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Abstract

Weighting is a largely used concept in many fields of statistics and
has frequently caused controversies on its justification and profit. In this
paper, we analyze a weighted version of the well-known local polynomial
regression estimators, derive their asymptotic bias and variance, and find
that the conflict between the asymptotically optimal weighting scheme
and the practical requirements has a surprising counterpart in sampling

theory, leading us back to the discussion on Basu’s (1971) elephants.
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1 Introduction

What does “weighted local fitting” mean? This title seems to contain a pleonasm,
since local fitting is in a certain sense always weighted, where weighting en-

ters by means of kernel functions. More specifically, assume we are given a
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random sample (x1,y1), ..., (Tn,yn) drawn from a certain bivariate population
(X,Y) € R? with mean function m(x) = E(Y|X = z) and variance function
o?(xz) = Var(Y|X = ). Let K(-) be a kernel function and h denote the band-
width. A local polynomial estimator (Ruppert & Wand, 1994) of degree p for
m at point z is generally given by m(x) = Gy(x), where [y(x) is obtained by

solving the minimization problem
2

mgin;:;K («Tz}:l') Yi — ;ﬁj(fﬂ)(% — )’ (1)

wrt. B = (Bo(z),...,0(x)). In particular, setting p = 0 leads to the

Nadaraya-Watson estimator (Nadaraya, 1964), and p = 1 yields a local lin-
ear estimator (Fan, 1992). The kernel function K(-) is usually assumed to
be a bounded probability density function, e.g. the Gaussian density or the
Epanechnikov kernel, K (u) = 2(1—u?)- 1, (—1,1](w). The use of a kernel function
is motivated by a simple and obvious fact: Data pairs (z;,y;) with z; lying
near to the target value x contain more relevant information about m(z) than
data points being located far away from z. Note that this kind of weighting
might be described as fair weighting: With = moving through the data, every
data point (x;,y;) has once the chance to achieve the maximum weight K (0),
namely when z = x;. In other words, the weighting scheme only depends on
the distance between x; and z, but not on the position of x; itself. An unfair
weighting scheme is obtained by introducing an additional weight function, say
a(+), in minimization problem (1), yielding
2

mﬁln; K < . > alz;) | vi — ]Zoﬁ](x)(xl —x) | . (2)

Several settings of «(-) have been proposed for special situations. In the case

of parametric regression, i.e. h — o0, ‘it is natural to favor observations
with small variances by weighting the sum of squares’ (Huet, Bouvier, Gruet &

Jolivet, 1996), and the resulting weight function
a(z;) =1/0%(x;) (3)

can be shown to be optimal in a variance-minimizing sense (see Carroll & Rup-
pert, 1988, for a profound treatment of this kind of weighting). For nonpara-

metric regression, however, this does not hold, and some authors suggested to



set
az;) = f*(x), (4)

where f is the design density and k some constant. An early approach in this
direction was pursued by Fan & Gijbels (1992), who additionally replaced (for
p = 1) the fixed bandwidth h with the variable bandwidth h/a(x;). The result-
ing weighted local estimator corresponds in the case kK = 1/4 to a smoothing
spline (Silverman, 1984) and in the case k = 1 to a nearest-neighbor estimator
(Jennen-Steinmetz & Gasser, 1988). Fan & Gijbels (1992) showed that the

asymptotically optimal weight function is proportional to f1/4(x)/o?(z).

In this paper, however, we concentrate on the case of a constant bandwidth
h as in Einbeck, de André & Singer (2004), who proposed to set k equal to
some small positive integer, e.g. kK = 1 or 2. The aim of this choice of k£ was
achieving robustness against outliers in the design space. Fig. 1 shows a simple
example taken from the latter article. A local linear smoother (dotted line) and
a weighted local linear smoother (solid; with & = 2) are fitted to the number
of respiratory deaths of children under five as a function of SO5 concentration,
recorded in the city of Sao Paulo from 1994 to 1997. Omne observes that the
unweighted curve is misleading, suggesting that the risk of respiratory death
decreases for very high concentrations of SOy. The problem of horizontal out-
liers (i.e. outliers in the design space) has received much less attention in the
statistical literature than that of vertical outliers. One possible reason may be
that the former type of outliers was frequently denied to be an outlier at all;
e.g. Barnett & Lewis (1994), p. 318, argued that ‘an extreme (‘outlying’) value
in the design space of an experiment lacks the fortuitous (probabilistic) stim-
ulus for its extremeness which we have adopted as a characteristic of outlying
behavior’. This is certainly true for fixed design, but might not be the adequate
point of view if the design is random, as in the example given above. We follow
the usual convention in this paper and identify the term outlier with an outlying
response, and write outlying predictor to stress that the value is outlying in the

r—direction.

When we talk about weighted local fitting in this paper, the term weighted refers

to the function «(-) (note the semantical difference to locally weighted fitting,
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Figure 1: (Einbeck, de André and Singer) Respiratory deaths versus SOy concentra-

tion, local linear fit (dotted) and fit with robustness to horizontal outliers (solid).

which just refers to the use of kernel functions). The former type of weighting
has indeed to be called unfair, since a priori some data points (X;,Y;) get
associated to higher weights than other ones. The paper is organized as follows.
In Section 2, we investigate in detail the properties of weighted local estimators
obtained by minimizing (2). In particular, the asymptotic behavior is studied
and an asymptotically optimal weight function is derived, which turns out to be
of the form (4) with k = —1. In Section 3, this weight function is compared to
the weights based on the setting £ = 1, and a small simulation study is provided
to give an impression of the behavior of differently weighted estimators. As
similar weighting concepts are well-known from sampling theory (see e.g. Kish,
1990), we compare the findings in Section 4 with related theoretical results
from this field and find surprising analogies, helping us to understand problems

better. The paper finishes with the Conclusion in Section 5.



