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Abstract

In many applications it is known that the underlying smooth function
is constrained to have a specific form. In the present paper, we propose an
estimation method based on the regression spline approach, which allows
to include concavity or convexity constraints in an appealing way. Instead
of using linear or quadratic programming routines, we handle the required
inequality constraints on basis coefficients by boosting techniques. There-
fore, recently developed componentwise boosting methods for regression
purposes are applied, which allow to control the restrictions in each it-
eration. The proposed approach is compared to several competitors in a
simulation study. We also consider a real world data set.

Keywords: Shape constrained smoothing, Concavity, Regression splines,
Boosting.

1 Introduction

Nonparametric regression methods provide widely used and powerful tools for
analysts which are interested in not imposing a strictly parametric model on the
data, but want the data to ”tell” the underlying structure. However, often it is
useful to incorporate prior knowledge of the shape of the underlying regression
function, such as monotonicity.

In the present paper, we focus on another type of constraints, which are im-
portant especially in economics. For example, human capital theory predicts
that the logarithm of wage is a concave function of experience, and economic
theory assumes that the observed relationship between input and output will be
concave and non-decreasing, when producers are maximizing profit. There are
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different approaches for smoothers that can handle such curvature constraints.
Delecroix, Simioni, and Thomas-Agnan [3, 4] propose to project an arbitrary
consistent smoother onto a suitable cone in some function space for convex or
concave estimates. Dierckx [6] suggests to restrict B-spline coefficients in a regres-
sion spline setting in order to enforce concavity, whereas He and Ng [8] outline a
related procedure based on quantile regression methodology. A smoothing spline
approach that allows for several types of shape constraints including convexity
or monotonicity is given in [13]. An overview over various curvature constrained
regression methods is given in [5].

The approach presented here is in the spirit of regression splines, i.e. we
expand f into basis functions, f =

∑
αjBj. The restrictions which have to be

imposed on the coefficients αj for certain shape constraints depend on the proper-
ties of the basis functions Bj. In the case of curvature constraints, we suggest to
use a truncated power series basis. The novelty compared to previous approaches
based on regression splines (e.g. [6]) is that estimation of the coefficients is not
based on common routines for solving linear or quadratic programming prob-
lems. Instead, the αj are estimated by boosting. Bühlmann and Yu [2] propose
a boosting algorithm constructed from the L2-loss, which is suitable for high di-
mensional predictors in an additive model context. The extension of L2Boost to
the fitting of high dimensional linear models [1] can be adapted to the present
context. Since basis functions are selected componentwise in a stepwise fashion,
this procedure can be seen as a knot selection technique. The constraints on αj

are incorporated in the selection step.
The paper is organized as follows: in Section 2, the boosting algorithm for

smoothing with concavity or convexity restrictions is given. Section 3 summarizes
the results of a simulation study, and in Section 4 we apply the proposed method
to a real world data set.

2 Curvature Constraints by Boosting

Consider a conventional nonparametric regression problem, i.e. for dependent
variable yi and covariate xi, i = 1, . . . , n, the model

yi = f(xi) + εi, εi ∼ N (0, σ2), (1)

is assumed, where f(.) is an unknown smooth function on the interval [a, b] =
[xmin, xmax]. In the following, it is postulated that f(.) is a concave function. A
sufficient condition for concavity of f(.) is

∂2

∂x2
f(x) ≤ 0 for x ∈ (a, b).

It follows immediately that a monotonic decreasing first derivative is sufficient
for concavity of the function (for convexity, replace ≤ by ≥, which leads to an
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increasing first derivative). In order to incorporate the curvature constraint into
the estimation of f(.), we suggest to expand f(.) into a truncated power series
basis of degree q = 2,

f(x) = α0 + α1x + α2x
2 +

m∑
j=1

α2+j(x− τj)
2
+, (2)

where {τj} is a given sequence of knots. This expansion is continuously differ-
entiable on (a, b) and twice differentiable on (a, b)\{τj}, with a second derivative
given by

