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Abstract

When some observations in the sample data are missing, the applica-
tion of the regression method is considered for the estimation of popu-
lation mean with and without the use of imputation. The performance
properties of the estimators based on the methods of mean imputation,
regression imputation and no imputation are analyzed and the superiority
of one method over the other is examined.
Key words: missing data mechanism, regression analysis, generalized
additive models, imputation, MSE–superiority;

1 Introduction

Despite a careful collection of information from the selected sampling units, the
sample data set is often found to contain some missing values in many surveys.
It is then desirable to employ an imputation procedure for filling in the values
of missing observations in order to complete the data set. The thus repaired
data mimics as if there was no non–response, and permits the application of
standard familiar techniques for the purpose of statistical analysis.
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There are several ways to find the imputed values for the missing observations
in the sample data; see, e.g., ?, ?, ? and ? for an interesting exposition. Among
them, a popular technique is the method of mean imputation in which the mean
of observations is employed to fill in the missing observations. As this technique
does not utilize the available information on the auxiliary characteristics, one
may employ the method of regression imputation in which the regression method
of estimation is utilized to find the imputed values. The implications of these
two techniques of imputation on the estimation of the population mean of the
study characteristic are investigated in this paper.

The plan of our presentation is as follows. In Section 2, we describe the frame-
work in which some observations in the sample data are missing randomly. The
missingness of observations relates to one of the two characteristics at a time
but not simultaneously. Employing the techniques of mean imputation and
regression imputation, four estimators for the population mean of study char-
acteristic arising from the regression method of estimation in survey sampling
are formulated. An estimator that does not use any imputation technique is
also presented. In Section 3, a comparison of the performance properties of the
estimators based on imputation is reported. In Section 4, we examine the role of
imputation in the formulation of effective estimators for the population mean.
Section 6 offers some concluding remarks. In the last, the Appendix presents
an outline for the derivation of main expressions.

2 Estimation of Population Mean

Let the means of study and auxiliary characteristics in a finite population of size
N be Ȳ and X̄ respectively such that X̄ is known while Ȳ is to be estimated
with the help of n pairs

(x1, y1), (x2, y2), (x2, y2), . . . , (xn−p−q, yn−p−q),
(x∗1, y

∗
1), (x∗2, y

∗
2), . . . , (x∗p, y

∗
p),

(x∗∗1 , y∗∗1 ), (x∗∗2 , y∗∗2 , . . . , (x∗∗q , y∗∗q )

of observations drawn from the given population according to the procedure
of simple random sampling without replacement. It is specified that some ob-
servations in the sample data are missing. Following ?, we assume that the p
values y∗1 , y∗2 , . . . , y∗p of the study characteristic and q values x∗∗1 , x∗∗2 , . . . , x∗∗q of
the auxiliary characteristic are missing randomly.

Now let us define the following quantities in the sample data:
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x̄ =
1

(n− p− q)

(n−p−q)∑
xi , x̄∗ =

1
p

p∑
x∗i , x̄∗∗ =

1
q

q∑
x∗∗i ,

ȳ =
1

(n− p− q)

(n−p−q)∑
yi , ȳ∗ =

1
p

p∑
y∗i , ŷ∗∗ =

1
q

q∑
y∗∗i ,

sxx =
1

(n− p− q − 1)

(n−p−q)∑
(xi − x̄)2 ,

sxy =
1

(n− p− q − 1)

(n−p−q)∑
(xi − x̄)(yi − ȳ) .

The optimal difference estimator for the population mean Ȳ is given by

(n− p− q)ȳ + pȳ∗ + qȳ∗∗

n
+ β

[
X̄ − (n− p− q)x̄ + px̄∗ + qx̄∗∗

n

]
(2.1)

provided that the quantity β = [PN (xi−X̄)(yi−Ȳ )]
[PN (xi−X̄)2] is known and no observation

is missing; see, e.g., ? (Chapter 7), ? (Chapter 6), ? (Chapter 10).

As β is generally unknown, a feasible version of the optimal difference estimator
is chosen as follows:

ȳreg =
(n− p− q)ȳ + pȳ∗ + qȳ∗∗

n
+

sxy

sxx

[
X̄ − (n− p− q)x̄ + px̄∗ + qx̄∗∗

n

]
(2.2)

Due to the missingness of some observation in the sample data, the means ȳ∗

and x̄∗∗ cannot be found and consequently the estimator (2.2) cannot be used
in practice.

If we follow the rule of mean imputation, we may replace ȳ∗ and x̄∗∗ in (2.2) by
ȳ and x̄ respectively. This proposition provides the following estimator of Ȳ :

ˆ̄Y1 =
(n− q)ȳ + qȳ∗∗

n
+

sxy

sxx

[
X̄ − (n− p)x̄ + px̄∗

n

]
. (2.3)

As X̄ is known, it may be tempting to use X̄ rather than x̄ for the imputation
of x̄∗∗. This leads to the following estimator of Ȳ :

ˆ̄Y2 =
(n− q)ȳ + qȳ∗∗

n
+

sxy

sxx

[
n− q

n
(X̄ − x̄) +

p

n
(x̄− x̄∗)

]
. (2.4)

Instead of the rule of mean imputation, if we employ the regression method of
imputation for the missing observations on the study characteristic, the impu-
tation estimator of ȳ∗ is given by:

ˆ̄y∗ = ȳ +
sxy

sxx
(x̄∗ − x̄). (2.5)
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Using it in place of ȳ∗ and X̄ in place of x̄∗∗ in (2.2), we get the following
estimator for Ȳ :

ˆ̄Y3 =
(n− q)ȳ + qȳ∗∗

n
+

sxy

sxx

(
n− q

n

)
(X̄ − x̄). (2.6)

If we employ the regression method of imputation for the p missing values of
the study characteristic and q missing values of the auxiliary characteristic so
that ȳ∗ and x̄∗∗ in (2.2) are replaced by ˆ̄y∗ and

ˆ̄x∗∗ = x̄ +
syy

sxy
(ȳ∗∗ − ȳ), (2.7)

we find the following estimator of Ȳ :

ˆ̄Y4 =
(n− q)ȳ + qȳ∗∗

n
+

sxy

sxx
(X̄ − x̄) +

qs2
xy

nsxxsyy
(ȳ − ȳ∗∗). (2.8)

We have thus formulated four estimators of the population mean Ȳ employing
the methodology of imputation for the missing values in the sample data.