2 Properties of the weighted local smoother

In this section, we analyze the properties of the estimators
W (@, a) = j13;(x) (5)

for the j—th derivative (0 < j < p) of m at z, which are obtained from the
minimizers Bj(iﬂ) of (2) according to Taylor’s theorem. It is convenient to

introduce matrix notation. Let therefore
1 21—z -+ (x1—x)? Y1

1 zp—2x -+ (zp—x)P Yn

W = diag(Kn(x; — x))1<i<n, A= diag(a(z;))i<i<n.
Then the minimization problem (2) can be written in the form
min(y — XB)TAW (y — X3). (6)
The solution
B=(XTawx)"'xTAwy,

is similar like for common local polynomial fitting (Ruppert & Wand, 1994).
Then Y (z, o) = eﬁrl/;’, where e;11 = (0,...,0,1,0,... ,0)T, with 1 at (j+1)*"
position, serves as an estimator for m(j)(-) at point z. For instance, for p = 0

one obtains the weighted local constant estimator

m(z,a) = iz @) Kp (@i — z)w;
7 Yo ofx) Kp(x; —x)

where Kj,(-) = + K (). Furthermore it is easily verified that

(7)

h h
Bias(5|X) = (XTAW X))~ xT AW, (8)
where 7 = (m(z1),...,m(z,))?T — X3 is the vector of the residuals of the
local approximation and X denotes the vector of predictors (x1,...,z,). The

conditional covariance matrix is given by
Var(3)X) = (XTAW X)) 1(XTA2e X)) (XTAW X) 71, (9)

where ¥ = diag(K?(x; — z)0%(x;)).



2.1 Asymptotical properties

We denote the kernel moments by

Mj:/ w K (u)du and Vj:/ w K% (u) du

—0o0 —0o0

and define the matrices of kernel moments

S = (pj+1)o<ji<p S* = (Vit1)o<ji<p
S = (j111)o0<ii<p S* = (Vj141)0<si<p
cp = (Kpt1s-- - M2p+1)T ep = (Hp+2, - - - 7N2p+2)T

With op(1) denoting a sequence of random variables which tends to zero in
probability, we have the following proposition:

Proposition 1. Under assumptions (i) to (v) (see Appendiz A) one gets for
h—0

Bias(B|X) = WP H ! [Bys1S ey + hb}(x) + 0n) (10)
and
Var(3|X) = o*(2) H™ ' [ST1S*S™ + hVi(z) + 0, H? (11)
~ f(z)nh “ "

where H = diag(1,h,...,hP), o, = op(h) + Op (ﬁ),

) = (24 E ) i (5706, - 571857e) 4GS, (12

and

con (o0 @) (@) (@) ccigwem1
Vi) = <2U($) i f(x)>5 5S (13)
<Z((j)) *;((j))) (5718571877 4 57 TISS )

A sketch of the proof is provided in the appendix. The formulas given in this
proposition reduce to the expressions provided in Fan, Gijbels, Hu & Huang
(1996) in the special case «(-) = 1. Note that the leading bias and variance
terms are independent of «(-). This can also be seen in the following proposition,
which is obtained from Proposition 1 using formula (5):

Proposition 2. Let h — 0 and nh — oo. Under assumptions (i) to (v)

. (i 1 v e jlo?(x 1
Var(m'(z,a)[X) = ef, S715*S 1ej+1f(x)n,(l112j+op <nh1+2]> (14)



and
Bias(im\) (z, 0)|X) =
_ eJTHSlcp@fl)!m(pH)(x)thj + op(hP19) (15)
hold.

Both formulas are the same as those for local polynomial fitting (Fan & Gi-
jbels, 1996, Theorem 3.1). Note that application of Propositions 1 and 2
needs some care when symmetric kernels are used, as in this case the odd
kernel moments and hence some kernel moment matrix products vanish. In
particular, for the variance formulas, the expressions e;‘FHS 165-16*5~ 1e]+1,

;‘FHS 1g*S- 155716]41 and ejHS*lS*S*lejH are trivially zero for any choice

of p and j, while the expression eJTHS 1g*5—1e, j+1 1s never trivially zero.

