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Abstract

Microaggregation is a set of procedures that distort empirical data in
order to guarantee the factual anonymity of the data. At the same
time the information content of data sets should not be reduced too
much and should still be useful for scientific research. This paper in-
vestigates the effect of microaggregation on the estimation of a linear
regression by ordinary least squares. It studies, by way of an exten-
sive simulation experiment, the bias of the slope parameter estimator
induced by various microaggregation techniques. Some microaggrega-
tion procedures lead to consistent estimates while others imply an
asymptotic bias for the estimator.

Keywords: microaggregation, disclosure control, simple linear model, bias,
consistency

1 Introduction

A problem statistical offices are increasingly faced with is providing sufficient
information to scientists while at the same time having to maintain confi-
dentiality required by data protection laws. To handle this trade-off (which
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is commonly referred to as the statistical disclosure control problem), the in-
formation content of released microdata sets is often reduced by means of
masking procedures. However, while reducing the disclosure risk of a data
file, masking procedures also affect the results of statistical analyses.

One of the most promising masking techniques is microaggregation (De-
fays/Anwar 1998, Domingo-Ferrer/Mateo-Sanz 2002), a procedure for con-
tinuous data which has been widely discussed over the last years. The main
idea behind microaggregation is to group the observations in a data set and
replace the original data values with their corresponding group means. To
reduce the information loss imposed by microaggregation, it is considered
advisable to group only those data values which are similar in terms of a
similarity criterion. The various types of microaggregation techniques mainly
differ in the similarity criterion that is used to form the groups.

While the disclosure risk of anonymized data sets has been subject to in-
tensive research over the last years (Elliot 2001, Willenborg/de Waal 2001,
Yancey et al. 2002), the impact of microaggregation on statistical analy-
ses is still widely unexplored. Empirical studies based on the analysis of
selected data sets include Mateo-Sanz/Domingo-Ferrer (1998), Domingo-
Ferrer/Mateo-Sanz (2001), and Domingo-Ferrer/Torra (2001). However,
while providing an important insight into the effects of microaggregation
on statistical analyses, the results of these studies may depend on various
(unknown) characteristics of the data sets and on the uncertainty whether
the statistical models are correctly specified. In this paper, we instead focus
on simulated data sets. Thus we are able to control the data structure and the
model specification and can concentrate on a study of the microaggregation
effect solely.

The effect of microaggregation on statistical analyses depends on the type of
analysis carried out by the researcher. It is therefore necessary to study all
forms of models to be considered for statistical analysis. In the following, we
restrict our investigation to the estimation of a simple linear regression model.
This is done by means of a systematic simulation study. Our main interest is
in the potential bias of the naive estimator of the slope parameter. It turns
out that all aggregation methods considered in this paper lead to a bias, at
least for small sample sizes. In some cases the bias persists asymptotically
while in other cases it decreases to zero with growing sample size, thus giving
rise to consistent estimates.
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In Section 2 we start with a description of the various microaggregation pro-
cedures used for masking data. Section 3 contains a systematic simulation
study of the effects of microaggregation on the estimation of a simple lin-
ear model. Moreover, we consider in detail the microaggregation techniques
which induce an asymptotic bias in the estimated slope parameter. In Section
4, we outline the effects of microaggregation on the estimation of a multiple
linear regression model. Section 5 contains a concluding summary.

2 Microaggregation Techniques

As stated in the introduction, there are various types of microaggregation
methods which mainly differ in the similarity criterion used for grouping the
data. For our simulation study, we decided to chose five of the most commonly
applied microaggregation techniques, namely

1. Microaggregation using a leading variable (Paass/Wauschkuhn 1985):
The data values are sorted with respect to one variable in the data
set (the so-called leading variable). Groups are then formed by data
records having similar values for the leading variable. The group size
(or ”aggregation level”) is kept fixed for every group. In a simple linear
model, the leading variable can either be the regressor or the dependent
variable. Feige/Watts (1972) have shown that if the regressor is used
as the leading variable, linear model estimates based on the aggregated
data are unbiased. Concerning microaggregation using the dependent
variable as the leading variable, Feige/Watts (1972) hint at the possi-
bility that estimates might show an aggregation bias. However, little is
known about this bias. Therefore, in the following sections, we restrict
to the case where the dependent variable is the leading variable.

