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THE TOTAL IN THE CATEGORY OF MODULES

Friedrich Kasch

Mathematisches Institut
Universitat Muinchen
TheresienstraBe 39
D-8000 Minchen

1. INTRODUCTION
The study of the notions "total”, "partially invertible” and “regular”
will be based here on a new, more general foundation and further deve-
loped. The cases considered in the literature will be included as special
cases. Proofs will be given here only if they are not routine or if they
are not generalisations from the special cases in [11, [2].
Let S, T be rings with identity and let gAy, rBs be unitary bi-
modules. We assume two mappings
c: AXB > S, T:BXA-> T
with the following properties:
(1) o(sa,b) = sola,b), ola,bs) = ola,b)s,
olat,b) = ola,tb), acA, beB, ses§, teT,
similar properties for t;
(1) Associative laws:
ola,bla; = atlb,ay), tlb,alby = bola,by), a,a1€A, b,b€B;
(1) Additivity:
olatay,b+b) = ola,b) + ola,by) + olay,b) + olay,by),
similar for t.

For abbreviation we write
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ab = ola,b), ba = t(b,a), a€A, beB.

If we have a meaningful product of elements from A,B,S, T, then
by the associative laws we can avoid using brackets. If (1), (I1), (Ill) are
satisfied, then these conditions define a Morita context and the mappings
¢ and t can be factorised via the tensor products A28 resp. B gA. But
we will first assume only (1) and (I1), in which case A and B have only to
be sets and S and T multiplicative monoids. Then we assume (1), (I1), (Il})
but without further conditions. Only in the last section we have to assume
"Morita conditions"” since we show that the notions "total”, "radicaltotal”
and "totalfree” for rings are preserved under Morita equivalence.

To have later the possibility for short quotations, we mention here

three examples for a Morita context.

EXAMPLES.
(E1) F. Kasch [11, W. Schneider [2].
Let R be a ring with identity and let Mg, Ng be unitary R-modules.

Denote S = End(Ng), T = End(Mg),
sAr = Homg(M\N),  +Bs := Homg(N,M),
and olf,g) = fg, t(g,f) = gf, fEA, geB.

Then (1), (1D, (111) are satisfied.

(E2) J. Zelmanowitz [31].

Let 7 be a ring with identity and let A+ be a unitary T7T-module (in
(3] 1€T is not assumed).
Denote S = End(A4), B := A*= Homo(A,T).
Then sAr, +Bs are bimodules. For a€A, g€B define

ola,g) = ag: Aax b ag(x) €A,

(implying ag€S). Further define t(g,a) := gl(a). Then (1), (1), (lII) are
satisfied.

By a slight change, this can also be considered as a special case of
(E1). To see this, one has to substitute Ay by the S-T-isomorphic
module Horn4(T, A) with the isomorphism

@ : Ada b (Tax b axe€A) € Hom+(T,A).
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By this substitution o and t change to the mappings in (E1). It is easy
to see that the isomorphism ¢ preserves all the notions considered in
this paper.

(E3) Rings.

For a ring R with 1€eR let A=B=S=T := R and for ry,rp, €R, olry,rp) =

t(ry,ra) = rqyro. Then all conditions are satisfied.

2. DEFINITIONS AND MULTIPLICATIVE PROPERTIES

In this section we assume only (1) and (I1) but not (lll) as mentioned

already in the introduction.

2.1 LEMMA (compare [1]1, 1.1, [2]1,6.1). For a€ A are equivalent:
(a) 3beBlab is an idempotent +0 in S,
(b) 3byeB[bja is an idempotent +0 in T ],
(¢} 3ceBlac is an idempotent +0 in S a

ca is an idempotent £0 in T].

2.2 DEFINITIONS. Let a€A.
(1) ais called partially invertible = "pi" &
the conditions of 2.1 are satisfied.
(2)  Total of A =Tot(A) = {ulu€Aauis not pi}.
(3)  ais called regular & 3beB[aba=al.

Similar definitions for the elements in 5.

For the elements of Tot(A) we give later (using (I11)) a characterisa-
tion which justifies the notion total nonisomorphisms. The definition (1)
means in the special case (E3) that s€S is pi, iff there exists s'€S
such that ss’ is an idempotent + 0 in S. Attention with the notation: In
(1] and [2] (that is in the case (E1)) Tot(M) resp. Tot(M,N) are sub-
sets of End(M) resp. Homg(M,N). Now, Tot(A) is a subset of A itself.

