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Introduction 

In these notes we give a complete and detailed presentation of all results 

connected with the notions " partially invertible" (=pi) and "the total" . We 

inclüde also söme results aböut regularity . 

The questions , notions and most of the results originate from the authors of 

these notes ( see [ 1 ] , [ 2 ] , [ 5 ] ) . Some interesting results were also 

contributed by A . Zöllner ( especially I I . 3.4 and in IV. 3. the ideal-property 

of TOTk o and T O T ^ ; see [ 7 ] , [8] ) . One of the authors had also very 

stimulating conversations with H . Kleisli and B. Pareigis . Especially , B. 

Pareigis gave a nice characterization for pi ( I . 2.4. (3) ) and collaborated with 

us to get I . 6.5 and I . 6.6 . For the example at the end of 1.7 we owe thanks 

for a hint to H . Zöschinger . Finally , the interesting theorem I . 4.8.1 was 

proved by T. Martin . 

We use several well-known results from the literature without mentioning 

always the sources . Especially , for regularity (in the sense of von Neumann) 

the paper [ 6 ] of J . Zelmanowitz was a foundation . Very stimulating for us 

were the results of M. Harada about what we call "Harada-modules" (see 

lecture notes of F. Kasch [ 3 ] ) . For some well-known results about exchange 

modules , which we include here for completeness with proofs. , we give no 

references (References are for example in [ 5 ] ) . The definition of the radical of 

a category and IV. 1.2 is taken from G.M. Kelly [ 4 ] . 
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For the reader of these notes it wi l l be obvious that our ideas and results can 

be extended and generalized in several directions . These notes may be a 

foundation to do that and may stimulate further work in this connection . 
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I . General foundation in a Morita-context 

§ 1 . Assumptions and examples 

We consider rings S , T with 1-element and unitary bimodules A = S A T , 

B = T B S . 

Let further 

ff : A x B -» S , T : B x A -> T 

be mappings , for which we assume first only the properties ( M l ) and (M2) . 

( M l ) cr(sa,b) = sa(a,b) , cr(a,bs) = <r(a,b)s 

a(at,b) = cr(a,tb) , 

T(tb,a) = tT(b,a) , T(b,at) = T(b,a)t , 

T(bs,a) = r(b,sa) 

for aeA , beB , seS , teT . 

(M2) Associative laws : 

a(a,b)a1 = aT(b,a!) , r(b,a)bi = bcr(a,b1) 

for a , aj e A , b , bj e B . 

If there is no danger of confusion , we write for abbreviation 

ab := cr(a,b) , ba : = T(b,a) . 

If we have a meaningful product of elements of A , B » S , T , by (M2) we can 

avoid using brackets . For further considerations a and T have also to be 

additive . 

(M3) Additivity : 

a(a + a1,b + b 1 ) = a(a,b) + a(a,b1) + a(a1,b) + a(a 1,b 1) 

TCb+b^a + aj) = rQj^^rQo^^rQoi^^rQ)^) 

If ( M l ) , ( M 2 ) , (M3) are satiesfied, then these conditions define a Morita-context 

and the mappings <J and r can be factorized via the tensor products A®B resp. 
T 

B®A . 
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The induced homomorphisms we denote by ö and t : 

& : A®B -> S , * : BOA -> T 
T 

First we assume only ( M l ) and (M2) , in which case A and B have only to be 

sets and S and T multiplicative monoids. Our fundamental notions can be 

defined under these week conditions and this fact may be of some relevance 

for semi groups. 

To have later the possibility for short quotations , we mention here three 

examples for a Morita-context. 

( E l ) Ring case 

For a ring R with l e R let A = B=S=T := R and a(r 1 , r 2 ) = T ( r 1 , r 2 ) = r 1 r 2 , 

r x , r 2 G R . Then all conditions are satisfied . 

(E2) Horn case 

Let R be a ring with identity and let M R , N R be unitary R-modules . Denote 

S := End(N R ) , T := End(M R ) , 

S A T := Hom R (M,N) , T B S := Hom R (N,M) 

and a(f,g) := fg , r(g,f) := gf , f eA , g € ß . 

Then ( M l ) , (M2) , (M3) are satisfied . 

(E3) Dual module case 

Let T be a ring with identity and let A T be a unitary T-module . Denote 

S := End(A T ) , B := A* = Hom^A/T) . 

Then S A T , T B S are bimodules . For aeA , geB define 

a(a,g) := ag : A B X H> ag(x) e A , 

hence ag e S . Further define 

T(g,a) := ga = g(a) 

( ß applied on a ) , hence ga e T . 

Then again ( M l ) , (M2) , (M3) are satisfied . By a slight change , this 

Situation can also be considered as a special case of (E2) . 
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To see t h i s , one has to S u b s t i t u t e S A T b y t h e S - T - i s o m o r p h i c module 

HomxCTjA) w i t h t h e i s o m o r p h i s m 

^ : A s a H (Tax axeA) e Hom^TjA) . 

By this S u b s t i t u t i o n a and T change to the mappings in (E2). In the following 

it i s easy to see that the isomorphism ^ preserves all the notions defined i n 

this paper. 

§2 . Definitions and multiplicative properties 

In the following we have to make use of idempotents of a ring . Here we 

mention some properties of idempotents . A n element d of a ring S is called 

an idempotent , iff d 2 = d . Then also 1-d is an idempotent and we have the 

decompositions 

S = dS ® (l-d)S , S = Sd © S(l-d) 

in right resp. left ideals . Contrary , if S = U © V is a decomposition in right 

ideals and if 1 = u + v , U G U , v e V , then u and v are idempotents and v = 

1-u , uS = U , vS = V . We use these facts without any quotation . 

In this section we assume only ( M l ) , (M2) . 

2.1 Lemma 

For ae.A the following properties are equivalent : 

(i) 3 beB [ ab is an idempotent =t= 0 in S ] 

(ii) 3 b jeB [ bja is an idempotent 4= 0 in T ] 

(iii) 3 ceB [ ac is an idempotent 4= 0 in S A 

ca is an idempotent * 0 in T ] 

Proof: 

(i>Kii) ,( i i i) : ab = d=d 2=M) abd=d A (bda)(bda)=bd(ab)da=bd3a=bda . Also 

a(bda)b = d 3 = d*0 bda^O . Hence (i) and (i i i ) are satisfied with bj = c-bd . 

Similar proof for (ii) (i),(üi) and (iii) (i),(n) is obvious . 
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2.2. Definition 

Let be aeA. 

1) a is called partielly invertible , abbreviation pi , 

:e> the conditions of 2.1 are satisfied . 

2) The total of A = Tot(A) :=* set of elements of A , which are not pi . 

3) a is called regulär 3 beB [aba = a] 

We underline the fact , that these notions are independent of the side and that 

there is a close relation to regularity . 

Remark : 

If a is pi and ab is an idempotent , then b is in general not uniquely 

determined by this property . Also in the definition aba = a of regularity b is 

in general not uniquely dtermined . But i f b is uniquely determined , then 

ab = 1 e S , ba = 1 G T since 

aba = a(b + 1 - ab)a = a(b + 1 - ba)a . 

If we use these notions for rings, then always in the sense of example ( E l ) . 

For example s e S is pi iff there exists s'eS such that ss* is an idempotent * 0 

in S. Our notion for regularity coincides in the ring case with the classical 

notion . 

2.3. Corollary 

Let be aeA , beB , seS , teT . 

(1) If sat is pi, then s,a,t are pi (in S resp. B resp. T). 

(2) If ab is pi, then a,b are pi (in B resp. A) . If ba is pi , then a,b are pi . 

(3) STot(A)T = Tot(A) , TTot(B)S = Tot(B) , 

Tot(A)B c Tot(S) , ATot(B) c Tot(S) , 

BTot(A) c Tot(T) , Tot(B)A c Tot(T) , 

Tot(S)A c Tot(A) , ATot(T) c Tot(A) , 

BTot(S) c Tot(B) , Tot(T)B c Tot(B) , 

STot(S)S = Tot(S) , TTot(T)T = Tot(T) . 
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Proof : 

(1) : Since sat is pi , there exists beB such that satb = d=d24=0 . Then d=s(atb) , 

hence s is pi. Similar on the other side for t . By d = (sa)(tb) and the proof of 

2.1 we see, that (tbd)(sa) = (tbds)a is an idempotent 4= 0 , hence a is pi . 

(2) : ab is pi => 3 seS [abs and sab are idempotent 4=0] a,b are p i . Similar 

for ba . 

(3) : If aeTot(A), seS, teT, then by (1) sat cannot be pi , hence sateTot(A) => 

STot(A)T c Tot(A). Since U S , l e T also Tot(A) c STot(A)T . Similar in all 

other cases . 

Obviously implies (3): If in a meaningful product of elements of A , B , S , T 

at least one factor is in the Tot , then the product is in Tot . 

2.4. Corollary 

Notation as before . 

(1) If aba = a * 0, then ab and ba are idempotents 4= 0. Hence regulär 

elements 4= 0 are pi . 

(2) If ab = d = d 2 4= 0 resp. ba = e = e 2 * 0 , then da , bd , eb , ae are 

regulär elements * 0 . 

(3) a is pi e> 3 ceB [cac = c * 0] 

(4) If aba = a a(bab)a = a , (bab)a(bab) = bab . 

Proof: 

(1) : aba = a 4= 0 abab = ab 4= 0 a is pi . Similar for ba . 

(2) : (da)b(da) = d 3a = da da regulär . dab = d 2 = d 4= 0 => da * 0 . 

Similar in the other cases. 

(3) =»: ab = d = d 2 * 0 => (bd)a(bd) = bd 3 = bd . a(bd) = d 2 * 0 =* bd 4= 0 . 

For c := bd (3) is satisfied . 

(3) «=: cac = c 4= 0 => caca = ca 4= 0 =» a is pi . 

(4) : Compute . 

By (2) we see that we can produce regulär elements by pi elements. (3) shows 

that the pi elements are exactly those who occure in the definition of regulär 

elements in the "middle". 
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By (4) we see that in the definition of regulär elements the element in the 

middle can always be taken from the two-sided ideal generated by a and to be 

a regulär element . 

2.5. Corollary 

If aba = a , d := ab , e := ba , then 

Sa 3 sa t-> sd e Sd 

aT 3 at h» et e eT 

are isomorphisms , hence Sa resp. aT are projective S- resp. T-modules . 

Proof: 

The given mappings are obviously epimorphisms. If sd = sab = 0, then saba 

= sa = 0 , hence also injective. Since Sd resp. eT are projective, also Sa resp. 

aT are projective. 

2.6. Corollary 

For aeA we have 

(1) a is pi 3 deS , d = d 2 * 0 [dS c aB A dA c aT] 

3 eeT , e = e 2*0 [Te c Ba A Ae c Sa] 

(2) a is regulär 3 deS , d = d 2 [dS = aB A dA = aT] 

3 eeT , e = e 2 [Te = Ba A Ae = Sa] 

Proof: 

(1)=>: a is pi 3 beB , d = d 2 *0 [ab = d] dS = a(bS) c aB A dA = 

a(bA) c aT . 

<=: dS c aB => 3 beB [ab = d=d 2 *0] => a is pi . 

Similar for the second . 

(2>>: a is regulär 3 beB [aba = a] . For d := ab we have d = d 2 and 

dS = abS c aB A aB = abaB c abS = dS dS = aB . Similar proof 

for dA = aT . 

«=: dS = aB 3 beB [d=ab] . dA = aT 3 a ^ A [daj=a] =» 

d 2 a t =da2 = da = a . Then aba = da = a . 

Similar for the second "<=>" . 
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§ 3 . Additive properties 

Now , we assume ( M l ) , (M2) , (M3) , that is , we have a Morita-context . 

Further, we have to use the following homomorphisms (with aeA , beB) : 

(-b)a : A 3 x H- (xb)a e Sa 

a(b-) : A a x a(bx) e aT . 

If f is a homomorphism, then we denote by Ke(f) the kernel of f and by Im(f) 

the image of f . 

3.1. Theorem 

If a G A , b G B and if aba = a , then 

A = Sa Q Ke((-b)a) = aT 0 Ke(a(b-)) 

Proof : 

Let i : Sa -» A be the inclusion and l S a : Sa -» Sa the identity , then the 

diagramm 

Sa — A 

Sa 

is commutative . Hence A = Im(t) 0 Ke((-b)a) . Similar for the second 

decomposition . 

3.2. Corollary 

If a G A is regulär , then Sa resp. aT are projective, direct summands of S A 

resp. A T . 

Later we wi l l consider the quesdon if the converse of this Statement is true . 

Here we continue first in our general considerations . 

Mathematisches Institut 
der Universität Mün-hpn 
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3.3. Corollary 

Let a e A , b e B and ab = d = d 2 > ba = e = e 2 , then 

A = Sda Q Ke((-b)da) , Sa = Sda © S(l-d)a , 

A = aeT @ Ke(ae(b-)) , aT = aeT © a(l-e)T . 

Proof : 

Since (da)b(da) = d 3a = da , we have the first decomposition by 3.1 

Sa = Sda + S(l-d)a is obvious. Assume sda = Sj(l-d)a , s , Sj e S , then 

multiplication with b from the right implies sd 2 = sd = s ^ l ^ d = 0 . Hence 

Sa = Sda © S(l-d)a . Similar for the other side . 

For later considerations the following characterization of pi resp. regulär is 

useful. For this we need the following notation: A operates faithfully on B 

iff for each xeA , x4=0 also xB =t= 0 . 

3.4. Theorem 

Assume a e A , then 

(1) a is pi « 3 B 0 B s , 0 * D S s 

[ B 0 3 y ay £ D is an isomorphism ] 

(2) a is regulär 3 B s = B 0 @ Bx , D S s 

[ ß D 3 y i-> ay e D is an isomorphism A aBj = 0 ] 

If A operates faithfully on B , also the converse of this implication is true. 

Proof : 

(1>» : Let be ab = d = d 2 * 0 , then 3.3 (for bd) implies B 0 := bdS B . 

If D := dS , then B 0 3 bds n> abds = ds e D 

obviously is an isomorphism and D t 0 . 

(1) <= : Since 0 * D Q® S s there exists d e S , d = d 2 * 0 , D = dS. Then 

there exists b e B 0 such that ab = d . 

(2) =» : By 2.4. (4) we can assume aba = a , bab = b . By 3.1. for B we have 

B = bS @ Ke(b(a-)) . 
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Define B 0 := bS , d := ab , D := dS , then 

B G 9 bs K> abs = ds e D 

is an isomorphism . For y e Ke(b(a-)) we have 

ay = (aba)y = a(b(ay)) = 0 , 

hence with := Ke(b(a-)) the proof is complete . 

(2)«= : Since D Q® S s we have D = dS , d = d 2 . By the isomorphism there 

exists b e B 0 such that ab = d . Since b e B 0 , also bS Q B 0 and since 

bS 3 bs t-> abs = ds e dS = D 

is already an isomorphism , we get B 0 = bS . Then elements y e B can be 

written in the form y = bs + y t , yx e B t . 

Then by the assumption a ß ! = 0 we have 

ay = abs + ayj = ds = d2s = (aba)bs = (aba)bs + (aba)yj = (aba)y , 

hence (a - aba)y = 0 for all y e B . Since A operates faithfully on B , this 

implies a = aba . 

Now we have to consider Tot(A) = the set of all elements of A , which are not 

pi . As shown in 2.3. (3) Tot(A) is closed under multiplication with elements 

of S and of T , that is STot(A)T = Tot(A) . But in general Tot(A) is not 

closed under addition . For example Tot(Z) = 2 £ \ { - l ; l } It is a 

fundamental question of our considerations, under which conditions Tot(A) is 

closed under addition . Then Tot(A) is a S-T-submodule of A . In the ring 

case Tot(S) is then a twosided ideal of S . 

3.5. Definition 

If Tot(A) is closed under addition, then A is called a total module (with 

respect to the given Morita-context) . 

If S is a ring and i f Tot(S) is closed under addition, then S is called a total 

ring . 

As mentioned before, Tot(A) is in general not additively closed, but there is 

always an important closure property . 
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To S t a t e this, we need the radical of S A resp. A T , denoted by Rad( s A) resp. 

Rad(A T) . As wellknown , Rad( s A) is the sum of all small ( = superfluous) 

submodules of S A . 

3.6. Proposition 

(1) Rad( s A) + Tot(A) = Rad(A x ) + Tot(A) = Tot(A) 

(2) Rad( s A) + Rad(A T ) c Tot(A) 

Proof : 

(1) : Rad( s A) + Tot(A) c Tot(A) : 

Let u e Rad( sA) , v e Tot(A) and assume u + v $ Tot(A) , that is u + v pi . 