The situation is more complicated for the bias expression, where ejT_HS *lcp is
zero for p— j even, while e?+1S*16p and e]T_HS*IS’S*lcp are zero for odd values
of p — j . This special behavior motivates to formulate the bias for symmetric
kernels in a separate proposition, taking the deeper expansion of the bias (12)
into account:

Proposition 3. Let h — 0 and nh® — oco. Under assumptions (i) to (vi)

we get for p — 7 odd

J!

e]THS e, ot 1)!m(p+1)(x)hp+1_j + op(hPT?79) (16)
and for p — j even
Bias(m) (z, o) |X =
— T a(x z) 15 —1&g-1 (p+1)
_ j+1p+1 [<a$ x))(s ¢, — 5188 cp)m (z) +
+2)
+ 57, m! +2( )] WPH2=3 4 op(hPH20), (17)

The second formula provided in Proposition 3 is remarkable, because it shows
that in this special case the leading term is not independent of «(-). This gives
the chance to reduce the bias. Note that the augend in the squared bracket in

(17) vanishes for




and this differential equation is solved for

1
T@)
with ¢ € R\{0}. This result is in various aspects surprising: Fan (1992) and Fan
& Gijbels (1996) argued that the order p of the polynomial should be chosen

opt(z) = ¢ (18)

such that p — 7 is odd, since in this case the estimators are design-adaptive,
meaning that the asymptotic bias does not depend on the design density and its
derivatives. Estimators based on even values of p — j are not design-adaptive
and should consequently be avoided. Regarding (17) and (18), we see that
the disturbing term depending on the density can be completely eliminated, if
only f(-) is known and the weighting a(-) = ﬁ is applied. Thus, the role of
the function «(-) is in fact to manipulate the influence of the design density.

In practice, certainly, f(-) is mostly unknown, but may be substituted by a

suitable density estimate f(-).

2.2 Leverage values

The second remarkable point about the asymptotically optimal weights (18),
which suggest to set &k = —1 in (4), is that this seems to be in contrast to
the proposal k = 1 from Einbeck, de André & Singer (2004) mentioned in the
introduction. Does there exist some foundation for the latter setting as well?
There is at least a heuristic one. Recall that the hat matrix L of a smoother m
is defined by
(1)
=Ly

The influence or leverage values [; are the diagonal elements of L and can
be interpreted as a measure of influence of a design point on the estimated
function evaluated at this design point (for details about influence values see
Huber (1981) and Hampel, Ronchetti, Rousseeuw & Stahel (1986)). Let us
consider for simplicity the manipulated Nadaraya-Watson estimator (7). The
leverage values of this estimator are given by

Kp(0)a(x;) _ K(0) a(x)

TS K- wale) b e

(19)

8



where
. 1 —
fal@) =3 En(w; — z)a(z;)
j=1
may be seen as a weighted kernel density estimate at point x. As illustrated
by Loader (1999) in Fig. 2.6, the influence values of a local fit rise strongly
near the boundary, which frequently falls together with regions having sparse

design. From (19) we see that the leverage values are constant iff

a(-) = fal")- (20)

Though this formula is recursive and the weight function «(-) appears again in
the density estimate, it unveils that the weight function «(-) plays a stabilizing
role for the leverage values if it is chosen proportional to the design density. This
gives some motivation for the setting £k = 1 in (4). We illustrate this in Fig.
2 by means of a simulated data set of size n = 50 with beta(0.5,2)-distributed
design and normally distributed errors (¢ = 0.3) added to the function y = /.
As can be see from the plot in the top, the leverage values for an unweighted
Nadaraya-Watson estimator rise strongly near the right boundary. Setting the
weights proportional to the inverse estimated density, i.e. kK = —1, this effect is
even stronger, whereas the leverages are nearly constant for £ = 1. For a local
polynomial fit of second order these differences are not as pronounced, but the

tendency is still observable, as can be seen from Fig. 2 (bottom).

lev
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Figure 2: Leverage values for beta-distributed data (n = 50) for different polynomial

degrees and weighting schemes.



It should be noted that extreme design points with high leverages have earlier
attracted some attention in the theory of parametric regression; see e.g. the
classical work by Hampel, Ronchetti, Rousseeuw & Stahel (1986), pp. 307 ff,
for an overview on this research. An important parametric regression estimator

based on downweighting those points is the Mallows-estimator (Mallows, 1979).

2.3 Behavior at the boundary

We have at this point two weighting schemes, which are both in some (different!)
sense optimal, or at least plausible. Where is the contradiction, or is there any
contradiction at all? In order to answer this question, we firstly observe from
Fig. 2 that the high leverage points motivating the setting £ = 1 also share
another property: They are situated near the right boundary. However, the
asymptotic results presented above concern interior points, i.e. fixed points
in the interior of f(-). When z is a boundary point, the asymptotic behavior
is different. Let us therefore take a more thorough look at the asymptotic
properties of boundary points. We assume without loss of generality that the
density f has a bounded support [0,1] and that f is right continuous at 0
for a left boundary point and left continuous at 1 for a right boundary point.
We write a left boundary point as = ch (¢ > 0), and accordingly a right
boundary point as = 1 — ch. Calculation of the asymptotic bias and variance
is straightforward as in Proposition 1 and 2; the only difference is that the
kernel moments ; and v; have to be replaced by
) )
Wje = / WK(u)du and vj.= / ! K2(u) du
—c —c

in case of a left boundary point, and analogously in case of a right boundary
point. These kernel moments never vanish, irrespectively of whether the kernel
is symmetric or not. We formulate the result in Proposition 4 for the case of a
left boundary point, and omit details of the proof.

Proposition 4. For h — 0 and nh — oo one gets at a left boundary point
x =ch

~(J —1 gxqg— ]'02(0+) 1
Var(m (z, a)|X) = e?+156 1S5S: 1€j+1W +op hive )

10



and

Bias(m) (z, 0)|X) =

i B B
= €?+1Sglcp7cﬁm(p+l)(0+)hp+1 Tt op(hPH179), (21)
where Cpc = (/'Lp-i-l,a cee 7,Uf2p+1,c)T and S, = (Hj—l—l,c)ogj,lgp'

In this situation, the kernel moment matrix e?ﬂsc_ e, o is never trivially zero.
Thus, the first order approximation of the bias does not depend on «f(-), and
hence the considerations leading to (18) are no longer valid for a boundary
point, implying that the results (18) and (20) cannot be offhandly compared.
Practically, this observation is not yet very useful, as every data set consists of
interior and boundary points and needs a weight function that serves them all.
In the following section, we try to work out guidelines when either setting is

recommendable.

