Exploring the connection of acoustic and distinctive features

Thomas Kisler, Uwe D. Reichel

Institute of Phonetics and Speech Processing, Munich University, Munich, Germany

{kisler, reichelu}@phonetik.uni-muenchen.de

Abstract

This study is a contribution to link the abstract phonological
level to the acoustic signal level by identifying the main acous-
tic correlates for the distinctive feature set developed by Chom-
sky and Halle (1968). The acoustic features were extracted by
the openSMILE toolkit from spontaneous speech data. For each
distinctive feature a set of closely related acoustic features was
derived by means of correlation-based feature selection. Based
on the respective acoustic feature pools C4.5 trees and support
vector machines for binary feature classification were trained.
The classification performance ranged from 76 to 89% for vo-
calic features and from 78 to 93% for consonantal features. The
methods proposed in this study can be of use to identify sys-
tematic speech signal correspondencies for phonological mod-
els and as a starting point for distinctive feature detection in
speech recognition.

Index Terms: distinctive features, acoustic features, feature se-
lection, machine learning

1. Introduction

On the phonological level phonemes can be characterized by
sets of distinctive features. These features had been defined
in acoustic terms by Jakobson [1] or in articulatory terms by
Chomsky and Halle [2].

Since these high-level distinctive features (DF) are an ab-
stract representation of the phoneme inventory of a language,
their relation to the acoustic speech signal is not straightfor-
ward. Attempts to shed light on this relation can be divided into
an expert- and a data-driven group. Expert-driven approaches as
[1, 3] rely on acoustic phonetic knowledge to carefully choose a
small number of complex acoustic features (AF) like the energy
in relevant spectral regions and acoustic discontinuities.

Data-driven approaches in contrast make use of machine
learning methods like neural networks [4] to predict DF from a
larger number of low-level AFs.

DF detectors are applied in phoneme and speech recogni-
tion. [5] used a Kohonen net to map AFs to DFs that in turn
were used to train a HMM for phoneme recognition. In [6]
acoustics was mapped to DF by means of Multi-Layer percep-
trons providing the input for Time-Delay Neural Networks for
phoneme recognition. [7] extracted a discriminative DF sub-
set to train HMMs for speech recognition. [8] showed that the
usage of DF can turn speech recognition systems to be more
robust under noisy conditions.

We pursue a data-driven, exploratory bottom-up approach
to find mappings from acoustics to DF of Chomsky and Halle’s
feature system, which still is widely-used for sound system de-
scriptions. The approach is exploratory in such a way that we
start from a very large number of AFs (106 in total) among
which we infer the most relevant ones for each DF by means
of a feature selection method. Thereby for each DF its ma-
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jor acoustic correlates were extracted, which were subsequently
taken as input for decision tree and support vector machine DF
classifiers. To additionally explore the power of non-standard
features, we also took the musical chroma features (and their
delta and delta delta regression), into account. The study is de-
signed to explore the connection between AFs and DFs which
could be used by phoneticians and engineers that are working
on improving the quality of automated systems, like phoneme
or speech recognition.

2. Data

As the basis for data extraction the Kiel Corpus of spontaneous
speech [9, 10] was used. The corpus consists of 52 German
speakers resulting in roughly 2000 dialog turns, in which two
speakers have to complete a scheduling task.

The corpus is manually segmented and labeled and contains
well over 200,000 phonemes which we assumed being enough
for the evaluation of the proposed method.

3. Method

3.1. Overview

To estimate which AFs seem to be most prevalent when a certain
DF is activated, for every DF and its associated phonemes, we
extracted a set of AFs from the signal, used a ranking to select
the n best features that are able to predict the respective class
and tested the discriminative power of the resulting AF subset
with a classificator.

3.2. Distinctive features

To test our method, we examined the connection between DFs
and AFs for the group of a) the sonorants, glides and laterals
and b) for vowels depicted in table 1 and 2. For the remain-
der of this paper whenever we speak of consonants, we mean
the evaluated sonorants, glides and laterals. Based on the pre-
viously mentioned models, the features are either binary or pri-
vative. A binary features has two possible values “+” and “-”.
Privative features are either present or absent, and are signaled
by check signs and capital abbreviations. A complete overview
and a description of the features can be found in [2, 11].

We did not include the feature classes lat, appr and DORS
as the classes were to unbalanced regarding their occurrence in
the data, which otherwise would have resulted in an over fit-
ting of the machine learning algorithms and misclassification
of a complete class. Furthermore, the DFs voiced and asp are
inverse to each other and therefore produce the same results.