Then there exists (u + v)b = d = d 2 * 0 . Since 

S A 3 x H> xb 6 S 

is a homomorphism , Rad( sA)b c Rad(S) . Therefore ub e Rad(S) and then 

Sub is a small submodule of SS . This implies 

S = Sd ® S(l-d) = Sub + Svb + S(l-d) = Svb + S(l-d) 

Sd = Svbd => 3 seS [ d = svbd ] . Since d is pi , by 2.3. v must be pi , in 

contradiction to v e Tot(A) . Hence we have Rad( s A) + Tot(A) c Tot(A) . 

Since 0 e Rad( s A) the inclusion in the opposite direction is also satisfied . 

Similar proof for Rad(A T ) . 

(2) : Since 0 e Tot(A) (1) implies 

Rad( s A) c Tot(A) , Rad(A x ) c Tot(A) 

and then (1) implies (2) . 

3.7. Proposition 

If S or T is a total ring , then A and B are total modules . 

Proof : 

Let S be a total ring and l e t u , v e Tot(A) . Assume u + v is pi . Then 

there exists b e B , d e S such that 

(u + v)b = ub + vb = d = d 2 * 0 . 

By 2.3. ub, vb e Tot(S) and by assumption ub + vb e Tot(S) , but d $ Tot(S) 

Similar for the other cases . 
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§4 . Morita-equivalence 

We defined a ring S as a total ring iff Tot(S) is additively closed, that means , 

Tot(S) is a twosided ideal in S . Further we know by 3.6. that Rad(S) c Tot(S) . 

We define now two special types of total rings . 

4.1. Definition 

1) S is called a radicaltotal ring Rad(S) = Tot(S) . 

2) S is called totalfree Tot(S) = 0 . 

Obviously a totalfree ring is radicaltotal and - since Rad(S) is a twosided ideal -

a radicaltotal ring is total . Now we study total rings and the just defined 

interesting special cases of total rings . 

In this section we intend to prove, that the notions "total" , "radicaltotal" and 

"totalfree" are preserved under Morita-equivalence . If the rings S and T are 

Morita-equivalent , we write S ~ T . In this case , there exists a progenerator 

A T such that S = End(A T ) . Since our notions are obviously preserved under 

ringisomorphisms , we assume S := End(A T ) and the case (E3) , where B= 

A* = H o m ^ A ^ ) . If A T is a progenerator , then Im(8) = S , Im(?) = T . 

But we have not to use always all the properties , which are given by the 

assumption S ~ T . We State in each case , what we really need . 

4.2. Lemma 

If S = End(A T ) , Im(ft) = S and Tot(A) additively closed , then S is a total 

ring . 

Proof : 

Let Si , s2 e Tot(S) and assume s1 + s 2 $ Tot(S) . Then there exists s e S 

such that 

s(s! + s2) = d = d 2 * 0 . 
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Since ssjA , ss 2A c Tot(A) by 2.3. , then by assumption also dA c Tot(A) . 

Then by Im(cr) = S this implies dS c Tot(S) , hence d e Tot(S) £ . 

4.3. Corollary 

If S ^ T and T is total , then S is total . 

Proof : 

Since S - T we have A A * = S . Since T is total , by 3.7. A is additively 

closed . Then we can apply 4.2 . 

4.4. Lemma 

1) If T is radicaltotal and A T is projective , then Rad(A T) = Tot(A) . 

2) If S = End(A x ) and A T is finitely generated and projective and i f 

Rad(A T) = Tot(A) , then S is radicaltotal . 

Proof : 

1) : Since Rad(A T) c Tot(A) , we have only to show : Tot(A) c Rad(A T ) . 

Let a e A , then since A T is projective , we can write a with'a dual basis : 
a = Z a i ^ i ( a ) ) aj e A , e A * , For a e Tot(A) by 2.3. follows 

^i(a) e Tot(T) = Rad(T) . Since ARad(T) c Rad(A x ) , then a ^ a ) e Rad(A x ) , 

hence a e Rad(A x ) . 

2) : Again , only Tot(S) c Rad(S) is to prove . For s e Tot(S) follows 

sA = Im(s) c Tot(A) = Rad(A x ) . Since A x is finitely generated , Rad(A x ) is 

small in A x , hence sA is small in A x . Since A x is projective , that implies 

s e Rad(S) . 

4.5. Corollary 

If S ~ T and i f T is radicaltotal , then S is radicaltotal . 

Proof : By 4.4 . 

4.6. Lemma 

If T is totalfree and A x is projective , then Tot(A) = 0 and S = End(A x ) is 

totalfree . 
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Proof : 

Assume a G Tot(A) . Then in the dual basis representation a = £ a^j(a) all 

^i(a) G Tot(T) = 0 , hence a = 0 . Assume s G Tot(S) , then for all a e A 

s(a) e Tot(A) = 0 , hence s = 0 . 

4.7. Corollary 

If S ~ T and T is totalfree , then S is totalfree . 

Proof : By 4.6. 

Unt i l now , we transfered properties from T to A and S . But also the 

converse is possible . By 3.7. we know already : If S is a total ring , then 

A T is a total module . 

4.8. Proposition 

1) If A T is projective and S = End(A T ) is radicaltotal, then Rad(A T ) = Tot(A) . 

2) If A T is a generator and S = End(A T ) is totalfree , then Tot(A) = 0 . 

Proof : 

1) : We have only to prove Tot(A) c Rad(A T ) . Assume a G Tot(A) and let 

U Q A T such that 

A = aT + U . 

If ( U£ | i e l ) is a family of generators of U , then there exists a dual-basis of 

A T of the form ( (a , uj | i e l ) , , ^ | i e l ) ) where ^ belongs to a and ^ 

to uj . Since a G Tot(A) a^ G Tot(S) = Rad(S) . Since A T is projective , 

Im(a^) = a^(A) is small in A . Then 

A = a^(A) + £ u t f , (A) = £ U | ^ ( A ) Q U , 

i e i 

hence U = A . This implies aT is small in A x , hence a e Rad(A T ) . 

2) : Assume a G Tot(A) , then aA* c Tot(S) = 0 . Since A T is a generator 

this implies aT = 0 , hence a = 0 . 
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§5. Simple properties of total , radicaltotal and totalfree rings 

5.1. Proposition 

If S is a total ring , then S/Tot(S).is totalfree . 

Proof : Let s e S := S/Tot(S) , s" * 0 , then s $ Tot(S) . Then there exists 

r 6 S such that sr = d = d 2 * 0 . Since d $ Tot(S) , we have s r = d = 

d 2 * 0 , hence s $ Tot(S) , therefore Tot(S) = 0 . 

5.2. Proposition 

Let be v : S -*.S/Rad(S) and s e S . Then 

1) s is pi i/(s) is pi 

2) If idempotents can be lifted from S/Rad(S) to S , then : 

s is pi e> v/(s) is pi . 

Proof : 

1) : s is pi 3 st = d = d 2 * 0 , t e S => v(s)i/(t) = i/(d) = v(d) 2 * 0 , 

since d e Rad(S) i/(s) is pi . 

2) : We have only to prove : v(s) is pi => s is pi 

i/(s) is pi => 3 v(s)i/(t) = v(e) = i/(e) 2 4= 0 . By assumption there exists an 

idempotent d e S with i/(d) = i/(e) . Then we have v(s)i/(t) = v(st) = i/(e) = i/(d) 

=»st = d + u , u e Rad(S) d = -u + st . Assume s is not pi => st e Tot(S) 

- u + st e Tot(S) by 3.6 . But d $ Tot(S) , since d is an idempotent * 0 

5.3. Corollary 

Assumptions as in 5.2 . Then 

1) Tot(S/Rad(S)) c u(Tot(S)) 

2) If idempotents can be lifted from S/Rad(S) to S , then 

Tot(S/Rad(S)) = i/(Tot(S)) 

3) If idempotents can be lifted from S/Rad(S) to S and i f Tot(S/Rad(S)) = 0 , 

then S is radicaltotal . 
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Proof : 

1) : By 5.2. 1) we have v(s) E Tot(S/Rad(S)) => s E Tot(S) . Then follows 

i/(s) E i/(Tot(S)) , hence 1) . 

2) : By 5.2. 2) we have s E Tot(S) & i/(s) E Tot(S/Rad(S)) . Then follows 

i/(Tot(S)) c Tot(S/Rad(S)) . The converse inclusion is 1) . 

3) : By assumption and 5.2. 2) we have Tot(S/Rad(S)) = i>(Tot(S)) = 0 

Tot(S) c Rad(S) =» Rad(S) = Tot(S) . 

5.4. Remarks and examples 
1) It is well-known, that idempotents can be lifted from S/Rad(S) to S i f 

Rad(S) is a nilideal . 

2) Semi-simple and - more general - regulär rings are totalfree . The 

converse is not true . We give an example for a totalfree ring , which is 

not regulär . Let K be a field and R a subring 4= 0 of K which is not a 

field (for example : Q and 2£) . Then we consider the following subring 

of KN : 

S := { (xj) E K w | 3 m E ] N , r E R V U m [ x ^ r ] } . 

Since R is not a field , there exists 0 4= r Q E R with r ^ 1 * R . Define 

( r o ) = ( r o r o r o • • • ) > ( r o ) * s n o t a regulär element in S : 

Assume ( r o )(Xi ) ( r 0 ) = (r 0 ) , then r 0 r r 0 = r 0 for i ^ m , hence r = r 0

_ 1 E R ^ . 

Therefore S is not a regulär ring , but we show Tot(S) = 0 : 

Assume 0 4= (xj) e S and Xj 4= 0 , then 
(Xj)(0 . . . 0 X j - 1 o . . . ) = (0 . . . o l o . . . ) 

is an idempotent 4= 0 . Hence every element 4= 0 is pi . 

3) If S is f-semi-perfect (= semi-regular) , then S/Rad(S) is regulär and 

idempotents can be lifted from S/Rad(S) to S . Hence by 5.3. 3) these 

rings are radicaltotal . But there exist radicaltotal rings , which are not 

f-semi-perfect . A n example for this is again the ring in 2) since Tot(S) = 

Rad(S) = 0 and S/Rad(S) = S is not regulär . 

4) Please remember in this connection for the well-known fact: For rings hold 

the following implications: artinian =*> perfect semi-perfect f-semi-perfect 

Therefore , all these rings are radicaltotal . 
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Now we would like to consider for an idempotent e e S the ring eSe which 

has e as 1-element . It is well-known that 

(1) eRad(S)e = Rad(S) n eSe = Rad(eSe) 

holds . The same relation is true for Tot (without the assumption that S is a 

total ring ) . 

5.5. Proposition 

If e e S is an idempotent , then 

(2) eTot(S)e = Tot(S) n eSe = Tot(eSe) . 

Proof : 

We prove first for s e S : 

(3) ese is pi in eSe <=> ese is pi in S . 

=>: This is obvious , since an idempotent in eSe is also an idempotent in S . 

«=: Let ese be pi in S and 

eset = d = d 2 * 0 

then esetd = d = ed . This implies dede = d 2e = de , hence de = (ese)(etde) 

is an idempotent in eSe . Further ded = d 2 = d * 0 , hence de 4= 0 . That 

means , that (3) is true . For s e S (3) implies 

ese e Tot(eSe) <=> ese e Tot(S) 

and this means 

Tot(eSe) = Tot(S) n eSe . 

For t = ese e Tot(S) n eSe follows t = ete e eTot(S)e . Since STot(S)S = 

Tot(S) we have conversely : For s e Tot(S) , hence ese e eTot(S)e follows 

ese e Tot(S) n eSe . Therefore we have also 

Tot(S) n eSe = eTot(S)e . 

5.6. Corollary 

Let e e S be an idempotent , then 

1) Total S total eSe , 

2) Radicaltotal S radicaltotal eSe , 

3) Totalfree S totalfree eSe . 
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Proof : 
1) and 3) follow from ( 2 ) in 5.5 . 

2) follows from (i) and ( 2 ) in 5.5 . 

We would like to mention that 5.6. also can be derived from 4.2. , 4.4. and 

4.6. (with S in place of T) by using the finitely generated and projective 

module A s := eS . 

In this connection, it is useful to reaiize the following fact: If e e S : = End(A R ) 

is an idempotent 4= 0 ,1 and i f t : e(A) -» A is the inclusion and n : A -» e(A) 

is the projection belonging to A = e(A) 0 ( l-e)(A) , then e = in and le(A) = N T • 

What is End(e(A)) ? It is not eSe , since this is a subring of S and for s e S 

. dom(ese) = codom(ese) = A 

and not e(A) . To be precise : 

End(e(A)) = nSi . 

But there exists the ringisomorphism 

p : End(eS) B TTSL i(nsi)n - ese € eSe 

and for x e A 

nsi(e(x)) = ese(e(x)) , 

where on the left side e(x) is considered as an element in e(A) and on the 

right side as an element in A . 

If we have an idempotent 4= 0 in End(e(A)) , then the image under this 

isomorphism is an idempotent * 0 in eSe , hence also in S . 

Now we do the same , what is done very often in the literature , we write 

End(e(A)) = eSe . 

This is not correct , but convenient and cannot imply confusions . By this , we 

can avoid to deal always with the ringisomorphism p . The same holds for 

End(eS) = eSe . 

Now we intend to consider some properties of totalfree rings 
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The right- resp. left-socle of the ring S we denote by Soc(Ss) resp. Soc(sS) . 

5.7. Proposition 

If S is totalfree , then Soc(Ss) = Soc(sS) . 

Proof : 

The endomorphismring of a simple module (4= 0) is a division ring . If e e S 

is an idempotent , then eSe = End(eS) . Therefore , i f eS is simple , then eSe 

is a division ring with the 1-element e . We intend to show that also Se is 

simple . Consider se 4= 0 , s e S . Since S is totalfree there exists t e S such 

that tse is an idempotent 4= 0 , that is tsetse 4= 0 , hence etse 4= 0 . Then 

there exists eae e eSe with eaeetse = e , which implies Sse = Se , therefore 

Se is simple . The same is true for the other side . Then follows Soc(Ss) = 

Soc(sS) . 

5.8. Lemma 

If e and d are idempotents of S , then 

eS f dS o S(l-d) £ S(l-e) 

Proof : 

=>: Since eS c dS we have de = e . Then (l-d)e = 0 , hence S(l-d) is 

contained in the left-annihilator S(l-e) of e . Assume S(l-d) = S(l-e) , then 

follows d = ed , hence dS c eS in contradiction to the assumption . 

«=: Same proof . 

5.9. Proposition 

If the totalfree ring S satisfies the maximum condition for rightideals (or 

leftideals) , which are direct summands , then S is semi-simple . 

Proof : 

We assume the maximum condition for the right side . 

1. Part : We show first , that every leftideal * 0 contains a simple leftideal of 

the form Se , e = e 2 . 
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The proof for this is indirect . Assume A t is a leftideal , which does not 

contain a simple leftideal. Let a e A , a * 0 , then there exists b e S such 

that ba = e1 = e j 2 * 0 . Since Se1 is not simple , there exists a proper 

subideal A 2 £ Sej . Let 0 t e 2 G A 2 be an idempotent , then Se2 is not 

simple . By induction , there exists a sequence 

Se1 i> Se2 i> Se3 i> . . . 

with idempotents ej , e 2 , e 3 , . . . By 5.8. follows 

( l - e i ) S £ (l-e 2)S £ (l-e 3 )S £ . . . 

in contradiction to our assumption . 

If B is a simple leftideal and b e B , b * 0 , there exists s e S such that 

sb = e = e 2 * 0 and B = Se . 

2. Part : The proof of 5.9. is indirect . Assume S is not semi-simple (that is : 

not a direct sum of simple leftideals). Then we prove by induction : 

For every n e IN there exists a decomposition 

(4) S = Sex 0 . . . 9 Se n 9 S d n + 1 

with orthogonal idempotents e x , . . . , e n , d n + 1 and simple Sê  , . . . , Sen . 

By the 1. part we have a simple leftideal Sex . With d 2 := 1-^ the case n = l 

is satisfied . In the case n ( see (4) ) S d n + 1 cannot be 0 or simple since then S 

would be semi-simple . Therefore S d n + 1 contains a simple leftideal Se , e = e2. 

Then 

S d n + 1 = Se © ( S(l-e) n S d n + 1 ) . 

