf is an invertible
element in T := Bnd(M)] }

In the following we have to use III. 1.7 :

Ip - gf is invertible in T &

1y - fg is invertible in S := End(N) .
Hence the definition of Rad(M,N) can also be given by using 1y -fg . For
M = N , this is the definition of the Jacobson radical for T by using quasi-
regularity .

1.4. Corollary
Rad is an ideal in Mod-R .

Proof :
Semi-ideal Rad : For h € Homp(N,Y) we have to show , that 1, - ghf is

invertible in T for all g € Homp(Y,M) . But gh € Homp(N,M), therefore we

have this property by assumption . Similar for the other side .

Ideal Rad : Assume f;,f, € Rad(M,N) and consider
Iy - 8(fy+f) = (1y-8fy) - gf, » g € Homp(N,M)

By assumption , there exists an inverse t; € T of 1,-gf; . With this follows
t1i(Im - gf1) - tigfy = 1y - tegfy .

Since also tyg € Homgp(N,M), there exists also an inverse t, € T of 1y -tygf,:
tati(ly - gf1 + £2)) = (M -tgf) = 1y

Since tq , ty are invertible elements, also tyt; is invertible . Therefore , this is

also the right inverse of 1y, - g(f; + f;) , hence also this element is invertible .

Now , we consider also the radicals of the T- resp. S-modules Homgp(M,N)p
resp. sHomp(M,N) and ask for a connection to Rad(M,N) .
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1.5. Proposition
Rad(Homp(M,N)r) + Rad(sHomp(M,N)) ¢ Rad(M,N) for all M , N € g .

Proof :
Since Rad(M,N) is an ideal , we have only to show , that both radicals are
contained in Rad(M,N) . With respect to symmetry , we have only to prove
Rad(Homg(M,N)r) € Rad(M,N) . Let be f € Rad(HomR(M,N)T), that is fT G°
Homg(M,N)t (" G° " means "small submodule" .) . For any g € Homp(N,M)
follows

gfT G° Tp ,
since the image of a small submodule is small in the image of a homomorphism .
Since for any t € T

(- egf)T + gfT =T

we get (1y - gft)T = T . Then there exists t; € T with (1 - gft)t; = 1)4 , hence
t; = ly - gft(-t;) . By the same reason, also this element has a right inverse .
Therefore t; has a left and a right inverse and then this is the invertible element
Iy - gft . For t =1, that means 1y, - gf is invertible , hence f € Rad(M,N) .

Finally we mention a result which we need later .

1.6. Lemma
If f € Rad(M,N) , g € Homp(N,M)-, t € T, then gftT ¢© Ty

Proof :
Since Rad(M,N) is an ideal , also ft € Rad(M,N) . We assurne now for a right-
ideal U of T :
ghtT + U =T
Then there exist t; € T, u € U such that
gftty + u = 1y
> u = 1y - gfty
But since ftt; € Rad(M,N) u is invertible , hence U = T , which means
gftT G° Ty .
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§2. Some properties of idempotents and induced isomorphisms

For preparation of the definition of the total in Mod-R , we need some simple
results about idempotents and induced isomorphisms .

For M, N € Tty let be f € Homg(M,N) , g,h € Homg(N,M) , S := End(N) ,
T:= EndM). Byd,d;e S, e,e; € T we denote nonzero idempotents .

2.1. Lemma
(i) If fg = d , then gdf = e and
eM) 3 e(x) P fe(x) € dN)
is an isomorphism .
(ii) If hf = e, , then fe;h = d; and
eiM) 2 eq(x) P feyx) € di(N)
is an isomorphism .

