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Abstract

Multiple sclerosis (MS) is characterized by high variability between pa-
tients and, more importantly here, within an individual over time. This
makes categorization and prognosis difficult. Moreover, it is unclear to what
degree this intra-individual variation reflects the long-term course of irre-
versible disability and what is attributable to short-term processes such as
relapses, to interrater variability and to measurement error. Any investi-
gation and prediction of the medium or long term evolution of irreversible
disability in individual patients is therefore confronted with the problem of
systematic error in addition to random fluctuations. The approach described
in this article aims to assist in detecting relapses in disease curves and in iden-
tifying the underlying disease course. To this end neurological knowledge was
transformed into simple rules which were then implemented into computer al-
gorithms for pre-editing disease curves. Based on simulations it is shown that
pre-editing time series of disability measured with the Expanded Disability
Status Scale (EDSS) can lead to more robust and less biased estimates for
important disease characteristics, such as baseline EDSS and time to reach
certain EDSS levels or sustained progression.



1 Introduction

Multiple sclerosis (MS) is a complex autoimmune disease which is charac-
terized by a great heterogeneity in disease course within as well as between
individuals.1 This results in uncertainty about diagnosis and prognosis. Nat-
ural history data providing information on the long-term course of MS pa-
tients are therefore especially valuable. They come from patient registries
and studies other than clinical trials. Hence, natural history data are either
collected according to a regular schedule or whenever a patient considered it
necessary to consult his physician. Especially for the second group of studies
it is quite likely that some of the data were collected while patients were
affected by short-term symptoms of the disease, e.g. when suffering from a
relapse. Results from former natural history studies and further references
can be found, e.g. in articles by Weinshenker et al.2,3 and Confavreux et
al.4,5

Consequently, the variability of natural history data is not exclusively
random but also contains a systematic component due to relapses. Not con-
sidering this systematic error would lead to biased estimates and predictions
for the future course of the disease. There are, however, also other possible
sources of systematic and random errors. In this paper interrater variability
is also considered. It has been shown that especially for small EDSS val-
ues, different physicians arrive at different conclusions when diagnosing the
same patient.6 Moreover, the complexity of the EDSS scale may imply the
possibility of intrarater variability, i.e. that a single physician can come to
different conclusions for patients with exactly the same symptoms.7 A typ-
ical source for a random error is the daily performance of a patient, i.e. a
patient’s EDSS value might change on a daily basis depending on, e.g. the
temperature or also on the mood or the previous activity of a patient.8

To improve the reliability of estimates and predictions we suggest to ap-
ply neurological knowledge combined with ideas from the analysis of bio
signals9 to filter out systematic effects that are caused by relapses. The
other error sources then can be treated with statistical methods, like e.g.
the segmented regression model proposed by.10 To evaluate the benefit of
this filtering or pre-editing process the methods are first applied to simu-
lated data which have the advantage that all parameters are known and
then transferred to real data from the pooled database of the Sylvia Lawry
Centre for Multiple Sclerosis Research (SLCMSR). Furthermore, we show
by pre-editing data that come from placebo arms from clinical trials that
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in definitions for sustained progression one has to draw the attention also
on a stable baseline and not only on the assessment of ‘sustained’. The
SLCMSR database contains anonymized data from natural history studies
and placebo arms of clinical trials that have been donated by the pharmaceu-
tical industry, by universities, hospitals and clinical research groups (donors:
http://www.slcmsr.org/en/partner.htm).

2 Methods

2.1 Rules for detecting relapses

The rules for removing systematic errors due to EDSS values that seem too
high, e.g. because of relapses, emerged from discussions among the authors
who have neurological or mathematical background. Based on their clinical
experience, neurologists identified outliers in EDSS courses drawn from the
SLCMSR database. These outliers were then classified and simple rules de-
rived that could be transformed into algorithms by the mathematicians. In
addition to detecting these outliers the algorithms have to ensure that the
basic structure of the data remains unaltered.

Basically, there are two rules. The first rule can be applied to both,
clinical and natural history data, whereas the second rules is rather thought
to be applied to natural history data only.