2.3 COROLLARY (compare special cases in [1]1, [2]). Assume a€A,
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beB, s€S, teT.
(a) If sat is pi, then s,a, t are pi (in S resp. B resp. T).
(b) If ab is pi, then a, b are pi (in B resp. A).
(c)  STot(A)T = Tot(A), Tot(A)B c Tot(S), ATot(B) c Tot(S),
Tot(S)A C Tot(A), ATot(T) c Tot(A), STot(S)S =Tot(S).

2.4 COROLLARY.
(a) If aba=a=*0, then ab and ba are idempotents *0.
Hence regular elements are pi.
(b) If ab=d=d?%0 resp. ba=e=e?+0, then da, bd, eb, ae are
regular elements.
(c) ais pi e 3IbeB[bab=b+0].
(d)  /f aba=a, then a(bab)a=a, (bab)a(bab) = bab.

2.5 COROLLARY. /f aba=a, d=ab, e=ba, then
Sadsa b sdeSd, alsat b eteeT

are isomorphisms, hence Sa resp. al are projective S— resp. T-modules.

The definitions and corollaries show that Lemma 2.1 is essential for
our considerations. Notions, based on this lemma are independent of the
side. Moreover, it gives a close connection to regular elements. Finally,
it makes it possible to give very simple and short proofs by computations

with idempotents.

2.6 THEOREM.
(@) aispi & 3deS, d=d2+0([dScaBadAcaT]
& Je€T, e=e?*0[TecBan Aec Sal.
(b) ais regular & 3d€S, d=d?[dS=aBardA=aT]
& Je€eT, e=e?[Te=Ba r Ae=Sal.

Proof for (b). =: Assume aba=a. Denote d=ab, then
dS = a(bS)caB = ablaB)c dS = dS = aB.
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Similar in the other cases.
&: By assumption, there exist b€B, a;€ A such that d=ab, da;=a.
Then
a = da = aba.

Similar for the other cases.

3. ADDITIVE PROPERTIES
Now, we have to use the additivity (lll). Further we need the fol-
lowing mappings
(-b)a : A3x b (xb)a€Sa,
alb-) : Asx b a(bx)earT.
Ke(--+) denotes the kernel of the mapping - - -

3.1 THEOREM. /f aba=a, then
A = Sa ®@Ke((-pla) = aT ®Kela(b-)).

If ais regular, then by 2.5 and 3.1, Sa is a projective, direct sum-
mand of A. In case (E2) also the opposite direction of this statement is
true (see [3]). In general we have the following situation. Since Sa is
projective, the epimorphism

p: S3s b sa€esa
splits. Therefore there exists an idempotent d€S such that
S=5deS(1-d), a-=da
In case there exists b€B such that ab=d, then aba=da=a. The existence

of such b is easy to see in (E2), but in general it will not exist.

3.2 COROLLARY. If ab=d=d?, ba=e=e?, then
Sda g® SA, Sa = Sda ® S(1-d)a,

aeT G® A, aT = aeT ® a(1-e)T.
Similar for b.

Now, we will give an other characterisation (besides 2.6) for pi and
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regular elements. We use the following notation: A operates faithfully on
B iff for all x€ A, x+0, also x6+0.

3.3 THEOREM. For a€A the following is true.
(a) ais pi & 36,6%85,0+D g®So
[Byay P ayeD is an isomorphism].
(b) ais regular = 3B5=B,88;, D c®Sg
[By3y P ayeD is an isomorphism a aB;=0].

If A operates faithfully on B, the converse is also true.

Proof. (a)=>: If ab=d=d?+0, then by 2.4, bd is regular and by 3.2,
By = bdS 6® B. Denote D=dS, then
Bypabds b abds = ds€D
is an isomorphism.
(a) €: Let be dS=D#*0, d=d?, then there exists b€By with ab=d*0.
(b)=: By 2.4 (d), we can assume aba=a, bab=b. Then by 3.1 (for B)
we have
B = bS ® Ke(b(a-)).
Define By := bS, D=dS, then there exists the same isomorphism as in (a).
For yeKe(b(a-)) follows
ay = (aba)y = alblay)) =0,
hence with B, := Ke(b(a-)) the proof is complete.
(b)&: D 6®Sg implies D=dS, d=d?. By assumption there exists
beB with ab=d. Then By =bS and together with aB;=0 we get
aB = abS ® aB, = ab$.
Further we have for s€S
a(bs) = ds = d?s = (aba)bs.