Let d n + 1 = e n + 1 + d n + 2 , e n + 1 e Se , d n + 2 e S(l-e) n S d n + 1 , 

then Se = S e n + 1 is simple and d n + 2 * 0 . Since e n + 1 , d n + 2 e S d n + 1 we have 

e n + l d n + l = e n + l > d n + 2 d n + l = dn+2 • 

By this follows , that e n + 1 , d n + 2 are orthogonal idempotents and further 
e n + l e i = 0 > d n + 2 e i = 0 , i = l , . . . , n 

Also 

e i d n + l = 0 = e i e n + l + e i d n + 2 > 1 = 1 > • • • > n 

implies e i e n + 1 = e j d n + 2 = 0 . With this , induction n n + 1 is complete . 

Realize also that the e± , . . . , e n did not change by going from n to n + 1 . 

To the sequence e1 , e 2 , e 3 , . . . of orthogonal idempotents we consider the 

sequence of rightideals 

exS £ (e x + e2)S £ (ex + e 2 + e3)S £ . . . 
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These are direct summands of S s , since by the orthogonality e t + . . . + e n is 

an idempotent . This is a contradiction to our assumption . 

This result includes the well-known fact , that regulär , onesided noetherian 

rings are semi-simple . 

As an example , we consider Z / n Z , n > 1 . Let be 

n = p ^ i . . . p m

k m , ki * 1 

the primnumber decomposition of n . Denote by ^(n) the Euler-function , by 

i/(n) the number of regulär elements and by c(n) the number of pi elements of 

TLjtiTL . Since TL/nTL is artinian , it is a radicaltotal ring . Hence c(n) is also 

the number of elements not in Rad(Z/nZ) . 

5.10. Proposition 

For a e TL holds : 

(i) a + n Z is regulär V i = 1 , . . . , m [ p j a => P i k i | a ] 

(ii) i/(n) = f r (:?(Pik0 + 1) 
i = l 

( i i i) a + nTL is pi <=* 3 i £ {1 n) [ P i t a ] 

(iv) c(n) = n ( l - 1 ) 
PlP2-Pm 

Proof : 

( i ) : a + VLTL is regulär iff there exists b e TL such that 

(a + nZ)(b + nZ)(a + nZ) = a + n Z <=» aba = a (mod n) <=> 

a (ba - l ) s 0 (mod n) . 

=>: If pj | a => pj f ( b a - 1) ; since p j k i | a (ba- l ) , we get p j k i | a . 

<=: For a e TL , which satisfies the condition in (i) , we define 

I := { i | i e {1 , . . . , m ) A p j k i | a } , 

T := { 1 , . . . , m } M 

and 
r i : = T T P i k l ( w i t h r 0 = 1 ) > s i : = ~ = r r > a o = f - • 
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Then by assumption gcd(a 0,S!) = 1 and also g c d ^ s j ) = 1 . Then there exist 

b , c e Z such that 

ba + csi = 1 aba + acsj = a 

Since acsj = rja 0 c!L = a0cn aba = a (mod n) . 

(ii) : We have to count the integers a with l ^ a ^ n and which satisfy the condition 

in (i) , that is , which are of the form 

a = rjao , gcd(a 0,S!) = 1 . 

For fixed rj there exist exactly rf(sj) such integers . 

Now we consider ^ , I 2 c { 1 , . . . , m} , I j * I 2 . We show that 
r l t

a i = r l 2

a 2 » g c d t a j , ^ ) = gcd(a 2 ,s l 2) = 1 

is not possible . Since I j 4= I 2 , we can assume , that there exists i e I j , i $ I 2 . 

Then p . k i | rj , p A

k i } r l 2 , hence p . k i | a 2 , which contradicts gcd(a 2 ,s l 2 ) = 1 . 

Therefore ^(s^) and Ü($\2) do not count the same regulär element twice . 

If I runs through all subsets of { 1 m } , then also Y and S j = rj> . 

Therefore 

l c { l , . . . , m } 

= I 5(ri) = r r W(Pi k0 + D 

Ic< l , . . . ,m) i = l 

For the second equation the multiplicative property of the f-function is used 

and the fact , that f ( r 0 ) = tf(l) = 1 . 

( i i i ) , ( i v ) : Immediate consequences of the fact that 

T o t ( Z / n Z ) = Rad(Z/nZ) 

is the ideal generated by p r . . p m + n Z . 

§6 . Partially invertible and regulär elements in Horn 

Now we consider the Horn case (E2) , where 

S A X = Hom R (M,N) , X B S = Hom R (N,M) 

S = End(NR) , T = End(MR) . 
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6.1. Lemma 

If h G B is regulär and 

hfh = h , f G A , 

then 

(5) M = h(N) © (l-hf)(M) 

Proof : 

Denote e := hf , then e = e 2 G T . Consider 

e(M) = hf(M) c h(N) = hfh(N) c hf(M) = e(M) , 

hence e(M) = h(N) and therefore 

M = e(M) © (l-e)(M) = h(N) © ( l -hf) (M) . 

If f e A is pi and fg = d = d 2 4 Ö , g e B , then h := gd is regulär and 

hfh = h . By (5) we have now 

(6) M = gd(N) © (l-gdf)(M) . 

6.2. Proposition 

Assume f e A , then 

1) f is pi <=> 3 M 0 M , 0 * N 0 N 

[ M 0 s x n> f(x) G N 0 is an isomorphism ] 

2) f is regulär & 3 M = M 0 © M t , N 0 N 

[ M 0 3 x H> f(x) G N G is an isomorphism A fCM^ = 0 ] 

Proof : 

1>» : Define M 0 := gd(N) as in (6) and N Q := d(N) . Then for y e N we have 

f(gd(y)) = d 2(y) = d(y) e N 0 . Further f(gd(y)) = 0 implies gd(y) = 0 . 

Therefore 

M 0 3 x 0 H> f(x 0) G N 0 

is an isomorphism and N Q =t= 0 , since d 4= 0 . 

1)«= : Denote with t M : M 0 -> M the inclusion , n N the projection N -> N 0 

belonging to N = N 0 @ N1 and <f> := f " , where f is the given isomorphism . 
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Then for y = y Q + yl , y Q

 e N Q , yj e Nj follows 
f t M 0 ^ % 0 (y 0 + yi) = f L M 0 ^ ( y o ) = f(*(y<>)) = y 0 

and this implies , that f t M o ^ r \ N o is an idempotent 4= 0 . Hence f is pi . 

2)=» : Assume fgf = f . Take the same isomorphism as in the proof of 1) . 

Then also 

f ( l - g d f ) ( M ) = (f - fgfgf)(M) = (f - f)(M) = 0 . 

Hence with := (1 - gdf)(M) we have the Statement . 

2)«= : We consider the same S i t u a t i o n as in the proof of 1) and further 

M = M 0 © with f(Mi) = 0 . For x = x 0 + X j , x 0 e M c , xj e we 

have by the given isomorphism f(xQ) e N 0 and then 
f lM0<t>"vJ (X0 + X l ) = f 4*o**N0 (*©) = f ( x o) = f(*o + * i ) , 

hence f ( t M o ^ n N o ) f = f * T h e r e f o r e f i s r e g^ l ar . 

This result is similar to 3.4. , but realize the difference ! 

If f e Tot(Hom R(M,N)) , then by 6.2. f does not induce an isomorphism 

between any direct summands + 0 of M and N . Therefore we called f a 

total nonisomorphism . The total of Hom R (M,N) is then the set of all total 

nonisomorphisms . In this way the word "total" came into the game . 

Later we have to use 6.2., since it is a good tool to check i f a homomorphism f 

is a total nonisomorphism or not . 

Now we consider the question : Under which conditions for M R , N R is the 

converse of 3.2. satisfied ? We show first that it is always true in the dual case 

(E3) , whefe A T is arbitrary and S = End(A T ) , B = ( A T ) * . 

6.3. Proposition 

Assume a e A such that aT is a projective , direct summand of A T , then a is 

regulär with respect to B = A * , that is there exists h e ( A T ) * such that ah(a) = a . 
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Proof : 

Since aT is projective the epimorphism 

T a t H> at e aT 

splits . That implies that there exists a decomposition T = eT © (l-e)T , 

e = e 2 , such that 

eT 3 et aet e aT 

is an isomorphism and a(l-e)T = 0 . This implies a = ae . The inverse 

isomorphism we denote by 

ijf : aT 3 at = aet H> et e eT . 

Then ^(a) = e . By assumption we have a decomposition A = aT @ 

Denote by i : eT -» T the inclusion , then we define h e ( A T ) * by 

h | a T := > h ( A l ) : = 0 • 
Then h(a) = e and ah(a) = ae = a , what we had to show . 

Now we come back to the general case (E2) . For g e Hom R (N,M) , we 

consider the right T-homomorphism 

g* : H o m R ( M , N ) T B f h» gf e T T = Hom R (M,M>r . 

Then 

A : T H o m R ( N , M ) 3 g H g* e Hom T (Hom R (M,N) T , T T ) 

is a left T-homomorphism . 

6.4. Remark 

Assume f e Hom R (M,N) and fT is a projective direct summand and A is 

surjective , then f is regulär . 

Proof : 

By 6.3. there exists h e (Hom R (M,N) T )* such that fhf = f . Since A is 

surjective , there exists g* = h , hence fg*f = fgf = f . 
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6,5. Proposition 

1) If M R is a generator and N R is arbitrary , then A is an isomorphism . 

2) If M k = N Q U with k G IN , then A is an epimorphism . 

Proof : 

1) A is surjective : Given ^ G Hom T (Hom R (M,N) T , T T ) , then we intend to 

define g G Hom R (M,N) such that gf(x) = iKf)(x) f ° r a ^ f G Hom R (M,N) and 

x e M . Since M R is a generator , every y G N can be written in the form 

y = I f i ( x i ) > h e Hom R (M,N) , Xj € M . Also 1 e R has a representation 
i = l 

1 = i hj(mj) , hj G Hom R (M,N) , mj e M . 

We define 

g(y) := Z ^ ( f i X x i ) • 
i = l 

Then 

g(y) = Z ^ ( f i ) ( x i l ) - Z I 1>(h)(xi^}) = Z Z WiXihjXmj) 
1 = 1 i=lj = l i = l j = l 

since Xihj G T . We continue 

g(y) = z ^ ( y h j ) ( m j ) 

and this equation shows , that g(y) ist independent of the representation 
m 

y = Z ^i(xi) One can easily verify , that g is an R-isomorphism . 
i = l 

For f G Hom R (M,N) follows by the definition of g 

gf(x) = ^(f)(x) 

hence gf = g*f = ijt(f) . 

A is injective : If g * 0 and g(y) * 0 , then if y = z f i ( x i ) > t ^ i e n g^i * 0 f ° r 

at least one i . Therefore g* £ 0 . 1 - 1 

2) We denote 

M k -> N the projection along M k = N © U 
N -> M k the inclusion , 

" i M k -» Mi the projection on the i-th* comp. , 
l i Mi -> M * the inclusion , 

«i M -» Mj the isomorphism 
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Then oi[OLfl = IM* > Z ^i^i s W . ^NLN = *N • For ^ a s before , we 
i=i 

define g by 

g(y) := Z ^(%MaiX<*fNtNy) , y G N . 
1=1 

Again , it is easy to check , that g G Hom R (N,M) . For f G Hom R (M,N) , 

x G M follows 

gf(x) = z ^ K ^ i X a r N ^ f t o ) = ^ ( z ^ N ^ ^ i ^ r ^ i ^ o w = vcooo 
i=l i = l 

since a f ^ j t ^ j f G T . Again we have gf = $(f) . 

It is a natural question i f similar or "dual" results hold for S = End(N R ) in 

place of T . For the 2) S t a t e m e n t in 6.5. this is true , but not for 1) . 

6.6. Proposition 

If N k = M Q U with k e IN , then for every ijj e Hom s ( s Hom R (M,N) , S S ) 

there exists g G Hom R (N,M) such that fg = i//(f) for every f G Hom R (M,N) . 

Proof : 

Similar notations as in in the proof of 6.5. 2) . Now we define g by 

g(y) ;= z ^UH^^CWM)^) 
i=i 

then 

fg(y) = z K i 4 a i # * r l 7 ¥ M X y ) = ^(z^MH^fWu)(y) = ^(0(y) 
1=1 i=l 

since fTTMijoq G S . Therefore fg = ip(f) . 

Not always are A and the corresponding mapping for S surjective . 

Counterexample : 

R = Z , M = Q , N = Q / Z , then H o m s ( Q , Q / Z ) s Q , H o m z ( Q / Z > Q) = 0 , 

End(Q z ) = Q , End( (Q/Z) z ) = Q , H o m Q ( H o m z ( Q , Q / Z ) , Q ) = Q * 0 . 
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We have the following conjecture : 
If for fixed M R and all N R A is an isomorphism , then M R is a generator . 

§7. The dual case 

In the following we assume B = A * (E 3) . In §4. we proved already several 

results in this case in connection with Morita-equivalence . Further in 3.2 and 

6.3 we proved already under this assumption the following result . 

7.1. Proposition 

Assume a G A T . Then a is regulär iff aT is a projective direct summand 

of A T . 

We repeat one part of the proof . Let be afa = a , f G A* and denote e: = fa , 

then e = e 2 G T . The mapping 

aT a at fat = et G eT 

is then an isomorphism and ae = afa = a . Since eT is projective , also aT is 

projective . Further 

A = aT © Ke(af-) . 

We use these properties in the following . 

7.2. Proposition 

For an arbitrary module A T one of the following conditions is satisfied : 

(i) A = Tot(A) 
n 

(ii) A = .© ajT © U with n ^ 1 , U c Tot(A) and a tT s ê T , where ê  is an 

idempotent t 0 in T and a ^ = aj 5 i = l y... ,n (z{T is projective) 
oo 

(ii i) A contains a locally direct summand of the form . © ^ T > where the ajT 

have the same properties as in (ii) . 
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Proof : 

If A = Tot(A) , then (i) is satisfied . Assume now Tot(A) =fc A . Then there 

exist a e A , f e A* such that fa =: et is an idempotent 4= 0 in T . Then 

2l1 := aej is regulär by 2.4. and hence we have 

A = a x T © U1 , ajT = ejT , a 1 e 1 = aj . 

If L ^ c Tot(A) , we have (ii) . If U j <£ Tbt(A) , there exists a regulär element 

a 2 e U j with the properties as aj and 

A = a 2 T © B 2 . 

Since a 2 T Q U j this implies 

U j = a 2 T © ( U t n B 2 ) . 

With the notation ü 2 := n B 2 , we get 

A = a x T @ a 2 T © U 2 . 

If U 2 ^ Tot(A) we continue by induction . Either this construction stops with 

U n = U c Tot(A) , that is (ii) , or continues indefinitely , that is ( i i i) . If 

I 4= 0 is a finite subset of IN and i f n = max{ i | i e I } , then the decomposition 

in (ii) shows , that © a tT is a locally direct summand of A . 
i = l 

7.3. Corollary 

If A T 4= 0 is a projective , radicaltotal module , then one of the following 

conditions is satisfied : 

1) condition (ii) with U = 0 

2) condition (i i i) . 

Proof : 

For a projective module A 4= 0 always Rad(A) 4= A , hence (i) cannot occure . 

Now , consider (ii) . Since U Q® A , U is also projective and Rad(U) = U n 

Rad(A) . By assumption we have 

U c; Tot(A) = Rad(A) , 

hence Rad(U) = U , hence U = 0 . 

In this connection it is good to know by 4.4. , that for a radicaltotal ring T 

every projective module A T is radicaltotal . 
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7.4. Corollary 

If A T * 0 is directly indecomposable , then exactly one of the following 

conditions is satisfied : 

(i) Tot(A) = A , 

(ii) A = aT , A is projective and there exists an idempotent e e T , e * 0 

such that aT s eT , ae = e , a $ Tot(A) . 

This implies that a directly indecomposable module , which is not projective or 

not cyclic , satisfies Tot(A) = A . 

Now , we consider the S i t u a t i o n u e U c A T . Then u is pi as an element of 

A iff there exists f e A* such that fu ( = f(u)) is an idempotent * 0 in T . 

Then u is also pi as an element of U , since f | y e U * . This implies 

Tot(U) c Tot(A) , hence 

Tot(U) c U n Tot(A) . 

In general , the converse inclusion is not true . But i f U A or i f T T is 

injective , then i t is satisfied . 

If U Q e A , then this follows from the fact , that every g e U * can be 

extended to an element in A * . 

With the injective case we deal in the following proposition . 

7.5. Proposition 

Let T be a right-injective ring . Assume u e U Q A T , then : u is pi in A 

iff u is pi in U . 