Assume the data set contains i = 1, . . . , N patients and from each patient
we have ni EDSS measurements at times ti1 < . . . < tini

, where ti1 = 0 and
tij is the elapsed time to the jth observation in months (m). Formally, the
rules modify the data set by a transformation:

{EDSS(tij)} −→ {EDSS ′(tij)}.

In the following that transformation is described in detail. Since all opera-
tions are applied to each patient separately the subscript i is omitted in the
following sections.
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2.1.1 Rule 1 for high initial values

Patients are often suffering from short-term changes in their disability status,
such as a relapse, when they first contact a physician. Hence this is also
likely to be the case when they enter an MS registry or join a clinical trial.
Consequently, the first observation, frequently used as a baseline value, may
be artificially high. The first rule is, therefore, intended to filter the effect of
a relapse at the initial visit. Since most patients with a relapsing remitting
course of the disease recover from a relapse within three months, it seems
appropriate to use the first observation recorded at least three months after
entering the study as a revised baseline. In a few cases complete remission
might take longer. In such a case the patient’s EDSS levels would be expected
to decrease over several months. If such a trend is observed the last value of
this trend is used as the revised baseline. The initial value is set to the value
of the revised baseline. Because of high correlation with the initial value
also all values that are observed within the first three months are set to the
revised baseline. This rule is only applied when the EDSS level at the entry
visit is higher than at the following visits and possible adjustments are made
before the checks for Rule 3, 4 and 5 are performed.

The mathematical formulation of this rule is given by:

For all j, such that tj < 3m, the transformation is given by

EDSS ′(tj) = min(EDSS(t1), . . . , EDSS(tl)), (1)

where l is chosen such that tl−1 ≤ 3m and tl > 3m.
If EDSS(t1) ≥ . . . ≥ EDSS(tl) then an l′ ≥ l is chosen such that
EDSS(t1) ≥ . . . ≥ EDSS(tl′) and EDSS(tl′) < EDSS(tl′+1).
Finally, in equation (1) l is replaced by l′.

Figure 1 illustrates two possible applications of the initial value rule.
No trend is observed in Figure 1a, however the first observation after three
months has a smaller EDSS value than the initial one. Hence all values
prior to three months are set to the value of the first observation after three
months. In Figure 1b a trend is observed and the last value of the trend is
used to modify the initial values.
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Figure 1: Rule for initial high values; The vertical line is drawn at three

months.

2.1.2 Detecting outliers based on preceding observations

In this subsection the Rule 3 uses the information up to two years to identify
an outlier. The basic idea is to recognize a trend in the EDSS course of a
patient. Based on this trend an acceptance region for the following obser-
vation is defined. If the following value lies outside and its successor within
this acceptance region the first value is regarded as unreliable and therefore
discarded. Because of the high interrater variability for EDSS values smaller
than or equal to 2.0, this rule is only applied for larger values. In contrast
to Rules 1 and 2 that are applied immediately the transformations that re-
sult from this rule are only conducted after all checks including those for the
later explained Rule 4 and 5 are conducted. This is to avoid a possible chain
reaction that deletes all observed values from a patient and to ensure that
decisions are based on as many observations as possible.

Before specifying this rule we need two definitions that explain what we
mean by trend and acceptance region.

Trend A trend is specified by a linear regression line that is fitted for all
points within a time window of 15 months. If there are less than two
observations within this time window the immediately preceding values
are used to include at least two points. If the time span for the points
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used to evaluate the trend is less than or equal to three months also the
preceding points are included until a period of at least three months
is reached. A negative trend is not accepted. In this case the trend
is given by a horizontal line through the last point that was used to
compute the trend. Figure 2 illustrates this definition.

Acceptance region An acceptance region for an EDSS value observed at
time tj where 3 ≤ j ≤ n is defined by a trend line with time window
[tj − 18m; tj − 3m] and a slope parameter γ. Say the time point of the
last observation that is used to compute the trend line is tk. The upper
boundary of the acceptance region is defined by a line. It is fixed by
the value of the trend line at tk and its slope is given by the sum of the
slope of the trend line and γ. The area below the boundary is called
the acceptance region. For a visualization of this definition see Figure
3.