2. Individual ranking (Defays/Anwar 1998): Each variable is microaggre-
gated separately. First, the data set is sorted by the first variable, and
the values of this variable are microaggregated. Then, the same proce-
dure is repeated for the second variable and so on. Again, the group
size is kept fixed.
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3. Microaggregation using principal component analysis: Multivariate
data are first projected onto the first principle axis. The projected val-
ues then serve as a leading variable as described in 1. The group size
is kept fixed.

4. Multivariate microaggregation based on Euclidean distances: This type
of microaggregation uses the Euclidean distance to determine the sim-
ilarity of data records. Before microaggregation, all variables are stan-
dardized. Again, a fixed group size is used. For details on the algorithm
we refer to Domingo-Ferrer/Mateo-Sanz (2002).

5. Multivariate microaggregation based on Ward hierarchical clustering
(Domingo-Ferrer/Mateo-Sanz 2002): A cluster analysis with minimum
group size is performed to aggregate the data. Under the constraint that
each group must consist of at least A data values, groups are formed
by minimizing the within-groups variance. The group size is allowed to
vary over the groups. Again, we refer to Domingo-Ferrer/Mateo-Sanz
(2002) for an exact description of the algorithm.

3 Simulations

We consider the simple linear model

Y = α + βX + ε . (1)

Y denotes the continuous response (or endogenous variable) while X denotes
the continuous covariate (or exogenous variable). (α, β)′ is the corresponding
parameter vector. The random error ε is independent of X. Moreover, ε is
assumed to be normally distributed with zero mean and constant variance
σ2

ε .
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We applied the five microaggregation techniques described in Section 2 to
data sets simulated from model (1). We then estimated a simple linear model
from the aggregated data (so-called naive estimation). Table 1 shows the
averages of the naive estimates β̂ over 1000 replications for selected values of
β (β = 0, β = 0.5, β = 1, β = 5) and various sample sizes (n = 50, n = 100,
n = 200, n = 400). For symmetry reasons we do not consider negative values
of β. The residual variance σ2

ε was set equal to 0.5, α was set equal to 0. The
values of the covariate X were drawn from a standard normal distribution.

For microaggregation using Y as a leading variable (LV), microaggregation
using individual ranking (IR), microaggregation using principal component
analysis (PCA), and microaggregation using Euclidean distances (Eucl),
the group size was set equal to three. For microaggregation based on Ward

n=50 n=100 n=200 n=400
Eucl -0.001 0.002 -0.001 -0.001
IR 0.001 0.002 0.000 0.000

β = 0 LV -0.006 0.002 0.000 0.000
PCA -0.002 0.004 0.003 -0.007
kW 0.001 0.001 0.002 0.001
Eucl 0.529 0.513 0.510 0.504
IR 0.492 0.496 0.499 0.499

β = 0.5 LV 0.769 0.762 0.753 0.751
PCA 0.614 0.611 0.611 0.609
kW 0.521 0.511 0.507 0.503
Eucl 1.029 1.018 1.008 1.005
IR 0.988 0.997 0.998 0.998

β = 1 LV 1.163 1.158 1.155 1.155
PCA 1.084 1.085 1.082 1.082
kW 1.036 1.021 1.012 1.006
Eucl 5.016 5.011 5.009 5.004
IR 4.972 4.990 4.995 4.998

β = 5 LV 5.031 5.035 5.034 5.033
PCA 5.030 5.027 5.028 5.028
kW 5.036 5.034 5.028 5.017

Table 1: Naive estimates of β for various sample sizes (σε = 0.5)
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hierarchical clustering (kW), the minimum group size was set equal to three
as well.

From Table 1 we see that if n is small and β > 0, all estimates show a bias.
Interestingly, for LV, PCA, Eucl, and kW, the bias is positive, meaning that
the effect of X on the dependent variable Y is overestimated. If IR is used
to aggregate the data, the slope parameter is underestimated.

The only exception is the case where β = 0: In this case, for all values of
n, the naive estimates are unbiased. For β > 0 we see that if IR, Eucl, or
kW are used for microaggregation, the bias decreases with n increasing and
apparently goes to zero with n →∞. Thus, IR, Eucl, and kW seem to lead
to consistent naive estimates of the slope parameter.