Proof : 

=>: Already proved by the foregoing remark . 
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«=: Assume that there exists g e U * such that gu = e = e 2 =t= 0 . Then by 2.4. 

ue is a regulär element and ueT s eT. Since T T is injective , also eT and 

ueT are injective . Then the inclusion 

i : ueT -> A 

splits : A = ueT Q B . We define f e A* by 
f |ueT : = g|ueT > f | B : = 0 • 

Then fue = gue = e and this implies 

(efu)(efu) = efu 

and 

efue = e 4= 0 

hence efu is an idempotent * 0 . 

With f e A* also ef € A * . Therefore u is pi as an element of A . 

As an immediate consequence , we have 

7.6. Corollary 

Assumption as in 7.5 . Then 

Tot(U) = U n Tot(A) . 

If A is total (that is Tot(A) Q A ) , then Tot(Tot(A)) = Tot(A) . 

It is well-known , that there exist modules A T with Rad(A) = A (for example 

Q z ) . But i f A T is a projective module =t= 0 , then Rad(A) =*= A . Is the same 

true for Tot(A) ? We show by an example , that the answer is "no" . We give 

this example with all details , in spite of the fact that some properties could be 

taken from more general results in the literature . 

1. Remark: 

In a commutative ring T without zerodivisors any ideal is directly 

indecomposable . 
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Proof : 

Assume the ideal A * 0 has a decomposition 

A = A j © A 2 , A j * 0 . 

For otj e A j , ocj 4 0 and oc2

 e A 2 follows 

odjo^ = <x2oci e A j n A 2 = 0 

hence <x2 = 0 , hence A 2 = 0 . 

Now we consider the ring T = Z [ / ^ 5 ] , which is a subring of the field of 

complex numbers . Then T is a commutative ring without zerodivisors . We 

apply the norm of the complex numbers on T . If a + b/^5 e T , ( a , b e Z ) , 

then N(a + bl/"^5) = a 2 + 5b 2 . In T we consider the ideal A generated by 3 and 

1 + . The elements of A have then the form 

ol = 3(a 1 + a 2 F 5 ) + ( 1 + 1 ^ 5 ) 0 ^ + ^ ^ 5 ) 

= ( 3 a 1 + b 1 - 5 b 2 ) + ( 3 a 2 + b 1 + b 2 ) 1^5 , & t , a 2 ,b j , b 2 e TL . 

Denote cx : = 3ax +b1- 5b 2 , c 2 : = 3a 2 + bj + b 2 , 

then N(oc) = cx

2 + 5c 2

2 . 

We intend to show 

N(a) ^ 5 for 0 * oc e A . 

If c 2 * 0 , then N(a) ^ 5 . If c 2 = 0 , q * 0 

then c 2 = 3a 2 + bt + b 2 = 0 =» 

b t = -3a 2 - b 2 

C j = 3a! - 3a 2 - b 2 - 5b 2 = 3(a t - a 2 - 2b 2 ) 

hence N(oc) ^ 9 . 

2, Remark : A is not cyclic . 

Proof ; 

Assume A = oc0T , then there exist ß , j e T such that 

oc0ß = 3 , oc0r = 1 + ]T5 . 
These imply 

N(a 0 ß) = N(a 0 )N(ß) = 9 , 

N ( a o T ) = N ( a 0 ) N ( r ) = 6 . 
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Therefore N(oc0) is a common divisor of 9 and 6 , that is 1 or 3 , in 

contradiction to N(ot0) £ 5 . 

Since A is directly indecomposable and not cyclic , 7.4. implies already Tot(A) 

= A . Since T is a Dedekind-ring , A must be projective . We give a proof in 

this special case . 

3. Remark : A is projective . 

Proof : 

We show , that A has a dual basis . First we have 

3 ( 1 - 2 ) = 2 + )TS e T , 
1+ ]Ts 

(1 + J T S ) ( 1 - 2 ) = _! + fj= e T . 
1 + 1T5 

Denote by fx the multiplication of A by 1 - _ — ^ a n ( j f 2 t ^ e m u h i p l i c a t i o n 

of A by -1 , then fj , f 2 e A* and for oc e A follows 
(3f i + (1 + F 5 ) f 2 ) ( o 0 = (2 + ^ 5 - 1 - ^ 5 )oc = a . 

Hence 

3fj + ( i + r 5 ) f 2 = i A , 

that is , we have a dual basis and A is projective . 

In I I I . §3 we give further results in the dual case for direct decompositions 
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IL Total properties and exchange properties 

§ 1 . Exchange properties 

Before we go in the details , we mention one of the main goals of this 

chapter : A module with a total endomorphismring can be characterized by an 

exchange property , which is somewhat weeker than the well-known 2-exchange 

property This includes that the 2-exchange modules have total 

endomorphismrings . Especially are the 2-exchange rings total rings . This 

shows that the class of total rings is a fairly interesting class of rings . 

In this § we S t a t e some notions and results about exchange properties . To 

make these selfcontained , we include the proofs for the facts which we need 

in the following . 

1,1 Definition 

1) A module A R has the exchange property ( = EP) resp. the n-exchange 

property (= n-EP) for n € IN 

for every S i t u a t i o n 

(1) M = A © B = © Q with I arbitrary resp. I = { 1 , n ) , 

there exists Cj Q C{ such that 

( 2 ) M = A © ( 9 Q ) . 

i e i 

2) A module A R has the D2-exchange property = D2-EP 

for every A Q Q® A , A Q * 0 and for every Situation 

(3) M = A 0 © B = C © D 

at least one of the following conditions is satisfied : 

(i) there exist A'0 Q® A 0 , A ^ * 0 and C Q. C such that 

(4) M = AJ> © C © D 
(ii) there exist An

0 Q® A 0 , A £ * 0 and D ' Q D such that 
(5) M = AQ © C © D ' . 
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In these definitions it would be possible to write for A resp. A 0 a module 

isomorphic to A resp. A Q . A t the first sight , that looks more general , but at 

the second , it is to realize , that it gives the same notions . By the 

substitutionprinciple ; all these exchange properties are preserved under 

isomorphisms . Our notation is eäsier since we have not always to handle with 

a superfluous isomorphism . It is also tr ivial , that direct summands of 

modules with D2-EP have also this property . 

The modulär law implies that in the definitions C- , C and D ' are not only 

submodules but direct summands of Q resp. C resp. D . 

1.2. Corollary 

For a module A the following conditions are equivalent : 

(i) A has the D2-EP 

(ii) every nonzero direct summand of A has the D2-EP 

(iii) every nonzero direct summand of A contains a nonzero direct summand , 

which has the D2-EP . 

Proof : (i) (ii) => (iii) is tr ivial . 

(i i i) (i) : Consider 0 + A 0 A and the Situation 

M = A 0 © B = C © D . 

By assumption there exists 0 * A j A D , which has the D2-EP . Let 

A c = A j © A 2 , then 

M = A j @ ( A 2 © B) = C 0 D . 

Now , there exists 0 * A\ Q® A x , such that 

M = A } © C © D , C Q C , 

or there exists 0 4 A'j Q 1 0 A t , such that 

M = A'i © C © D ' , D ' Q D . 

This proves (i) . 

*) Substitutionprinciple : If M R is a R-module , i f U Q M R and i f f : U - » A 

is a R-isomorphism , then there exists a R-module N R with A Q N R and a R-

isomorphism F : M R -» N R with F | j j = f . 
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We are here only interested in the 2-EP and D2-EP . But we would like to 

mention that the 2-EP implies the n-EP for every n e IN , n > 2 . It is still an 

open question if the 2-EP implies the general EP . 

We give now the proofs for two wellknown results about modules with 2-EP . 

1.3, Lemma 

Assume A has the 2-EP and 

(6) M = U © A © B = U © C © D . 

Then there exist C Q C , D ' Q D such that 

( 7 ) M = U © A © C © D ' . 

Proof : 

Denote by n the projection of M onto C © D along (6) . Then the restriction of 

n onto A © B , that is T T | A © B » * s a n isomorphism . Therefore 

(8) n (A) © n(B) = C © D 

and also n(A) has the 2-EP . Therefore exist C q, C , D ' Q D such that 

(9) TT(A) © n(B) = n (A) © C © D' . 

We claim 

M = U © A © C © D ' . 

First we have by (8) and (9) 

(10) M = U © n(A) © C © D' . 

I f i n ( 6 ) a = u + c + d , a e A , u e U , c e C , d e D , then n(a) = c + d = 

-u + a and a = u + n(a) . Therefore U © n(A) = U © A . This and (io) 

imply ( 7 ) , what was to show . 

1.4. Lemma 

Assume A = A j © A 2 . Then : A has 2-EP e> Ax and A 2 have 2-EP . 

Proof : 
Assume M = A ! © B = C © D , then consider 
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M i L A 2 = ' At © A 3 © B = A 3 © C © D with A 3 = A 2 , At © A 3 s 

A j © A 2 = A . We use now the 2-EP of A j © A 3 in the decomposition 

M i L A 2 = ( A 3 © C) © D . There exist U Q A 3 © C , D ' Q D such that 

M i i A 2 = ( A a © A 3 ) © U © D ' . 

By A 3 © U c A 3 © C follows A 3 © U = A 3 © (C n ( A 3 + U)) . For 

C = C n ( A 3 + U) follows M i L A 2 = At © A 3 © C © D ' . 

The projection of M i L A 2 onto M then delivers 

M = A x © C © D ' . 

<=: Assume M = A © B = C © D . Since A j has the 2-EP , there exist 

C Q C , D ' Q D such that 

M = A x © A 2 © B = At © C © . 

Now since A 2 has 2-EP we apply 1.3 . Then there exist C" Q C , D" Q D* 

such that 

M = At © A 2 © C" © . 

Therefore A has 2-EP . 

1.5. Proposition 

If A has the 2-EP , then A has the D2-EP . 

Proof : 

If A has 2-EP by 1.4. every direct summand A 0 of A has also 2-EP . Without 

loss of generality we can therefore assume 

M = A © B = C © D 

and by assumption there exist C = C © C" , D = D J © D" such that 

M = A © C © D ' . 

If C = C or D ' = D , then the proof is finished . We assume now * D . 

From 

M = A © C © D' = C © D = C © C" © D ' © D" 

follows 

A s C" © D" 

and therefore C" has also 2-EP . We apply this now on the decomposition 

M = C © C" © D = A © C © D' 
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in the sense of 1.3 . Then there exist A ' Q A , D* Q D' with 

M = A ' © ( C © C") © D* = A ' © C © D* . 

In this equation A ' = 0 is not possible , then A ' = 0 would imply D* = D ' = D 

§2. Partially invertible endomorphisms and exchange properties 

Now we study connections between our notions and exchange properties 

For a module M R we consider two decompositions 

(11) M = A © B , A * 0 , 

( 12) M = C © D . 

We denote 

t A : A -» M the inclusion 

7 i A : M A the projection belonging to (ii) 

e c : M -» M resp. eD : M -» M 

the projector on C resp. D belonging to ( 12) . 

Then 7 T A e c t A , n A e D L A e S := End(A) and 
= e c + E D 

! A = V M ^ A = *A*ClA + " A ^ A 

2.1. Proposition 

Notations as before . Then 

1) n A e c i A is pi <=» there exist decompositions 

(13) M = A ' © C © D , 0 * A* c; A , C Q C , 

(14) M = e c (A') © A" © B , A H q. A . 

2) n A e c t A is invertible (= automorphism of A) there exist decompositions 

(15) M = A © ( B n C ) © D , 

(16) M = e c (A) © B 

3) If T i A e c t A is invertible , the mapping 

( 17 ) A 3 x -» e c(x) e e c (A) 

is an isomorphism . 
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Proof : 

1) =»: By assumption there exist g , d e S such that g n A e c t A = d = d 2 * 0 . 

For the idempotent d holds 

(is) A = d(A) © (l-d)(A) , d(A) * 0 . 

Denote by 

i : d(A) -» A the inclusion and 

n : A -» d(A) the projection belonging to (is) . 

Then d = LTT , ld(A) ~ 7 1 1 A N Q L 

(19) ng7i A e c t A t = ndi = l d ( A ) . 

This gives the commutative diagram 

iAi 
d(A) > M 

d(A) 

which implies 

(20) M = Im( i A t ) © Ke(7\g7T Ae c) = d(A) © Ke(i\gnAe^ 

Since Ke(e c ) = D q K e ( n g 7 \ A e c ) and by the modular law we get by ( 12) 

Ke (7 ig7 i A e c ) = C © D , C Q. C . 

Denote still A* := d(A) , then we have (13) . 

By (19) follows similarly 

M = Im(e c t A 0 © Ke(ngnA) = e c(d(A)) © A" © B = ec(A>) © A" © B , 

which is (14) . 

2) =>: Now , n A e c t A is invertible in S , that means , that there exists an 

automorphism g e S such that g n A e C L A = 1 A . This implies 

M = Im( t A ) © Ke(gn A e c ) = A © (Ke(gn A ) n C ) © D = 

= A © (B n C) © D 

and 

M = I m ( e c t A ) © Ke(gnA) = e c (A) © B . 

1)«=: We intend to show , that nAeciA induces an isomorphism between the 

direct summands A ' and n A e c ( A ' ) . First , by (13) and the modular law follows 

that A ' is a direct summand of A . Since B = Ke(n A ) by (14) follows 

A = 7T A e c (A') © A" , hence also n A e c (A ' ) is a direct summand of A . Since 

D = Ke(e c ) and by (13) we see that e c i A induces a monomorphism from A ' to 

M . Since B = Ke(n A) and by (u) we see that n A induces a monomorphism 
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from e c (A' ) to A . Together we have the result , that n A e c t A induces an 

isomorphism between A* and n A e c (A ' ) . By I . 6.2. n A e c t A is pi . 

2) «= : Now , as before , n A e c t A induces an isomorphism between A and 

n A e c (A) . By (16) n A e C L A ( A ) = A , therefore n A e c t A is now an automorphism . 

3) : That the mapping (n) is an isomorphism follows from (15) and Ke(e c ) = D 

2.2. Corollary 

Let A * 0 . If S = End(A) is a total ring , then A has the D2-exchange 

property . 

Proof : 

If 0 t A Q A , then by I . 5.6. End(A 0 ) O eSe) is also a total ring . 

Therefore, in the following proof we can assume A 0 = A and also (n) and (12). 

Since 1 A = T i A e c i A + ^ A 6 D L A a t l e a s t o n e °f N A e c L A O R N A E D L A m u s * be pi . In 

the first case we have (13) . Similar , in the second case holds 

M = A 1 @ C @ D 1 , 0 * A j Q A , D j Q D . 

That means , that the D2-EP is satisfied . 

2.3. Corollary 

Let A =t= 0 and assume (11) and ( 1 2 ) . If S = End(A) is a radicaltotal ring , 

then one of the following conditions is satisfied : 

(i) M = A ( B ( B n C ) @ D = e c (A) © B 

(ii) M = A © C © ( B n D ) = e D (A) © B 

(ii i) M = A ' © C © D = e c ( A ' ) © A" © B , 0 * A ' Q A , A H Q A , C Q C 

A M = A* © C © D ' = eD(A*) © A * * © B , 0 * A* Q A , A** Q A , D ' Q D . 

Proof : 

We consider again 1 A = nAeQ t A + n A e D i A and distinguish three cases . 

1) case : n A e D t A e Tot(S) = Rad(S) , then 

is an automorphism (since Rad(S) is quasi-regular) . (i) follows then from 

2.1. 2) . 
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2) case : n A e c t A e Tot(S) = Rad(S) .. Similar , this implies (ii) . 

3) case : n A e c t A and n A e D t A are both pi . Now 2.1. 1) implies (i i i) . 

Later , we wi l l prove , that the converse of 2.3. is true , i f we assume (i) , 

(ii) , ( i i i) for certain modules A , B , C , D . 

§3 . Exchange properties imply total properties 

One of the main results of this paragraph is , that the converse of 2.2. is true. 

Together with 2.2. we have then the result : S = End(A R ) is a total ring iff 

A R has D2-exchange property . Since S is the endomorphism ring of itself (by 

left-multiplication) > this includes the special case : S is a total ring iff S s has 

D2-exchange property . 

The foundation for the following considerations is a lemma for which we need 

some notations . Given A R and let be S := E n d ( A R ) . Assume f e S and 

write g := 1 A - f . Further define 

M := A X A = { ( a 1 } a 2 ) | a 1 , a 2 e A } , 

A x := { (a,0) | a e A } , 

A 2 := { (0,a) | a e A ) , 

C := { (f(a),-g(a)) | a e A } , 

D := { (a,a) | a e A } . 

