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Abstract

Weighting is a largely used concept in many fields of statistics and

has frequently caused controversies on its justification and profit. In this

paper, we analyze a weighted version of the well-known local polynomial

regression estimators, derive their asymptotic bias and variance, and find

that the conflict between the asymptotically optimal weighting scheme

and the practical requirements has a surprising counterpart in sampling

theory, leading us back to the discussion on Basu’s (1971) elephants.
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1 Introduction

What does “weighted local fitting” mean? This title seems to contain a pleonasm,

since local fitting is in a certain sense always weighted, where weighting en-

ters by means of kernel functions. More specifically, assume we are given a
∗jochen.einbeck@nuigalway.ie
†augustin@stat.uni-muenchen.de
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random sample (x1, y1), . . . , (xn, yn) drawn from a certain bivariate population

(X,Y ) ∈ R2 with mean function m(x) = E(Y |X = x) and variance function

σ2(x) = Var(Y |X = x). Let K(·) be a kernel function and h denote the band-

width. A local polynomial estimator (Ruppert & Wand, 1994) of degree p for

m at point x is generally given by m̂(x) = β0(x), where β0(x) is obtained by

solving the minimization problem

min
β

n∑

i=1

K

(
xi − x

h

) 
yi −

p∑

j=0

βj(x)(xi − x)j




2

(1)

w.r.t. β = (β0(x), . . . , βp(x)). In particular, setting p = 0 leads to the

Nadaraya-Watson estimator (Nadaraya, 1964), and p = 1 yields a local lin-

ear estimator (Fan, 1992). The kernel function K(·) is usually assumed to

be a bounded probability density function, e.g. the Gaussian density or the

Epanechnikov kernel, K(u) = 3
4(1−u2) · I[−1,1](u). The use of a kernel function

is motivated by a simple and obvious fact: Data pairs (xi, yi) with xi lying

near to the target value x contain more relevant information about m(x) than

data points being located far away from x. Note that this kind of weighting

might be described as fair weighting: With x moving through the data, every

data point (xi, yi) has once the chance to achieve the maximum weight K(0),

namely when x = xi. In other words, the weighting scheme only depends on

the distance between xi and x, but not on the position of xi itself. An unfair

weighting scheme is obtained by introducing an additional weight function, say

α(·), in minimization problem (1), yielding

min
β

n∑

i=1

K

(
xi − x

h

)
α(xi)


yi −

p∑

j=0

βj(x)(xi − x)j




2

. (2)

Several settings of α(·) have been proposed for special situations. In the case

of parametric regression, i.e. h −→ ∞, ‘ it is natural to favor observations

with small variances by weighting the sum of squares’ (Huet, Bouvier, Gruet &

Jolivet, 1996), and the resulting weight function

α(xi) = 1/σ2(xi) (3)

can be shown to be optimal in a variance-minimizing sense (see Carroll & Rup-

pert, 1988, for a profound treatment of this kind of weighting). For nonpara-

metric regression, however, this does not hold, and some authors suggested to
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set

α(xi) = fk(xi), (4)

where f is the design density and k some constant. An early approach in this

direction was pursued by Fan & Gijbels (1992), who additionally replaced (for

p = 1) the fixed bandwidth h with the variable bandwidth h/α(xi). The result-

ing weighted local estimator corresponds in the case k = 1/4 to a smoothing

spline (Silverman, 1984) and in the case k = 1 to a nearest-neighbor estimator

(Jennen-Steinmetz & Gasser, 1988). Fan & Gijbels (1992) showed that the

asymptotically optimal weight function is proportional to f1/4(x)/σ2(x).

In this paper, however, we concentrate on the case of a constant bandwidth

h as in Einbeck, de André & Singer (2004), who proposed to set k equal to

some small positive integer, e.g. k = 1 or 2. The aim of this choice of k was

achieving robustness against outliers in the design space. Fig. 1 shows a simple

example taken from the latter article. A local linear smoother (dotted line) and

a weighted local linear smoother (solid; with k = 2) are fitted to the number

of respiratory deaths of children under five as a function of SO2 concentration,

recorded in the city of São Paulo from 1994 to 1997. One observes that the

unweighted curve is misleading, suggesting that the risk of respiratory death

decreases for very high concentrations of SO2. The problem of horizontal out-

liers (i.e. outliers in the design space) has received much less attention in the

statistical literature than that of vertical outliers. One possible reason may be

that the former type of outliers was frequently denied to be an outlier at all;

e.g. Barnett & Lewis (1994), p. 318, argued that ‘an extreme (‘outlying’) value

in the design space of an experiment lacks the fortuitous (probabilistic) stim-

ulus for its extremeness which we have adopted as a characteristic of outlying

behavior’. This is certainly true for fixed design, but might not be the adequate

point of view if the design is random, as in the example given above. We follow

the usual convention in this paper and identify the term outlier with an outlying

response, and write outlying predictor to stress that the value is outlying in the

x−direction.

When we talk about weighted local fitting in this paper, the term weighted refers

to the function α(·) (note the semantical difference to locally weighted fitting,

3
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Figure 1: (Einbeck, de André and Singer) Respiratory deaths versus SO2 concentra-

tion, local linear fit (dotted) and fit with robustness to horizontal outliers (solid).

which just refers to the use of kernel functions). The former type of weighting

has indeed to be called unfair, since a priori some data points (Xi, Yi) get

associated to higher weights than other ones. The paper is organized as follows.