In contrast, estimates show an asymptotic bias if LV and PCA are used for
aggregation. This bias depends on the value of β. Comparing LV to PCA,
we see that PCA induces a smaller bias than LV, at least for the values of β
chosen, but see below.

Tables 2 and 3 show what happens if the residual variance σ2
ε is increased.

Apparently, the bias of the estimates becomes larger as σ2
ε gets larger. In

addition, convergence to the true value of β slows down if IR, Eucl, or kW
are applied. Interestingly, if σε = 1.5 and β = 0.5, the biases of the naive
estimates based on LV and PCA are almost equal. In this case, PCA does
not perform better than LV. At the end of this section, we will consider in
detail the effect of LV and PCA on the naive estimate of β.
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n=50 n=100 n=200 n=400

Eucl 0.004 -0.002 0.002 0.002
IR -0.002 -0.001 0.002 -0.002

β = 0 LV -0.026 -0.015 -0.002 0.000
PCA -0.026 -0.005 -0.015 0.026
kW 0.003 -0.001 0.000 -0.003
Eucl 0.535 0.519 0.512 0.507
IR 0.494 0.493 0.499 0.500

β = 0.5 LV 1.120 1.083 1.081 1.076
PCA 0.911 0.909 0.896 0.890
kW 0.555 0.525 0.513 0.507
Eucl 1.044 1.034 1.019 1.009
IR 0.985 0.997 0.999 1.002

β = 1 LV 1.545 1.515 1.515 1.508
PCA 1.330 1.315 1.309 1.310
kW 1.084 1.047 1.027 1.014
Eucl 5.042 5.027 5.021 5.010
IR 4.952 4.986 4.987 4.995

β = 5 LV 5.136 5.132 5.136 5.130
PCA 5.115 5.112 5.110 5.112
kW 5.135 5.107 5.075 5.004

Table 2: Naive estimates of β for various sample sizes (σε = 1)

n=50 n=100 n=200 n=400
Eucl 0.013 -0.005 0.000 0.000
IR 0.000 0.005 -0.004 0.001

β = 0 LV -0.008 -0.007 0.012 0.013
PCA 0.050 -0.074 0.001 0.071
kW -0.003 0.000 0.005 -0.001
Eucl 0.537 0.521 0.511 0.510
IR 0.491 0.490 0.498 0.497

β = 0.5 LV 1.282 1.254 1.262 1.260
PCA 1.273 1.273 1.263 1.252
kW 0.576 0.539 0.519 0.511
Eucl 1.050 1.037 1.017 1.012
IR 0.981 0.991 1.002 0.993

β = 1 LV 1.917 1.881 1.874 1.867
PCA 1.683 1.650 1.638 1.634
kW 1.146 1.079 1.041 1.025
Eucl 5.087 5.052 5.033 5.009
IR 4.947 4.970 4.992 4.997

β = 5 LV 5.302 5.305 5.293 5.294
PCA 5.269 5.253 5.247 5.245
kW 5.276 5.198 5.129 5.074

Table 3: Naive estimates of β for various sample sizes (σε = 1.5)
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A=3 A=6 A=9 A=12
Eucl 0.002 0.003 -0.002 0.002
IR 0.002 0.001 0.001 0.000

β = 0 LV -0.002 0.007 0.010 -0.040
PCA -0.015 -0.014 0.000 -0.043
kW 0.000 -0.001 -0.002 0.003
Eucl 0.512 0.509 0.511 0.510
IR 0.499 0.496 0.492 0.494

β = 0.5 LV 1.081 1.536 1.771 1.936
PCA 0.896 1.024 1.075 1.098
kW 0.513 0.538 0.562 0.588
Eucl 1.019 1.018 1.018 1.015
IR 0.999 0.997 0.993 0.981

β = 1 LV 1.515 1.731 1.822 1.866
PCA 1.309 1.410 1.436 1.461
kW 1.027 1.065 1.109 1.137
Eucl 5.021 5.020 5.022 5.022
IR 4.987 4.981 4.970 4.960

β = 5 LV 5.136 5.168 5.179 5.183
PCA 5.110 5.141 5.151 5.153
kW 5.075 5.145 5.173 5.181

Table 4: Naive estimates of β for various group sizes (σε = 1, n = 200)

Table 4 shows the naive estimates of β for various group sizes (here, σε was
set equal to one and n was set equal to 200). The group size is denoted by A.
We see that as A increases and β > 0, the bias of the naive estimate increases
in most cases, particularly if LV or PCA are used for microaggregation. The
only exception is the case where Eucl is used to aggregate the data: Here,
the group size does not seem to have any effect on the bias of β̂.