3.3. Acoustic features

For the AF extraction we used openSMILE, an open-source
tool for feature extraction from audio signals developed at the
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Table 1: Distinctive features for the German sonorants, glides
and laterals for which we examined the connection to AFs.
cons means consonantal, appr approximant, cont continuant,
nas nasal, LAB labial and COR coronal

] P H cons [ voiced [ cont [ nas [ LAB [ COR [

m + + - + v

n + + - + v
| + + - +

1 + + - - v
r + + + - v
j - + + - v
h - - + -

Table 2: Distinctive features for German vowels for which we
examined the connection to AFs. LAB means labial.

| P H back [ high [ low [ tense [ LAB ‘
i - + - +
I - + - -
y - + - + v
Y - + - - v
e - - - +
s - - - -
[ - - - + v
[sd - - - - v
& - - + -
u + + - + v
U + + - - v
o + - - + v
) + - - - v
a + - + -
a + - + -

Technische Universtit Miinchen. It provides a big set of readily
available AFs that can be extracted from speech data [12].
We used the following atomic and complex AFs to be eval-
uated for their power in describing certain DFs.
RMSenergy: Root-mean-square energy
LOGenergy: Logarithmic energy
ZCR: Zero-crossing rate
MCR: Mean-crossing rate
Intensity: Simplified frame intensity
FO: Fundamental frequency
HNR: Harmonics-to-noise ratio
voiceProb: Probability of voicing
mfcco—12: Mel-frequency cepstral coefficients (coeff.)
mfccAg—12: Delta regression from MFCC
mfccAAg_q2: Delta delta regression from MFCC

chromao—11: CHROMA features from semi-tone scaled
spectrum

e chromalg_11: Delta regression of CHROMA features

e chromaAAgp_11: Delta delta regression of CHROMA
features

o IpcCoeffo—7: Linear predictive coding coeff.

e FFLpco_¢: Formant frequencies and bandwidth from
LPC coeff.

e IspFreqo—r: Line spectral pairs (LSP) from LPC coeff.

These features left us with 106 different AF values that are
computed directly based on the signal or derived from other
AFs. For a detailed description of the available features in
OpenSMILE and an in-depth description of the ones used can
be found in [13].

We extracted the AFs within 25m.s windows located around
the segments’ temporal center. There the closest match to the ar-
ticulatory targets and the least degree of co-articulation is to be
expected which gives the closest-possible correspondence to the
segments’ phonological representation as shown in table 1 and
2. Note, that in this initial attempt relevant transitional acous-
tic cues at segment boundaries as well as segments with highly
non-static acoustic characteristics (as plosives and diphthongs)
were left aside. These issues will be addressed in follow-up
studies.

3.4. Acoustic feature selection

As execution time was a crucial point for the choice of the fea-
ture selection algorithm, we decided to use a simple method
based on correlation (Pearson product), implemented in the
Waikato Environment for Knowledge Analysis (WEKA) toolkit
[14]. The ranking is calculated for each DF on the correlation
coefficient between the dichotomous class and the actual feature
values, where higher correlation results in higher ranking.

The robustness of feature selection was successfully tested
by running an alternative selection algorithm based on the OneR
classifier explained in [15]. A comparison of both selection
methods has shown, that they only differ marginally in both the
selected features and therefore in the resulting classification re-
sults. The mean difference of the classification accuracy on AFs
selected by correlation and OneR was 0.46%.

‘We conducted three runs of our evaluation, where we sub-
sequently selected the n best features for n € {3, 15, 106}.

3.5. Classification with a reduced acoustic feature set

After the selection of the n best features for each DF, we eval-
vated the resulting AF set with regard to its performance in a
two-class classification test. For binary features those were “0”
and “1”, for privative features “on” and “off”. To eliminate the
chance of biasing the result by the choice of the classificator
we used both a C4.5 tree [16] and a Support Vector Machine
(SVM) [17] with a first order polynomial kernel.

Based on the default settings for WEKA the SVM normal-
ized the training data during learning. For both algorithms we
executed a 10-fold stratified cross-validation for each DF.

4. Results
4.1. DFs of the selected consonants

The results for the evaluated consonants as described in table 1,
are shown in table 3. The classification results of the Support
Vector Machine and the C4.5 tree are very similar. The C4.5
tree shows better results in the feature subset whereas the SVM
shows better results when the full feature set is evaluated. They
range for 3 features between 87.76 and 89.58%, between 91.83
and 92.56% for 15 features, and between 91.47 and 94.13%
for all features. The best 3 features set consists of the same
features, only the position in the ranking varies between the top
two features. The results are as expected and improve for more
features, but the improvement is smaller when comparing 15
and 106 features, than it is from 3 to 15 features.