If we do not use any imputation procedure and simply employ the available
observations in the sample data, we may approximate (2.2) by the following

˜̄Y =
(n− p− q)ȳ + qȳ∗∗

(n− p)
+

sxy

sxx

[
X̄ − (n− p− q)x̄ + px̄∗

(n− q)

]
(2.9)

which may serve as an estimator of Ȳ .

3 Comparison of Estimators

In order to compare the performance properties of the estimators of Ȳ under
the criteria of the relative bias and relative mean squared error to the first order
of approximation, we introduce the following quantities in the population:

C2
Y =

1
N

N∑ (
Yi − Ȳ

Ȳ

)2

ρ =
∑N (Xi − X̄)(Yi − Ȳ )

[∑N (Xi − X̄)2 ∗∑N (Yi − Ȳ )2
] 1

2

θ =
(

Ȳ

X̄

)[∑
(Xi − X̄)2∑
(Yi − Ȳ )2

] 1
2

K =
1

θ3C2
Y N

N∑ (
Xi − X̄

X̄

)2 [
ρ

(
Xi − X̄

X̄

)
− θ

(
Yi − Ȳ

Ȳ

)]

G =
ρ

θ3C2
Y N

N∑ [
ρ

(
Xi − X̄

X̄

)2

+ ρθ2

(
Yi − Ȳ

Ȳ

)2

−θ

(
Xi − X̄

X̄

)(
Yi − Ȳ

Ȳ

)]
∗

(
Yi − Ȳ

Ȳ

)
. (3.1)
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Theorem I: To the first order of approximation, the relative biases of the
estimators ˆ̄Y1,

ˆ̄Y2,
ˆ̄Y3 and ˆ̄Y4 are given by

RB( ˆ̄Y1) = E

(
ˆ̄Y1 − Ȳ

Ȳ

)

=
K

n
Ep,q

(
n− p

n− p− q

)
(3.2)

RB( ˆ̄Y2) = E

(
ˆ̄Y2 − Ȳ

Ȳ

)

=
K

n
(3.3)

RB( ˆ̄Y3) = E

(
ˆ̄Y3 − Ȳ

Ȳ

)

=
K

n
Ep,q

(
n− q

n− p− q

)
(3.4)

RB( ˆ̄Y4) = E

(
ˆ̄Y4 − Ȳ

Ȳ

)

= KEp,q

(
1

n− p− q

)
− G

n
Ep,q

(
q

n− p− q

)
(3.5)

where the operators Ep,q refers to the expectation taken over all possible values
of the non–negative integer valued random variables p and q in the sample of
fixed size n.
Proof: See Appendix.

Looking at the expressions for the relative biases, it is obvious that all the
four estimators are generally biased.

When X̄ is used for the imputation of missing values of the auxiliary char-
acteristics, it is seen from (3.3) and (3.4) that the estimator ˆ̄Y2 has smaller
magnitudes of bias in comparison to ˆ̄Y3. It means that the method of mean
imputation for the missing values of the study characteristics has better perfor-
mance than the method of regression imputation with respect to the criterion
of the magnitudes of bias.

On the other hand, when X̄ is not used for the purpose of imputation of missing
values of the auxiliary characteristic and instead the same method of imputa-
tion is applied to find the substitutes for the missing values of both the study
and auxiliary characteristics in the sample data, we observe from (3.2) and (3.4)
that the magnitude of bias of the estimator ˆ̄Y1 is smaller than that of ˆ̄Y4 when

(h1K −G)(h2K −G) > 0 (3.6)
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where

h1 = Ep,q

(
p

n− p− q

) [
Ep,q

(
q

n− p− q

)]−1

(3.7)

h2 = Ep,q

(
2n− p

n− p− q

) [
Ep,q

(
q

n− p− q

)]−1

. (3.8)

The condition (3.6) holds true when the quantities G and K have opposite signs.
If G and K have same signs, the condition (3.6) is satisfied so long as any one
of the following inequalities holds:

0 < G < h1K (3.9)
G > h2K > 0 (3.10)
h1K < G < 0 (3.11)
G < h2K < 0. (3.12)

On the other hand, the condition (3.6) with a reversed inequality sign holds
when one of the following is true:

0 > h1K < G < h2K (3.13)
h2 < G < h1K < 0 (3.14)

which specifies the situations where the method of regression imputation is
preferable to the method of mean imputation under the criterion of the magni-
tude of bias.

Next, let us examine the mean squared errors to the first order of approximation.

Theorem II: To the first order of approximation, the relative mean squared
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errors of the estimators ˆ̄Y1, ˆ̄Y2, ˆ̄Y3 and ˆ̄Y4 are given by

RMSE( ˆ̄Y1) = E

(
ˆ̄Y1 − Ȳ

Ȳ

)2

= D − C2
Y ρ2

n2

[
n− Ep,q

(
q(n− 3p)
n− p− q

)]

RMSE( ˆ̄Y2) = E

(
ˆ̄Y2 − Ȳ

Ȳ

)2

(3.15)

= D − C2
Y ρ2

n2
Ep,q(n− q) (3.16)

RMSE( ˆ̄Y3) = E

(
ˆ̄Y3 − Ȳ

Ȳ

)2

= D − C2
Y ρ2

n2
Ep,q

[
(n− q)2

n− p− q

]
(3.17)

RMSE( ˆ̄Y4) = E

(
ˆ̄Y4 − Ȳ

Ȳ

)2

= D − C2
Y ρ2

n2

[
n− Ep,q

(
q(n + 2p)− np

n− p− q

)]

−C2
Y ρ4

n2
Ep,q

[
q(n + p)
n− p− q

]
(3.18)

where

D =
C2

Y

n

[
1 + Ep,q

(
p(n− q)

n(n− p− q)

)]
. (3.19)

Proof: See Appendix.

Looking at the expressions for the relative mean squared errors of the estima-
tors, we observe that the sign (positive or negative) of the correlation coefficient
between the study and auxiliary characteristics has no influence on the perfor-
mance of estimators.

When we employ X̄ to impute the average of missing values on the auxiliary
characteristic, a comparison of (3.15) and (3.17) reveals that the estimator based
on the method of regression imputation is more efficient than the one based on
the method of mean imputation for the missing values of the study characteris-
tic.