It should be mentioned that the bias of β̂ induced by kW is not directly
comparable to the bias induced by the other microaggregation methods. This
is due to the fact that kW allows the group sizes to vary, implying that
groups containing more than A records are possible. For instance, if A = 3,
the average group size of kW estimated from the simulated data sets was
about 3.70.
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Let us now have a closer look at the nature of the bias of β̂ if LV or
PCA are used to aggregate the data. We estimated the bias of β̂ for
β = 0, 0.005, . . . , 0.495, 0.5, 0.75, . . . , 2.75, 3 and the corresponding negative
values. The sample size n was set equal to 400, the group size was set equal
to three. As before, the values of X were drawn from a standard normal
distribution. The results are shown in Fig. 1 (here, σε was set equal to 0.5):
Again, we see that if β > 0, β is overestimated by β̂. Obviously, if |β| is
close to zero, PCA induces a larger bias than LV does. For large values of
|β|, PCA performs better. We also see that if β = 0, estimates are unbiased.
As |β| → ∞, bias(β̂) goes to zero. This is a plausible result because using Y
as the leading variable is approximately the same as using X as the leading
variable when |β| is large and σ2

ε is kept constant (in fact, the correlation be-
tween X and Y is close to ±1 in this case). In the same way, if X and Y are
highly correlated, using PCA is almost the same as using X as the leading
variable. Now, if X is used as the leading variable, estimates are unbiased
(see Feige/Watts 1972), and thus bias(β̂) should be close to zero if Y is the
leading variable and |β| is large.
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Figure 1: Bias of β̂ if LV (solid line) or PCA (dashed line) is used for mi-
croaggregation (σε = 0.5)
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Fig. 2 shows what happens when σε is increased: As σε increases, the bias
increases, and also the difference between the two bias curves. In addition,
for all values of σε, β is underestimated by β̂ if β < 0.
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Figure 2: Bias of β̂ if LV (solid line) or PCA (dashed line) is used for mi-
croaggregation
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4 Estimating a Linear Model with Two Co-

variates

In this section we outline the effects of microaggregation on the estimation of
a multiple linear regression model. We therefore expand model (1) by adding
an additional covariate X2:

Y = α + β1X1 + β2X2 + ε . (2)

Again, we study the effects of the five microaggregation techniques described
in Section 2 by means of a systematic simulation study. The values of the
covariates X1 and X2 were independently drawn from a standard normal
distribution, the number of replications was 1000. The residual variance σ2

ε

was set equal to one. We estimated model (2) for various samples sizes,
setting α = 0, β1 = 1, β2 = −0.5, and A = 3. Tables 5 and 6 show the results
obtained. Apparently the results of Section 3 (concerning the estimation of
the simple linear model (1)) can be applied to the estimation of the multi-
ple linear regression model (2) as well. The naive estimates β̂1 and β̂2 based on

n=50 n=100 n=200 n=400
Eucl 1.094 1.068 1.046 1.030
IR 0.989 0.986 1.001 1.001

β1 = 1 LV 1.439 1.443 1.425 1.422
PCA 1.264 1.258 1.265 1.261
kW 1.149 1.107 1.063 1.044

Table 5: Naive estimates of β1 for various sample sizes (σε = 1)

n=50 n=100 n=200 n=400
Eucl -0.569 -0.544 -0.523 -0.520
IR -0.495 -0.504 -0.500 -0.501

β2 = −0.5 LV -0.725 -0.710 -0.720 -0.713
PCA -0.617 -0.636 -0.624 -0.629
kW -0.592 -0.547 -0.530 -0.520

Table 6: Naive estimates of β2 for various sample sizes (σε = 1)
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Eucl, IR, and kW are biased if the sample size n is small. However, Eucl,
IR, and kW lead to consistent estimates of the slope parameters β1 and β2.
In contrast, β̂1 and β̂2 are asymptotically biased if LV and PCA are used to
aggregate the data.