With these definitions the rule is formulated as:

For all j = 3, . . . , n − 1 with EDSS(tj) ≥ 2.5 and tj > 6m a
check is performed whether EDSS(tj) lies within its acceptance
region with slope parameter γ = 0.6 EDSS/year. If it does not
and EDSS(tj+l) lies within the acceptance region, EDSS(tj) is
deleted. Here l is the smallest integer such that tj+l − tj > 3m or
EDSS(tj+l) is the last observation.

The slope parameter 0.6 EDSS/year corresponds to approximately double
the value of the average increase in EDSS levels per year. This value was
estimated based on the SLCMSR database. In Figure 3 the third observation
would be deleted because it is outside the acceptance region and its successor
lies inside.

2.1.3 Rule 4 for final values

Rule 3 cannot be applied to high final observations since no succeeding value
is available. To compensate, the slope parameter for the acceptance region is
increased to four times the average increase per year. Hence, the final value
is deleted only in very rare and extreme cases.

The EDSS value EDSS(tn) ≥ 2.5 is deleted if it lies outside
of its acceptance region with slope parameter 1.2 EDSS/year.
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2.1.4 Rule 5 for exclusively small values

Basically, this rule does not preprocess the data but puts a very general
restriction on the interpretation of time series of small EDSS values and on
models to be fitted. It considers the high variability for EDSS values less
than or equal to 2.0 as reversible fluctuations not contributing to disease
progression. Furthermore, since these EDSS values are based on very small
values on the different Kurtzke functional scales the interrater variability
is rather high.6,11–13 Consequently, the rate or the starting point for the
progression of MS should not be solely based on EDSS values that are smaller
than 2.5.

If the maximal EDSS value is less than or equal to 2.0 then a
progression has not begun yet.

Since these rules are supposed to be independent of the chosen model no
more precise formulation can be given.

In the following section the impact of the rules on the parameters of a
segmented regression model and on time to sustained progression is exam-
ined. Moreover a few graphs are shown that illustrate the influence of the
rules on the data.
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2.2 Simulation

In order to assess the effects of the introduced pre-editing rules on the pa-
rameter estimates of a segmented regression model data sets of simulated MS
patients were generated from this model with and without added relapses.

The segmented regression model to be considered assumes that an initial
stable phase of the disease is followed by a progressive phase and that the
switch between them occurs at a specific time point (the “change point” τ).
During the stable phase the observed EDSS values are assumed to fluctuate
randomly around a fixed baseline value e0. After the change point the model
assumes that the disease progresses linearly with slope α, i.e. the disease
progression measured on the EDSS scale is constant at rate α. Either of the
two phases might be missing. The three parameters are fitted for each patient
separately. In Figure 4 the recorded EDSS values and the fitted segmented
regression model are displayed for two patients.

8



The model can be described by10

EDSS(tij) =

{

e0i + εij for tij < τi

e0i + αi(tij − τi) + εij for tij ≥ τi

,

for i = 1, . . . , N and j = 1, . . . , ni, where e0i refers to the baseline of the initial
stable phase of the ith patient, τi to the time until the change point, αi > 0
to the slope parameter of the regression line and εij is some random noise.
The parameters are fitted with a least squares approach and the restrictions
arising from Rule 5. To ensure all three parameters can be estimated there
cannot be a change point between the last but one and the last observation.
For a more general discussion of segmented regression models and further
references might be found in an article by Küchenhoff.14

For the simulation study 1000 patients, with one annual observation for
ten years were generated. The underlying process was chosen to be the same
for all patients: A segmented regression model with baseline e0 = 2, change
point τ = 4 years and slope α = 0.5 EDSS/year. Random noise was added
to each observation by drawing from a discrete distribution with the following
probabilities:

x −1 −0.5 0 0.5 1
P (X = x) 0.1 0.25 0.3 0.25 0.1

.

Additionally, it was assumed that a relapse in the data occurs indepen-
dently at each time point with probability 0.2 and in such a case the EDSS
level was increased by 3.

3 Results

In this section natural history data are shown before and after application
of the rules to demonstrate their impact. Then their effect on the parameter
estimates of the segmented regression model for simulated and real natu-
ral history data and on time to sustained progression in clinical data are
examined.