Then we consider the following mappings : 

ocj : A B a (a,0) e , 

<x2 : A 3 a H> (0,a) e A 2 , 

7 : A B a H> (f(a),-g(a)) e C , 

6 : A B a H> (a,a) e D . 
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It is obvious , that « j , a 2 , 6 are isomorphisms . But also 7 is an 

isomorphism ; for this we have only to check the injectivity. Assume (f(a),-g(a)) 

= (0 ,0) , then f(a) = 0 and -g(a) = f(a) - a = -a = 0 . 

Further we have M = A j © A 2 . Also M = C © D is true : For a t , a 2 e A 

we have 

( a x , a 2 ) = ( f (a r a2 ) , -g(a r a2)) + (a a - f ( a r a 2 ) , a t - f f o - a ^ ) , 

hence M = C + D ; assume (f(a),-g(a)) = (a^a j ) e C n D , then f(a) = aj , 

-g(a) = f(a) - a = aj and this implies a = 0 , a t = 0 . Together we have 

(21) M = A 1 @ A 2 = C @ D , A = A 1 = A 2 = C = D . 

3.1. Lemma 

(i) M = C © A ^ © A 2 * with A x * Q A x 

f is pi ( in S = End (A R ) ) , 

(ii) M = C © Ai © A 2 with A t ' Q A t 

f is pi , 

(i i i) M = C © Ax © A 2 with A 2 - C A 2 

g is pi . 

, A 2 ' Q A 2 , A 2 ' * 0 , then 

, C Q C , C * 0 , then 

, C c; C , C 4= 0 , then 

Proof : 

For the proof we use I . 6.2 , that is we show , that f induces an isomorphism 

between nontrivial direct summands of A . 

(i) : By the modular law and the assumption follows A 2 = A 2 ' © (C © A ^ ) ; 

denote A 2 " = A 2 n (C © A t ' ) . Then 

A = * 2 - K * 2 ) ® «2" 1 (A 2

M ) , «2" 1 (A2') * 0 . 

Let n D be the projection of M onto D belonging to M = C © D . Since Ke(nD) 

= C and by (i) n D induces an isomorphism of A ^ © A 2 ' onto D , therefore 

D = nD(A{) © n D(A 2>) , n D ( A 2 ' ) * 0 

Then 

A = 6-l(D) = 6 - 1 n D ( A 1

, ) © 6 - l n D ( A 2 ' ) , 6 - l n D ( A 2 ' ) * 0 . 

We intend to prove . that f induces an isomorphism from a 2*" 1(A 2

>) onto 

ö " 1 n D ( A 2

J ) 
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via 
A A A 1 
0C2 7TD Ö 1 

« 2 ' W ) > A 2 ' » T T d ( A 2 ' ) ~> S- 1 n D (A 2

> ) 

with the isomorphisms oc2 , TTD , t"1 induced by ot2 , TTD , 6" 1 . For x e a ^ C A ^ ) 

we have 

(22) a 2(x) = (0 ,x ) = ( f ( -x) ,x + f(-x)) + (f(x),f(x)) 

with (f(-x), x + f(-x)) e C , (f(x),f(x)) e D 

then follows 

*D«2(x) = (f(x).f(x)) => 6-inDot 2(x) = f(x) , 

hence 

« 2 : i ( A 2 ' ) ^ x H» f(x) e 6 - l n D ( A 2 ' ) 

is an isomorphism and therefore f is pi . 

(ii) : Similar proof as for (i) . Now (ii) implies C = C © CM , C" := C n ( A ^ A 2 ) . 

Then follows 

A = 7 " 1 ( C ) © r'KC") > T'HC9) =*= 0 

and 

(23) A 2 = a27"^(C*) © OL2T'1(Cn) , a 2 T' 1 (C ' ) * 0 . 

By TT we denote the projection from M onto C"©D belonging to M = C '©C"@D ; 

then Ke(n)= C . By (ii) n induces an isomorphism between A 1

, © A 2 and C"@D, 

hence by (23) 

(24) C " © D = i\(At

9) 9 n(A2) = T r a ^ ' ^ C ) © L , n^T'HC9) * 0 

with L := nu2r"HCn) © 7 T ( A 1

, ) . 

We Claim : 7T<x27_1(C') Q. D . For x e 7~ 1 (C) follows 

7(x) = ( f ( x ) , - x + f(x)) e C => -7(x) e C 

This and (22) imply 

(25) ncx2(x) = TT(0,X) = n(f(-x),x + f(-x)) + n(f(x),f(x)) 

= n(- 7(x)) + n(f(x),f(x)) = (f(x),f(x)) e D . 

Now , we can apply the modular law on (24) to get 

D = na 2 7- 1 (C > ) © ( D n L ) , I\OL2J-^C9) * 0 . 

Finally , we show that f induces an isomorphism between the nonzero direct 

summands 7~1(C') and ä ^ n o c ^ " 1 ^ ' ) 
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via 

7 - i ( C ) ^ « ^ ( C ) - > no^r -Kc' ) > ö - i n c ^ r - K c ) 

with the isomorphisms oc2 , TT , ft-1 induced by oc2 , TT , 6"1 . For x e r ^ C ) 

we have by (25) 

6- 1TTOC2(X) = 6 - l ( f ( x ) , f ( x ) ) = f(x) , 

hence 

T'KCl B x f( x ) e fi-liK^r-KC) 

is an isomorphism and therefore f is pi . 

( i i i) : The proof is similar to the proof of (ii) , but not Symmetrie , since in C 

(f(x),-g(x)) is not Symmetrie with respect to f and g = 1 - f . Now , we have 

in place of (23) 

A R = our-KC) 9 a 1 r - 1 ( C H ) , O L ^ ' K C 9 ) * 0 . 

Then TT denotes the projection from M onto C"9D belonging to M = C Ö C ' Ö D . 

Then TT induces an isomorphism between A j Q A ^ and C M © D . In place of (24) 

we have now 

C" 9 D = n(At) 9 n (A 2 ' ) = noL^1^3) 9 L , nutf-KC) * 0 

with L := TTajr-HC") 9 TT(A 2') . 

Again hoids n^r'HC) e D : For x e j'HC9) follows r(x) = ( f ( x ) , -x + f(x))e C ; 

then 

(26) naj(x) = TT(X,0) = n(f(x),-x+f(x)) + n(x - f(x), x - f(x)) 

= n(r(x)) + 7T(g(x),g(x)) = (g(x),g(x)) e D . 

Therefore 

D = naj r -KCr) 9 ( . D n L ) , n a 1 r - 1 ( C , ) * 0 . 

Now we consider the induced isomorphisms 

7 - l ( C ) > o ^ r - K C ) — > not 1 r- 1 (C , ) * ö - 1 ™ ^ - 1 ^ ) . 

For x e r " 1 ^ ' ) follows by (26) 

6- ino t !« = ö" 1(g(x),g(x)) = g(x) , 

hence g is pi . 
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3.2. Proposition 

Given A R and S := End(A R ) . 

If A R has D2-exchange property , then S is a total ring . 

Proof : 

Indirect proof . Assume f , g E Tot(S) and f + g $ Tot(S) , hence f + g is pi . 

Then there exists h e S such that h(f + g) = e = e 2 =t= 0 . 

We assume first e = 1 and use the construction M = A x A = A 1 © A 2 = C © D 

with hf in place of f and hg in place of g . Since A has D2-EP and A = C also 

C has D2-EP . We apply this on M = A j ® A 2 = C ©,D and get either 

M = C © A{ © A 2 or M = C © At © A 2 , 0 * C C . 

Then by 3.1. (ii) resp. 3.1. ( i i i) follows hf or hg is pi and therefore f or g is p i £ . 

In the general case h(f + g) = e = e 2 * 0 we denote by t : e(A) A the 

inclusion and by n : A H e(A) the projection belonging to A = e(A) © ( l - e ) ( A ) . 

Then l e ( A ) = n i > e = l n a n c * by h ( f + g) = ß follows nh(f+g)i = nei = l e ( A ) • 

With A also e(A) has the D2-EP . Now we are again in the case e = 1 and 

know nhfi or nhgt is pi in End(e(A)) = eSe , hence f or g is pi in S ^ . 

By 3.2. and 2.2, together we have one of our main results , where we use 

that for a ring S with 1 e S End(S s) = S holds . 

3.3. Theorem 

(i) Let be A R and S := End(A R ) , then : 

S is a total ring iff A R has D2-EP . 

(ii) Let be S a ring with 1 e S , then : 

S is a total ring iff S s has D2-EP . 

There is another interesting theorem , which connects exchange properties with 

total properties . 
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3.4. Theorem 

(i) If A R is a module with 2-EP , then S := E n d ( A R ) is a radicaltotal ring . 

(ii) If S is a ring with 1 e S and i f S s has 2-EP , then S is a radicaltotal ring 

(Short : Exchange rings are radicaltotal rings) . 

Proof : 

( i ) : Since Rad(S) c Tot(S) we have only to show : If f e Tot(S) , then f e Rad(S). 

Since for f e Tot(S) also fS c Tot(S) , we have only to prove , that f is quasi-

regular , that is , 1 - f is an automorphism of A . We use again the construction 

in 3.1. with f and g = 1-f . Since with A also C has the 2-EP , there exist 

A{ Q Ax , A 2 ' Q A 2 such that M = C © Ax © A 2 ' . Since f is not pi by 3.1 (i) 

follows A 2 ' = 0 , that is M = C © A f . Now the 2-EP wi l l be used for A 2 and 

the decompositions 

M = A j © A 2 = C © A j ' . 

Then 

M = C © At" © A 2 , C Q C , A j " c; A ^ . 

But now by 3.1. (ii) follows Cy = 0 , since otherwise f would be pi . Therefore 

M = A j " © A 2 . 

Since M = Ax © A 2 , this implies 

A i " = = A, 

and we have 

(27) M = C © Ai = C © Ax . 

With this decomposition we show , that g = 1 - f is an automorphism . 1-f is 

surjective : For x e A , there exist y , z e A such that 

(0,-x) = (f(y),f(y)-y) + (z,0) x = ( l - f ) ( y ) . 

1 - f is injective : Assume (1 - f)(y) = 0 (f(y),f(y)-y) = (f&r),0) e C n A ^ O 

=> f(y) = y = o . 
The proof for (i) is complete and (ii) is a special case of (i) . 

If there is an implication , there is always the question , i f the converse is 

true . We show later by an example , that the converse of 3.4. is not true , 

But a converse of 2.3. is satisfied . 
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3.5. Proposition 

If A R is a R-module and S := End(A R ) . Then the following conditions are 

equivalent : 

(I) S is radicaltotal 

(II) For every Situation 

M = A * @ B = U @ V with A* = A 

one of the following conditions is satisfied : 

(i) There exists IT Q U such that 

M = A* 9 IT 9 V 

(ii) there exists V Q V such that 

M = A* 9 U 9 V 

(iii) there exist 0 * A ' Q A* , LP Q U such that 

M = A ' 9 IT 9 V 

and there exist 0 t A" Q A* , V Q V such that 

M = A" 9 U 9 V . 

Proof : 

(I) =» (II) : By 2.3. , where A = A* , C = U , D = V . 

(II) (1) : For f e Tot(A) we consider (21) and identify A* = C , B = B , 

U = A x , V = A 2 , then C = A . 

By assumption we have now three cases : 

(i) : M = C 9 A j ' 9 A2 ; then by 3.1. (i) f would be pi 

(ii) : M = C 9 At 9 A 2 ' ; then by 3.1. (i) A 2 ' must be 0 , then otherwise 

f would be pi . Hence we have now M = C 9 Ax , which is (27) . 

(iii) : M = C 9 Ax 9 A 2 , C * 0 and 

M = C 9 A j 9 A 2 ' , C" * 0 . But by 3.1. (ii) the first equation 

would imply that f is pi . 

There is only (27) left over . We proved already , that (27) implies , that 1 - f 

is an automorphism . Since with f e Tot(S) also fS c Tot(S) , this is a quasi-

regular right ideal , hence f e Rad(S) . 
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§4 . The special case : Directly indecomposable modules 

First we repeat some well-known facts about directly indecomposable modules 

and local rings . A ring S is called a local ring iff the set of noninvertible 

elements in S is closed under addition or , what is the same , is a two-sided 

ideal of S . 

Now , we have the following connection between A R and S := E n d ( A R ) . 

4.1. Remarks 

The following conditions are equivalent : 

1) A R is directly indecomposable . 

2) S contains only the idempotents 0 and 1 

3) Tot(S) = set of not invertible elements of S . 

Proof : 

Only 3) 2) : If 0 * e is an idempotent , then e is pi , hence by 3) 

invertible : es = 1 => e = e2s = es = 1 . 

4.2. Proposition 

For a directly indecomposable module A R and S := E n d ( A R ) the following 

conditions are equivalent : 

1) S is a local ring , 

2) S is a total ring , 

3) S is a radicaltotal ring , 

4) A R has 2-EP , 

5) A R has D2-EP . 

Proof : 

(1) (2) : By 4.1. 
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(3) =* (2) : Clear . 

(2) =* (3) : We have always Rad(S) c Tot(S) . Now , for t e Tot(S) we consider 

1 - 1 . This cannot be in Tot(S) since then by (2) 1 G Tot(S) £ . Therefore 

1 - 1 is pi , which means now , that 1 - 1 is invertible . Therefore Tot(S) is 

a quasi-regular ideal , hence Tot(S) c Rad(S) . 

(2) & (5) : By 3.3. 

(4) * (5) : By 1.5. 

(5) (4) : Since A R is directly indecomposable , every nonzero direct 

summand of A is A itself . Hence by (5) in the Situation 

M = A 9 B = C Ö D 

we have M = A 9 C* © D , C* <; C or M = A © C © D' , D ' Q D , 

which shows , that (4) is satisfied . 

If A R is directly indecomposable , but S is not a local ring , then Rad(S) + 

Tot(S) . For example , TL^ is directly indecomposable , End(Z^) = TL 

(leftmultiplications) and Rad(Z) = 0 , Tot(Z) = T L \ {-1;1} . 

§5. A n example for a radicaltotal ring , which is not regulär and not a 

2 - E P ring 

For the example we need a special case of a result about exchange modules . 

In order to have these notes self-contained , we give a proof for this special 

case . First we have to introduce some notations . Let again S be a ring with 

1 G S and let a € S , Then consider 

(28) ,S2 = S x S = Sj @ S 2 = U @ V 

with 

Si 
u 

V 

{ ( s , 0 ) | se S } , 

{(as ,(i-a)s) I s G S } 

{ (s , - s ) | s G S } . 

S 2 := {(0 ,s ) I s G S } 



- 53 -

and isomorphisms 

6 a : S 3 s H> (s,0) 6 S t 

6 2 : S 3 s H> (0,s) e S 2 

ß : S 3 s h» (as,(i-a)s) G U 

i/ : S 3 s H> (s,-s) G V . 

The modules Sx , S 2 correspond to A j and A 2 in §3 , but U and V do not 

correspond to C and D by having the negative sign in the second coefficient . 

The proofs for (28) and the isomorphisms are as simple as in §3 . Further we 

need the epimorphism 

p : S 2 B (s 1 ,s 2 ) H> sj + s2 G S 

for which Ke(p) = V . By L S i , i S 2 

S 2 , U , V in S 2 . Then follows 

(29) ßpljj = l u , Pl\jß = l s 

We need also 

ßX : S 3 s (as,0) G Sj , 

ß2 : S 3 s (0,(i-a)s) e S 2 

for which Mi + M 2 = ß • 

ijj , t v we denote the inclusions of Sx , 

5.1. Lemma 

S s is a 2-EP ring ^ 

V a G S 3 d G S [ d = d 2 A d e Sa A l - d G S ( l - a ) ] . 

Proof : 

: Since S s is a 2-EP ring and S s s U s , there exist Sj ' Q Sx , S2* c; S 2 such 

that 

(30) S 2 = U © Sj' © S2* . 

By the modular law follows Sx S t , S 2 S 2 . Let be 

Sj = Sj* © Ŝ ' , S 2

 = S 2 ' © S2" 

and i f T : = S f © S2" 

then 

(31) S 2 = T © S/ © S2* . 

Denote by n the projection of S 2 onto T belonging to (3i) , then Ke(n) = 

§l © S 2 ' and by (30) n induces an isomorphism T := nju between U and T . 
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Further let wx , w 2 be the projections of T = Sj" © S2" onto Sj" resp. S2

M and 

t j , t 2 the inclusions of S '̂ resp. S2" in T . Then ej := , i = 1,2 are 

idempotents in End(T s) with 

(32) e^e2 = e 2ej = 0 , ê  + e 2 = 1^ 

Now we define 

(33) dj := ptuT-iejTM , i = 1,2 

and compute with (29) and (32) 

d{

2 = p t u T - 1 e i T ( M p i u ) T - 1 e i T / i = d| : 

d j d 2 = d 2 d t = 0 , dt + d 2 = l s . 