Comparing ˆ̄Y1 and ˆ̄Y4, it is observed from (3.15) and (3.15) that ˆ̄Y4 has smaller
mean squared mean squared error than ˆ̄Y1 when

ρ2 > Ep,q

(
p(5q − n)
n− p− q

)[
Ep,q

(
q(n + p)
n− p− q

)]−1

(3.20)

which is a condition for the superiority of the method of regression imputation
over the method of mean imputation.
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The opposite is true, i. e., the mean imputation provides more efficient esti-
mator of Ȳ than the regression imputation when the inequality (3.20) holds
with a reversed sign.

An interesting particular case arises when it is known that the sample con-
tains no missing values of the auxiliary characteristic, i. e., the random variable
q takes the value zero with probability one. In this case, the estimators ˆ̄Y1 and
ˆ̄Y2 are identical. Similarly, ˆ̄Y3 and ˆ̄Y4 become equal. Further, it follows from the
results of Theorem I and Theorem II that the regression imputation technique
leads to a decrease in the mean squared error accompanied with an increase in
the magnitude of bias when compared with the technique of mean imputation.

Similarly, when the sample is known to contain only the missing values of the
auxiliary characteristic, i. e., the random variable p takes the value zero with
probability one, we observe that ˆ̄Y2 and ˆ̄Y3 become identical. Now, from the
results in Theorem I and Theorem II, it is seen that the estimators ˆ̄Y2 and ˆ̄Y3

posses not only smaller magnitude of bias but lower mean squared error too in
comparison to the estimator ˆ̄Y1.

Comparing ˆ̄Y4 with ˆ̄Y2 and ˆ̄Y3 , it is observed from Theorem I that the esti-
mator ˆ̄Y2 and ˆ̄Y3 will have smaller magnitude of bias in comparison to ˆ̄Y4 when

(K −G)(hK −G) > 0 (3.21)

where

h =
[
1 + Eq

(
n

n− q

)][
Eq

(
q

n− q

)]−1

> 1. (3.22)

The condition (3.21) holds true when the quantities G and K have opposite
signs. When they have same signs, the condition (3.21) is satisfied as long as
any one of following inequalities is true:

0 < G < K (3.23)
0 < hK < G (3.24)
G < hK < 0 (3.25)
K < G < 0. (3.26)

Similarly, when

ρ2 <
1
n

Eq

(
q2

n− q

) [
Eq

(
nq

n− q

)]−1

(3.27)

the estimators ˆ̄Y2 and ˆ̄Y3 are found to have lower mean squared error than ˆ̄Y4.

4 Usefulness of Imputation

It may be observed that all the five formulated estimators of Ȳ make full uti-
lization of the available values in the sample data. Out of these, the estimator
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˜̄Y specified by (2.9) does not utilize the technique of imputation while the re-
maining four estimators ˆ̄Y1, ˆ̄Y2, ˆ̄Y3 and ˆ̄Y4 do. Thus a comparison of ˜̄Y with ˆ̄Y1,
ˆ̄Y2, ˆ̄Y3 and ˆ̄Y4 may shed light on the role of imputation on the construction of
estimators for Ȳ .

Theorem III: The first order approximations for the relative bias and relative
mean squared error of the estimator ˜̄Y are given by

RB( ˜̄Y ) = E

(
˜̄Y − Ȳ

Ȳ

)

= KEp,q

(
1

n− q

)
(4.1)

RMSE( ˜̄Y ) = E

(
˜̄Y − Ȳ

Ȳ

)2

= D − C2
Y

n2
Ep,q

[
qp2

(n− p)(n− p− q)

]

− ρ2C2
Y Ep,q

[
n− p− 2q

(n− p)(n− q)

]
(4.2)

Proof: See Appendix.

Like the estimators based on an imputation procedure, the estimator (4.1) is
also generally biased.

Comparing (4.1) with the results mentioned in Theorem I, we observe that
the estimator ˜̄Y has always smaller magnitude of bias than ˆ̄Y1 and ˆ̄Y2. The
estimator ˜̄Y continues to have smaller magnitude of bias than ˆ̄Y3 provided that

Ep,q

[
n(p− q) + pq

n(n− q)(n− p− q)

]
> 0. (4.3)

Similarly, the estimator ˜̄Y remains superior to ˆ̄Y4 under the criterion of the
magnitude of bias when

(f1K −G)(f2K −G) > 0 (4.4)

with

f1 = nEp,q

(
p

(n− q)(n− p− q)

)[
Ep,q

(
q

n− p− q

)]−1

(4.5)

f2 = nEp,q

(
2(n− q)− p

(n− q)(n− p− q)

)[
Ep,q

(
q

n− p− q

)]−1

. (4.6)

As f1 is less than f2 , the condition (4.4) is satisfied when G and K have opposite
signs. When both are either positive or negative, the condition (4.4) holds so
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long as any one of the following is true:

0 < G < f1K (4.7)
0 < f2K < G (4.8)
f1K < G < 0 (4.9)
G < f2K < 0. (4.10)

Comparing (4.2) with the results stated in Theorem II, we observe that

RMSE( ˆ̄Y1)−RMSE( ˜̄Y ) =
C2

Y

n2
Ep,q

[
qp2

(n− p)(n− p− q)

]

+
ρ2C2

y

n2
Ep,q(Z) (4.11)

where

Z =
pq[2n(n− p− q) + (n− p)(2n− q)]

(n− p)(n− q)(n− p− q)
. (4.12)

It is thus seen that the estimator ˜̄Y is always superior to ˆ̄Y1. This implies that
the imputation by mean is not necessarily a good strategy so far as the estima-
tion of Ȳ is concerned.