The analyses are based on the SLCMSR data set ver1−0−rc1 that was
released in November 2003. This data set is split into an open and a closed
part, where the closed part is only used for validation of hypotheses found in
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Figure 5: Disease course before (triangles) and after (crosses) application of

the rules.

the open part; access to the closed part is limited to a data trustee. Hence
only 40% of the data, that is 4781 natural history patients and 1354 placebo
patients from clinical trials were available.

3.1 Pre-editing natural history data

To illustrate the impact of the rules we selected four patients from the natural
history part of the SLCMSR database (see Figure 5). The patients have been
chosen such that in all four graphs the first two rules have great impact: the
initial values are reduced and the jagged courses are smoothed. The results
for the initial value rules seem quite reasonable, except that in the upper
right graph one might prefer to adjust the initial value to zero. On the other
hand, a stricter Rule 1 would in many other cases lead to too substantial and
undesirable changes in the data.

Rule 3 influences the EDSS course for the patients shown in the upper
right and lower left graph. For the upper right graph, one might again be
tempted to remove not only the three observations around month 28 but
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also the observation around month 35 with EDSS level 3.5. This does not
happen because the three observations are removed only after all observations
are checked, i.e. the removed observations are still used to compute the trend
line for the following observations.

When the rules were applied to natural history patients with at least five
EDSS values in the SLCMSR data set (1120 patients with 10787 observa-
tions) the initial value rule was applied 244 times, Rule 2 199 times and Rule
3 and 4 lead to 566 deleted observations. The change in EDSS caused by
Rule 1 and 2 was in 260 cases smaller than or equal to one, in 141 cases
between one and three and in 42 cases greater than or equal to three.

3.2 Pre-editing and analysis of simulated natural his-

tory data

The effects of pre-editing on the parameter estimates of the segmented re-
gression model are now examined. This is easiest, of course, when the true
disease course is known. In order to achieve this data sets with EDSS time
series of ten years were generated for 1000 patients using this model with and
without added relapses. Subsequently, the segmented regression model was
fitted to these simulated natural history data with and without first applying
the rules.

In Table 1 the means and standard deviations for the parameter estimates
are given. Because of the chosen simulated values all patients progress in both
cases. Obviously, Rule 1 reduces the baseline, but also the estimate for the
change point τ is underestimated. This effect is closely related to the lower
baseline. In the case of an underestimated baseline the regression line for the
progressive phase is lengthened until it touches the new baseline and hence
leads to an earlier change point.

If the simulated time series include relapses, pre-editing leads to an esti-
mate for the slope close to the simulated value, whereas without pre-editing
the slope is estimated nearly twice as large as the simulated slope. Applying
the rules to the data set without relapses increases the variability in the es-
timates but in the presence of relapses failure to apply the rules results in a
very unreliable estimate for the slope.

The desirability of applying the rules becomes obvious when regarding
the time until a certain EDSS level is reached. In Table 2 the mean times
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Relapses Rules e0 τ α

simu. values 2.00 4.00 0.50

no no 1.93 (0.30) 3.79 (1.46) 0.53 (0.16)

no yes 1.68 (0.38) 3.43 (1.69) 0.53 (0.18)

yes no 2.46 (0.59) 3.88 (2.58) 0.91 (0.91)

yes yes 1.89 (0.55) 3.11 (2.21) 0.58 (0.36)

Table 1: Means (sd) for the parameter estimates for the segmented regression

model. The model was fitted to each of the simulated data sets with and

without relapses and with and without the application of pre-editing rules.

Relapses Rules EDSS 3 EDSS 5 EDSS 7

simu. values 6.00 10.00 14.00

no no 6.08 (0.65) 10.10 (0.89) 14.11 (1.94)

no yes 6.27 (0.67) 10.37 (1.13) 14.47 (2.30)

yes no 4.01 (2.47) 9.13 (1.38) 13.20 (3.24)

yes yes 5.29 (1.75) 9.87 (1.67) 14.20 (3.62)

Table 2: Estimates (sd) of time to landmark EDSS values for the simulated

data sets.

12



0 2 4 6 8 10

0
1

2
3

4
5

6
7

simulated values
no relapses, no rules
no relapses, rules
relapses, no rules
relapses, rules

Figure 6: True and estimated EDSS curves based on the mean of the param-

eter estimates for the segmented regression model

until an EDSS level of three, five or seven is reached and the corresponding
standard deviations are given. Applying the rules to the simulated data set
without relapses leads to only slightly biased estimates but when relapses
are present the estimation is improved considerably. Especially, for the time
until an EDSS level of three is reached the naive estimates are highly biased
and applying the rules reduces the bias significantly. However, by application
of the rules in this case the variation increases.