We define d := d ^ l ) , then 

djCl) 2 = d j d d ^ l ) ) = d ^ l ) ) = d ^ l ) = d i ( l ) 

and 

d i ( l ) + d 2 ( l ) = 1 , 

hence d 2 ( l ) = 1 - d . 

We still have to prove d e Sa and 1 - d e S(l - a) . Denote by nj the projection 

of Si = §{ @ Si" , i = 1,2 onto Sj" , then we show first 

(34) WiT/X = T\ißi , i = 1,2 . 

Let be 

(as , ( l -a)s) = (x',0) + ( 0 , / ) + (x",0) + (0,y") 

with (x',0) e Si ' , (x",0) e S f , (0,y 5) e S 2

J , (0,y") e S2" , 

then 

w iT/i(s) = WiT(as,(i-a)s) = w i((x , ,,0) + ( 0 , / ) ) = 

r (xH,0) for i = l 
= ( (0,y") for i = 2 

f 7T!(as,0) = (x",0) for i = 1 

* i ^ i ( s ) = [ n 2 (0 , ( i -a )s ) = (0,y") for i = 2 

Therefore we have (34) . With (34) we get 
d i = PW^ityiTß) = P ^ u 7 " 1 ^ 7 1 ! ^ ) = (P^jjT'1iini6i)di-1ßi , i = 1,2 

The mapping in the bracket is an element in End(S s) , which is induced by 

leftmultiplication of S by an element Sj e S , i = 1,2 . Therefore 

d = d i ( l ) = s ^ - i ^ O ) ) = s 16 1-i(a,0) = s i a , 

1-d = d 2 ( l ) = s 2 ( 6 2 - V 2 ( l ) ) = s 2 6 2 - i ( 0 , l - a ) = s 2 ( l -a) . 
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<= : In this direction , we prove the lemma not only for a ring S , but for a R-

rightmodule A R with S := E n d ( A R ) . Consider the S i t u a t i o n 

M = A © B = C 1 © C 2 

with R-rightmodules A , B , Cj , C 2 . By ej ( i = 1,2) we denote the projectors 

on Cj and by n A resp. t A the projection of M to A resp. the inclusion of A in 

M . Then 

ei + e 2 = 1 M . 

Define fj := " A e i l A Ö = 1>2) , then fj , f 2 e S and fj + f 2 = 1 A , hence f 2 = 

* A - h • Now > ^ l * s ^ e Clement a in our assumption . 

Then there exist S j , s 2 such that 

dj := sjfi ( i = 1,2) 

are orthogonal idempotents with dj + d 2 = 1 A . 

Finally we define 

gi : = d i s i * A e i Ö = 1 > 2 ) > g : = gl + g2 

then it follows easily 

gi^Agj = 5 i jgi ( i = 1 . 2 ) , 

g^Ag = g > g LA = 1 A 

and this equations imply 

M = I m ( t A ) © Ke(g) = A © ( C j n K e ^ ) ) © ( C 2 n Kefe^) , 

what we had to prove . 

Now we come to the example . Let K be a field and R # 0 a subring of K with 

1 € R , which is not a local ring (for example K = Q , R = Z ) . Then the ring 

S is defined by 

S := { ( X i ) E K w | -3"melN , x e R V U m [ x ^ x ] } 

with 

(xj) + (yi) = (Xi + y i ) , (xiXyj) = ( x i y i ) . 

Then (1) = (1 1 1 . . . ) is the 1-element of S . 

First we show : Every element 4= 0 in S is pi . If in (xj) x ^ t O , then with 

s = (0 . . . 0 x^" 1 0 . . . ) follows (xt)s = (0 . . . 0 1 0 . . . ) and this is an 

idempotent t 0 in S . Hence 

Rad(S) = Tot(S) = 0 , 

that is , S is radicaltotal . 
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Then we prove , that S is not a regulär ring . Since R is not local , R is not a 

field . Therefore exists 0 * r e R , r 1 $ R ( r 1 e K ) . Then (r) = (r r r . . .) 

is not regulär . Assume (r)(xj)(r) = (r) with x> = x for U m , then 

rxjr = rxr = r • , U m 

Since r * 0 also xr * 0 . Then follows 

xr = rx = 1 

hence x = r 1 e R ^ . 

Finally we show : S is not a 2-EP-ring . Since R is not local , there exist not-

invertible a t , a 2 e R such that aj + a 2 is invertible in R : (aj + a 2)b = 1 , 

b e R . Then also r := ajb , 1-r = a 2b are not invertible in R and r * 0 , 

1 - r * 0 . Assume S s is a 2-EP ring , then by 5.1. there exist (x t) , (y$ e S 

such that 

(xi)(r) , (y iX( l ) - ( r ) ) = (yiXl - r) 
are idempotents with 

05) ( x O « + ( y i X l - r ) = 1 = (1 1 1 . . . ) 

Since ( x ^ r ) = (xjr) is an idempotent , for i ^ m with xi = x holds 

x ^ x j r = xrxr = xr . 

If xr 4= 0 , then xr = 1 , hence x = r 1 e R ^ . Therefore x^ = 0 , U m . 

Similar for (y{)(l-r) y{ = 0 , U n . But then (35) cannot be satisfied £ . 
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HL Direct decompositions 

§1 . RTE-decompositions 

1.1. Definition 

Let be M R a R-module and R a ring with 1 e R . Denote T := End(M R ) . 

Then M R is called a L E - resp. T E - resp. RTE-module T is a local 

resp. total resp. radicaltotal ring . A decomposition 

(i) M = © Mi 
i e I 

is called a LE- resp. TE- resp. RTE-decomposition : all Mj , i e I are LE-

resp. TE- resp. RTE-modules . 

We know already , that direct summands of TE- resp. RTE-modules have 

again this property ( I . 5.6. ; the endömorphismring of a direct summand of M 

is of the form eEnd(M)e with an idempotent e e End(M)) . Now we come to 

the question i f for a TE- resp. RTE-decomposition (i) M is a TE- resp. RTE-

module . This question is open for TE-decompositions even i f I is finite . We 

are able to show , that the direct sum of a RTE-module and a TE-module 

is a TE-module . If (l) is a RTE-decomposition , then M is a TE-module and 

if I in (i) is finite , then M is again a RTE-module . There are also examples 

that for infinite I M is a RTE-module . For LE-decompositions , this case was 

already considered by Harada . 

For the following proofs , it is useful to put I I . 1.2. and I I . 3.3. (i) together to 

the following lemma . 

1.2. Lemma 

The module M R is a TE-module & every nonzero direct summand of M R 

contains a nonzero direct summand , which is a TE-module . 
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1.3. Proposition 

If in 

M = A © B 

A is a RTE-module and B a TE-module , then M is a TE-module . 

Proof : 

We can assume A * 0 . Assume M = C © D with C * 0 . Then we consider 

the different cases in I I . 2.3 . 

case (i) : Now , A Ö ( B n C ) s C ; therefore C contains a direct summand 

isomorphic to A , hence a RTE-module . 

case (ii) : Now , B s C @ ( B n D) ; therefore C is isomorphic to a direct 

summand of B , hence a TE-module . 

case (i i i) : Now , A ' © C = C ; therefore C contains a direct summand 

isomorphic to A* , which is a direct summand 4= 0 of A (by the modular law) , 

hence a RTE-module . 

1.4. Theorem 

Assume , that (I) is a RTE-decomposition and 

M = C © D , C * 0 . 

Then there exists i 0 e I and 

0 * L , M i o , L 2 Q © M i o , C 0 Q ® C 

such that 

(2) M = L X © C 0 © D = e c ( L t ) © L 2 © ( © U{) 
i e i 

Proof : 

Let be c e C , c * 0 and 

C = C i l + • • • + C i m > C i j € M i j 

with different i j , . . . , i m e I . Since in the following we need only the M{, 

j = 1 , . . . , m , we write j for ij and 

B 0 := © Mi . 
i E K { i 1 , . . . , i m } 
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Then c = q + . . . + , q e Mj . Now , we consider 

*Mj = n Mj e C l Mj + n Mj e D L Mj > j = l , . . . , m . 

If one 7 i M j e c t M j is pi , then we have the result by I I . 2.1. 1) . Therefore we 

assume , that all 

" M J ^ M J 6 Tot(End(Mj)) = Rad(End(Mj)) , j = 1 , . . . , m 

and derive a contradiction . By this assumption all 

" M J ^ M J = " " M j ^ M j > j = 1 . . . . . m 

are automorphisms . By I I . 2.3. (ii) (wi th A = M x , B = 0 M{) we get 

(3) M = e D ( M t ) © M 2 © . . . © M m Q B 0 . 

Induction over j = 1 , . . . , m with (3) as the case j = 1 implies 

(4) M = eoCMj) © . . . © e D ( M m ) © B 0 . 

By I I . 2.1. 3) we know that all mappings 

(5) Mj 3 x eD(x) e e D (Mj) 

are isomorphisms . Since c = c 1 + . . . + c n e C it follows that 

0 = eD(c) = eD(ci) + . . . + e D (c m ) . 

Since (4) is a direct sum , this implies eD(cj) = 0 , j = l , . . . , m . Then by (5) 

we have Cj = 0 , j = 1 , . . . , m , hence c = 0 £ . 

In the special case that (1) is a LE-decomposition , 1.4. is the key for the proof of 

the Krull-Remak-Schmid-Azumaya-theorem . This gives reason for the following 

question : If (i) is a RTE-decomposition and i f M = .©j Cj is an arbitrary 

decomposition , do there exist refinements of both decompositions , which are 

isomorphic ? 

1.5. Corollary 

Assumptions and notations as in 1.4 . 

Further let D be a maximal direct summand of M , then M = L T © D , L j = C . 

That means , that a refinement of (I) complements a maximal direct summand . 
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1.6. Corollary 

Assume , that (1) is a RTE-decomposition . Then : 

(i) : Every nonzero direct summand of M contains a direct summand , which is 

isomorphic to a nonzero direct summand of one of the Mj , i e I . 

(ii) : M is a TE-module . 

Proof : 

(i) : From (2) follows C = L j @ C 0 and L T cfi M i o . 

(ii) : By (i) and 1.2 . 

For a finite set I in (I) , M is even a RTE-module . To prove this and other 

interesting facts , we need two lemmas . 

1.7. Lemma 

If A R , B R are R-modules and f e Hom R (A,B) , g e Hom R (B,A) , then : 

1 A + gf is an automorphism of A & 

1 B + fg is an automorphism of B . 

Proof : 

It is easy to check , that if 1 A + gf is an automorphism , then 

( l ß + fg ) - 1 = i B - f c iA + g f ^ g ; 

if 1 B + fg is an automorphism , then 

( l A + g f ) - 1 = l A - g O ß + f g ) - 1 * ' 

1.8. Lemma 

Assume , that (I) is a RTE-decomposition . Denote T := End(M R ) and by ei e T 

the projector of M onto Mi with respect to (i) . Then for all i e i 

ejTot(T) c Rad(T) , Tot(T)ej c Rad(T) . 

Proof : 

Denote by Tj := End(Mj) and by ej resp. n{ the projector resp. projection of M 
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onto Mj along (1) . Further let be t j the inclusion of Mj in M and 1A the 

identity of Mj . Then 

I i = n^i > ê  = LjTij , 7i|e| = , e t̂j = i j . 

By I . 2.3. follows 

7T|Tot(T)Lj c Tot(Ti) = Rad(Ti) . 

By multiplication from the left with i{ and from the right with 7TJ follows 

ejTotCTjei c t-jRad(T| )nj . 

Now , we show that each element of ^RadCr^T^ is quasi-regular . Let 

f e Rad(Ti) , then there exists g e T } such that 

( I i + f)g = I i => (ei + ^ i f n i ) L i g n i = e t => 

( 1 M - ej + ej + eiiifnjeiXlM - e4 + e^gn^ i ) = 1 M - ej + e{ = 1 M . 

Then also each element of ejTot(T)ej is quasi-regular . Now , let be h e Tot(T) , 

then e^T is a right ideal of T contained in ejTot(T) . We show that e thT is a 

quasi-regular right ideal , hence ejhT c Rad(T) . We use 1.7 . Since for t e T 

1 M + ejhtei is an automorphism , also 1 M + e^ejht) = 1 M + ejht is an 

automorphism (Take in 1.7 g = ejht , f = e^ . We have now ejTot(T) c Rad(T) . 

Similar is the proof for TotCTJej c Rad(T) . 

1.9. Corollary 

If (i) is a RTE-decomposition and 1= { 1 , . . . , n} , then M is a RTE-module . 

Proof : 

Let be ej , i = 1 , . . . , n the projectors of M onto Mj and T := End(M R ) . Then 

*M = e i + • • • + e n a n ( * 1-8- implies 

Tot(T) = I eiTot(T) c Rad(T) , 

hence Tot(T) = Rad(T) . 

1.10. Corollary 

Assume , that (i) is a RTE-decomposition and T = End(M R ) . 

(i) If Rad(T) = 0 , then Tot(T) = 0 . 

(ii) If f e Tot(T) , then 1 M - f is a monomorphism . 
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Proof : 

For x e M , there exists a finite subset I 0 c I , such that e(x) = x for e: = I ej . 

If f € Tot(T) , then f(x) = fe(x) , with fe e Rad(T) . 1 ° 

(i) If Rad(T) = 0 , then f(x) = fe(x) = 0 , hence f = 0 . 

(ii) Assume ( 1 M - f )(x) = 0 . Then ( 1 M - f)(x) = ( l M - f e ) ( x ) = 0 . Since fe e Rad(T) 

l M - f e is an automorphism , hence x = 0 . 

1.11. Corollary 

If M R is an artinian or noetherian module , then there are equivalent : 

(i) M is a RTE-module , 

(ii) M is a TE-module , 

(iii) M has a finite LE-decomposition . 

Proof : 

A n artinian or noetherian module has a decomposition 
n 

M = © , Mj directly indecomposable . 

(i) =* (ii) : O.k. 

(i) V (ii) (iii) : Since a direct Summand of a RTE- resp. TE-module is again 

such a module , ( i i i) follows by I I . 4.2 . 

(ii i) (i) : By 1.9 . 

§2 . Connection with "Harada"-properties 

If (I) is a LE-decomposition , then this is a special RTE-decomposition. In the 

literature - mainly by Harada - there are several interesting characterizations 

for the case , that T = End(M) is a radicaltotal ring (and not only a total ring) . 

Harada used a more special definition for Tot(T) (and not our notation) . We 

show first , that the definition of Harada and our definition are equivalent for 

LE-decompositions . 
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We need the following lemma . 

2.1. Lemma 

If f : A -> B , g : B -» C are modulehomomorphisms and A t O , B directly 

indecomposable and gf an isomorphism , then f and g are isomorphisms . 

Proof : 

Since gf is an isomorphism , f is injective , g is surjective and 

B = Im(f) Q Ke(g) . 

Since A * 0 and B is directly indecomposable , we have B = Im(f) and Ke(g) = 0 , 

hence f is also surjective and g injective . 

Now we consider LE-decompositions , which are special RTE-decompositions 

Assume , that (I) is now a LE-decomposition (with all Mj * 0) and that 

(6) N = N, (a l l Nj * 0) 

is also a LE-decomposition of R-modules . We use the same notation as in 1.6 

T := End(M R ) , S := E n d ( N R ) . 

Further we denote by 

4 : Mi -* M 

nj : M -» Mi 

Similar notations for (6) 

cj : Nj ~> N 

Pj : N -> Nj 

the inclusion , 

the projection belonging to (i) 

the projector . 

the inclusion , 

the projection belonging to (6) 

the projector . 

2.2. Proposition 

Assumptions as before and f <E H o m R ( M , N ) . Then : 

f is pi 3 i 6 I , j G J [Pjf4 is an isomorphism] 
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Proof : 

: Since Pjfij is an isomorphism , we have 

N = Im(fii) © Ke(pj) = f(Mj) © Ke(pj) 

and 

Mj 3 x f(x) e f(Mj) 

is an isomorphism . Then I . 6.2 implies , that f is pi . 

: By 1. 6.2 there exist 

M = C 0 D , C t O , N = P © Q 

( C for M 0 and P for N 0 in 1. 6.2 ) , 

such that 

(7) C 3 X H> f(x) G P 

is an isomorphism . Now , we apply 1.6 (i) ; since the M{ are directly 

indecomposable , there exist M i o and a decomposition 

0 = 0 ! © C 2 , CX = M i o 

The isomorphism (7) implies 

P = f(C t ) © f(C 2 ) 

and the isomorphism 

Cj 3 x f(x) e f ( d ) . 