In Section 2, we investigate in detail the properties of weighted local estimators

obtained by minimizing (2). In particular, the asymptotic behavior is studied

and an asymptotically optimal weight function is derived, which turns out to be

of the form (4) with k = −1. In Section 3, this weight function is compared to

the weights based on the setting k = 1, and a small simulation study is provided

to give an impression of the behavior of differently weighted estimators. As

similar weighting concepts are well-known from sampling theory (see e.g. Kish,

1990), we compare the findings in Section 4 with related theoretical results

from this field and find surprising analogies, helping us to understand problems

better. The paper finishes with the Conclusion in Section 5.
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2 Properties of the weighted local smoother

In this section, we analyze the properties of the estimators

m̂(j)(x, α) = j!β̂j(x) (5)

for the j−th derivative (0 ≤ j ≤ p) of m at x, which are obtained from the

minimizers β̂j(x) of (2) according to Taylor’s theorem. It is convenient to

introduce matrix notation. Let therefore

X =




1 x1 − x · · · (x1 − x)p

...
...

...

1 xn − x · · · (xn − x)p


 , y =




y1

...

yn


 ,

W = diag(Kh(xi − x))1≤i≤n, A = diag(α(xi))1≤i≤n.

Then the minimization problem (2) can be written in the form

min
β

(y −Xβ)T AW (y −Xβ). (6)

The solution

β̂ = (XT AWX)−1XT AWy,

is similar like for common local polynomial fitting (Ruppert & Wand, 1994).

Then m̂(j)(x, α) = eT
j+1β̂, where ej+1 = (0, . . . , 0, 1, 0, . . . , 0)T , with 1 at (j+1)th

position, serves as an estimator for m(j)(·) at point x. For instance, for p = 0

one obtains the weighted local constant estimator

m̂(x, α) =
∑n

i=1 α(xi)Kh(xi − x)xi∑n
i=1 α(xi)Kh(xi − x)

, (7)

where Kh(·) = 1
hK

( ·
h

)
. Furthermore it is easily verified that

Bias(β̂|X) = (XT AWX)−1XT AWr, (8)

where r = (m(x1), . . . , m(xn))T − Xβ is the vector of the residuals of the

local approximation and X denotes the vector of predictors (x1, . . . , xn). The

conditional covariance matrix is given by

Var(β̂|X) = (XT AWX)−1(XT A2ΣX)(XT AWX)−1, (9)

where Σ = diag(K2
h(xi − x)σ2(xi)).

5



2.1 Asymptotical properties

We denote the kernel moments by

µj =
∫ ∞

−∞
ujK(u) du and νj =

∫ ∞

−∞
ujK2(u) du

and define the matrices of kernel moments

S = (µj+l)0≤j,l≤p S∗ = (νj+l)0≤j,l≤p

S̃ = (µj+l+1)0≤j,l≤p S̃∗ = (νj+l+1)0≤j,l≤p

cp = (µp+1, . . . , µ2p+1)T c̃p = (µp+2, . . . , µ2p+2)T .

With oP (1) denoting a sequence of random variables which tends to zero in

probability, we have the following proposition:

Proposition 1. Under assumptions (i) to (v) (see Appendix A) one gets for

h −→ 0

Bias(β̂|X) = hp+1H−1
[
βp+1S

−1cp + hb∗α(x) + on

]
(10)

and

Var(β̂|X) =
σ2(x)

f(x)nh
H−1

[
S−1S∗S−1 + hV ∗

α (x) + on

]
H−1 (11)

where H = diag(1, h, . . . , hp), on = oP (h) + OP

(
1√
nh

)
,

b∗α(x) =
(

α′(x)
α(x)

+
f ′(x)
f(x)

)
βp+1

(
S−1c̃p − S−1S̃S−1cp

)
+ βp+2S

−1c̃p (12)

and

V ∗
α (x) =

(
2
σ′(x)
σ(x)

+ 2
α′(x)
α(x)

+
f ′(x)
f(x)

)
S−1S̃∗S−1 − (13)

−
(

α′(x)
α(x)

+
f ′(x)
f(x)

)
·
(
S−1S̃S−1S∗S−1 + S−1S∗S−1S̃S−1

)
.

A sketch of the proof is provided in the appendix. The formulas given in this

proposition reduce to the expressions provided in Fan, Gijbels, Hu & Huang

(1996) in the special case α(·) ≡ 1. Note that the leading bias and variance

terms are independent of α(·). This can also be seen in the following proposition,

which is obtained from Proposition 1 using formula (5):

Proposition 2. Let h −→ 0 and nh −→∞. Under assumptions (i) to (v)

Var(m̂(j)(x, α)|X) = eT
j+1S

−1S∗S−1ej+1
j!σ2(x)

f(x)nh1+2j
+ op

(
1

nh1+2j

)
(14)

6



and

Bias(m̂(j)(x, α)|X) =

= eT
j+1S

−1cp
j!

(p + 1)!
m(p+1)(x)hp+1−j + oP (hp+1−j) (15)

hold.

Both formulas are the same as those for local polynomial fitting (Fan & Gi-

jbels, 1996, Theorem 3.1). Note that application of Propositions 1 and 2

needs some care when symmetric kernels are used, as in this case the odd

kernel moments and hence some kernel moment matrix products vanish. In

particular, for the variance formulas, the expressions eT
j+1S

−1S̃S−1S∗S−1ej+1,

eT
j+1S

−1S∗S−1S̃S−1ej+1 and eT
j+1S

−1S̃∗S−1ej+1 are trivially zero for any choice

of p and j, while the expression eT
j+1S

−1S∗S−1ej+1 is never trivially zero.

The situation is more complicated for the bias expression, where eT
j+1S

−1cp is

zero for p−j even, while eT
j+1S

−1c̃p and eT
j+1S

−1S̃S−1cp are zero for odd values

of p− j . This special behavior motivates to formulate the bias for symmetric

kernels in a separate proposition, taking the deeper expansion of the bias (12)

into account:

Proposition 3. Let h −→ 0 and nh3 −→ ∞. Under assumptions (i) to (vi)

we get for p− j odd

Bias(m̂(j)(x, α)|X) =

= eT
j+1S

−1cp
j!