Similarly, from (3.15), (3.17) and (4.2), we have

RMSE( ˆ̄Y2)−RMSE( ˜̄Y ) =
C2

Y

n2
(1− ρ2d2)Ep,q

[
qp2

(n− p)(n− p− q)

]
(4.13)

RMSE( ˆ̄Y3)−RMSE( ˜̄Y ) =
C2

Y

n2
[(1− ρ2(d2 + d3)]Ep,q

[
qp2

(n− p)(n− p− q)

]

(4.14)

where

d2 =
[
Ep,q

(
qp2

(n− p)(n− p− q)

)]−1

Ep,q

[
q(2np + nq − pq)
(n− p)(n− q)

]
> 1

(4.15)

d3 =
[
Ep,q

(
qp2

(n− p)(n− p− q)

)]−1

Ep,q

[
p(n− q)

(n− p− q)

]
. (4.16)

When X̄ is used for the imputation of missing values of the auxiliary character-
istic, the imputation of missing values of the study characteristic by the sample
mean ȳ leads to the estimator ˆ̄Y2 which is more efficient in comparison to the
estimator ˜̄Y provided that

ρ2 >

(
1
d2

)
. (4.17)
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Instead of the method of mean imputation if we follow the method of regression
imputation and continue to substitute X̄ as before, the estimator ˆ̄Y3 is more
efficient than ˜̄Y when

ρ2 >

(
1

d2 + d3

)
. (4.18)

Looking at (4.17) and (4.18), it may be noticed that the superiority of regression
imputation over no imputation holds for a relatively wider range of situations
when compared with the superiority of mean imputation over no imputation.

It can be well appreciated from (3.18) and (4.2) that it is hard to find any
clear condition for the superiority of ˜̄Y over ˆ̄Y4 or vice–versa. However, if the
missingness pertains to only one of the two characteristics, i. e., either of the
random variables takes the value zero with probability one, it is interesting
to find that the regression imputation is definitely a better strategy than no
imputation.

5 Monte-Carlo Simulation Study

We conducted a Monte-Carlo Simulation experiment to study the behavior of
the estimators arising after five proposed ways to impute the missing values.
In fact, the large sample asymptotic approximation theory gives an idea of the
behavior of the distribution of the estimator in the central part of distribution
only. The Monte-Carlo study may shed some light on the finite (analytic) sam-
ple properties and overall performance of these estimators.

We considered the set up of a linear regression model yi = α + βXi + εi(i =
1, 2, . . . , n) with εi ∼ N(0, σ2

ε ). The (n − p − q) complete observations on Xi,
say Xcomp, are generated following the normal distribution N(µx, σ2

x), where
µX and σ2

X are pre-specified. The corresponding (n − p − q) complete obser-
vations on yi, say ycomp, are then generated following ycomp = α + βXcomp + ε
with preassigned α and β. The p corresponding observations on Xi when yi are
missing are obtained following N(µX , σ2

ε ) whereas q observations on yi when
X ′

is are missing are obtained from N(α + βµX , σ2
X + σ2

ε ). We considered the
following setup of values:
α = 1, β = 1, µX = 4, σ2

X = 0.4, 0.1, σ2
ε = 0.6, 1 and n = 20, 40, 100, 200.

The values of p and q are varied from 5% to 50% and then different combi-
nations of them are considered. The expected value of estimators and their
expected mean squared errors are calculated on the basis of 15000 replications.
These values are reported in Tables 1 - 4. The expected values of estimators
with σ2

X = 0.6, σ2
ε = 0.4 and σ2

X = 1, σ2
ε = 1 are given in Tables 1 and 2

respectively. The expected value of mean squared errors of the estimators with
σ2

X = 0.6, σ2
ε = 0.4 and σ2

X = 1, σ2
ε = 1 are reported in Table 3 and 4 respec-

tively.
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First of all, we study the behavior of estimators under the criterion of mag-
nitude of bias. We observe from Tables 1 and 2 that when p and q are small,
say 5% each, the magnitude of bias is almost same for all the five estimators,
viz., ˆ̄Y1, ˆ̄Y2, ˆ̄Y3, ˆ̄Y4 and ˆ̄Y5. This simply indicates that if the percentage of
missing observation is very low then all the estimators are almost equally bias
efficient. When σ2

X and σ2
ε are high, say σ2

X = σ2
ε = 1, then ˆ̄Y3 and ˆ̄Y4 turns

out to be most preferred estimators whereas ˆ̄Y1 and ˆ̄Y5 emerges out to be the
least preferred estimators. This observation holds true even when the number
of missing observations in X and y are high. The dominance of ˆ̄Y4 over ˆ̄Y3 in-
creases as in small samples as σ2

X and σ2
ε increases. There is not much variation

in the magnitude of bias when σ2
X and σ2

ε increases. The estimator ˆ̄Y5 seems to
have its utility only when the percentage of missing observations is very high,
say more than 60 − 70%. In the small to moderately large sample sizes, say
up to 40, the magnitude of bias is relatively high when σ2

X and σ2
ε along with

percentage of missing observations are high, say σ2
X = σ2

ε = 1 and p and q are
more than 50%. On the other hand, the magnitude of bias is not much high,
when σ2

X and σ2
ε are small. So, overall, ˆ̄Y3 and ˆ̄Y4 emerges out to be better than

others and which indicates that the regression method of imputation gives more
efficient results under the criterion of magnitude of bias.

Next, we consider the criterion of mean squared error to study the behavior
of these estimators. The overall picture of the mean squared errors indicate
that ˆ̄Y1 and ˆ̄Y5 are the least preferred estimators whereas ˆ̄Y3 and ˆ̄Y4 emerge out
to be more favored than other estimators. This clearly indicates that the use of
the regression method of estimation to impute missing observation yields more
efficient estimator than based on mean imputation. The dominance of ˆ̄Y4 over
ˆ̄Y3 increases as σ2

X and σ2
ε increases.. Even in those cases, when percentage

of missing observations is small, the difference in the mean squared error of
estimators is clearly visible from Tables 3 and 4. As the sample size increases,
the dominance of ˆ̄Y4 over ˆ̄Y3 also increases over different combinations of p and
q. The overall study indicates that ˆ̄Y3 and ˆ̄Y4, based on regression method of
imputation, yield better results.

As it has been mentioned earlier that the magnitude of bias of all the five
estimators is almost same when the percentage of missing observations is small
but it is to be noted here that even in such cases, the estimators ˆ̄Y3 and ˆ̄Y4 have
smaller mean squared error than other estimators. Also, an inter-comparison
between ˆ̄Y3 and ˆ̄Y4 reveals that ˆ̄Y4 is more dominant than ˆ̄Y3 over other estima-
tors. So the overall performance under both the bias and mean squared error
criterion indicates that regression method of imputation provides more efficient
results than other approaches of imputation.