3 Discussion of different weighting schemes

When looking for a practical weight selection rule, there is one apparent and
tempting idea which one might have in this connection. The weighting scheme
a(-) ~ f(-) was originally introduced to robustify against outlying predictors,
which is, as one might argue, rather a finite sample problem, suggesting the
simple rule: Use a(-) ~ f(-) for small sample sizes, and the asymptotically

optimal weights a(-) ~ 1/f(-) for large sample sizes.

3.1 A tutorial on the influence of outlying predictors

To investigate this, we consider in a tutorial manner a sample with underlying
function y = /x and beta-distributed design generated as in Section 2.2. In Fig.
3 we provide exemplarily two simulated data sets with n = 50 (left), and two
further data sets with n = 1000 (right) simulated data points. The two data sets
in the top are situations where either no relevant outlying predictors are present,
or, if they are, their associated responses are distributed roughly symmetrically
around the underlying function. In this case, the asymptotically optimal weights

give indeed an excellent fit, nearly indistinguishable from the fit with constant

11



weights. Weighting with the estimated density at some target point x gives too
much weight to the previous observations compared to the next ones, so that
the estimate oversteers. The matter is different in the situations in the bottom,
where outlying high leverage points are present. Here the asymptotic weighting
scheme can produce a heavy bias in sparse data regions, whereas the robustified
version stays comparatively near to the underlying function. Hence, there is
no guarantee at all that either weight function improves the fit, as outlying
leverage points may or may not occur for any sample size and (bounded or

unbounded) design.

It is, of course, a question of definition if extreme design points as generated in
the right column of Fig. 3 have still to be called outlying predictors. Unfortu-
nately, "there is no generally accepted definition of what constitutes an outlier.”
(Gather & Becker, 1997). Traditionally, outliers are seen as data points gen-
erated from some kind of ’contaminating’ distribution, which differs from the
target distribution (see e.g. Barnett & Lewis, 1994). A more modern viewpoint,
brought up by Davies & Gather (1993), is to consider data points as outliers if
they are far enough away from the center of the distribution of the data cloud,
regardless from which distribution they are generated. For instance, for any se-
quence 0 < v, < 1 the v, outlier region of the N(u,0?) distribution is defined
by
out(Yn, p1,0%) = {z : |2 — p| > 21,0, }

where 7, = 1 — (1 — )" is selected such that the probability that no observa-
tion falls in the outlying region is equal to 1 — . According to this definition,
the number of outlying predictors can even increase with the sample size. This
seems to be counterintuitive, but is in conformity with the observations drawn
from Fig. 3, where we observed no (horizontal) outliers in the sense of Davies
and Gather for n = 50, but two outlying predictors in the bottom right picture
for n = 1000. The beginning of the v,-outlying region of the beta(0.5,2) distri-
bution for v = 0.2, with n = 50 and n = 1000, respectively, is symbolized by a
vertical line in Fig. 3. The concept of outlier regions is similar in spirit to the

‘hard robustification’ rule suggested by Einbeck, de André & Singer (2004).

The tutorial showed us that yet no clear statement can be made. A simulation

12
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Figure 3: Selected examples for the behavior of local estimators with p = 0 for sample
size n = 50 (left) and n = 1000 (right) with weights & = f, @« = 1 and a = 1/f. The
predictors follow a beta(0.5,2) distribution. The true function y = \/z is indicated by
a solid line. Vertical lines indicate the beginning of the 7,- outlying region (y = 0.2)
at 0.893 and 0.976, respectively.
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study is evidently called for, and we give the results in the following.

3.2 Simulation study

For data sets of size n = 50 and n = 1000, each 1000 replicates were generated
as above. The choice of the error criterion needs some care in this case. Taking

the average squared error as e.g. in Hart & Yi (1998),

n

ASE = % > (@) — m(@:))?,

i=1
might overrepresent regions with dense design. Alternative choices are the
integrated squared error (ISE) as used in Fan (1992) or its robust version, the

integrated absolute error (IAE, Gentle, 2002, p. 146), defined by

/ (i) — m(x)) de,
0

with loss function £(z) = 22 and ¢(z) = |z|, respectively, where integration
is performed numerically over the whole density domain, hence giving equal
weight to high density and sparse regions. A variety of other criteria exist; see
Fahrmeir & Tutz (2003), p. 190, for an overview. We will work representatively
with the three choices outlined above, ensuring that the found results are not a
particular feature of a certain error criterion. The results of the simulation study
are shown in Fig. 4 for n = 50 (left column) and n = 1000 (right column) and
the criteria IAE, ISA, and ASE (from top to bottom), with weighting schemes
a(-) = f(), a(-) =1 and af-) = 1/f(-) (i.e. k= 1,0,—1 ; from left to right
within the boxplots). We distinguish two cases: In the left two columns, the

density was estimated applying the kernel density estimator

n

Fo= SR (M), (22)

ng i=1 g

where the bandwidth g was selected for each simulated data set anew using
Silverman’s (1986, p. 48) bandwidth selector, as also proposed in Einbeck,
de André & Singer (2004). In the right columns, the true (known) density was

used in the weight functions af(+).