Denote by 

g : M i o -» CX an isomorphism , 

1 : Cj M the inclusion 

and by 

P : N -» fCd) 

the projection belonging to 

N = fCCj) © f(C 2 ) © Q . 

Then p f L g : M i o -» fCCj) is an isomorphism . Denote by h the inverse 

isomorphism , then 

For x e M i o , x * 0 let be I 0 c I , J 0 c J finite subsets , such that 

Z ejg(x) = g(x) 
i € i 0 

and 

l djfg(x) = fg(x) . 
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Denote t e End(M i o ) by 

j e J 0 i E i Q

J 

then t(x) = 0 and 

(8) i M = hp I I d/e^g + t . 

Since E n d ( M i o ) is local , there must be at least one summand in (s) , which is 

an automorphism . Since t(x) = 0 , this cannot be t . Assume 

hpdjfejtg = hpCjPjfiinjtg 

is an automorphism . By 1.10 follows , that hpCjPjftj is an isomorphism and 

again by 1.10 we get , that Pjfii is an isomorphism , what we had to show . 

By 2.2 it is easy to give an example for a LE-decomposition , for which T is 

not a radicaltotal (but a total) ring . 

Assume R = Z , p a primnumber , 

M z := © Z / p n Z , T = End(M) . 

Then E n d ( Z / p n Z ) s Z / p n Z (since this is a ring with 1-dement) and Z / p n Z 

is local with R a d ( Z / p n Z ) = T o t ( Z / p n Z ) = p Z / p n Z and ( Z / p n Z ) / ( p Z / p Q Z ) = 

Z / p Z . Denote by 

t n : Z / p B Z M the inclusion 

n n : M -» Z / p n Z the projection . 

Then is ( i n ( l + p n 2 £ ) | n e IN) a generating family of M . We define f e T by 

f ( i n ( z + p n Z ) ) = i n ( p z + p n + 1 Z ) , z e Z 

Obviously n n + 1 f i n is not an isomorphism for all ne IN , since it is not surjective . 

Further njin = 0 for i * n+1 . Then by 1.11. f e Tot(T) . 

But f $ Rad(T) , since 1^ - f is not an automorphism . If 

x = ( Z l + p Z , z 2 + p 2 Z , . . . , z t + p*Z , 0., 0 , 0 , . . . ) 

with pt\zx is an element * 0 of M , then ( I M - O W = 

= ( z i + p Z , z 2 - p z t + p 2 Z , . . . , zt-pzt.x + p tZ , -pz t + p t + 1 Z , 0 , 0 , 0 , . . . ) 

and this shows , that 4(1 + p Z ) € I m ( l M - f ) . 
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As mentioned before , in the case , that (1) is a LE-decomposition , there exist 

several characterizations of the property , that T = End(M) is radicaltotal . The 

total was there defined as the set of all f e T , such that nfii is not an 

isomorphism for all i , j e I . We ask here , i f these characterizations can also 

be applied for RTE-decompositions (1) . There is at least one important 

difference : For a LE-decomposition (i) the Mj are directly indecomposable , 

but for RTE-decompositions this is not the case ; even more : There exist RTE-

modules which are not direct sums of LE-modules (see example after 2.3) . 

We consider first locally direct summands of M . These are submodules of M 

of the form © T B ; , where for every finite subset L c J © T B, is a direct 
J G J J J 0 j G J o J 

summand of M . 

We use the fact 1.10. (ii) , that for f e Tot(T) l ^ - f * s a monomorphism . 

2.3. Proposition 

If (i) is a RTE-decomposition and f e Tot(End(M R )) , then 

(i) I m ( l M - f ) = © ( l M - f ) ( M i ) is a locally direct summand of M , 
i e i 

(ii) if every locally direct summand of the form I m ( l M - f ) is a direct summand , 

then M is a RTE-module . 

Proof : 

(i) : Since 1 M - f is a monomorphism 

I m ( l M - f ) = © ( l M - f ) ( M i ) . 
ie I 

For a finite I 0 c I and e := X ej , we have 
i e i 

® ( l M - f ) ( M , ) = © ( l M - f e X M i ) 
i € I 0

 l G l o 
and since 1 M - fe is an automorphism 

M = ® ( l M - f X M j ) © ( © t ( i M - f e X M O ) , 
i e l c i e l ^ l 0 
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hence I m ( l M - f ) is a locally direct summand . 

(ii) : If I m ( l M - f ) is a direct summand , then 1 M - f has a left inverse g G T 

such that 

g O M - 0 = I M * g = l M - ( - g ) f • 
Since for f G Tot(T) also (-g)f e Tot(T) there exists h G T such that 

hg = h ( l M - (-g)f) = 1 M . 

Therefore g-l = h = l M - f => ( l M - f ) g = 1 M , that is , l M - f is an 

automorphism and f G Rad(T) , hence Tot(T) = Rad(T) . 

For a LE-decomposition (1) the following is true : If M is a RTE-module then 

every locally direct summand of the form 

g j Bj , End(Bj) local 

is a direct summand . We show by an example , that a similar result is not 

true for RTE-decompositions . We consider the ring S , defined in I I . 5. , 

for which Rad(S) = Tot(S) = 0 . Then S s itself is a RTE-decomposition . The 

ideal K ^ ) of S has a RTE-decomposition , even a LE-decomposition , and is a 

locally direct summand of S s . Since K.W is obviously large in S s , it cannot 

be a direct summand of S s . 

For a LE-decomposition (l) End(M)/Tot(End(M)) is a ring with 2-exchange 

property (= EP) . Here for the ring S we have End(S s) = S , Tot(S) = 0 , 

but S s does not have the 2-EP ( I I . 5 . ) . Therefore , S s does not have a LE-

decomposition . 

§ 3 . Decompositions with duality properties 

Already in 1.7.2. and 1.7.3. we had results about direct decompositions with 

duality properties . We get here some more informations . 
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Let be 

(9) M R = @ Mi 
i e i 

a decomposition , where we have "total properties" of the Mj resp. M with 

respect to M{* resp. M* (E3) . Especially m e M is pi iff there exists G M* 

such that tf(m) is an idempotent * 0 in R and Tot(M) is the set of all not pi 

elements in M . 

3.1. Lemma 

(i) If f e H o m R ( M , N ) , then f(Tot(M)) c Tot(N) . 

(ii) If in (9) M is total (that is Tot(M) is additively closed) , then 

Tot(M) = © to t (Mi) . 
i G I 

Proof : 

(i) : We show : If for m G M f(m) is pi , then m is p i . If f(m) is pi , then there 

exists 7 G N* such that rf(m) = e = e 2 * 0 . Then r f € M* , hence m is pi . 

(ii) : For the inclusion i j : Mj -> M resp. the projection i\{ : M Mj follows 

by (i) 

(10) t |(Tot(Mi)) c Tot(M) 

(11) HiCTotCM)) c Tot(Mi) , i G I 

For x , y G TotfMj) follows by (io) and the assumption x + y G Tot(M) and by (n) 

x + y G Tot(Mj) . Therefore , also the Mj are total . Again by (io) and the 

assumption follows 

@ Tot(Mi) c Tot(M) . 
i G I 

If u G Tot(M) and u = T,u{ (uj G M | ) in (9) , then by (ii) uj G Tot(Mj) , hence 

also 

Tot(M) c © Tot(Mj) . 

3.2. Corollary 

(a) If in (9) all Mj are radicaltotal (that is Rad(Mj) = Tot(Mi)) , then M is 

radicaltotal . 
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(b) If (9) is a RTE-decomposition and all Mj , i e I are projective , then M is 

radicaltotal . 

Proof : 

(a) : Since Rad(Mj) = Tot(Mj) , we have 

© Tot(Mi) = © Rad(M0 = Rad(M) c Tot(M) . 

In the proof of 3.1. we showed (without any assumption) : If u e Tot(M) and 

u = I uj , U j e Mj , then uj e Tot(Mi) . This implies 

Tot(M) c © Tot(Mi) = Rad(M) , 
i e I 

hence Rad(M) = Tot(M) . 

(b) : The assumption in (b) and 1.4.8. 1) imply Rad(Mj) = Tot(Mj) . Then (b) 

follows by (a) . 

For example , (b) is satisfied i f (9) is a projective LE-decomposition . 

3.3. Corollary 

Assume , that (9) is a RTE-decomposition . Then : 

Tot(M) # M <=> 3 i 0 € I [ M i o has a nonzero , projective direct summand ] . 

Proof : 

By 1.6. (i) M is a TE-module and the-n by I . 3.7. (for (E3)) M is total . Then by 

3.1. (ii) 

(12) Tot(M) = © Tot(Mj) . 
i G I 

=> : Now assume Tot(M) * M . Then there must exist at least one i 0 e 1 with 

To t (M i o ) =1= M i o . Then I . 7.2. implies the Statement . 

: On the other side , i f C * 0 is a projective , direct summand of , then 

with M 1 q also C is a RTE-module and by I . 8.4.1) Tot(C) = Rad(C) . Since C is 

a nonzero projective module Rad(C) * C , hence Tot(M i o ) 4= M i o , hence by (12) 

Tct(M) * M . 
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IV, The relative total in the category of R-modules 

§1 . Semi-ideals and ideals in the category of R-modules 

For a ring R with 1 G R we consider the category Mod-R of all unitary R-

right modules . By 7fölR we denote the class of objects of Mod-R . 

1.1. Definition 

1. ) A semi-ideal I of Mod-R is given by a set 

(D I (M,N) c H o m R ( M , N ) for all M , N G OTlR , 

such that the following property is satisfied : 

H o m R ( N , Y ) I ( M , N ) H o m R ( X , M ) c I (X ,Y) 

for all M , N , X , Y e m R . 

2. ) A semi-ideal I is called an ideal of Mod-R i f further 

(2) I (M,N) is additively closed for all M , N G föftR . 

If for one pair M , N I(M,N) * 0 , then by (D 0 G I ( X , Y ) for all X , Y e m R . 

We add to the definition of a semi-ideal I , that it is not empty . 

If I is an ideal , I(M,N) is not only additively closed but by (I) even a subgroup 

of Hom R (M,N) and a End(N)-End(M)-bimodule . 

If I , J are two semi-ideals , then we write I c J resp. I = J resp. I D J iff for 

all M , N G m R 

I(M,N) c J(M,N) resp. I(M,N) = J(M,N) resp. I (M,N) D J(M,N) . 

The following lemma shows , that a semi-ideal I is uniquely determined by 

I(M,M) for all M G m R . 
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1.2. Lemma 

For semi-ideals I , J the following is true : 

(i) I c J e> V M e m R [ I ( M , M ) c J (M,M)] 

(ii) I = J <=> V M e W L R [ I ( M , M ) = J (M,M)] . 

Proof : 

=* : Clear . 

(i) , <= : Consider A , B e WlR and f e I (A ,B) . Define M = A @ B with the 

inclusions i A , i B and the projections nA , TTb . Then by (1) t B f n A

 G I ( M , M ) c 

J(M,M) . Then again by (1) 7 v B t B f 7 T A i A = l B f l A = f e J(A,B) , hence I c J . 

(ii) , => : I ( M , M ) = J(M,M) implies I c J and J c I , hence I = J . 

Our main goal in this chapter is to define semi-ideals and ideals in Mod-R by 

using a modified notion of the total relative to certain classes of R-modules . 

First we give two examples for ideals in Mod-R . 

1. Example : 

Denote by Q a (proper or inproper) subring of the centre of R . Then every 

H o m R ( M , N ) is a Q-right-module by the definition 

fq(x) := f(x)q , x e M , q[ e Q . 

Then it is easy to see , that 

R a d ( H o m R ( M , N ) Q ) for all VI , N e m R 

is an ideal in Mod-R . For g e Homi R (X,M) the mapping 

g : H o m R ( M , N ) 3 f H> fg G H o m R ( X , N ) 

is obviously a Q-module homomorphis:m , hence 

Rad(Hom R (M,N))g c Rad(Hom R (X,N)) . 

The same is true for the other side . That means that (I) holds . ( 2 ) is anyway 

satisfied for a radical . 

2. Example : 

The Jacobson-radical in Mod-R . 
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1.3. Definition 

Rad(M,N) := ( f e Hom R (M,N) | V g e H o m R ( N , M ) [ l M - g f is an invertible 

element in T := End(M)] } . 

In the following we have to use I I I . 1.7 : 

1 M - gf is invertible in T <=> 

1 N - fg is invertible in S := End(N) . 

Hence the definition of Rad(M,N) can also be given by using 1 N - fg . For 

M = N , this is the definition of the Jacobson radic^l for T by using quasi-

regularity . 

1.4. Corollary 

Rad is an ideal in Mod-R . 

Proof : 

Semi-ideal Rad : For h e Hom R (N,Y) we have to show , that 1 M - ghf is 

invertible in T for all g e Hom R (Y ,M) . But gh e H o m R ( N , M ) , therefore we 

have this property by assumption . Similar for the other side . 

Ideal Rad : Assume f1 , f 2 € Rad(M,N) and consider 
*M - g( f i+f2) = O M - g f i ) " Rh > g G H o m R ( N , M ) . 

By assumption , there exists an inverse t j e T of l ^ - g f i • With this follows 
h O M - g f i ) ~ h&h = I M - t igf 2 • 

Since also t jg e H o m R ( N , M ) , there exists also an inverse t 2 e T of 1 M - t 1 gf 2 : 
t 2 t i ( l M - g(fi + h)) = t 2 ( l M - t ig f 2) = I M • 

Since tj , t 2 are invertible elements , also t 2 t a is invertible . Therefore , this is 
also the right inverse of 1 M - g(fj + f 2 ) , hence also this element is invertible . 

Now , we consider also the radicals of the T- resp. S-modules H o m R ( M , N ) T 

resp. s H o m R ( M , N ) and ask for a connection to Rad(M,N) . 
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1.5. Proposition 

Rad(Hom R (M,N) T ) + Rad( s Hom R (M,N)) c Rad(M,N) for al l M , N e m R . 

Proof : 

Since Rad(M,N) is an ideal , we have only to show , that both radicals are 

contained in Rad(M,N) . With respect to symmetry , we have only to prove 

Rad(Hom R (M,N}r) c Rad(M,N) . L e t be f s Rad(Hom R (M,N) T ) , that is fT Q 0 

H o m R ( M , N ) T ( " Q,° " means "small submodule" . ) . For any g e Hom R (N ,M) 

follows 

gfT Q° T T , 

since the image of a small submodule is small in the image of a homomorphism . 

Since for any t e T 

( 1 M - gft)T + gfT = T 

we get ( 1 M - gft)T = T . Then there exists t j e T with ( 1 M - gft)t a = 1 M , hence 

h - *M " gft(-ti) . By the same reason, also this element has a right inverse . 

Therefore t j has a left and a right inverse and then this is the invertible element 

1 M - gft . For t = 1 , that means 1 M - gf is invertible , hence f e Rad(M,N) . 

Finally we mention a result which we need later . 

1.6. Lemma 

If f e Rad(M,N) , g e Hom R (N ,M) , t e T , then gftT Q° T x . 

Proof : 

Since Rad(M,N) is an ideal , also ft e Rad(M,N) . We assurne now for a right-

ideal U of T : 

gftT + U = T . 

Then there exist t j e T , u e U such that 

gfttj + u = 1 M 

u = 1 M - gfttx 

But since f t t 1 e Rad(M,N) u is invertible , hence U = T , which means 

gftT G>° T T . 
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§2. Some properties of idempotents and induced isomorphisms 

For preparation of the definition of the total in Mod-R , we need some simple 

results about idempotents and induced isomorphisms . 

For M , N e W . R let be f e H o m R ( M , N ) , g , h e H o m R ( N , M ) , S : = End(N) , 

T : = End(M) . By d , dj € S , e, ej e T we denote nonzero idempotents . 

2.1. Lemma 

(i) If fg = d , then gdf = e and 

e(M) B e(x) H> fe(x) e d(N) 

is an isomorphism . 

(ii) If hf = ej , then fe t h = dj and 

e t (M) 3 e^x) H> fe^x) e dx(N) 
is an isomorphism . 

Proof : 

(i) : If fg = d ( = d 2 4= 0) , then 

(gdf) 2 = g(dfgd)f = gdf . 

Denote e : = gdf , then feg = d 4= 0 , hence e 4= 0 . Further 

O) df = d 2 f = fgdf = fe 

and 

d(N) = d 2 (N) = dfg(N) c df(M) c d(N) 

hence 

(4) d(N) = df(M) . 