6 Some Concluding Remarks

When p values of the study characteristic and q values of the auxiliary charac-
teristic are missing randomly in the sample data of size n, we have considered
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the application of the regression method for estimating the population mean of
the study characteristic with and without the use of imputation. In all, five
estimators are formulated.

An interesting result emerging from our investigations is that the performance
properties of all the estimators under study remain unchanged whether the study
and auxiliary characteristics have positive correlation or negative correlation.

Comparing the estimators based on the methodology of imputation, it is found
that the regression method of imputation for the missing values of the study
characteristic invariably provides an estimator having smaller mean squared er-
ror at the cost of larger magnitude of bias in comparison to the method of mean
imputation provided that the population mean X̄ is used for the purpose of
imputation of missing values of the auxiliary characteristic. This result does
not remain true when X̄ is not employed for imputation and instead the com-
plete part of sample data is utilized for finding the imputed values of missing
observations of both the characteristics.

Examining the usefulness of the method of mean imputation, it is interesting to
find that the imputation for the missing values from the complete part of sam-
ple data is not at all a good strategy as it leads to an estimator which is worse
on both the fronts of magnitude of bias and mean squared error in comparison
to the strategy of no imputation. The poor performance of the mean impu-
tation procedure slightly improves when the population mean X̄ rather than
the sample mean x̄ is used for the imputation of the missing values of auxiliary
characteristic. It continues to provide an estimator with larger magnitude of
bias but now the mean squared error may decline in some cases.

Similarly, when we study the impact of the method of regression imputation
on the performance of estimators for Ȳ , no neat inferences could be drawn un-
der the criterion of neither the magnitude of bias nor the mean squared error.
However, we could get clear evidence for the superiority of the strategy of re-
gression imputation over the strategy of no imputation under the criterion of
mean squared error when missingness pertains to only one characteristic, i. e.,
the sample data contains either the p missing values of the study characteristic
or the q missing values of the auxiliary characteristic.

The Monte-Carlo simulation results also reveals the estimators based on re-
gression method of imputation to be the winner in overall performance under
the criterion of bias and mean squared error. The replacement of missing values
by the sample mean and population mean of available observations does not
come out to be the good strategies. The results obtained under different combi-
nations of missing percentage of observations in study and explanatory variables
may give some guidelines to applied workers for choosing a good strategy for
imputing the missing values.
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Table 6.1: Expected value of estimators with σ2
X = 0.6, σ2

ε = 0.4

n p q ˆ̄Y1
ˆ̄Y2

ˆ̄Y3
ˆ̄Y4

ˆ̄Y5

20 2 2 5.1398 5.1376 4.9671 4.9455 5.1617
20 2 5 5.3445 5.2844 5.1643 5.2801 5.3796
20 2 10 5.9984 5.2517 5.5706 5.8974 5.7013
20 5 2 3.6619 3.6046 5.2503 5.2839 3.4828
20 5 5 5.6166 5.4147 5.6263 5.9265 5.5267
20 10 2 4.0816 4.1431 4.5725 4.8124 3.9284
40 2 2 4.8137 4.8213 4.8522 4.8149 4.8127
40 2 4 4.8364 4.8367 4.8738 5.0207 4.8282
40 2 8 4.8639 4.9325 4.8393 4.922 4.8826
40 4 2 4.9241 4.9247 4.9532 4.6825 4.9349
40 4 4 5.0646 5.0552 5.0084 4.8424 5.0817
40 4 8 5.1394 5.1845 5.153 4.9823 5.1539
40 8 2 4.8098 4.8211 5.0019 4.8107 4.825
40 8 4 5.1355 5.141 5.1538 5.0397 5.1506
40 8 8 4.7949 4.7442 4.9412 4.9247 4.7582
40 10 10 5.3047 5.1658 5.2823 5.3813 5.282
40 10 15 4.5868 4.8661 4.9082 4.77 4.5358
40 10 20 5.5527 4.9342 5.6356 6.1353 4.8645
40 15 10 4.6178 4.9684 3.9284 3.6471 4.9526
40 20 10 5.508 5.7974 4.9705 4.6107 6.3741
100 5 5 5.3306 4.9471 5.6601 6.2604 4.9707
100 10 10 4.9491 4.9493 4.9604 4.9979 4.9473
100 10 20 5.1524 5.144 5.0914 4.8895 5.1676
100 10 30 5.1403 5.1032 5.0956 5.0388 5.1473
100 10 40 4.7979 4.851 4.8599 4.7289 4.7976
100 10 50 5.1046 5.0381 5.1109 5.1733 5.0564
100 20 10 5.3755 5.1187 5.1913 4.958 5.3285
100 20 20 4.9019 4.9132 4.9173 5.0585 4.8795
100 20 30 4.7601 4.8335 4.8126 4.906 4.7441
100 20 40 5.2835 5.1958 5.1328 4.9988 5.34
100 30 10 5.0666 5.0197 5.0439 4.9943 5.0596
100 30 20 4.9416 4.9441 4.8468 4.8966 4.9437
100 30 30 4.8769 4.911 4.8062 4.7623 4.9052
100 30 30 5.1777 5.1814 5.1165 4.983 5.231
100 40 10 4.6988 4.729 4.8038 4.8375 4.6741
100 40 20 4.7793 4.8203 4.8897 4.8935 4.7461
100 50 10 4.9052 4.9244 4.896 4.9568 4.8694
200 10 10 5.0362 5.0327 5.015 5.0846 5.0354
200 10 20 4.9695 4.9728 4.9731 4.9023 4.9712
200 10 40 4.9566 4.9483 4.9809 4.9497 4.9494
200 10 60 5.0508 5.0201 5.0406 5.0547 5.0424
200 10 80 5.1508 5.0991 5.1068 5.0218 5.1497
200 10 100 5.1612 5.1398 5.137 4.9925 5.1669
200 10 120 5.0233 5.0433 5.0368 5.0058 5.0333
200 30 10 5.0263 5.0291 5.0344 5.0191 5.0269
200 30 30 5.0797 5.0729 5.0506 4.9553 5.0928
200 30 50 4.8459 4.8713 4.8672 4.9592 4.8363
200 30 70 5.0455 5.0279 5.0031 5.1228 5.0499
200 30 90 5.1108 5.0411 5.0679 4.9921 5.0998
200 50 10 5.0169 5.0121 5.011 5.0166 5.0168
200 50 30 5.0928 5.077 5.1138 5.0768 5.0923
200 50 50 4.9998 4.9731 5.0268 5.0403 4.9837
200 50 70 5.1621 5.1411 5.0845 4.7093 5.2456
200 70 10 4.9134 4.9104 4.9763 4.9477 4.9177
200 70 30 5.0548 5.0708 5.0153 5.0025 5.0639
200 70 50 5.102 5.092 5.1309 5.0693 5.1049
200 90 10 5.0287 5.0275 5.0051 4.9567 5.0483
200 90 30 4.9582 4.9664 5.0115 5.0035 4.9501
200 100 10 4.942 4.9438 4.9299 4.9185 4.9481
200 100 20 4.8393 4.8447 4.8832 4.8943 4.8293
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Table 6.2: Expected value of estimators with σ2
X = 1, σ2