Proof :
@ : Iffg =d(=d2%0), then
(gdf)? = g(dfgd)f = gdf
Denote e := gdf , then feg =d ¥ 0, hence e ¥ 0 . Further
3) df = d?f = fgdf = fe '
and
d(N) = d?(N) = dfg(N) c df(M) c d(N)
hence
(4) d(N) = df(M)
Now , we consider the mapping in (i) . That this is an epimorphism follows
from (3) and () . Assume fe(x) = 0 , then gdfe(x) = e(x) = 0 , hence it is
also injective .
(if) : Similar , we have now hf =e; (=¢e42 # 0), then
(fesh)? = f(eshfes)h = feqh '
Denote d; := fesh , then hdif = e; # 0, hence d; ¥ 0 . Further
fe; = feq2 = feshf = dyf
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and
dy(N)

fe;h(N) € feq(M) = d4f(M) c dy(N)
hence
di(N) = d4fM) .
Similar to the proof of (i) follows , that the mapping in (ii) is an isomorphism .

2.2. Definition

1.) A class k of objects from %y (that is of R-modules) is called a closed class
iff it is closed with respect to isomorphisms and direct summand .

2.) An idempotent d € End(N) is called a k-idempotent iff d(N) € k .

2.3. Lemma

Given a closed class k . Then for f € Homp(M,N) the following conditions are

equivalent :

(a) There exists g € Homgp(N,M) such that fg is a nonzero k-idempotent ;

(b) there exists h € Homgp(M,N) such that hf is a nonzero k-idempotent ;

(c) there exist 0 # A G® M , B G® N with A,B € k , such that the mapping

f:Aax b fx) eB

is an isomorphism (f = ngfis) ;

(d) there exists 0 # C € k and homomorphisms x : C > M, B: N - C,
such that Bfo is an automorphism .

Proof :
(@)= (b) : By 2.1. (i) with b = gd . Since d(N) € k and k is closed , also
eM) € k .
(b) » (c) : By 2.1. (i) with A = e;(M) , B = d;(N) .
(c)=> (@) : If N=B® By and d is the projector on B belonging to this
decomposition , then d = d2 and d(N) = B, that is, d is a nonzero k-idempotent .
Define g € Homp(N,M) by

glg ‘= -1, gBY=0,
then fg = d
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(©)=>(d): Take C=A,« =14, B=F"Ing, then ffox = { “Ingfiy = 14 .
(d) = (c) : Now we have the situation

o
C—M ——>N

Bfa B

=automorphism

then

M = Im(x) ® Ke(f)

N = Im(fu) ®@ Ke(B)
and o is a monomorphism . Take in (¢) A = Im(«) and B = Im(fx) . Since 0 ¥
C € k and « is mono , also 0 ¥ Im(x) € k . Since Ke(f) ¢ Ke(Bf) f induces
the isomorphism Im(x) 2 x P f(x) € Im(fo) = fIm(e)

§3. k-partially invertible elements and the k-total

3.1. Definition

Given a closed class k .

)fe HomR(M;N) is called k-partially invertible = k-pi :& the conditions
of 2.3 are satisfied . '

2) TOTKM,N) := {f | f € Homp(M,N) A f is not k-pi } .

This is called the k-total from M to N . If k is the class of all R-modules we
write TOT(M,N) and call this the total from M to N .

Obviously we have then TOT(M,N) = Tot(Homg(M,N)) in the meaning of (E2).

In the following k always denotes a closed class of R-modules .
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32. Lemma
1) TOT is a semi-ideal in Mod-R .
2)VM,Ne ®Wlg Vf; € RadM,N) V f, e TOT(M,N)
f; + f, € TOTM,N) ;
we write for this :
Rad + TOT = TOT

Proof :
1) : For f € TOTY(M,N), g € Homgp(X,M) , h € Hompg(N,Y) we have hfg €
TOTK(X,Y) to show . Proof,indirect . Assume hfg is k-pi . Then there exists
p € Homp(Y,X) such that (hfg)p = (bf)(gp) = d = d2 # 0 with a k-idempotent
d . Then by 2.3. there exists q € Homp(Y,M) such that
q(hf) = (qh)f
is a k-idempotent , hence f is k-pi & .
2) : Proof indirect . Assume there exists g € Homp(M,N) such that
gfi+f) =e=e2%0
> T =gfiT + gfhT + (1-¢)T
Since by 1.6. gfiT G° Tt we have
= gfoT + (1-e)T
> eT = egf,T ,
then there exists t € T with e = egfyt .
But this is not possxble , since TOT is a semi-ideal and e ¢ TOT(M,M) .