∂2

∂x2
f(x) = 2α2 +

m∑
j=1

2α2+jI(x > τj), (3)

where I(.) denotes the indicator function. Since the first derivative of (2) is
continuous, it suffices to ensure that (3) is non-positive on (a, b)\{τj} to guarantee
concavity. This property is quite easy to control, since (3) has the shape of a step
function with jumps at the knots {τj}. Thus, a sufficient condition on the vector
of basis coefficients, ααα = (α0, . . . , α2+m)′ to fulfil the concavity condition is given
by

k∑
j=0

α2+j ≤ 0 for k = 0, . . . , m, (4)

i.e. that starting from α2, the consecutive sums of basis coefficients have to be
non-positive.

In order to obtain estimates that fulfill restriction (4) we propose boosting
techniques. Boosting has originally been developed in the machine learning com-
munity to improve classification procedures (e.g. [11]). With Friedman’s [7]
gradient boosting machine it has been extended to regression modeling (see [2],
[1]). The basis concept in boosting is to obtain a fitted function iteratively by
fitting in each iteration a ”weak” learner to the current residual. When esti-
mating smooth functions a weak learner is a fitting procedure that restricts the
fitted model to low degrees of freedom. Componentwise boosting in the sense
of [2] means that in one iteration, only the contribution of one variable is refit-
ted. Boosting for curvature constrained fits uses a similar procedure, however
componentwise does not refer to variables but to basis functions. Thus in each
iteration, besides the intercept and the linear coefficient α1, which is not under
restriction, only the contribution of one basis function is updated. This update
makes it easy to control the property (4). In order to allow for high flexibility
of the fitting procedure we use a large number of basis functions. The procedure
then automatically selects an appropriate subset of basis functions.

The weak learner we use is ridge regression ([9]) with basis functions as
predictors. In matrix notation the data are given by y = (y1, . . . , yn)′, x =
(x1, . . . , xn)′. The expansion into basis function yields the data set (y,B), where
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B = (1, B1(x), . . . , B2+m(x)), with B1(x) = x, B2(x) = x2 and B2+j(x) =
(x − τj)

2
+ for j = 1, . . . , m. For convenience let µµµ = (µ1, . . . , µn)′ with compo-

nents µi = E(yi|xi) denote the vector of means.

CurveBoost

Step 1 (Initialization)

Standardize y to zero mean, i.e. set α̂0 = ȳ, α̂αα(0) = (ȳ, 0, . . . , 0)′ and µ̂µµ(0) =
(ȳ, . . . , ȳ)′.

Step 2 (Iteration)

For l = 1, 2, . . . , compute the current residuals u(l) = y − µ̂µµ(l−1).

1. Fitting step
For r = 0, . . . , m, let B(r) = (1, B1(x), B2+r(x)). Compute the ridge regres-
sion estimator

α̂αα(r) = (B′
(r)B(r) + λΛΛΛ)−1B′

(r)u
(l),

where α̂αα(r) = (α̂0(r), α̂1(r), α̂2(r))
′ and ΛΛΛ = diag(0, 1, 1).

2. Selection step
For r = 0, . . . , m, compute the potential update of the basis coefficient
α̂2+r,new = α̂

(l−1)
2+r + α̂2(r) and check the concavity constraints from (4),

α̂2+r,new +
∑

j∈{0,...,k}\{r}
α̂

(l−1)
2+j ≤ 0, k = r, . . . , m.

If the constraint is not satisfied for all r, stop. Otherwise, from the subset
of {0, . . . , m} where the constraint is fulfilled, one chooses the component
rl that minimizes ||u(l) −B(r)α̂αα(r)||2.