Now , we consider the mapping in (i) . That this is an epimorphism follows 

from (3) and (4) . Assume fe(x) = 0 , then gdfe(x) = e(x) = 0 , hence it is 

also injective . 

(ii) : Similar , we have now hf = e1 ( = e t

2 4= 0 ) , then 

(fe x h) 2 = f ^ h f e ^ h = fe xh . 

Denote dj := fejh , then hdjf = ej * 0 , hence dj 4= 0 . Further 

fe t = f e i

2 = fejhf = dtf 
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and 

d x (N) = ieth(N) c f e^M) = d^M) c d t (N) 

hence 

di(N) = d t f (M) . 

Similar to the proof of (i) follows , that the mapping in (ii) is an isomorphism . 

2.2. Definition 

1. ) A class k of objects from TO.R (that is of R-modules) is called a closed class 

iff it is closed with respect to isomorphisms and direct summand . 

2. ) A n idempotent d e End(N) is called a k-idempotent iff d(N) e k . 

2.3. Lemma 

Given a closed class k . Then for f e Hom R (M,N) the following conditions are 

equivalent : 

(a) There exists g e H o m R ( N , M ) such that fg is a nonzero k-idempotent ; 

(b) there exists h e H o m R ( M , N ) such that hf is a nonzero k-idempotent ; 

(c) there exist 0 * A Q*9 M , B N with A , B e k , such that the mapping 

f : A 3 x f (x) G B 

is an isomorphism ( f = n B f t A ) ; 

(d) there exists 0 * C e k and homomorphisms o c : C - » M , ß : N - » C , 

such that ßfoc is an automorphism . 

Proof : 

(a) (b) : By 2.1. (i) with h = gd . Since d(N) e k and k is closed , also 

e(M) e k . 

(b) => (c) ; By 2.1. (ii) with A = e^M) , B = dt(N) . 

(c) (a) : If N = B © B i and d is the projector on B belonging to this 

decomposition , then d = d 2 and d(N) = B , that is , d is a nonzero k-idempotent . 

Define g e Hom R (N ,M) by 

g | B := T - 1 , g(B!) = 0 , 

then fg = d . 
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(c) => (d) : Take C = A , o c = t A , ß = f _ 1 n B , then ßfoc = f " 1 ^ ^ = 1 A . 

(d) (c) : Now w e h a v e the S i t u a t i o n 

<x f 
C * M > N 

then 

M = Im(oc) © Ke(ßf) 

N = Im(fa) © Ke(ß) 

and a is a monomorphism . Take in (c) A = Im(a) and B = Im(foc) . Since 0 * 

C e k and oc is mono , also 0 * Im(a) e k . Since Ke(f) c Ke(ßf) f induces 

the isomorphism Im(oc) 3 x H» • f(x) e Im(fa) = f Im(ot) . 

§3. k-partially invertible Clements and the k-total 

3.1. Definition 

Given a closed class k . 

1) f G Hom R (M,N) is called k-partially invertible = k-pi the conditions 

of 2.3 are satisfied . 

2) TOTk(M,N) := { f | f e Hom R (M,N) A f is not k-pi } . 

This is called the k-total from M to N . If k is the class of all R-modules we 

write TOT(M,N) and call this the total from M to N . 

Obviously we have then TOT(M,N) = Tot(Hom R (M,N)) in the meaning of (E2) . 

In the following k always denotes a closed class of R-modules . 
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3.2. Lemma 

1) TOTfc is a semi-ideal in Mod-R . 

2) V M , N e m R V f j e Rad(M,N) V f 2 e TOT(M,N) 

ft + f 2 e TOT(M,N) ; 

we write for this : 

Rad + TOT = TOT . 

Proof : 

1) : For f e TOTt (M,N) , g G H o m R ( X , M ) , h G Hom R (N ,Y) we have hfg e 

TOTk(X,Y) to show . Proof,indirect . Assume hfg is k-pi . Then there exists 

p G Hom R Qf ,X) such that (hfg)p = (hf)(gp) = d = d 2 * 0 with a k-idempotent 

d . Then by 2.3. there exists q G H o m R ( Y , M ) such that 

q(hf) = (qh)f 

is a k-idempotent , hence f is k-pi £ . 

2) : Proof indirect . Assume there exists g G H o m R ( M , N ) such that 

gffi + f 2 ) = e = e 2 * 0 

T = gfjT + gf 2 T + (1 - e)T . 

Since by 1.6. gfjT c;° T x we have 

T = gf 2 T + (1 - e)T 

=> eT = egf 2T , 

then there exists t G T with e = egf 2t . 

But this is not possible , since TOT is a semi-ideal and e $ TOT(M,M) . 

3.3. Remark 

If a finite meaningful product of modulehomomorphisms is k-pi , then every 

factor of this product is k-pi . 

Proof : 
Since TOT^ is a semi-ideal . 

With respect of 3.2. 1) we have now several questions . 
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1) For which k is TOT^ an ideal ? 

2) What are the conditions for closed classes kx, k 2 such that TOTj^ = TOTfc2 ? 

3) Is there some kind of correspondence between closed classes and semi-

ideals ? 

We give first complete answer to the first two questions . 

3.4. Proposition 

For a closed class k are equivalent : 
(i) TOTfc is an ideal ; 

(ii) k is a subclass of the class of all TE-modules (TE-module see I I I . 1.1.) . 

Proof : 

(i) ( i i ) : Let be M e k . Since k is closed , every direct summand of M is in k 

and every idempotent of T = End(M) is a k-idempotent . Therefore TOTk(M,M) 

= Tot(T) ; since TOTfc(M,M) is additively closed , T is a total ring and M is a 

TE-module . 

(ii) => (i) : Consider f , g e TOT^(M,N) and assume f + g is k-pi . Then there 

exists h e H o m R ( N , M ) and a k-idempotent e e T = End(M) such that 

h(f + g) = e = e 2 * 0 . 

Denote A := e(M) and i : A M the inclusion and n : M -» A the projection 

along M = e(M) ® (1 -e)(M) , then e = ii\ , 1 A = m . From h(f + g) = e follows 

ehfe + ehge = e = LTT 

and 

nhfi + nhgt = 1 A . 

Since f , g e T O T ^ ( M , N ) and TOT^ is a semi-ideal , also i\hfi , nhgi e 

TOT^(A ,A) . Since by assumption A is a TE-module , it follows , that nhft + 

nhgi = 1 A is in Tot(End(A)) ^ . 

Now we answer the second question 
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3.5. Proposition 

Let kj , k 2 be closed classes 
T O T k 2

 c T O T k i 

Proof : 

: Consider A G k t , A =*= 0 , then 1 A is k r p i , hence 1 A TOT^CAjA) . 

Since TOTfc2 c TOTj^ also 1 A * TOTk 2 (A ,A) . Then there must exist 0 * 

B c;© A , B e k 2 , such that 1 A induces the identical isomorphism on B . 

<= : If f e H o m R ( M , N ) and f is k r p i , then there exist 0 * A M , B Q e N , 

A , B e k j , such that 

T : A 3 x H> f(x) e B 

is an isomorphism. By assumption there exists C c;© A , C * 0 , C G k 2 , and 

the isomorphism f induces an isomorphism 

f : C -» f(C) , 

where f(C) B , hence f(C) N and since C s f(C) also f(C) G k 2 . That 

means , f is also k 2 - p i . This implies T O T ^ 2 c TOT^ 1 . 

3.6. Corollary 

1) If k j , k 2 are closed classes , then : 

TOT^ 2 = TOTfcj T O T t 2 c TOTj^ A TOTj^ c TOT^ 2 

(see conditions in 3.5) 

2) If k x , k 2 are closed classes and kx c k 2 , then T O T t 2 c TOTj^ . 

If we denote by 

k Q = class of LE-modules 

k x = class of injective modules 

k 2 = class of quasi-injective modules 

k 3 = class of 2-EP modules 

k 4 = class of RTE-modules 

k 5 = class of TE-modules 

. Then 

every A G k j , A £ 0 contains a nonzero 

direct summand C G k 2 
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then we have 

, ) c k 3 c k 4 c k 5 

ki c k 2 J 3 5 

and the ideals (which al l contain Rad) 
J T 0 T k 0 

TOTi^ c TOTir, c TOTv. c S 

*5 M *3 'L T O T k 2 c T O T k l . 

For a given ring R we would like to know , which of these are different . For 

example T O T j ^ is different from TOT^. , i = 0 , . . . , 4 , i f there exists 0 * A 
€ k 5 , which does not contain a nonzero direct summand in kj . 

We show at least for a certaih ring R , that T O T ^ 3 J T O T \ o . For a field k we 

consider 

R := K K / K ( N > . 

We prove , that R R has the 2-EP but does not have a nonzero direct summand 

with local endomorphismring . 

For the prove , that R R has the 2-EP , we show ( I I . 5.1) , that for any a e R 

there exists an idempotent d e R such that 

d e Ra , 1-d e R(l-a) : 

Let (aj) 6 R with a representative (aj) e . Then define (dj) e by 

1 1. 0 i f a, * 1 

Then (d{) is idempotent and (dj) = (djXaj) , hence (dj)= (djXaj) e R(aj) . 

Further 

" 0 for 2L{ = 1 
1 - d; = , 

1 1 1 for aj * 1 
and 

f 0 for a. = 1 
1 - a« = 1 1 

1 l 1 - aj * 0 for aj 4= 1 , 

hence (1) - (dj) e K w ( ( l ) - (a d)) 

and (T) - (dil e R((T) - (S~)) . 
By this we know , that R R has the 2-EP . 

Assume 

R R = A 0 B , A * 0 , 
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then there exists an idempotent 0 * (e^ e R such that A = (ej)R and E n d ( A R ) 

s (e|)R(e|) . Since (ej) 2 = (ej) * 0 , there exists n e IN such that 

0 
or for i £ n 
1 

and there are infinitely many e{ = 1 . Define now (d 4) by substituting in (ej) 

every second e{ = 1 by 0 ; then (dj) is a nonzero idempotent * (ej) in (e^)R(e[). 

Hence this ring is not local . 

We have also an easy example for T O T ^ 2 $ TOTj^ for R = IL . 

Obviously is TLjWL as a 2£-module quasi-injective , since lULjtfL is the only 

nontrivial submodule and Hom;g(2Z/42£) = { 0 ; i } ( 0 = zero-homomorphism , 

t = inclusion) . But Z / 4 2 £ z is not injective , since the homomorphism 

3 4x H> x + M L e Z / 4 Z 

cannot be lifted to a homomorphism from 2£ to TL/bTL . Since 2Z /42£ Z is directly 

indecomposable , i t does not contain a-nonzero injective direct summand . 

It w o u l d be interesting to g i v e examples for proper Containment for all 

possible cases . Or even to do more : To characterize a l l rings for w h i c h a 

certain C o n t a i n m e n t TOT^. c T O T ^ ( i > j ) is proper . 

§4. A Galois-correspondence in an arbitrary category 

We are mainly interested in the category Mod-R , but the folliowing interesting 

Galois-correspondence can be described in an arbitrary category . We do not 

use anything from before but fonnulate this §4. selfcontained . 
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Denote by C a category and by Obj(C) resp. Mor(C) the class of objects resp. 

morphisms of C . For A , B e Obj(C) we denote by Mor(A,B) the set of 

morphisms from A to B . If we write 0 4= C e Obj(C) , then this makes sense 

only i f C has zeroelements . If C has no zeroelements , then the condition 

0 + C is superflous . 

4.1. Definition 

1) A nonempty class k c Obj(C) is called closed V M e k V C e Obj(C) 

and morphisms o c : C - » M , | 3 : M - » C with ßoc = l c also C e k . 

2) A semi-ideal I in C is given by a set 

0 * I(A,B) c Mor(A,B) for all A , B e Obj(C) 

such that for all A , B , X , Y e Obj(C) and all h : X -» A , g : B -> Y , 

f € I(A,B) 

gfh E l (X,Y) . 

3) If I and J are two semi-ideals , we write I c J resp. J 3 I : ^ 

I(A,B) c J(A,B) for all A , B e Obj(C) . 

4) Let be k c Obj(C) , f e Mor(A,B) . 

f is called k-partially invertible ( = k - p i ) 

3 C e k , C t 0 , a : C -» A , ß : B -> C with ßfa = l c . 

5) T O T k ( A , B ) := ( f e Mor(A,B) I f is not k-pi } for all A , B e Obj(C) . 

In the case k = Obj(C) we write for abbreviation TOT = T O T o b j ( C ) and 

TOT(A,B) = T O T o b j ( c ) ( A , B ) . 
6) Let be I a semi-ideal , then 

K ( I ) := ( M G Obj(C) | TOT(M ,M) D I (M ,M) } . 

4.2. Corollary 

Let be k x , k 2 , k closed classes and I j , I 2 , I semi-ideals . Then the following 

properties are satisfied : 

(1) If a produet of morphisms is k-pi every factor of the produet is k-pi , 

(2) T O T k is a semi-ideal , 

(3) K ( I ) is closed , 

(4) k x c k 2 => T O T k 2 c T O T k l 
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(5) I x c I 2 => K ( I 2 ) c 

(6) M e k TOT(M,M) = TOT k (M,M) 

(7) k c K ( T O T k ) 

(8) I c T O T K ( I ) . 

Proof : 

(1) By definition of k-pi . 

(2) By (1) . 

(3) Assume M 6 K ( I ) and C — ^ M C with ßoc = l c , then 

ocI(C,C)ß c I(M,M) c TOT(M,M) => 

I(C,C) c ßTOT(M,M)a c TOT(C,C) . 

(4) By def. 

(5) By def . 

(6) By (4) : TOT(M,M) c TOT k (M,M) . Assume f € Mor(M,M) and f « 

TOT(M,M) =* 3 0 * C e Obj(C) and 

C — ^ M M — C 
with ßfa = l c = ß(fa) , hence C e k (since k is closed and M e k ) . This 

means f is k-pi , hence f * T O T k ( M , M ) . Therefore also T O T k ( M , M ) c 

TOT(M,M) . 

(7) If M e k , then by (6) TOT(M,M) = T O T k ( M , M ) M e K ( T O T k ) . 

(8) Assume f e I(A,B) , f < T O T K ( I ) ( A , B ) there exists 

C A — B C 

with 0' * C € K ( I ) , ßfoi = l c . Then l c e I(C,C) , since I is a semi­

ideal . Since C e K ( I ) I(C,C) c TOT(C,C) , hence l c € TOT(C,C) 4 . 

Now we come to the theorem , which shows , that we have indeed a Galois-

correspondence in C . 

4.3. Theorem 

Let be k a closed class and I a semi-ideal . Then 

(i) T O T k = T O T K ( T O T k ) • 
(ii) K ( I ) = K ( T O T K ( I ) ) . 
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Proof : 

(i) : By (7) and (4) (from 4.2) follows 
T O T K ( T O T k ) c T 0 T k 

and by (8) (wi th I = T O T k ) follows the converse inclusion . 

(ii) : By (8) and (5) follows 

K ( T O T K ( 1 ) ) c K ( I ) 

and by (7) (with k = K( I ) ) follows the converse inclusion . 

Example 

G. M. Kelly [ 4 ] defined the notion "radix" of a category , which is an 

equivalencerelation in Mor(A,B) for all A , B in the category . This definition 

seems to have some connection with our notion, "total" . But we show by an 

example that these are really different notions . 

Let be V K a vector Space over a field K with d i m ( V K ) = n > 1 . Denote by 

<V> the category with the objects V 1 , i e IN and all linear mappings as. 

morphisms . Then the following is easily to see : 

If k is a closed nonempty subset of O b j « V » , then 

T o t k ( A , B ) = { f e Hom K (A,B) I dim(Im(f)) < n } 
and 

T o t 0 ( A , B ) = H o m K ( A , B ) . 
Consider a fixed q e IN and define 

Iq(A,B) := { f e H o m K ( A , B ) I dim(Im(f)) * q } , 

then this is a semi-ideal in <V> . 

For q < n - 1 

Iq(A,B) c TOT(A,B) 

and K ( I q ) = O b j « V » . 

For q ^ n 

Iq(A,B) <£ TOT(Ä,B) 

and K ( I q ) = 0 . 
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The radix of Kelly gives for H o m K ( A , A ) the partitioning in two classes : the 

units and the nonunits . This shows , that the radix and the total are different 

notions . 

In an additive category , the radical can be defined ( [ 4 ] ) as we did for 

Mod-R . In <V> we have Rad = 0 . Therefore , in <V> also the radical is 

different from the total and the radix . 