(p + 1)!
m(p+1)(x)hp+1−j + oP (hp+2−j) (16)

and for p− j even

Bias(m̂(j)(x, α)|X) =

= eT
j+1

j!
(p + 1)!

[(
α′(x)
α(x)

+
f ′(x)
f(x)

) (
S−1c̃p − S−1S̃S−1cp

)
m(p+1)(x) +

+ S−1c̃p
m(p+2)(x)

p + 2

]
hp+2−j + oP (hp+2−j). (17)

The second formula provided in Proposition 3 is remarkable, because it shows

that in this special case the leading term is not independent of α(·). This gives

the chance to reduce the bias. Note that the augend in the squared bracket in

(17) vanishes for
α′(x)
α(x)

+
f ′(x)
f(x)

= 0,

7



and this differential equation is solved for

αopt(x) = c
1

f(x)
, (18)

with c ∈ R\{0}. This result is in various aspects surprising: Fan (1992) and Fan

& Gijbels (1996) argued that the order p of the polynomial should be chosen

such that p − j is odd, since in this case the estimators are design-adaptive,

meaning that the asymptotic bias does not depend on the design density and its

derivatives. Estimators based on even values of p − j are not design-adaptive

and should consequently be avoided. Regarding (17) and (18), we see that

the disturbing term depending on the density can be completely eliminated, if

only f(·) is known and the weighting α(·) = 1
f(·) is applied. Thus, the role of

the function α(·) is in fact to manipulate the influence of the design density.

In practice, certainly, f(·) is mostly unknown, but may be substituted by a

suitable density estimate f̂(·).

2.2 Leverage values

The second remarkable point about the asymptotically optimal weights (18),

which suggest to set k = −1 in (4), is that this seems to be in contrast to

the proposal k = 1 from Einbeck, de André & Singer (2004) mentioned in the

introduction. Does there exist some foundation for the latter setting as well?

There is at least a heuristic one. Recall that the hat matrix L of a smoother m̂

is defined by 


m̂(x1)
...

m̂(xn)


 = Ly

The influence or leverage values li are the diagonal elements of L and can

be interpreted as a measure of influence of a design point on the estimated

function evaluated at this design point (for details about influence values see

Huber (1981) and Hampel, Ronchetti, Rousseeuw & Stahel (1986)). Let us

consider for simplicity the manipulated Nadaraya-Watson estimator (7). The

leverage values of this estimator are given by

li =
Kh(0)α(xi)∑n

j=1 Kh(xj − x)α(xj)
=

K(0)
h

α(xi)

f̂α(xi)
, (19)

8



where

f̂α(x) =
1
n

n∑

j=1

Kh(xj − x)α(xj)

may be seen as a weighted kernel density estimate at point x. As illustrated

by Loader (1999) in Fig. 2.6, the influence values of a local fit rise strongly

near the boundary, which frequently falls together with regions having sparse

design. From (19) we see that the leverage values are constant iff

α(·) = f̂α(·). (20)

Though this formula is recursive and the weight function α(·) appears again in

the density estimate, it unveils that the weight function α(·) plays a stabilizing

role for the leverage values if it is chosen proportional to the design density. This

gives some motivation for the setting k = 1 in (4). We illustrate this in Fig.

2 by means of a simulated data set of size n = 50 with beta(0.5,2)-distributed

design and normally distributed errors (σ = 0.3) added to the function y =
√

x.

As can be see from the plot in the top, the leverage values for an unweighted

Nadaraya-Watson estimator rise strongly near the right boundary. Setting the

weights proportional to the inverse estimated density, i.e. k = −1, this effect is

even stronger, whereas the leverages are nearly constant for k = 1. For a local

polynomial fit of second order these differences are not as pronounced, but the

tendency is still observable, as can be seen from Fig. 2 (bottom).
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2
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Figure 2: Leverage values for beta-distributed data (n = 50) for different polynomial

degrees and weighting schemes.
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It should be noted that extreme design points with high leverages have earlier

attracted some attention in the theory of parametric regression; see e.g. the

classical work by Hampel, Ronchetti, Rousseeuw & Stahel (1986), pp. 307 ff,

for an overview on this research. An important parametric regression estimator

based on downweighting those points is the Mallows-estimator (Mallows, 1979).

2.3 Behavior at the boundary

We have at this point two weighting schemes, which are both in some (different!)

sense optimal, or at least plausible. Where is the contradiction, or is there any

contradiction at all? In order to answer this question, we firstly observe from

Fig. 2 that the high leverage points motivating the setting k = 1 also share

another property: They are situated near the right boundary. However, the

asymptotic results presented above concern interior points, i.e. fixed points

in the interior of f(·). When x is a boundary point, the asymptotic behavior

is different. Let us therefore take a more thorough look at the asymptotic

properties of boundary points. We assume without loss of generality that the

density f has a bounded support [0, 1] and that f is right continuous at 0

for a left boundary point and left continuous at 1 for a right boundary point.

We write a left boundary point as x = ch (c ≥ 0), and accordingly a right

boundary point as x = 1− ch. Calculation of the asymptotic bias and variance

is straightforward as in Proposition 1 and 2; the only difference is that the

kernel moments µj and νj have to be replaced by

µj,c =
∫ ∞

−c
ujK(u) du and νj,c =

∫ ∞

−c
ujK2(u) du

in case of a left boundary point, and analogously in case of a right boundary

point. These kernel moments never vanish, irrespectively of whether the kernel

is symmetric or not. We formulate the result in Proposition 4 for the case of a

left boundary point, and omit details of the proof.