The result in the first column is as expected. For all error criteria, there seems

to be some evidence that the robust weights are superior. The second column is

14



alarming: For a higher sample size, the asymptotic result is even getting worse,
and the robust weights stay superior. This confirms our concerns uttered in
Section 3.1 that the problem of outlying predictors does not disappear with
increasing sample size, but rather gains in power. This is even more remarkable
as we did not assume at all in this study that the outlying predictors are in
some sense ill-behaving compared to the rest of the data — all data points are
simulated from the same model, and the y-values associated with the outlying
predictors are not necessarily outlying in y-direction. We note at this occasion
that the data set used in the introduction is actually of length n = 1067, giving
one more example that the usefulness of this kind of weighting is not restricted

to small sample sizes.

When the true density is used, however, the asymptotic weights perform — for
either sample size — much better, though they never succeed to be the ‘winning’
weight. We return to this important observation in the next section after our

look at sampling theory.

We have to stress at this point that the general picture might be different in
other situations. We did a large number of simulations with different underly-
ing functions, sample sizes, error variances, and design densities, and observed
that sometimes the winning weights tended to be more on the robust, and less
frequently more on the asymptotic side. It is not within the scope of this pa-
per to give a general statement about this, therefore the simulation study is
provided here just with one exemplary function. The general picture, however,
was in most simulations similarly disillusioning as above as far as our initial
hypothesis is concerned: Though there is a - rather small - tendency that the
asymptotic weights perform better with increasing sample size, they still might
give a terrific result for large sample sizes, as their success depends dramati-
cally on the accuracy of the density estimate, and on the existence of outlying

predictors with high leverages.

We seem to be not very far from where we started. Hoping to understand things
better, we next take a deeper look at sampling theory, where similar theoretical
results and similar practical problems, and the confusions arising from them,

have already been discussed for a long time, without having much impact on
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other areas of statistics.

4 Relation to sampling theory

Weighting is a widely used concept in sampling theory. There exist a large
variety of reasons and methods for weighting a sample, see Kish (1990) and

Gabler, Hoffmeyer-Zlotnik & Krebs (1994) for overviews.

4.1 From stratification to weighted local smoothing

One of the most important reasons for weighting is stratification, where the
population is divided a priori, i.e. before the sample is taken, into several
groups, called strata, which are assumed to be more or less ’homogeneous within
and heterogeneous between’. The main reasons for stratification are variance
reduction or to 'produce larger samples for separate domains, usually for smaller
domains’ (Kish, 1990). If the proportions assigned to the strata do not meet
the proportions in the population, keeping the bias small requires to weigh the

strata accordingly.

We give a simple example to illustrate this. Assume one is interested in the
average income of the supporters of a specific soccer team, and that it is known
from some source that the target population Yi,..., Yy consists of proportions
P,, = 0.95 men and P, = 0.05 women. A sample of size n = 500 shall be
collected in the stadium at a certain matchday. As one fears that there may
be very few female spectators in a simple random sample, leading to a high
variance of the estimator of this subpopulation mean, and, hence, of the target
population mean (see e.g. Brewer, 2002, p. 34), one stratifies the population
in a male and a female stratum, with fixed sample proportions p,, = 0.7 and
Pw = 0.3, respectively. From the corresponding simple random samples within
the strata, say y1,...,Ynp,, and Ynp,,+1,--.,Yn, one calculates the means y,, =
Sy and gy = Z?:npm 41 Yi for the two strata separately, assigns weights

& = Pp/pm = 95/70 and oy, = Py /pw = 5/30 to the observations obtained
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from men resp. women, and finally computes

- - - 1 npm n
y:am'pm'ym+aw'pw'ywzﬁ ZaminL‘ Z AwlYi | - (23)
=1 i=npm-+1

Obviously, using the terminology from Section 1, this kind of weighting is unfair,
since it assigns to observations stemming from men generally a higher weight

(95/70) than for those coming from women (5/30).

For a more profound analysis of this example, we introduce the factor

1 if observationy; is taken from a man,
T; =

2 if observation y; is taken from a woman.
Then the individual weights of the observations may be written as a(z1),.. .,
a(xy), with a(z;) = an, for i < npy,, and a(z;) = @, otherwise. A local
estimator §(x) may be interpreted as the estimator for the mean in stratum
x (z € {1,2}). Defining the discrete kernel

1 z;==x

K(z;,x) = (24)
0 otherwise,

we have
i(x) = > i (i) K (24, )y,
ol=) = >y o) K (i, )

This corresponds in character to the weighted Nadaraya-Watson-estimator (7)

(25)

(note that in this simple case the weights cancel out, as they are constant within
each stratum, and only one stratum has non-zero kernel weights). Thus, the
estimators within the strata correspond formally to the local estimators from
Section 2 in the case p = 0,5 = 0. Certainly, the asymptotic results from
Section 2 do not apply directly here, as the z; in the given example are discrete
and fixed. However, let us consider a situation with a high number H of strata,
denoted by ordered real numbers ky € R, ¢ = 1,..., H, ky < k,,, (¢ < m), with
stratum proportions Py, ..., Pgy. Let the random variable X describe the event

that an arbitrarily chosen sample observation stems from a certain stratum, i.e.