Since A operates faithfully on B this implies a=aba.

3.4 REMARKS. In (E1) the following is true [13:
feA=Homg(M,N) is pi &
302U G®RM, VGBN[Usx b flx)eVis an isomorphism].
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If fis not pi, that is, feTot(M,N), we therefore used the notation [1]
"fis a total nonisomorphism”. The total was then defined as the set of
all total nonisomorphisms. Now, by 3.3, also in the general case it is
justified to denote the elements of Tot(A) as total nonisomorphisms.
Please note the fact, that for (E1) 3.3 and the result stated before are
not the same (but connected).

It is interesting to ask for conditions such that Tot(A) is closed
under addition (see [1], [2]). A ring S is called a total ring iff Tot(S)
is additively closed. Then Tot(S) is a two-sided ideal of S.

3.5 THEOREM. If S or T is a total ring, then Tot(A) and Tot(B) are
S5-T- resp. T-S-submodules of A resp. B.

In general Tot(A) is not closed under addition but it has always the

following closure property. With Rad(5A) we denote the radicals of the
S-module SA.

3.6 THEOREM. Rad(gA)+ Tot(A) = Rad(Ay) + Tot(A) = Tot(A).
3.7 CorOLLARY. Rad(gA)+ Rad(Ay) € Tot(A).

This implies the question: Under which conditions is the radical equal
to the total (see results in [1], [2]).

If for a ring S Rad(S) = Tot(S) holds, then S'is called radicaltotal ([2],
4.2). Examples for radicaltotal rings are semi-perfect rings or —more
general — F-semi-perfect rings (Oberst, Schneider) = semi-regular rings
(Nicholson). We call aring S totalfree if Tot(S) =0. Then a totalfree ring is
radicaltotal. If S is a total ring, then S/Tot(S) is totalfree ([11, 3.6).

4. MORITA EQUIVALENCE
The main goal in this section is to show that the properties "total”,

“radicaltotal” and "totalfree” of a ring are preserved under Morita equi-
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valence. If the rings 7 and S are Morita equivalent, we write TS, In
this case, there exists a progenerator At such that S 2End(Ay) and in
the Morita context (E2), the mappings ¢ and t are surjective. Since our
properties are preserved under ringisomorphisms, we can assume S =
End(A7). The surjectivity of 6 and © means AA*=S, A¥A=T. We have
not to use always all these assumptions. Without any assumption we
have by 3.5, that if Tor S is a total ring, then Tot(A) is closed under

addition. In the following we consider only the case (E2).

4.1 LEMMA. If S =End(Ap), AA*= S and Tot(A) is additively closed, then

Sis a total ring.

Proof. Let sy,s,€Tot(S) and assume si+s, ¢ Tot(S). Then there exists
s€S such that s(s;+s5)=d=d?#0. Since ssjA, ssyACTot(A) by 2.3 and
Tot(A) is additively closed, also dAcTot(A). Then dAA*=dScTot(S),

hence deTot(S), contradiction!
4.2 COROLLARY. [f T~S and T is total, then S is total.

4.3 LEMMA.
(@) If Ay is projective and T is radicaltotal, then Tot(A) = Rad(A4).
(b) If At is finitely generated and projective, S = End(Ay) and
Tot(A) =Rad(A7), then S is radicaltotal.

Proof. (a): By 3.7, it is only to show Tot(A) c Rad(Ay). Let a€A, then
we write a with a dual basis a =2 bip;(a). For a€Tot(A) it follows
@i(a)eTot(T)=Rad(T), hence a€eRad(Ay).

(b): Again, only Tot(S) c Rad(S) is to prove. For s€Tot(S) it follows
sA=Im(s) c Tot(A) =Rad(Ay). Since Ar is finitely generated, Rad(Ay)
is small in Ar, hence Im(s) is small in Ar. Since Ar is projective, that

implies s €Rad(S).



The Total in the Category of Modules 137

4.4 COROLLARY. If T~S and if T is radicaltotal, then S is radicaltotal.

Proof. By 4.3.
4.5 COROLLARY. [f TS and if T is totalfree, then S is totalfree.

Proof. Tot(T) =0 implies Rad(T) =0 and T is radicaltotal. Then Rad(5)=0
and Rad(S) =Tot(S).
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