Proposition 4. For h −→ 0 and nh −→ ∞ one gets at a left boundary point

x = ch

Var(m̂(j)(x, α)|X) = eT
j+1S

−1
c S∗c S−1

c ej+1
j!σ2(0+)

f(0+)nh1+2j
+ oP

(
1

nh1+2j

)
,

10



and

Bias(m̂(j)(x, α)|X) =

= eT
j+1S

−1
c cp,c

j!
(p + 1)!

m(p+1)(0+)hp+1−j + oP (hp+1−j), (21)

where cp,c = (µp+1,c, . . . , µ2p+1,c)T and Sc = (µj+l,c)0≤j,l≤p.

In this situation, the kernel moment matrix eT
j+1S

−1
c cp,c is never trivially zero.

Thus, the first order approximation of the bias does not depend on α(·), and

hence the considerations leading to (18) are no longer valid for a boundary

point, implying that the results (18) and (20) cannot be offhandly compared.

Practically, this observation is not yet very useful, as every data set consists of

interior and boundary points and needs a weight function that serves them all.

In the following section, we try to work out guidelines when either setting is

recommendable.

3 Discussion of different weighting schemes

When looking for a practical weight selection rule, there is one apparent and

tempting idea which one might have in this connection. The weighting scheme

α(·) ∼ f(·) was originally introduced to robustify against outlying predictors,

which is, as one might argue, rather a finite sample problem, suggesting the

simple rule: Use α(·) ∼ f(·) for small sample sizes, and the asymptotically

optimal weights α(·) ∼ 1/f(·) for large sample sizes.

3.1 A tutorial on the influence of outlying predictors

To investigate this, we consider in a tutorial manner a sample with underlying

function y =
√

x and beta-distributed design generated as in Section 2.2. In Fig.

3 we provide exemplarily two simulated data sets with n = 50 (left), and two

further data sets with n = 1000 (right) simulated data points. The two data sets

in the top are situations where either no relevant outlying predictors are present,

or, if they are, their associated responses are distributed roughly symmetrically

around the underlying function. In this case, the asymptotically optimal weights

give indeed an excellent fit, nearly indistinguishable from the fit with constant

11



weights. Weighting with the estimated density at some target point x gives too

much weight to the previous observations compared to the next ones, so that

the estimate oversteers. The matter is different in the situations in the bottom,

where outlying high leverage points are present. Here the asymptotic weighting

scheme can produce a heavy bias in sparse data regions, whereas the robustified

version stays comparatively near to the underlying function. Hence, there is

no guarantee at all that either weight function improves the fit, as outlying

leverage points may or may not occur for any sample size and (bounded or

unbounded) design.

It is, of course, a question of definition if extreme design points as generated in

the right column of Fig. 3 have still to be called outlying predictors. Unfortu-

nately, ”there is no generally accepted definition of what constitutes an outlier.”

(Gather & Becker, 1997). Traditionally, outliers are seen as data points gen-

erated from some kind of ’contaminating’ distribution, which differs from the

target distribution (see e.g. Barnett & Lewis, 1994). A more modern viewpoint,

brought up by Davies & Gather (1993), is to consider data points as outliers if

they are far enough away from the center of the distribution of the data cloud,

regardless from which distribution they are generated. For instance, for any se-

quence 0 < γn < 1 the γn outlier region of the N(µ, σ2) distribution is defined

by

out(γn, µ, σ2) = {x : |x− µ| > z1−γnσ, }

where γn = 1− (1− γ)1/n is selected such that the probability that no observa-

tion falls in the outlying region is equal to 1− γ. According to this definition,

the number of outlying predictors can even increase with the sample size. This

seems to be counterintuitive, but is in conformity with the observations drawn

from Fig. 3, where we observed no (horizontal) outliers in the sense of Davies

and Gather for n = 50, but two outlying predictors in the bottom right picture

for n = 1000. The beginning of the γn-outlying region of the beta(0.5,2) distri-

bution for γ = 0.2, with n = 50 and n = 1000, respectively, is symbolized by a

vertical line in Fig. 3. The concept of outlier regions is similar in spirit to the

‘hard robustification’ rule suggested by Einbeck, de André & Singer (2004).

The tutorial showed us that yet no clear statement can be made. A simulation

12
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Figure 3: Selected examples for the behavior of local estimators with p = 0 for sample

size n = 50 (left) and n = 1000 (right) with weights α = f̂ , α ≡ 1 and α = 1/f̂ . The

predictors follow a beta(0.5,2) distribution. The true function y =
√

x is indicated by

a solid line. Vertical lines indicate the beginning of the γn- outlying region (γ = 0.2)

at 0.893 and 0.976, respectively.
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study is evidently called for, and we give the results in the following.

3.2 Simulation study

For data sets of size n = 50 and n = 1000, each 1000 replicates were generated

as above. The choice of the error criterion needs some care in this case. Taking

the average squared error as e.g. in Hart & Yi (1998),

ASE =
1
n

n∑

i=1

(m̂(xi)−m(xi))2,

might overrepresent regions with dense design. Alternative choices are the

integrated squared error (ISE) as used in Fan (1992) or its robust version, the

integrated absolute error (IAE, Gentle, 2002, p. 146), defined by
∫ 1

0
`(m̂(x)−m(x)) dx,

with loss function `(z) = z2 and `(z) = |z|, respectively, where integration

is performed numerically over the whole density domain, hence giving equal

weight to high density and sparse regions. A variety of other criteria exist; see

Fahrmeir & Tutz (2003), p. 190, for an overview. We will work representatively

with the three choices outlined above, ensuring that the found results are not a

particular feature of a certain error criterion. The results of the simulation study

are shown in Fig. 4 for n = 50 (left column) and n = 1000 (right column) and

the criteria IAE, ISA, and ASE (from top to bottom), with weighting schemes

α(·) = f(·), α(·) ≡ 1 and α(·) = 1/f(·) (i.e. k = 1, 0,−1 ; from left to right

within the boxplots). We distinguish two cases: In the left two columns, the

density was estimated applying the kernel density estimator

f̂(·) =
1
ng

n∑

i=1

K

(
xi − x

g

)
, (22)

where the bandwidth g was selected for each simulated data set anew using

Silverman’s (1986, p. 48) bandwidth selector, as also proposed in Einbeck,

de André & Singer (2004). In the right columns, the true (known) density was

used in the weight functions α(·).