P for z=£FK

PH for $:]€H
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Applying a similar idea as in Gasser & Miiller (1984), we set sy = (kg + kyy1)/2
(1<¢<H-1),59<ky,and sg > kg. One gets the histogram

H H
fu(z) = Z Py, <acsy/ Z Py(se — s¢—1)
=1 =1

for the distribution of X. If now the number of strata H tends to infinity, then
the variable X loses its meaning as a discrete stratum indicator and simply
represents the real axis. The series of histograms fg(x) converges then to a
probability density function f(z), which can be interpreted as selection proba-
bility distribution for the independent variable. Provided that the assumptions
in Appendix A hold, in particular that «(-) is smooth, and using an appro-
priate continuous kernel instead of (24), we can now apply the asymptotics
from Section 2 on (25). Thus, the asymptotically optimal weighting scheme
(18), suggesting to weight with the inverse density function, should have some

relevance in the sampling context as well.

4.2 Weighted local smoothing and the Horvitz-Thompson esti-

mator

It turns out that this is indeed the case, and that there exists already a well-
known theoretical result in this direction. From a population Yi,..., YN we
draw without replacement a sample of length n. Suppose the population total
Y = Zf\i 1 Y; is to be estimated. We define the random variable ¢;, indicating

whether unit ¢ has been sampled, by

1 unit ¢ in sample
0; =

0 unit ¢ not in sample

Horvitz & Thompson (1952) showed that among all linear estimators of the

form
N
V=" (26)
i=1

the Horvitz-Thompson (HT) estimator

. Ny
Yur = Z@‘#, (27)

i=1
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is the only unbiased estimator for Y, where m; is the probability that the i-th
element is drawn in any of the n draws. Thus, in other words, the estimation is
best w.r.t. the bias when the observations are weighted with the inverse selec-
tion probability. In the special case of stratification, the selection probability
for an element stemming from the ¢-th stratum is given by

npe _ e

W:Nipe_N/

(28)

where ny and N, are the size of {—th stratum in the sample and in the pop-
ulation, respectively (see e.g. Kish, 1965, p. 92). This is just the intuitive
weighting applied in (23). DuMouchel & Duncan (1983) linked this concept to
parametric regression by applying weights inversely proportional to (28) in a

minimization problem of type (2) in the special case h — 0.

For the interpretation of these results, recall that (18) means that the bias is
minimized when the observations are weighted with the inverse density, while
Horvitz and Thompson showed that the bias is minimized when weighting with
the inverse selection probability. As the density of the independent variable in
a regression problem may be considered as its selection probability distribution
(and is even identical in case of a designed experiment!), this is essentially the
same message. Hence, one might consider (18) as an asymptotic and nonpara-

metric version of Horvitz-Thompson’s theorem.

We illustrate this point more clearly in the following table:

Estimator Bias minimized for | Interpretation
Horvitz-Thompson a; =1/m; m; = selection probability
of unit i,

in particular, stratification | oy = 1/mp ~ Py/py | Adaption from stratum
to population proportions

weighted local, p even alxz;) ~ 1/ f(x;) f(x;) = design density at

point x;

Another important remark has to be made in this connection: Often, one notices
only after the survey that the data consists of several groups. In this case, one

can resort to post-stratification, where one stratifies the sample a posteriori in
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several groups and then handles it as if it was selected a priori from different
strata. Given that one knows the true strata proportions in the population,
then weighting can be applied straightforwardly, and is widely used in practice,
though its methodological legitimation is much fewer acknowledged (Alt & Bein,
1994). The problem is that in this case the values p, and hence oy = Py/py are
not fixed, but random, and HT’s theorem does not hold for random weights.
Saying it sharply as Diekmann (2003), p. 366, for post-stratified samples ’it
cannot be statistically justified at all that the weighted sample is less biased’
than then the unweighted one. Nevertheless, it is frequently successfully applied

— see Brewer (2002), p. 29ff, for an example.

This brings us back to the problem discussed in the previous section. When
replacing the true design density f(-) with an estimated one, f (+), the asymp-
totic results do not apply either, and the asymptotic weights (18) are not any
more optimal. In this sense, using the estimated density as weight function for
local smoothing is the counterpart to applying HT-weights on a post-stratified
sample. Thus, it is not surprising that the simulation gave better results when
the true density was applied. In contrast, the motivation given for the leverage-
stabilizing weights in (19) was explicitly based on the estimated density. Hence,
it is not surprising either that in this case the estimated density led to better
results than the true density, as observed, at least for the presented example,

in Section 3.2.

4.3 Once more, Basu’s elephants

Hence, the theoretical results for weighted local smoothing and weighted sam-
pling indeed meet each other and have the same interpretation. As a conse-
quence, it is not surprising that a similar discussion as in Section 3 can be given
for the HT estimator. Indeed, in the last decades there has been some confusion
concerning the general applicability of the HT estimator. This confusion was
provoked by Basu (1971) in his famous elephant fable: A circus owner plans
to ship 50 adult elephants and therefore needs a rough estimate of their total
weight. As weighing elephants is not so easy, the owner intuitively plans to

weigh only one elephant and to multiply the result with 50. To decide which
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elephant should be weighed, he consults the circus statistician, who assigns a
selection probability of 99/100 to a previously determined elephant (‘Samba’)
which from a previous census is known to have about the average weight of
the herd. All other elephants obtain the weight 1/4900, including the elephant
‘Jumbo’ who is biggest of all. If Samba was now selected, its weight would have
to be multiplied with 100/99 according to Horvitz-Thompson, and if Jumbo
was selected, his large weight would even have to be multiplied with 4900 to
get the ‘best linear unbiased estimator’ of the total weight. Certainly, after

having given this advice, the circus statistician is sacked.