3.3. Remark
If a finite meaningful product of modulehomomorphisms is k-pi , then every
factor of this product is k-pi .

Proof :
Since TOTy is a semi-ideal .

With respect of 3.2. 1) we have now several questions .
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1) For which k is TOTg an ideal ?

2) What are the conditions for closed classes k;,k; such that TOTg, = TOTg, ?

3) Is there some kind of correspondence between closed classes and semi-
ideals ?

We give first complete answer to the first two questions .

3.4. Proposition

For a closed class k are equivalent :
(i) TOTg is an ideal ;
(ii) k is a subclass of the class of all TE-modules (TE-module see HI. 1.1)) .

Proof :
(i) = (ii): Let be M € k . Since k is closed, every direct summand of M is ink
and every idempotent of T = End(M) is a k-idempotent . Therefore TOT{(M,M)
= Tot(T) ; since TOT(M,M) is additively closed , T is a total ring and M is a
TE-module .
(ii) > (i) : Consider f, g € TOTK(M,N) and assume f +g is k-pi . Then there
exists h € Homg(N,M) and a k-idempotent e € T = End(M) such that
h(f+g)=e=¢e2%0.
Denote A :=e(M) and v : A - M the inclusion and n : M = A the projection
along M=eM)® (1-e)M) , then e = un , 14 = m . From h({f + g) = e follows
ehfe + ehge = e = in
and
nhft + nhge = 1, .
Since f , g € TOTK(M,N) and TOTg is a semi-ideal , also nhfi , nhg €
TOTK(A,A) . Since by assumption A is a TE-module , it follows , that nhf. +
nhgr = 1, is in Tot(Bnd(A)) & .

Now we answer the second question .
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3.5. Proposition

Let k; , k, be closed classes . Then
TOTg, ¢ TOTx, & every A € k;, A # 0 contains a nonzero
direct summand C € k,

Proof :
= : Consider A € ky , A # 0, then 14 is ky-pi , hence 15 ¢ TOTg (A,A) .
Since TOTg, ¢ TOTy, also 15 € TOT,(A,A) . Then there must exist 0 #
BG® A, Bek,, such that 1, induces the identical isomorphism on B .
& If f € Homp(M,N) and f is ky-pi , then there exist 0 + A G® M, BG® N,
A ,B € kq, such that

fF:A2x  f(x) € B
is an isomorphism . By assumption there exists C G® A ,C+ 0, C € k, , and
the isomorphism f induces an isomorphism

f:cof0) ,
where f(C) G® B, hence f(C) G® N and since C = f(C) also f(C) € k, . That
means , f is also ky-pi . This implies TOTg, ¢ TOTg, .

3.6. Corollary
1) If k{ , k, are closed classes , then :

TOTg, = TOTy, ® TOTg, € TOTx;, A TOTg, ¢ TOT,
(see conditions in 3.5)
2) If k; , ky are closed classes and kj C k) , then TOTg, ¢ TOTy, .

If we denote by
k, = class of LE-modules
k; = class of injective modules
k, = class of quasi-injective modules
k3 = class of 2-EP modules
ky = class of 'RTE-modules
ks = class of TE-modules
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then we have
k('.)
ckycksgck
Ky C kz} 3 4 5
and the ideals (which all contain Rad)

{ TOTy,
TOTy. ¢ TOTy, ¢ TOTy,
ks kg k7 LroTy, ¢ TOTy,

For a given ring R we would like to know , which of these are different . For
example TOTy, is different from TOTy, , i=0,..., 4, if there exists 0 # A
€ ks , which does not contain a nonzero direct summand in k; .