The result in the first column is as expected. For all error criteria, there seems

to be some evidence that the robust weights are superior. The second column is
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alarming: For a higher sample size, the asymptotic result is even getting worse,

and the robust weights stay superior. This confirms our concerns uttered in

Section 3.1 that the problem of outlying predictors does not disappear with

increasing sample size, but rather gains in power. This is even more remarkable

as we did not assume at all in this study that the outlying predictors are in

some sense ill-behaving compared to the rest of the data – all data points are

simulated from the same model, and the y-values associated with the outlying

predictors are not necessarily outlying in y-direction. We note at this occasion

that the data set used in the introduction is actually of length n = 1067, giving

one more example that the usefulness of this kind of weighting is not restricted

to small sample sizes.

When the true density is used, however, the asymptotic weights perform – for

either sample size – much better, though they never succeed to be the ‘winning’

weight. We return to this important observation in the next section after our

look at sampling theory.

We have to stress at this point that the general picture might be different in

other situations. We did a large number of simulations with different underly-

ing functions, sample sizes, error variances, and design densities, and observed

that sometimes the winning weights tended to be more on the robust, and less

frequently more on the asymptotic side. It is not within the scope of this pa-

per to give a general statement about this, therefore the simulation study is

provided here just with one exemplary function. The general picture, however,

was in most simulations similarly disillusioning as above as far as our initial

hypothesis is concerned: Though there is a - rather small - tendency that the

asymptotic weights perform better with increasing sample size, they still might

give a terrific result for large sample sizes, as their success depends dramati-

cally on the accuracy of the density estimate, and on the existence of outlying

predictors with high leverages.

We seem to be not very far from where we started. Hoping to understand things

better, we next take a deeper look at sampling theory, where similar theoretical

results and similar practical problems, and the confusions arising from them,

have already been discussed for a long time, without having much impact on
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Figure 4: Weighted local regression with p = 0: Boxplots of log(IAE) (top), log(ISE)

(middle), and log(ASE) (bottom) over 1000 simulated data sets, each with weight

functions α = f, α = 1, and α = g ≡ 1/f , for estimated (left columns) and true (right

columns) densities. Note that the boxplots have differing scales, as not the absolute

values are of interest, but rather the differences between weighting schemes.16



other areas of statistics.

4 Relation to sampling theory

Weighting is a widely used concept in sampling theory. There exist a large

variety of reasons and methods for weighting a sample, see Kish (1990) and

Gabler, Hoffmeyer-Zlotnik & Krebs (1994) for overviews.

4.1 From stratification to weighted local smoothing

One of the most important reasons for weighting is stratification, where the

population is divided a priori, i.e. before the sample is taken, into several

groups, called strata, which are assumed to be more or less ’homogeneous within

and heterogeneous between’. The main reasons for stratification are variance

reduction or to ’produce larger samples for separate domains, usually for smaller

domains’ (Kish, 1990). If the proportions assigned to the strata do not meet

the proportions in the population, keeping the bias small requires to weigh the

strata accordingly.

We give a simple example to illustrate this. Assume one is interested in the

average income of the supporters of a specific soccer team, and that it is known

from some source that the target population Y1, . . . , YN consists of proportions

Pm = 0.95 men and Pw = 0.05 women. A sample of size n = 500 shall be

collected in the stadium at a certain matchday. As one fears that there may

be very few female spectators in a simple random sample, leading to a high

variance of the estimator of this subpopulation mean, and, hence, of the target

population mean (see e.g. Brewer, 2002, p. 34), one stratifies the population

in a male and a female stratum, with fixed sample proportions pm = 0.7 and

pw = 0.3, respectively. From the corresponding simple random samples within

the strata, say y1, . . . , ynpm and ynpm+1, . . . , yn, one calculates the means ȳm =
∑npm

i=1 yi and ȳw =
∑n

i=npm+1 yi for the two strata separately, assigns weights

αm = Pm/pm = 95/70 and αw = Pw/pw = 5/30 to the observations obtained
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from men resp. women, and finally computes

ȳ = αm · pm · ȳm + αw · pw · ȳw =
1
n




npm∑

i=1

αmyi +
n∑

i=npm+1

αwyi


 . (23)

Obviously, using the terminology from Section 1, this kind of weighting is unfair,

since it assigns to observations stemming from men generally a higher weight

(95/70) than for those coming from women (5/30).

For a more profound analysis of this example, we introduce the factor

xi =





1 if observation yi is taken from a man,

2 if observation yi is taken from a woman.