Considerations of this type led some authors to formulate statements as ‘Basu’s
counter-example destroys frequentist sample survey theory’ (Lindley, 1996).
Where is actually the problem with Basu’s fable? Horvitz & Thompson (1952)
state that if

m =nY;/Y, (29)

the estimator Y has zero variance and the sampling will be optimal. Obviously,
the probabilities in the fable are far from optimality in the sense of (29). Kish
(1990) notes that ‘increased variances can result from weighting ... when the
selection probabilities are not optimal at all’, and also Rao (1999) warns that
the HT estimator ‘can lead to absurd results if the m; are unrelated to the Y; .
Though HT’s theorem can reduce the bias of an estimate given the inclusion
probabilities, it may produce useless estimates if they are unfortunately chosen.
Nevertheless, Rao judged Lindley’s statement as being ‘far from the truth’, since
HT’s estimator proves to be most useful e.g. in the context of ratio estimation,
when a second variable X is used to construct selection probabilities which are
correlated to the Y;. In Basu’s example, a way out for the unfortunate circus
statistician would have been to take e.g. the known elephant weights X; from
the previous census, and to set m; = nX;/X, where X was the total weight of

the herd measured at that time (Koop, 1971, Brewer, 2002, p.63).

Though the confusions about Basu’s fable have been solved at the latest with
Rao’s (1999) article and its subsequent discussion, it is still interesting to take
a look at the rejoinder of Basu’s (1971) essay, in which he vehemently de-

nied that the ‘unrealistic sampling plan’ was responsible for the failure of the

22



Horvitz-Thompson estimator. Basu defended, in contrary, the circus statisti-
cian’s sampling plan, as it ensures a representative sample, which would not
have been guaranteed using Koop’s average of ratios estimator. Instead, he
gives the responsibility for the useless result entirely to the Horvitz-Thompson
estimator itself, ‘being a method that contradicts itself by alloting weights to
the selected units that are inversely proportional to their selection probabili-
ties. The smaller the selection probability of a unit, that is, the greater the
desire to avoid selecting the unit, the larger the weight that it carries when
selected.” Basu did not conform himself to the fact that one has to choose the
probabilities adequately, and in some sense, he is right. What does one do, for
instance, if no auxiliary variable X; is available to construct a ratio estimator,
or if one gets a sample, selected with ‘wrong’ selection probabilities, and now
one has to work with it? Basu touches here exactly the problem that we have
in the smoothing context. There, the 7; correspond to the f(x;), which are
in the most cases inherent to the observed data or subjectively determined by
the experimenter, but are not designed to meet a certain optimality criterion
(Applying the bias-minimizing weights (18), one easily verifies that the variance
term (13) vanishes if

f(@) = c1-o(2),

(c1 € R\ {0}), which is then the analogous formula to (29) and leads to weights
not far from (3). However, we do not want to overvalue this result, as V() is
just a second-order term). One can formulate Basu’s dilemma somewhat more
general: Statistical theory suggests to choose weights inversely proportional
to the selection probability (distribution). This however makes the estimator
extremely sensitive to ‘undesired’ or extreme observations (which correspond
to the outlying predictors in the terminology of Section 3 and to ‘Jumbo’ in
Basu’s fable), if their selection probability is small. This will be almost always
the case in the smoothing context, and will occur likely in the sampling context

if one assigns the probabilities with the goal of representativity in mind.

We provide an other example for this dilemma, showing that, even when the
weighting scheme seems to be obvious, one should not use it thoughtlessly.
Survey samples of the German population are usually based on the ‘ADM-

Design’: In the first step a region is chosen, in the second one a household via
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random route, and in the third one a person in a household (e.g. Wendt, 1994).
Since only one person is chosen in every household, persons living in large
households have a smaller probability to be selected in the sample as persons in
small households. According to HT the observations have to be weighted with
their inverse selection probability, which implies that an observation stemming
from an 8-persons-household has to be weighted with the factor 8. However,
coming back to the discussion in Section 3: As 8-person-households rarely exist
in our society; they would, in some sense, correspond to ‘outlying predictors’.
In addition, it can be expected that people living in such households are likely
to show in some aspects different behavior than the rest of the population (this
corresponds to the y—values associated with the outlying predictor). Can we
rely on this information in a way that we give it eight times the weight of an
observation obtained from a person living alone? This is the same problem
as in Section 3, where we observed partly terrific results when applying the
asymptotically optimal weight on data sets with outliers. Weighting in these
situations has to be performed at least with care, and the influence of outlying
observations on the estimates have to be checked. Similar warnings have been
given in the context of design-based sampling by Alt & Bein (1994) and in
Brewer (2002), p. 32 ff.

For the sake of completeness it should be noted that the situation is similar with
stratification: Stratification is introduced to reduce the variance, and weighting
with the inverse selection probability is then performed to reduce the bias —
but might in turn lead to an increase of variance. It is well known (e.g. Kish,
1965) that that the variance is minimized when the strata are designed in a
way that 7, = ny/Ny is proportional to Sy, where Sy is the standard deviation

per element in the £ — th stratum.