The greatly improved ability of the model to predict certain landmarks
of the disease can be seen in Figure 6. If no relapses are present the pre-
diction with and without application of the rules differ only slightly. When
relapses are present the application of the rules reduces the bias in possible
predictions.

Hence the application of the rules will lead to a lower baseline and there-
fore to an earlier estimated starting point for the progression but when esti-
mating the time of reaching certain landmarks in the disease, the application
of the rules leads to less biased estimates. The magnitude of the biases de-
pends mainly on the chosen parameters, however, the basic results can also
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e0 τ in years α in EDSS/year no. prog.

w/o rules 2.25 (1.23) 4.20 (5.84) 0.463 (0.420) 39

w. rules 1.87 (1.29) 2.88 (4.69) 0.422 (0.386) 50

w. rules 2.00 (1.42) 3.54 (5.09) 0.496 (0.403) 39

Table 3: Parameter estimates (sd’s) for the segmented regression model with

and without application of the pre-editing rules. In the last row the estimates

with application of the rules are given for the 39 patients that progress with-

out application of the rules.

be obtained from simulations with different parameters, i.e. the qualitative
nature of our conclusion does not depend on the chosen parameter of the
simulation even though the quantitative aspects do.

3.3 Pre-editing and analysis of real natural history

data

The segmented regression model is now applied to a subset of the natural
history part of the SLCMSR data set with and without pre-editing of the
EDSS curves. For a patient to enter the analysis, at least five visits and
a duration, that is the time between onset of the disease and entry to the
study, of less than 12 months were required. More than 350 of the eligible 422
patients belonged to studies with predominantly monotone disease courses,
i.e. the EDSS levels for these patients increased or stayed constant between
two visits; an example is displayed in the right graph in Figure 4. Since the
rules have only little influence on such courses, a subset of 67 patients with
variable course was obtained.

In Table 3 the mean parameters, their standard deviations and the num-
ber of patients who reach a progressing stage based on the segmented re-
gression model are given. After application of the rules more patients reach
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a progressing state. This is caused by Rules 1 and 2 that lead to a lower
estimated baseline e0 for many patients and hence a progression is more
likely and in many cases an earlier starting point for the progressive phase
is estimated. When the analysis is limited to the 39 patients that progress
without applying the rules, the effects on the baseline and the change point
are similar to those in the simulation. Both parameters decrease, however,
the standard deviation for the baseline estimates becomes slightly larger.

3.4 Application of pre-editing for controlling errors in

primary endpoints

The rules are primarily designed to be applied to natural history data, where
not too many observations of a patient per year are available. In particu-
lar, the parameters for Rules 3 and 4, that depend on the definition of an
acceptance region, would have to be changed if these rules are to be applied
to clinical trial data that are recorded e.g. every three months. The initial
value rule, however, is also applicable to clinical trial data.

In order to examine the influence of the first value on time to sustained
progression, it was computed for placebo patients in the SLCMSR database
with and without application of the initial value rule. For time to sustained
progression a confirmation period of 180 days was chosen. That means a
worsening was considered to be sustained if an EDSS value is observed that
exceeds the initial value by at least 1 and in the following 180 days no smaller
value is observed. If no observation is available in the following 180 days, the
closest following value has to exceed the initial value by at least 1. Since a
worsening in the upper half of the EDSS scale is considered to be more severe,
for initial values that are greater than or equal to 6 the increase required is
reduced to i0.5. Also, if there was no observation at least 180 days after
exceeding the threshold, the worsening was not considered as sustained.