3. Update
Set

α̂
(l)
0 = α̂

(l−1)
0 + α̂0(rl), α̂

(l)
1 = α̂

(l−1)
1 + α̂1(rl),

α̂
(l)
2+j =

{
α̂

(l−1)
2+j + α̂2(rl), j = rl,

α̂
(l−1)
2+j , otherwise,

and
µ̂µµ(l) = µ̂µµ(l−1) + B(rl)α̂ααrl

.
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In order to prevent overfitting, it is necessary to include a stopping criterion.
An appropriate criterion is the AIC criterion which balances goodness-of-fit with
the degrees of freedom. In order to use it in a smoothing problem, the hat matrix
of the smoother has to be given. For the present procedure, it can be obtained
in a similar way as for componentwise L2Boost in linear models, proposed by
[1]. With Sl = B(rl)(B

′
(rl)

B(rl) + λΛΛΛ)−1B(rl), l = 1, 2, . . . and S0 = 1
n
1n1

′
n,

1n = (1, . . . , 1)′, one has in the lth iteration

µ̂µµ(l) = µ̂µµ(l−1) + Slu
(l) = µ̂µµ(l−1) − Sl(µ̂µµ

(l−1) − y),

and therefore
µ̂µµ(l) = Hly,

where

Hl = I− (I− S0)(I− S1) · · · (I− Sl) =
l∑

j=0

Sj

j−1∏
i=0

(I− Si).

Since Hl corresponds to the hat matrix after the lth iteration, tr(Hl) may be
considered as degrees of freedom of the estimate. The suggested stopping rule
for boosting iterations is based on the corrected AIC criterion proposed by [10],
given by

AICc(l) = log(σ̂2) +
1 + tr(Hl)/n

1− (tr(Hl) + 2)/n
,

where σ̂2 = 1
n
(y−µ̂µµ(l))′(y−µ̂µµ(l)). Thus, the optimal number of boosting iterations,

which in our framework plays the role of a smoothing parameter, is determined
by lopt = arg minl AICc(l).

An alternative stopping criterion may be BIC (see [12]), given by

BIC(l) = log(σ̂2) + log(n)
tr(Hl)

n
.

Since the complexity of the fit is supposed to be penalized stronger by BIC, we
expect an earlier stopping of the algorithm, compared to AICc.

3 Simulation study

In order to assess the performance of the CurveBoost algorithm, we conduct a
simulation study in the style of [3]. For a nonparametric regression problem as
given in (1), three types of concave functions are considered:

• f1(x) = 3 exp(−x2/5),

• f2(x) = −x2/2 + 3,
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• f3(x) =





x + 3.5, if x < −0.5
3, if − 0.5 ≤ x ≤ 0.5

−x + 3.5, if x > 0.5,

all on the domain [-1.5,1.5]. The design points xi are drawn from a U [−1.5, 1.5]-
distribution, and we investigate sample sizes of n = 60, 100, 200. The errors are
i.i.d. drawn from a N (0, σ2)-distribution with several levels of noise given by
σ = 0.25, 0.5, 0.75, 1.

For the CurveBoost fit, a truncated power series bases of degree q = 2 is used,
with m = 40 knots placed at the j/(m + 1)th sample quantiles (j = 1, . . . ,m) of
the xi. For convenience, the predictor variable is always rescaled to [0, 1]. A ridge
parameter of λ = 50 is chosen. To save computing time, boosting is stopped after
a maximum number of L = 1500 iterations throughout the simulations.

For each setting, the proposed method is compared to an unconstrained
smoothing spline of degree three (SS), where the smoothing parameter is cho-
sen by GCV. Furthermore, we apply two earlier approaches to smoothing with
curvature constraints based on regressions splines. The first is the so-called COBS
procedure by [8], which belongs to the quantile regression framework. It uses the
L1-loss function and a quadratic B-spline basis. The curvature constrained es-
timate is given as a solution of a linear programming problem. The method is
implemented in the R library cobs. For the present simulations, we use the pure
regression spline solution with no additional penalization. We start with 40 knots
placed at the sample quantiles and perform stepwise knot deletion based on the
AIC criterion.