ε = 1

n p q ˆ̄Y1
ˆ̄Y2

ˆ̄Y3
ˆ̄Y4

ˆ̄Y5

20 2 2 5.6782 5.5814 5.4989 5.1473 5.7089
20 2 5 5.4774 5.5138 5.3307 5.0263 5.5562
20 2 10 6.4876 5.8861 5.6253 6.5352 6.7302
20 5 2 5.3423 5.3925 5.0989 5.0432 5.3754
20 5 5 4.9326 4.7611 4.9306 5.3827 4.844
20 10 2 6.1109 6.0642 5.7437 5.5357 6.2714
40 2 2 5.0973 5.1117 5.1148 5.0231 5.0998
40 2 4 5.2573 5.2204 5.1375 5.2659 5.264
40 2 8 4.8071 4.8434 4.7822 4.8683 4.8202
40 4 2 4.9154 4.929 4.9524 4.9797 4.9123
40 4 4 4.7353 4.7471 4.7483 5.0346 4.7166
40 4 8 4.7155 4.6703 4.8253 5.1715 4.6568
40 8 2 4.8468 4.8421 4.918 4.9023 4.8455
40 8 4 4.7543 4.7573 4.7374 5.0571 4.709
40 8 8 4.7882 4.8782 4.7864 4.8868 4.784
40 10 10 6.2258 5.9448 5.8521 5.7036 6.3099
40 10 15 5.3452 5.2346 5.0138 5.0852 5.4875
40 10 20 4.5949 4.5083 5.077 4.6944 4.0655
40 15 10 4.1718 4.4934 4.4528 4.8077 4.0837
40 20 10 5.8561 5.4299 5.9121 6.1855 5.7788
100 5 5 5.0371 5.0386 5.0168 5.0007 5.0387
100 10 10 5.1796 5.1722 5.1173 5.0559 5.1889
100 10 20 4.9605 4.9632 4.9456 4.9263 4.9659
100 10 30 5.2895 5.267 5.2558 5.1023 5.3033
100 10 40 5.1566 5.1337 5.1381 5.193 5.151
100 10 50 4.5797 4.7289 4.7826 5.0748 4.506
100 20 10 5.0917 5.0936 4.9634 4.9449 5.1079
100 20 20 4.9582 4.9798 4.9842 4.8911 4.9667
100 20 30 4.9838 4.8771 4.9753 4.9131 4.9645
100 20 40 5.1305 4.9877 5.0196 4.7789 5.1513
100 30 10 4.7703 4.7751 4.8265 5.1039 4.7139
100 30 20 4.6723 4.7175 4.802 5.0037 4.6134
100 30 30 4.9316 4.8952 4.8655 5.2208 4.8889
100 30 30 4.9381 4.8677 5.0558 4.975 4.8848
100 40 10 5.2302 5.2192 5.33 5.1214 5.3023
100 40 20 5.1403 5.0913 4.9343 5.008 5.1702
100 50 10 4.9037 4.8829 5.0724 4.9681 4.9255
200 10 10 5.0636 5.0592 5.045 5.1209 5.0626
200 10 20 5.1493 5.1545 5.1444 5.1263 5.1508
200 10 40 5.0313 5.0172 5.0002 4.8657 5.0394
200 10 60 4.8669 4.8654 4.8697 5.0253 4.8608
200 10 80 4.9544 4.9929 5.0172 5.2334 4.9314
200 10 100 4.9243 5.0006 4.969 4.9543 4.9542
200 10 120 5.0017 5.0796 5.0901 5.1122 4.9833
200 30 10 5.0459 5.0496 5.0137 5.0104 5.0478
200 30 30 5.0619 5.0986 5.0831 4.9677 5.0697
200 30 50 4.952 4.9718 4.9751 5.0102 4.9461
200 30 70 5.1712 5.1681 5.1809 4.8909 5.1948
200 30 90 4.8545 4.814 4.7895 5.0131 4.8584
200 50 10 5.1489 5.1432 5.1089 5.0975 5.1536
200 50 30 5.0222 5.0287 5.048 4.9857 5.0268
200 50 50 4.9091 4.9243 4.9772 5.1979 4.8465
200 50 70 5.1534 5.1683 5.1102 5.1036 5.1828
200 70 10 5.1478 5.1427 5.1183 5.2178 5.1238
200 70 30 5.174 5.1856 5.1186 4.9023 5.2342
200 70 50 5.072 5.0569 5.0194 5.0816 5.0717
200 90 10 4.8483 4.8569 4.8032 4.8737 4.824
200 90 30 4.9578 4.9437 5.0115 5.0297 4.9439
200 100 10 4.8827 4.8819 4.9251 4.9842 4.848
200 100 20 5.1727 5.161 5.2118 5.1012 5.2128
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Table 6.3: Expected value of mean squared error of estimators with σ2
X =

0.6, σ2
ε = 0.4 (All MSEs are expressed in the order of 10−3).