5 Conclusion

We have so far studied the properties of weighted local smoothers and derived
an asymptotically optimal and a heuristic weighting scheme. By means of
a simulation study and by resorting to sampling theory, we tried to get some

practical guidelines for the choice of a weight function. The intuitively straight-
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forward idea to rely on the sample size turned out to be rather misleading. It
seems to play some role if the design density is known or estimated. However,
it should be noted that even when employing the true design density, the as-
ymptotic weights could not compete with the simple constant weights, though
the results were in this case already a good part better than for the estimated
density. Furthermore, it will be beyond common sense to suggest to base the
choice of the weight function not on the available data itself, but rather on the

degree of accuracy which one has for the distribution of the design points.

From our look at sampling theory we have learned that there seems to be
a general dilemma with weighting procedures. If one applies the theoretical
bias-minimizing weights, the estimates may get highly sensitive to outlying
predictors, extreme design points, undesired observations, or howsoever the

statistician in his particular field might want to call them.

As a conclusion, we have to admit that looking for an objective criterion for
automatic weight selection seems to be the wrong way to approach the problem.
However, a more subjective viewpoint is helpful. The asymptotical result (18)
confirms the statement by Hastie & Loader (1993), who called an endpoint ‘the
most informative observation’ when fitting at this endpoint. Einbeck, de André
& Singer (2004) added that this holds only when this point can be considered
as ‘as reliable as in the interior’. This is a crucial point. Any kind of robust
estimation implies that one is not willing to trust a certain group of data points
(in this case the outlying predictors and its associated y—values), whereas the
asymptotic result is — as HT — certainly based on full reliance on the information
content of all data points, including outlying predictors. Hampel, Ronchetti,
Rousseeuw & Stahel (1986), p. 308, already go in a similar direction when
considering, in the parametric setting, ‘extreme design points (which might be
wrong)’. Tt should however be noted that the notion of unreliability that we
have in mind is somewhat more general: Beyond the extreme design points
themselves, the responses associated with them might be unreliable (regardless
of being outlying or not); and even if both design points and responses have
to be assumed to be correct, unreliability may simply stem from the fact that
there are very few observations available in an outlying region of the design

space, as it is the case in the example in Fig. 1.
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To formulate it again and clearly: If there is some reason to distrust some group
of outlying predictors, the robust weights (4), with & = 1, are a reasonable
choice and do their job. Otherwise, one should better stay with the usual
constant weights (i.e. k& = 0), as the asymptotically optimal weights behave
disproportionately hazardous, and therefore cannot be generally recommended
for practical use. For asymmetric kernels or odd values of p — j, e.g. a local
linear estimator with p = 1 and j = 0, the effect of a(+) vanishes asymptotically

anyway.

We finally would like to encourage to look for Basu’s elephants beyond the scope
of smoothing and sampling — there exist a variety of other statistical concepts
where weighting is performed (e.g. missing data, boosting, neural networks),
and it is to expect that similar theoretical results and the related practical

pitfalls appear in those areas as well.

A Assumptions

(i) The kernel K is a continuous density function having compact support;
(ii) f(z) >0, f() is continuously differentiable in a neighborhood of z;
(iii) a(x) # 0, a(-) is continuously differentiable in a neighborhood of z;
(iv) o2(x) > 0, o%(+) is continuously differentiable in a neighborhood of z;
(v) m(-) is p + 2 times continuously differentiable in a neighborhood of x;

(vi) The kernel K is symmetric.

B Proof of Proposition 1

The proof is kept shortly since it follows mainly the lines of the corresponding

proof for local polynomial modeling, see Fan, Gijbels, Hu & Huang (1996). Let
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w; = Kp(x; —x) and

n -

Tng = > a(xi)wi(z; — x)’; Ry = (rn,j+1)0<s1<p;
=1

*
n?]

-

=3 o?(z)o? (w)wi(w; — x)7; Ry = (Pnj)o<si<p-

=1

Then R, = XTAWX and R}, = XTA?YX.

Bias:

Using standard asymptotics reveals that
rng = nh? (fa(@) + hfo(@)pjr1 + on), (30)
where f,(z) = a(z)f(z) and 0, = op(h) + Op (\/%), and thus
Ry, = nH[fuo(x)S + hflL(x)S + o, H (31)

holds. Then, using Taylor’s expansion and equation (8), we get

Bias(3X) = Ry [Bys1dn + Bpradn + op(dn)] (32)
where d, = (Tppt1,--- ,rn,ng)T and d,, = (Tnpt2s .- - ,Tn,2p+2)T. We use the
fact that (B +hC)~™' = B~! — hB71CB~! + O(h?) to calculate

- | — L fo(®@) (15— -
Rnlzﬂl{ S panlg-1gel Lo | HL. 33
R W )

Plugging (33) into (32), and substituting (30) into the vectors d,, and d,,, yields

(10) via some simple matrix algebra, taking into account that

falz) _ (@)  f(x)

falz)  alz)  flz)
Variance:
Similar like (31) we find that
R = %H[sa(az)S* + hsl,(2)S* + on] H, (34)
where s, (z) = 0?(x)a?(z) f(z). By substituting (34) and (33) in

Var(3|X) = R, 'RER;

we derive (11) by applying matrix algebra.
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