Then the individual weights of the observations may be written as α(x1), . . . ,

α(xn), with α(xi) = αm for i ≤ npm, and α(xi) = αw otherwise. A local

estimator ȳ(x) may be interpreted as the estimator for the mean in stratum

x (x ∈ {1, 2}). Defining the discrete kernel

K(xi, x) =





1 xi = x

0 otherwise,
(24)

we have

ȳ(x) =
∑n

i=1 α(xi)K(xi, x)yi∑n
i=1 α(xi)K(xi, x)

. (25)

This corresponds in character to the weighted Nadaraya-Watson-estimator (7)

(note that in this simple case the weights cancel out, as they are constant within

each stratum, and only one stratum has non-zero kernel weights). Thus, the

estimators within the strata correspond formally to the local estimators from

Section 2 in the case p = 0, j = 0. Certainly, the asymptotic results from

Section 2 do not apply directly here, as the xi in the given example are discrete

and fixed. However, let us consider a situation with a high number H of strata,

denoted by ordered real numbers k` ∈ R, ` = 1, . . . , H, k` < km (` < m), with

stratum proportions P1, . . . , PH . Let the random variable X describe the event

that an arbitrarily chosen sample observation stems from a certain stratum, i.e.

P (X = x) =





P1 for x = k1

...
...

PH for x = kH

18



Applying a similar idea as in Gasser & Müller (1984), we set s` = (k` +k`+1)/2

(1 ≤ ` ≤ H − 1), s0 < k1, and sH > kH . One gets the histogram

fH(x) =
H∑

`=1

P` · 1{s`−1≤x<s`}/
H∑

`=1

P`(s` − s`−1)

for the distribution of X. If now the number of strata H tends to infinity, then

the variable X loses its meaning as a discrete stratum indicator and simply

represents the real axis. The series of histograms fH(x) converges then to a

probability density function f(x), which can be interpreted as selection proba-

bility distribution for the independent variable. Provided that the assumptions

in Appendix A hold, in particular that α(·) is smooth, and using an appro-

priate continuous kernel instead of (24), we can now apply the asymptotics

from Section 2 on (25). Thus, the asymptotically optimal weighting scheme

(18), suggesting to weight with the inverse density function, should have some

relevance in the sampling context as well.

4.2 Weighted local smoothing and the Horvitz-Thompson esti-

mator

It turns out that this is indeed the case, and that there exists already a well-

known theoretical result in this direction. From a population Y1, . . . , YN we

draw without replacement a sample of length n. Suppose the population total

Y =
∑N

i=1 Yi is to be estimated. We define the random variable δi, indicating

whether unit i has been sampled, by

δi =





1 unit i in sample

0 unit i not in sample

Horvitz & Thompson (1952) showed that among all linear estimators of the

form

Ŷ =
N∑

i=1

αiδiYi (26)

the Horvitz-Thompson (HT) estimator

ŶHT =
N∑

i=1

δi
Yi

πi
, (27)
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is the only unbiased estimator for Y , where πi is the probability that the i-th

element is drawn in any of the n draws. Thus, in other words, the estimation is

best w.r.t. the bias when the observations are weighted with the inverse selec-

tion probability. In the special case of stratification, the selection probability

for an element stemming from the `-th stratum is given by

π` =
np`

NP`
=

n`

N`
, (28)

where n` and N` are the size of `−th stratum in the sample and in the pop-

ulation, respectively (see e.g. Kish, 1965, p. 92). This is just the intuitive

weighting applied in (23). DuMouchel & Duncan (1983) linked this concept to

parametric regression by applying weights inversely proportional to (28) in a

minimization problem of type (2) in the special case h −→∞.

For the interpretation of these results, recall that (18) means that the bias is

minimized when the observations are weighted with the inverse density, while

Horvitz and Thompson showed that the bias is minimized when weighting with

the inverse selection probability. As the density of the independent variable in

a regression problem may be considered as its selection probability distribution

(and is even identical in case of a designed experiment!), this is essentially the

same message. Hence, one might consider (18) as an asymptotic and nonpara-

metric version of Horvitz-Thompson’s theorem.

We illustrate this point more clearly in the following table:

Estimator Bias minimized for Interpretation

Horvitz-Thompson αi = 1/πi πi = selection probability

of unit i,

in particular, stratification α` = 1/π` ∼ P`/p` Adaption from stratum

to population proportions

weighted local, p even α(xi) ∼ 1/f(xi) f(xi) = design density at

point xi

Another important remark has to be made in this connection: Often, one notices

only after the survey that the data consists of several groups. In this case, one

can resort to post-stratification, where one stratifies the sample a posteriori in
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several groups and then handles it as if it was selected a priori from different

strata. Given that one knows the true strata proportions in the population,

then weighting can be applied straightforwardly, and is widely used in practice,

though its methodological legitimation is much fewer acknowledged (Alt & Bein,

1994). The problem is that in this case the values p` and hence α` = P`/p` are

not fixed, but random, and HT’s theorem does not hold for random weights.

Saying it sharply as Diekmann (2003), p. 366, for post-stratified samples ’it

cannot be statistically justified at all that the weighted sample is less biased’

than then the unweighted one. Nevertheless, it is frequently successfully applied

– see Brewer (2002), p. 29ff, for an example.

This brings us back to the problem discussed in the previous section. When

replacing the true design density f(·) with an estimated one, f̂(·), the asymp-

totic results do not apply either, and the asymptotic weights (18) are not any

more optimal. In this sense, using the estimated density as weight function for

local smoothing is the counterpart to applying HT-weights on a post-stratified

sample. Thus, it is not surprising that the simulation gave better results when

the true density was applied. In contrast, the motivation given for the leverage-

stabilizing weights in (19) was explicitly based on the estimated density. Hence,

it is not surprising either that in this case the estimated density led to better

results than the true density, as observed, at least for the presented example,

in Section 3.2.