We show at least for a certaid ring R, that TOT, $ TOTy, . For a field k we
consider

R := KN/K(N)
We prove , that Rp has the 2-BP but does not have a nonzero direct summand
with local endomorphismring .
For the prove , that Ry has the 2-EP , we show (II. 5.1) , that for any a € R
there exists an idempotent d € R such that

d € Ra , 1-d € R(1-3)
Let (2;) € R with a representative (a;) € KIN . Then define (d;) € KN by

4 = { 1 ff a; =1

.0 if a; F1

Then (d;) is idempotent and (d;) = (d;)(a;) , hence (d;) = (d;)(a;) € R(z;) .

Further
{ 0 for a; = 1
1 for a; #1

[0 for a; = 1
1 1-a2; %0 fora; 1 ,
hence (1) - (d;) € KN((1) - (2;)
and (1) -(d) € R((D - (@)
By this we know , that Rp has the 2-EP .
Assume

RR=A®B , A%0,

1 -4;
and

l-ai=
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then there exists an idempotent 0 * (e;) € R such that A = (&;)R and End(AR)
= (e;)R(e;) . Since (e;)2 = (e;) * 0 , there exists n € N such that

0

e = or forizn

1
and there are infinitely many e; = 1 . Define now (d;) by substituting in (e;)
every second e; =1 by 0 ; then (d;) is a nonzero idempotent # (e;) in (e)R(e;).
Hence this ring is not local . '

We have also an ‘easy example for TOTg, & TOTg, for R = Z .

Obviously is Z/4Z as a Z-module quasi-injective , since 2Z/4Z is the only

nontrivial submodule and Homz(2Z/4Z) = {0;.} (0 = zero-homomorphism ,

v = inclusion) . But Z/4Z5 is not injective , since the homomorphism
4Z > 4x P x + AZ € Z/AZ

cannot be lifted to a homomorphism from Z to Z/4Z . Since Z/47Z 5 is directly

indecomposable , it does not contain a.nonzero injective direct summand .

It would be interesting to give examples for proper comtainment for all
possible cases . Or even to do more : To characterize all rings for which a
certain containment TOTy, ¢ TOTkj (i>j) is proper .

§4. A Galois-correspondence in an arbitrary category

We are mainly interested in the category Mod-R , but the following interesting
‘Galois-correspondence can be described in an arbitrary category . We do not
use anything from before but formulate this §4. selfcontained. .
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Denote by C a category and by Obj(C) resp. Mor(C) the class of objects resp.
morphisms of C . For A , B € Obj(C) we denote by Mor(A,B) the set of
morphisms from A to B . If we write 0 # C € Obj(C) , then this makes sense
only if C has zeroelements . If C has no zeroelements , then the condition
0 * C is superflous .

4.1. Definition
1) A nonempty class k ¢ Obj(C) is called closed & V M ek V C e 0bjC)
and morphisms x : C > M , §: M —» C with B = 1o also C € k
2) A semi-ideal I in C is given by a set
@ * I(A,B) ¢ Mor(A,B) for all A,B e Obj(C)
such that forall A, B, X ,Y e Obj(C)and allh: X > A,g:B->Y,
f € 1(A,B)
gfh € I(X,)Y) .
3) If I and J are two semi-ideals , we write 1 ¢ Jresp. J 0 1 &
I(A,B) c J(A,B) for all A,B € Obj(C) .
4) Let be k ¢ Obj(C) , f € Mor(A,B) .
f is called k-partially invertible (= k-pi) &
3Cek ,C*+#0 , x:C—>A , B:B - C with fx = 1¢
5) TOTK(A,B) := {f € Mor(A,B) | f is not k-pi } for all A,B € Obj(C)
In the case k = Obj(C) we write for abbreviation TOT = TOTgpc) and
TOT(A,B) = TOTgpjc)(A:B) .
6) Let be I a semi-ideal , then
K(I) := { M € Obj(C) | TOTM,M) > IM,M) } .