There are 1060 placebo patients with at least five visits in the SLCMSR
database. Observation periods range from one to five years, where in most
trials the patients were observed for two or three years. Measurements were
taken at least every six months, in most cases every three months. For 371
patients a sustained progression is observed. After application of the initial
value rule, however, a total of 464 patients reach the state of sustained pro-
gression. There are 367 patients that progress in both cases; for 274 of these
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patients the times coincide. In 63 out of the 367 cases the application of the
rules leads to shorter progression times and in 30 cases it was lengthened.
Shorter progression times result from lower initial values; the average de-
crease for these cases is 2.8 months. Lengthened progression times arise from
adjustment of values within the first three months, i.e. not only the initial
value but also other values within the first three months are adjusted and a
possible first exceeding of the threshold is delayed. The average increase for
the 30 cases is 11.4 months.

Hence, if the baseline in the trials had been chosen to be the minimal
EDSS value within the first three months, nearly an additional 10% of the
placebo patients would have reached sustained progression. So far the focus
discussion has focused on different definitions of ‘sustained’ with varying
confirmation periods were discussed, but it seems necessary to turn one’s
attention also to the best definition of the baseline value.

4 Discussion

The five rules presented here aim to reduce variability in EDSS data that is
caused mainly by short-term changes of the disease course due to relapses.
The approach is primarily intended for natural history data and is based
on neurological knowledge and tries to formalize and simulate what many
clinicians do when they interpret time series of disability measures. The
careful pre-processing of disability curves using these rules is intended to
improve estimation in modelling and thus our ability to predict the course
of irreversible disability. The merits of this approach were investigated in
various settings by comparing analyses of simulated or real disease courses
with and without this pre-editing procedure.

The real strength of this approach became apparent when a segmented
regression model assuming a change point between stable and progressive
disease phases was used to determine the time until a certain disability level
was reached. This analysis also revealed an interaction between the values for
baseline disability (e0) and change point (τ) estimated by this model which
requires further investigation. Furthermore, the application of parts of the
rules to placebo data from clinical trials illustrated the importance of base-
line disability for definitions of time to sustained progression. Consequently,
discussions of possible definitions of this end point should also concentrate
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on establishing the most appropriate definition of a stable baseline.
Not applying such pre-editing rules might lead to overestimating the de-

gree of irreversible disability. Their application might reduce this bias and
improve the prediction of future EDSS levels. Although the rules were mainly
investigated in combination with the segmented regression model, they are
suitable for any scenario where relapses are likely to introduce unwanted
noise in the data.

For different situations, e.g. equidistant time points between observa-
tions, it might be useful to adjust the parameters for the acceptance region
for this situation. A further approach might be to define the acceptance
region differently, e.g. one could think of limiting its upper boundary or
perhaps change its slope for values above 6 as is done in some definitions for
sustained progression.

In summary, the rules are recommended for use in situations where re-
lapses are likely to be present and no information is available if an EDSS
value was recorded during a relapse. The likely presence of relapses may be
derived from knowledge of the study or simply by looking at individual EDSS
courses. Since one hardly loses information when applying the rules in the
absence of relapses but gains precision and achieves a bias reduction in their
presence we propose to use this pre-editing tool.
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W. Pöllmann. Day-to-day variability of maximum walking distance in
MS patients can mislead to relevant changes in the Expanded Disability
Status Scale (EDSS): average walking speed is a more constant parame-
ter. Mult Scler, 7:105–109, 2001.

9. M. Basseville and I.V. Nikiforov. Detection of abrupt changes. Prentice-
Hall, 1993.

10. B. Hellriegel, M. Daumer, and A. Neiß. Analysing the course of multiple
sclerosis with segmented regression models. Technical report, Ludwig-
Maximilians-University Munich, SFB Discussion Paper, 2003.

11. M.P. Amato, L. Fratiglioni, C. Groppi, G. Siracusa, and L. Amaducci.
Interrater reliability in assessing functional systems and disability on the
Kurtzke scale in multiple sclerosis. Arch Neurol, 45:746–748, 1988.

18



12. D. M. Wingerchuk and B.G. Weinshenker. Multiple sclerosis: epidemi-
ology, genetics, classification, natural history, and clinical outcome mea-
sures. Neuroimaging Clin N Am, 10:611–624, 2000.

13. J.H. Noseworthy, M.K. Vandervoort, C.J. Wong, and G.C. Ebers. In-
terrater variability with the Expanded Disability Status Scale (EDSS)
and Functional Systems (FS) in a multiple sclerosis clinical trial. The
Canadian Cooperation MS Study Group. Neurology, 40:971–975, 1990.
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