The top AFs shared between all classes (by ranking order)



Table 3: Results of evaluation of binary features on sonorants, glides and laryngals on the 3 and 15 best and all features. The class
-". To save space, in the rows where the 15 best features are shown, the first three are

>

ratio is DF class '+’ divided by phoneme class

ommited, as they are the same as in the column of the 3 best features.

[ Distinctive features || cons [ voiced [ cont nas
Phoneme class "+’ [r,n, 1, 5, m] [r,n, 1, g, m, j] [r,j, h] [n, 5, m]
Phoneme class ’-’ [3, h] [h] [n, 1, g, m] [r, 1, ], h]

Class ratio 1.419 1.626 0.831 0.895
mfcca IspFreq2 mfccy IspFreq2
Top 3 Features IspFreq2 mfcco IspFreq2 mfcco
HNR HNR HNR HNR
Top 3 Class. C4.5 88.58% 88.99% 89.58% 88.35%
Top 3 Class. SVM 88.19% 88.70% 89.38% 87.76%
mfccAAs mfccAAs mfccAAs MCR
MCR MCR MCR voiceProb
voiceProb voiceProb voiceProb IspFreq:
mfccAq IspFreq: IspFreq: mfccAA,
IspFreq: mfccAq IspFrequ mfccig
Top 15 Features IspFreqq IspFreqa mfccAy IspFreqs
mfccAA mfccAA, mfccig mfccg
IpcCoeft; IpcCoeft: IpcCoeft: chroma/\g
IspFreqs chromaAAig IspFreqs chromag
chromaAAqg mfccig mfccg mfcc/Aq
chromaig IpcCoeffy chromajo chromaAAjg
chromalo IspFreqs chromal, chromag
Top 15 Class. C4.5 92.07% 92.56% 92.34% 91.91%
Top 15 Class. SVM 91.83% 92.21% 92.20% 92.35%
Features all all all all
All Class. C4.5 91.80% 92.30% 91.84% 91.47%
All Class. SVM 93.07% 93.37% 94.02% 94.13%

are second MFCC, second LSP, harmonics-to-noise ratio, delta
delta regression of second MFCC (mfccAA), MCR, voicing
probability, delta regression of first MFCC (mfccA), first and
fourth LSP can be found within all DFs, with different ranking.

The results of the evaluation of the privative DFs LAB and
COR can be found in table 4. The correct classification ranges
between 77.8 and 86.68%. The feature selected AFs are not
very stable between the two DF classes. The differences be-
tween C4.5 and SVM are only marginal, yet the decision tree
performs slightly better.

4.2. DFs of vowels

The results of the evaluation of binary DFs for German vowels
as described in table 2, are shown in table 5. The classification
results range from 76.46 to 88.6%. The top AFs are not very sta-
ble when regarding the different DFs. The classification results
again do not differ much, though the SVM performs slightly
better in vowels than the C4.5 tree. Opposed to the consonant
results, the classification performance for the only available pri-
vative feature is as good as for most of the binary features.

5. Discussion
5.1. DFs of the selected consonants

The top 3 AFs for the sonorants, glides and laterals are the sec-
ond MFCC coefficient, the second LSP and the harmonics-to-
noise ratio (HNR). Interestingly enough, that the best 3 AFs for
all DFs are the same. This means that in general those AFs
seem to have the most descriptive power regarding DFs for the

Table 4: Results of evaluation of privative features on sono-
rants, glides and laryngals based on the 15 best features. The

class ratio is phoneme class ’v'’ divided by phoneme class

Phon. is short for phoneme, Class. short for Classificator and

Dist. features for distinctive features.

| Dist. features LAB COR
Phon. class ’v”’ [m] [r,n,1,]]
Phon. class *’ [r,n, L g,j, h] [p, m, h]
Class ratio 0.155 0.847
mfcco mfccAA,
IspFreq2 IspFreqa
mfccig mfccAq
HNR mfcco
IspFreq: HNR
MCR MCR
voiceProb voiceProb
Features IspFreqa mfccAA7
mfccs IspFreq:
IspFreqs IspFreqa
mfccAg IpcCoeff;
chromaig chromaAAqg
chromag chromaAAs3
mfccg IpcCoeffy
mfccg mfccg
Class. C4.5 86.85% 78.23%
Class. SVM 86.68% 77.80%