n p q MSE( ˆ̄Y1) MSE( ˆ̄Y2) MSE( ˆ̄Y3) MSE( ˆ̄Y4) MSE( ˆ̄Y5)
20 2 2 19.5 18.9 1.1 3 26.1
20 2 5 118.7 80.9 27 78.5 144.1
20 2 10 996.8 63.4 325.6 805.2 491.9
20 5 2 1790.6 1947 62.6 80.6 2302
20 5 5 380.2 171.9 392.3 858.4 277.4
20 10 2 843.5 734.3 182.8 35.2 1148.3
40 2 2 34.7 31.9 21.8 34.3 35.1
40 2 4 26.8 26.7 15.9 0.4 29.5
40 2 8 18.5 4.6 25.8 6.1 13.8
40 4 2 5.8 5.7 2.2 100.8 4.2
40 4 4 4.2 3.1 0.1 24.8 6.7
40 4 8 19.4 34.1 23.4 0.3 23.7
40 8 2 36.2 32 0.1 35.8 30.6
40 8 4 18.4 19.9 23.7 1.6 22.7
40 8 8 42.1 65.4 3.5 5.7 58.5
40 10 10 92.9 27.5 79.7 145.4 79.5
40 10 15 170.7 17.9 8.4 52.9 215.5
40 10 20 305.4 4.3 404 1289 18.4
40 15 10 146.1 1 1148.2 1830.4 2.2
40 20 10 258.1 635.8 0.9 151.6 1888
100 5 5 109.3 2.8 435.7 1588.7 0.9
100 10 10 2.6 2.6 1.6 0.1 2.8
100 10 20 23.2 20.7 8.3 12.2 28.1
100 10 30 19.7 10.6 9.1 1.5 21.7
100 10 40 40.8 22.2 19.6 73.5 41
100 10 50 11 1.4 12.3 30 3.2
100 20 10 141 14.1 36.6 1.8 107.9
100 20 20 9.6 7.5 6.8 3.4 14.5
100 20 30 57.6 27.7 35.1 8.8 65.5
100 20 40 80.4 38.4 17.6 0.1 115.6
100 30 10 4.4 0.4 1.9 0.1 3.6
100 30 20 3.4 3.1 23.5 10.7 3.2
100 30 30 15.2 7.9 37.6 56.5 9
100 30 30 31.6 32.9 13.6 0.3 53.3
100 40 10 90.7 73.4 38.5 26.4 106.2
100 40 20 48.7 32.3 12.2 11.4 64.5
100 50 10 9 5.7 10.8 1.9 17.1
200 10 10 1.3 1.1 0.2 7.2 1.3
200 10 20 0.9 0.7 0.7 9.5 0.8
200 10 40 1.9 2.7 0.4 2.5 2.6
200 10 60 2.6 0.4 1.7 3 1.8
200 10 80 22.7 9.8 11.4 0.5 22.4
200 10 100 26 19.5 18.8 0.1 27.9
200 10 120 0.5 1.9 1.4 0.1 1.1
200 30 10 0.7 0.8 1.2 0.4 0.7
200 30 30 6.3 5.3 2.6 2 8.6
200 30 50 23.8 16.6 17.6 1.7 26.8
200 30 70 2.1 0.8 0.1 15.1 2.5
200 30 90 12.3 1.7 4.6 0.1 10
200 50 10 0.3 0.1 0.1 0.3 0.3
200 50 30 8.6 5.9 12.9 5.9 8.5
200 50 50 0.1 0.7 0.7 1.6 0.3
200 50 70 26.3 19.9 7.1 84.5 60.3
200 70 10 7.5 8 0.6 2.7 6.8
200 70 30 3 5 0.2 0.1 4.1
200 70 50 10.4 8.5 17.1 4.8 11
200 90 10 0.8 0.8 0.1 1.9 2.3
200 90 30 1.7 1.1 0.1 0.1 2.5
200 100 10 3.4 3.2 4.9 6.6 2.7
200 100 20 25.8 24.1 13.6 11.2 29.1
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Table 6.4: Expected value of mean squared error of estimators with σ2
X =

1, σ2
ε = 1 (All MSEs are expressed in the order of 10−3).

n p q MSE( ˆ̄Y1) MSE( ˆ̄Y2) MSE( ˆ̄Y3) MSE( ˆ̄Y4) MSE( ˆ̄Y5)
20 2 2 460 338 248.9 21.7 502.5
20 2 5 227.9 264 109.3 0.7 309.4
20 2 10 2213 785.2 391 2356.8 2993.6
20 5 2 117.2 154 9.8 1.9 141
20 5 5 4.5 57.1 4.8 146.4 24.3
20 10 2 1234.2 1132.6 553.1 286.9 1616.5
40 2 2 9.5 12.5 13.2 0.5 10
40 2 4 66.2 48.6 18.9 70.7 69.7
40 2 8 37.2 24.5 47.4 17.3 32.3
40 4 2 7.2 5 2.3 0.4 7.7
40 4 4 70.1 63.9 63.4 1.2 80.3
40 4 8 80.9 108.7 30.5 29.4 117.8
40 8 2 23.5 24.9 6.7 9.5 23.9
40 8 4 60.4 58.9 69 3.3 84.7
40 8 8 44.9 14.8 45.6 12.8 46.6
40 10 10 1502.5 892.7 726.2 495.1 1715.7
40 10 15 119.2 55 0.2 7.3 237.7
40 10 20 164.1 241.8 5.9 93.4 873.3
40 15 10 685.9 256.7 299.5 37 839.7
40 20 10 732.9 184.8 831.9 1405.3 606.5
100 5 5 1.4 1.5 0.3 0.1 1.5
100 10 10 32.3 29.6 13.8 3.1 35.7
100 10 20 1.6 1.4 3 5.4 1.2
100 10 30 83.8 71.3 65.4 10.5 92
100 10 40 24.5 17.9 19.1 37.2 22.8
100 10 50 176.7 73.5 47.3 5.6 244
100 20 10 8.4 8.8 1.3 3 11.6
100 20 20 1.7 0.4 0.2 11.9 1.1
100 20 30 0.3 15.1 0.6 7.5 1.3
100 20 40 17 0.2 0.4 48.9 22.9
100 30 10 52.8 50.6 30.1 10.8 81.9
100 30 20 107.4 79.8 39.2 0.1 149.4
100 30 30 4.7 11 18.1 48.8 12.3
100 30 30 3.8 17.5 3.1 0.6 13.3
100 40 10 53 48.1 108.9 14.7 91.4
100 40 20 19.7 8.3 4.3 0.1 29
100 50 10 9.3 13.7 5.2 1 5.5
200 10 10 4 3.5 2 14.6 3.9
200 10 20 22.3 23.9 20.8 15.9 22.7
200 10 40 1 0.3 0.1 18 1.6
200 10 60 17.7 18.1 17 0.6 19.4
200 10 80 2.1 0.1 0.3 54.5 4.7
200 10 100 5.7 0.1 1 2.1 2.1
200 10 120 0.1 6.3 8.1 12.6 0.3
200 30 10 2.1 2.5 0.2 0.1 2.3
200 30 30 3.8 9.7 6.9 1 4.9
200 30 50 2.3 0.8 0.6 0.1 2.9
200 30 70 29.3 28.2 32.7 11.9 37.9
200 30 90 21.2 34.6 44.3 0.2 20
200 50 10 22.2 20.5 11.9 9.5 23.6
200 50 30 0.5 0.8 2.3 0.2 0.7
200 50 50 8.3 5.7 0.5 39.2 23.6
200 50 70 23.5 28.3 12.1 10.7 33.4
200 70 10 21.9 20.4 14 47.4 15.3
200 70 30 30.3 34.5 14.1 9.5 54.8
200 70 50 5.2 3.2 0.4 6.7 5.1
200 90 10 23 20.5 38.7 15.9 31
200 90 30 1.8 3.2 0.1 0.9 3.1
200 100 10 13.8 13.9 5.6 0.3 23.1
200 100 20 29.8 25.9 44.9 10.2 45.3
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Appendix