4.3 Once more, Basu’s elephants

Hence, the theoretical results for weighted local smoothing and weighted sam-

pling indeed meet each other and have the same interpretation. As a conse-

quence, it is not surprising that a similar discussion as in Section 3 can be given

for the HT estimator. Indeed, in the last decades there has been some confusion

concerning the general applicability of the HT estimator. This confusion was

provoked by Basu (1971) in his famous elephant fable: A circus owner plans

to ship 50 adult elephants and therefore needs a rough estimate of their total

weight. As weighing elephants is not so easy, the owner intuitively plans to

weigh only one elephant and to multiply the result with 50. To decide which
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elephant should be weighed, he consults the circus statistician, who assigns a

selection probability of 99/100 to a previously determined elephant (‘Samba’)

which from a previous census is known to have about the average weight of

the herd. All other elephants obtain the weight 1/4900, including the elephant

‘Jumbo’ who is biggest of all. If Samba was now selected, its weight would have

to be multiplied with 100/99 according to Horvitz-Thompson, and if Jumbo

was selected, his large weight would even have to be multiplied with 4900 to

get the ‘best linear unbiased estimator’ of the total weight. Certainly, after

having given this advice, the circus statistician is sacked.

Considerations of this type led some authors to formulate statements as ‘Basu’s

counter-example destroys frequentist sample survey theory’ (Lindley, 1996).

Where is actually the problem with Basu’s fable? Horvitz & Thompson (1952)

state that if

πi = nYi/Y, (29)

the estimator Ŷ has zero variance and the sampling will be optimal. Obviously,

the probabilities in the fable are far from optimality in the sense of (29). Kish

(1990) notes that ‘increased variances can result from weighting . . . when the

selection probabilities are not optimal at all’, and also Rao (1999) warns that

the HT estimator ‘can lead to absurd results if the πi are unrelated to the Yi’.

Though HT’s theorem can reduce the bias of an estimate given the inclusion

probabilities, it may produce useless estimates if they are unfortunately chosen.

Nevertheless, Rao judged Lindley’s statement as being ‘far from the truth’, since

HT’s estimator proves to be most useful e.g. in the context of ratio estimation,

when a second variable Xi is used to construct selection probabilities which are

correlated to the Yi. In Basu’s example, a way out for the unfortunate circus

statistician would have been to take e.g. the known elephant weights Xi from

the previous census, and to set πi = nXi/X, where X was the total weight of

the herd measured at that time (Koop, 1971, Brewer, 2002, p.63).

Though the confusions about Basu’s fable have been solved at the latest with

Rao’s (1999) article and its subsequent discussion, it is still interesting to take

a look at the rejoinder of Basu’s (1971) essay, in which he vehemently de-

nied that the ‘unrealistic sampling plan’ was responsible for the failure of the
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Horvitz-Thompson estimator. Basu defended, in contrary, the circus statisti-

cian’s sampling plan, as it ensures a representative sample, which would not

have been guaranteed using Koop’s average of ratios estimator. Instead, he

gives the responsibility for the useless result entirely to the Horvitz-Thompson

estimator itself, ‘being a method that contradicts itself by alloting weights to

the selected units that are inversely proportional to their selection probabili-

ties. The smaller the selection probability of a unit, that is, the greater the

desire to avoid selecting the unit, the larger the weight that it carries when

selected.’ Basu did not conform himself to the fact that one has to choose the

probabilities adequately, and in some sense, he is right. What does one do, for

instance, if no auxiliary variable Xi is available to construct a ratio estimator,

or if one gets a sample, selected with ‘wrong’ selection probabilities, and now

one has to work with it? Basu touches here exactly the problem that we have

in the smoothing context. There, the πi correspond to the f(xi), which are

in the most cases inherent to the observed data or subjectively determined by

the experimenter, but are not designed to meet a certain optimality criterion

(Applying the bias-minimizing weights (18), one easily verifies that the variance

term (13) vanishes if

f(x) = c1 · σ(x),

(c1 ∈ R\{0}), which is then the analogous formula to (29) and leads to weights

not far from (3). However, we do not want to overvalue this result, as V ∗
α (x) is

just a second-order term). One can formulate Basu’s dilemma somewhat more

general: Statistical theory suggests to choose weights inversely proportional

to the selection probability (distribution). This however makes the estimator

extremely sensitive to ‘undesired’ or extreme observations (which correspond

to the outlying predictors in the terminology of Section 3 and to ‘Jumbo’ in

Basu’s fable), if their selection probability is small. This will be almost always

the case in the smoothing context, and will occur likely in the sampling context

if one assigns the probabilities with the goal of representativity in mind.

We provide an other example for this dilemma, showing that, even when the

weighting scheme seems to be obvious, one should not use it thoughtlessly.

Survey samples of the German population are usually based on the ‘ADM-

Design’: In the first step a region is chosen, in the second one a household via

23



random route, and in the third one a person in a household (e.g. Wendt, 1994).

Since only one person is chosen in every household, persons living in large

households have a smaller probability to be selected in the sample as persons in

small households. According to HT the observations have to be weighted with

their inverse selection probability, which implies that an observation stemming

from an 8-persons-household has to be weighted with the factor 8. However,

coming back to the discussion in Section 3: As 8-person-households rarely exist

in our society; they would, in some sense, correspond to ‘outlying predictors’.

In addition, it can be expected that people living in such households are likely

to show in some aspects different behavior than the rest of the population (this

corresponds to the y−values associated with the outlying predictor). Can we

rely on this information in a way that we give it eight times the weight of an

observation obtained from a person living alone? This is the same problem

as in Section 3, where we observed partly terrific results when applying the

asymptotically optimal weight on data sets with outliers. Weighting in these

situations has to be performed at least with care, and the influence of outlying

observations on the estimates have to be checked. Similar warnings have been

given in the context of design-based sampling by Alt & Bein (1994) and in

Brewer (2002), p. 32 ff.

For the sake of completeness it should be noted that the situation is similar with

stratification: Stratification is introduced to reduce the variance, and weighting

with the inverse selection probability is then performed to reduce the bias –

but might in turn lead to an increase of variance. It is well known (e.g. Kish,

1965) that that the variance is minimized when the strata are designed in a

way that π` ≡ n`/N` is proportional to S`, where S` is the standard deviation

per element in the `− th stratum.