Table 5: Results of evaluation of binary features on vowels based on the 15 best features. The class ratio is phoneme class + divided
by phoneme class -. Phon. is short for phoneme, Class. short for Classificator and Dist. features for distinctive features.

| Dist. features || back [ high [ low [ tense [ LAB ]
Phon. class + [a, 0,0, U, a, u] [i,1,u,y, Y, u] [a, &, a] [@,1,e,0,y, u] [@, 0,0, U,y, e, Y, u]
Phon. class - [e, 1, e, 1, [e,a, e, 0,0, @, a, ce] 2,1, ¢,0,0,1, [a,0,1, &, U, a, ce, Y] [a,i,e,1, &, a]
&, Y, ®, Y] U, Y, &, Y, u]
Class ratio 1.135 0.577 0.55 0.336 0.327
IspFreqs IspFreq: IspFreq: IspFreq: IspFreqs
mfccy mfccy mfccy mfccy mfcco
mfccg mfccs mfccg mfccs IspFreq2
IspFreq: IspFreqs mfccs mfccAAy IspFreqo
mfccAAy mfccAAy IspFreqs mfcce FFLpcq
IspFreqo chromag chromag IspFreqs mfccy
chromay mfcce mfccAAg mfccio chromag
Features FFLpc: IpcCoeft: mfccAAy chromag chromas
chromas mfccy mfccig mfccAA3 chromay
chromas IspFreqa IspFreqa chromas mfccr
mfccr mfccAAg IpcCoeffy chromay chromas
mfcco mfccio chromaj; chromaj voiceProb
chromag chromai chromay mfccy MCR
mfccAAg chromas IspFreqz IspFreqz chromaA
chromag FFLpc1 mfccy IspFreqa chromag
Class. C4.5 87.43% 76.62% 81.88% 81.02% 82.98%
Class. SVM 88.6% 76.46% 83.22% 81.84% 82.77%
consonants. As mentioned in the results, the classification results of the

All DFs of the evaluated consonants share a set of 9 AFs,
where only the ranking is different. That means that those 9 AF
carry information not only for one DF, but for the whole class
of sonorants, glides and laterals. This shared AFs can be useful
when it comes to further applications, for example in phoneme
recognition, when multiple DFs have to be predicted in parallel.

Interestingly, also several chroma non-standard features are
among the highest ranked AFs qualifying them as candidates
for the phoneme recognition feature pool. That is true for both
their basic and their two complex derivations, the delta and delta
delta regression.

With just 3 AFs the learning algorithms correctly classi-
fied about 88% for all DF. When taking into account the top 15
AFs it seems that they already describe the underlying data well
enough to produce results close to the results on the complete
AF set. Only the performance of the SVM with the polynomial
kernel increases when all features are used, as it is less prone to
over-adaption.

Privative features either exist for a phoneme or are unde-
fined, which means they have no clear state when not active.
Therefore, they might be activated also in segments for which
they are not relevant. Thus expected they show classification
results that are worse than for the binary features.

5.2. DFs of vowels

In the results of the binary DF evaluation, some AFs seem to
have strong descriptive power. For example the first LSP, the
third, fourth and sixth MFCC. Even though the top features are
not as stable as within the examined consonant class and, based
on the classification results, are overall not as descriptive as AFs
of the evaluated consonants.

When comparing the examined vowels and consonants
based on the AFs the consonant related DF values can, there-
fore, be predicted with higher accuracy.

only privative feature on vowels is comparable to the results
of binary features. We think that is due to the fact, that the
descriptive power of the AFs for vowel DFs turned out to be
generally smaller than for the examined consonants.

6. Conclusions

We have proposed a method to explore the connection of DFs,
which are a high-level representation of articulatory character-
istics of certain phonemes, to AFs, which are low-level features
directly extracted from the signal. The results show that it is
possible to select AFs that describe the DFs in a satisfactory
way.

It turned out that at least for consonants a subset of AFs is of
relevance for all examined DFs, which is a useful contribution
for the feature pool design for phoneme recognition. The pre-
diction accuracy of the DF of vowels is in general lower than
for consonants and the highest ranked AFs are not as stable.
The classification accuracy when regarding all 106 available
AFs, increases only for the SVM, not for the decision tree. The
decision tree seems to over-adapt the available training data,
whereas the SVM can take advantage of the large number of
features. Within the feature selection method, the inter correla-
tion of the AFs is not taken into account. A principal compo-
nent analysis could solve this problem and lead to a smaller set
of features by keeping the descriptive power. In follow-up stud-
ies we will focus on dynamic AF patterns to model non-static
segments as well as the acoustics of DF changes at segment
transitions [3].
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