Let us write

ux =
(

x̄− X̄

X̄

)

uy =
(

ȳ − Ȳ

Ȳ

)

u∗x =
(

x̄∗ − Ȳ

Ȳ

)

u∗∗y =
(

ȳ∗∗ − Ȳ

Ȳ

)

vx =
(

sxx − X̄2θ2C2
Y

X̄2θ2C2
Y

)

vy =
(

syy − Ȳ 2C2
Y

Ȳ 2C2
Y

)

w =
(

sxy − X̄Ȳ ρθC2
Y

X̄Ȳ ρθC2
Y

)

Using these notations, we can express
(

ˆ̄Y1 − Ȳ

Ȳ

)
= Uy − ρ

nθ
[(n− p)ux + pu∗x](1 + w)(1 + vx)−1

= Uy − ρ

nθ
[(n− p)ux + pu∗x](1 + w)(1− vx + . . .)

=
(
Uy − ρ

nθ
[(n− p)ux + pu∗x]

)

+
ρ

nθ
[(n− p)ux + pu∗x] ∗ (vx − w) + . . . (A.1)

where

Uy =
1
n

[(n− q)uy + qu∗∗y ]. (A.2)

Thus the relative bias of ˆ̄Y1 to the first order of approximation is

RB( ˆ̄Y1) = E

(
ˆ̄Y1 − Ȳ

Ȳ

)

= E(Uy)− ρ

nθ
E[(n− p)ux + pu∗x]

+
ρ

nθ
E[(n− p)(uxvx − uxw) + pu∗x(vx − w)]

= KEp,q

[
(n− p)

n(n− p− q)

]
(A.3)
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where use has been made of the following results:

E(uy | p, q) = E(u∗∗y | p, q) = E(ux | p, q) = E(u∗x | p, q) = 0

E(uxvx | p, q) =
1

(n− p− q)θ2C2
Y N

N∑ (
Xi − X̄

X̄

)3

(A.4)

E(uxw | p, q) =
1

(n− p− q)ρθC2
Y N

N∑ (
Xi − X̄

X̄

)2 (
Yi − Ȳ

Ȳ

)

to the order of our approximation.

Similarly, utilizing the results

E(u2
y | p, q) =

C2
Y

(n− p− q)

E(u∗∗2y | p, q) =
C2

Y

q

E(u2
x | p, q) =

θ2C2
Y

(n− p− q)
(A.5)

E(u∗2y | p, q) =
θ2C2

Y

p

E(uxuy | p, q) =
ρθC2

Y

(n− p− q)

we have

RMSE( ˆ̄Y1) = E

(
ˆ̄Y1 − Ȳ

Ȳ

)2

= E
(
U2

y −
ρ

nθ
[(n− p)ux + pu∗x]

)2

(A.6)

yielding the result (3.15) of Theorem II.

In a similar manner, we see that
(

ˆ̄Y2 − Ȳ

Ȳ

)
=

(
Uy − ρ

nθ
[(n− p− q)ux + pu∗x]

)

+
ρ

nθ
[(n− p− q)ux + pu∗x](vx − w) + . . . (A.7)

(
ˆ̄Y3 − Ȳ

Ȳ

)
=

(
Uy − (n− q)ρ

nθ
ux

)
+

(n− q)ρ
nθ

ux(vx − w) + . . . (A.8)

Using these, the expressions (3.3) and (3.4) of Theorem I and (3.15) and (3.17)
of Theorem II can be easily obtained.

Likewise, for the estimator ˆ̄Y4, we have
(

ˆ̄Y4 − Ȳ

Ȳ

)
=

[
Uy − ρ

θ
ux +

qp2

n
(uy − u∗∗y )

]
+

ρ

θ
ux(w − vx)

−qp2

n
(uy − u∗y)(vx + vy − 2w) + . . . (A.9)
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Employing the results (A.4) and (A.5) along with

E(uyvx | p, q) =
1

(n− p− q)θ2C2
Y N

N∑ (
Xi − X̄

X̄

)2 (
Yi − Ȳ

Ȳ

)

E(uyvy | p, q) =
1

(n− p− q)C2
Y N

N∑ (
Yi − Ȳ

Ȳ

)3

(A.10)

E(uyw | p, q) =
1

(n− p− q)ρθC2
Y N

N∑ (
Xi − X̄

X̄

)(
Yi − Ȳ

Ȳ

)2

to the given order of approximation, we find from (A.9) the expression (3.5) of
Theorem I and (3.18) of Theorem II.

Lastly, from (2.9), we can write
(

˜̄Y − Ȳ

Ȳ

)
=

(n− p− q)uy + qȳ∗∗

(n− p)
− ρ

θ(n− q)
[(n− p− q)ux + pu∗x]

+
ρ

θ(n− q)
[(n− p− q)ux + pu∗x](vx − w) + . . . (A.11)

whence the results stated in Theorem III can be easily found.
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