5 Conclusion

We have so far studied the properties of weighted local smoothers and derived

an asymptotically optimal and a heuristic weighting scheme. By means of

a simulation study and by resorting to sampling theory, we tried to get some

practical guidelines for the choice of a weight function. The intuitively straight-
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forward idea to rely on the sample size turned out to be rather misleading. It

seems to play some role if the design density is known or estimated. However,

it should be noted that even when employing the true design density, the as-

ymptotic weights could not compete with the simple constant weights, though

the results were in this case already a good part better than for the estimated

density. Furthermore, it will be beyond common sense to suggest to base the

choice of the weight function not on the available data itself, but rather on the

degree of accuracy which one has for the distribution of the design points.

From our look at sampling theory we have learned that there seems to be

a general dilemma with weighting procedures. If one applies the theoretical

bias-minimizing weights, the estimates may get highly sensitive to outlying

predictors, extreme design points, undesired observations, or howsoever the

statistician in his particular field might want to call them.

As a conclusion, we have to admit that looking for an objective criterion for

automatic weight selection seems to be the wrong way to approach the problem.

However, a more subjective viewpoint is helpful. The asymptotical result (18)

confirms the statement by Hastie & Loader (1993), who called an endpoint ‘the

most informative observation’ when fitting at this endpoint. Einbeck, de André

& Singer (2004) added that this holds only when this point can be considered

as ‘as reliable as in the interior’. This is a crucial point. Any kind of robust

estimation implies that one is not willing to trust a certain group of data points

(in this case the outlying predictors and its associated y−values), whereas the

asymptotic result is – as HT – certainly based on full reliance on the information

content of all data points, including outlying predictors. Hampel, Ronchetti,

Rousseeuw & Stahel (1986), p. 308, already go in a similar direction when

considering, in the parametric setting, ‘extreme design points (which might be

wrong)’. It should however be noted that the notion of unreliability that we

have in mind is somewhat more general: Beyond the extreme design points

themselves, the responses associated with them might be unreliable (regardless

of being outlying or not); and even if both design points and responses have

to be assumed to be correct, unreliability may simply stem from the fact that

there are very few observations available in an outlying region of the design

space, as it is the case in the example in Fig. 1.
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To formulate it again and clearly: If there is some reason to distrust some group

of outlying predictors, the robust weights (4), with k = 1, are a reasonable

choice and do their job. Otherwise, one should better stay with the usual

constant weights (i.e. k = 0), as the asymptotically optimal weights behave

disproportionately hazardous, and therefore cannot be generally recommended

for practical use. For asymmetric kernels or odd values of p − j, e.g. a local

linear estimator with p = 1 and j = 0, the effect of α(·) vanishes asymptotically

anyway.

We finally would like to encourage to look for Basu’s elephants beyond the scope

of smoothing and sampling – there exist a variety of other statistical concepts

where weighting is performed (e.g. missing data, boosting, neural networks),

and it is to expect that similar theoretical results and the related practical

pitfalls appear in those areas as well.

A Assumptions

(i) The kernel K is a continuous density function having compact support;

(ii) f(x) > 0, f(·) is continuously differentiable in a neighborhood of x;

(iii) α(x) 6= 0, α(·) is continuously differentiable in a neighborhood of x;

(iv) σ2(x) > 0, σ2(·) is continuously differentiable in a neighborhood of x;

(v) m(·) is p + 2 times continuously differentiable in a neighborhood of x;

(vi) The kernel K is symmetric.

B Proof of Proposition 1

The proof is kept shortly since it follows mainly the lines of the corresponding

proof for local polynomial modeling, see Fan, Gijbels, Hu & Huang (1996). Let
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wi = Kh(xi − x) and

rn,j =
n∑

i=1
α(xi)wi(xi − x)j ; Rn = (rn,j+l)0≤j,l≤p;

r∗n,j =
n∑

i=1
α2(xi)σ2(xi)wi(xi − x)j ; R∗

n = (rn,j+l)0≤j,l≤p.

Then Rn = XT AWX and R∗
n = XT A2ΣX.

Bias:

Using standard asymptotics reveals that

rn,j = nhj(fα(x)µj + hf ′α(x)µj+1 + on), (30)

where fα(x) = α(x)f(x) and on = oP (h) + OP

(
1√
nh

)
, and thus

Rn = nH[fα(x)S + hf ′α(x)S̃ + on]H (31)

holds. Then, using Taylor’s expansion and equation (8), we get

Bias(β̂|X) = R−1
n

[
βp+1dn + βp+2d̃n + oP (d̃n)

]
, (32)

where dn = (rn,p+1, . . . , rn,2p+1)T and d̃n = (rn,p+2, . . . , rn,2p+2)T . We use the

fact that (B + hC)−1 = B−1 − hB−1CB−1 + O(h2) to calculate

R−1
n =

1
n

H−1

[
1

fα(x)
S−1 − h

f ′α(x)
f2

α(x)
S−1S̃S−1 + on

]
H−1. (33)

Plugging (33) into (32), and substituting (30) into the vectors dn and d̃n, yields

(10) via some simple matrix algebra, taking into account that

f ′α(x)
fα(x)

=
α′(x)
α(x)

+
f ′(x)
f(x)

.

Variance:

Similar like (31) we find that

R∗
n =

n

h
H[sα(x)S∗ + hs′α(x)S̃∗ + on]H, (34)

where sα(x) = σ2(x)α2(x)f(x). By substituting (34) and (33) in

Var(β̂|X) = R−1
n R∗

nR−1
n

we derive (11) by applying matrix algebra.

Silverman (1986)
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