4.2. Corollary
Let be k; , k, , k closed classes and I; , I, , I semi-ideals . Then the following

properties are satisfied :

(1) If a product of morphisms is k-pi = every factor of the product is k-pi ,
(2) TOT is a semi-ideal |, '

(3) K1) is closed ,

4) ki ck, = TOT];2 c TOT];1
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) L ¢l = K(Ip) ¢ K(Iy)

(6) M € k = TOTM,M) = TOT(MM)
(7) k ¢ K(TOTg)

(8) 1 ¢ TOTkqy

Proof :
(1) By definition of k-pi .
2) By (1) .
(3) Assume M € K(I) and C —%» M —B— C with Bx = 1o , then
«I(C,C)8 ¢ IMM) ¢ TOTMM) =
I(C,C) ¢ BTOTM,M)x ¢ TOT(C,C)
(4) By def.
(5) By def.
(6) By (4) : TOTM,M) ¢ TOT(M,M) . Assume f € Mor(M,M) and f ¢
TOTM,M) = 3 0 # C € Obj(C) and
c*m-tm-E.c
with Bfo = 1o = B(fe) , hence C € k (since k is closed and M € k) . This
means f is k-pi , hence f ¢ TOTg(M,M) . Therefore also TOTg(M,M)cC
TOT(M,M) .
(7) If M € k , then by (6) TOT(M,M) = TOTE(M,M) = M e K(TOTy) .
(8) Assume f e I(AB), f & TOTK(I)(A,B) = there exists
c*,a-t.p-E,c
with 0 # C € K(I) , Bfe = 1¢c . Then 1c € I(CC) , since 1 is a semi-
ideal . Since C € K(I) I(C,C) ¢ TOT(C,C) , hence 1o € TOT(C,C) 4 .

Now we come to the theorem , which shows , that we have indeed a Galois-
correspondence in C .

4.3. Theorem

Let be k a closed class and I a semi-ideal . Then
() TOTkx = TOTg(rory)

(i) K(I) = K(TOTg(y))
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(i) : By (7) and (4) (from 4.2) follows
TOTg(rory) © TOTk
and by (8) (with I = TOTg ) follows the converse inclusion .
(i) : By (8) and (5) follows
K(TOTgq)) ¢ K(I)
and by (7) (with k = K(I)) follows the converse inclusion .

Example

G. M. Kelly [4] defined the notion "radix" of a category , which is an
equivalencerelation in Mor(A,B) for all A,B in the category . This definition
seems to have some connection with our notion. "total’ . But we show by an
example that these are really different notions .

Let be Vg a vector space over a field K with dim(Vg) = n > 1 . Denote by
{V> the category with the objects Vi , i € IN and all linear mappings as.
morphisms . Then the following is easily to see :
If k is a closed nonempty subset of Obj(<V>) , then

Toti(A,B) = {f e Homg(A,B) | dim(Im(f)) < n )

and

Toty(A,B) = Homg(A,B) .
Consider a fixed g € IN and define
Iq(A,B) := { f € Homg(A,B) | dim(Im(f)) < q} ,
then this is a semi-ideal in <V} .
Forq < n-1
14(A,B) ¢ TOT(A,B)
and K(Ig) = Obj(KV>)
Forq zn
Io(A,B) ¢ TOT(A ,B)
and K(lg) = @
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The radix of Kelly gives for Homg(A,A) the partitioning in two classes : the
units and the nonunits . This shows , that the radix and the total are different
notions .

In an additive category , the radical can be defined ([4]) as we did for
Mod-R . In <V)> we have Rad = 0 . Therefore , in {V) also the radical is
different from the total and the radix .