To explore how the asymptotic bias induced by LV and PCA
depends on the regression parameter values, we estimated β1

and β2 for β1 = 0, 0.005, . . . , 0.495, 0.5, 0.75, . . . , 2.75, 3, β2 =
0, 0.005, . . . , 0.495, 0.5, 0.75, . . . , 2.75, 3, and the corresponding negative
values. As in Section 3, the sample size n was set equal to 400 and the
group size A was set equal to three. The values of X1 and X2 were drawn
independently from a standard normal distribution. The results are shown
in Figs. 3 (LV) and 4 (PCA): (Note that for symmetry reasons, bias(β̂2)
is exactly the same as bias(β̂1). This is why we do not include the graphs
showing bias(β̂2)). We see that, just as in Figs. 1 and 2, bias(β̂1) is positive
if β1 is positive and bias(β̂1) is negative if β1 is negative. Moreover, if one of
the parameters β1 and β2 is ”large” in absolute value, bias(β̂1) and bias(β̂2)
both go to zero. This result can be explained by the fact that if either
β1 or β2 is large in absolute value, LV and PCA are almost the same as
microaggregation using X1 or X2 as the leading variable. In this case, the
naive estimates β̂1 and β̂2 are unbiased (see Feige/Watts 1972).
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Figure 3: Plot of bias(β̂1) vs. β1 and β2 if LV is used for microaggregation
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Figure 4: Plot of bias(β̂1) vs. β1 and β2 if PCA is used for microaggregation

5 Conclusion

We have analyzed the effects of microaggregation techniques on the estima-
tion of a linear model, one of the most frequently encountered statistical
estimation problems. By means of a simulation study, we have investigated
the behavior of the naive least-squares estimator of the slope parameter in a
simple linear model based on microaggregated data.

The main results are:

1. All five microaggregation techniques considered in this paper induce a
bias in the naive estimator of the slope parameter β in model (1). If IR
is used to aggregate the data and β > 0, the bias is negative, whereas if
LV, PCA, Eucl, or kW are used for aggregation and β > 0, the bias is
positive. For symmetry reasons, if β < 0, the bias is positive for IR and
negative for LV, PCA, Eucl, and kW. If β = 0, β̂ is unbiased despite
microaggregation.
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2. Concerning the asymptotic behavior of the naive least-squares estima-
tor, the simulation results show that for IR, Eucl, and kW the bias
disappears for large sample sizes. Thus, IR, Eucl, and kW lead to con-
sistent estimates of β.

3. If LV and PCA are used to mask the data, estimates are asymptoti-
cally biased. The asymptotic bias is a non-monotonic function of β and
converges to 0 as |β| → ∞. For small values of |β|, the estimates based
on PCA show a larger bias than those based on LV. If |β| is large, PCA
induces a smaller bias than LV does.

4. The bias of the estimates becomes larger if the residual variance σ2
ε is

increased. In addition, if IR, Eucl, or kW are used for microaggregation,
convergence to the true value of β slows down. The same effect can be
seen when the group size A is increased (except for the estimates based
on Eucl, which do not seem to depend on the group size).

5. The above results are also found in a multiple linear regression model
with two covariates. In addition, if any one of the two slope parameters
β1 or β2 is large in absolute value, the bias of the naive estimates is
close to zero.

We thus see that in terms of consistency, Eucl and kW are reasonable alterna-
tives to IR which is considered to be less protective than the other microag-
gregation techniques analyzed in this paper (see Winkler 2002). However,
Eucl and kW clearly are the most computationally demanding microaggre-
gation procedures. Concerning LV and PCI, we have seen that estimates are
asymptotically biased. An obvious solution to this problem would be to de-
velop estimators that correct for the biases induced by LV and PCI. This
can be done if the bias has been evaluated analytically. For LV this has been
achieved, see Schmid et al. (2005).
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