Another method for curvature constrained estimates is proposed by Dierckx
[6]. It is based on cubic B-splines and can be expressed as a quadratic program-
ming problem (for details, see [6, p.120 et sqq.]). In the current implementation,
we use an initial number of 20 interior knots placed at the sample quantiles and
again do stepwise knot deletion based on AIC. The quadratic programming prob-
lem is solved by the function solveQP(), implemented in the R library quadprog

written by B. A. Turlach. The method is referred to as QProg.
Figure 1 shows typical data sets for the three types of functions for n = 60

and σ = 0.5, along with the fits of the considered smoothing methods. It is seen
that unconstrained smoothing might yield wiggly curves, while the restricted
approaches provide proper fits in such cases. For a systematic investigation of
the performance of the competitors, we use the average squared error given by

ASE =
1

n

n∑
i=1

[f̂(xi)− f(xi)]
2

as a measure of comparison. In Table 1, the results for f1(.) are given, which is a
section of a radial function, i.e. the degree of curvature varies with x. Therefore,
S = 200 data sets were drawn and the mean of the ASE is reported. It is seen that
AICc-stopped CurveBoost improves the estimates compared to the constrained
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Figure 1: Typical data sets for n = 60, σ = 0.5, and several estimates for f1(.)
(left), f2(.) (mid), and f3(.) (right).

and unconstrained competitors throughout all considered settings. Interestingly
BIC-stopped CurveBoost does considerably worse when the noise is high. This
might be explained by our observation that in some cases, boosting is stopped
too early due to the stronger penalized complexity of the fit. QProg outperforms
COBS especially in the high noise case.

Table 2 shows the results for f2(.), which is a polynomial of degree two,
implying a constant degree of curvature. It is seen that the competitors behave
quite similar as in the case of f1(.).

Finally, in Figure 2 boxplots of the simulation results for the piecewise linear
function f3(.) are given. Note that this concave function does not fulfill the
smoothness assumptions. In each panel, boxplots for n = 60 and 100 are drawn
for a certain noise level. Also in this case, AICc-stopped CurveBoost yields
the best performance of all considered smoothing methods, whereas COBS and
QProg–if at all–outperform the unconstrained splines only in the higher noise
cases.

4 Application

In order to illustrate the proposed approach, we consider a real world data set
previously used by [14]. The data are taken from a 1971 Canadian Census Public
Use Tape, where the age and income of n = 205 Canadian workers were recorded.
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SS CB (AICc) CB (BIC) COBS QProg
σ = 0.25 n = 60 0.0073 0.0035 0.0035 0.0061 0.0055

n = 100 0.0033 0.0022 0.0023 0.0037 0.0035
n = 200 0.0019 0.0013 0.0013 0.0022 0.0018

σ = 0.5 n = 60 0.0283 0.0131 0.0145 0.0222 0.0186
n = 100 0.0125 0.0080 0.0083 0.0129 0.0117
n = 200 0.0072 0.0042 0.0044 0.0072 0.0061

σ = 0.75 n = 60 0.0632 0.0337 0.0453 0.0476 0.0392
n = 100 0.0278 0.0184 0.0225 0.0278 0.0237
n = 200 0.0155 0.0091 0.0099 0.0149 0.0123

σ = 1 n = 60 0.1107 0.0635 0.0822 0.0831 0.0677
n = 100 0.0494 0.0348 0.0529 0.0476 0.0407
n = 200 0.0272 0.0162 0.0205 0.0253 0.0207

Table 1: Function 1, mean averaged squared error over 200 simulated datasets

for several fitting methods. The two best performers are given in bold faces.

SS CB (AICc) CB (BIC) COBS QProg
σ = 0.25 n = 60 0.0075 0.0035 0.0035 0.0057 0.0055

n = 100 0.0036 0.0023 0.0023 0.0033 0.0034
n = 200 0.0020 0.0013 0.0014 0.0017 0.0017

σ = 0.5 n = 60 0.0286 0.0131 0.0144 0.0219 0.0189
n = 100 0.0129 0.0080 0.0083 0.0124 0.0116
n = 200 0.0074 0.0043 0.0044 0.0067 0.0060

σ = 0.75 n = 60 0.0638 0.0333 0.0451 0.0476 0.0402
n = 100 0.0283 0.0184 0.0225 0.0271 0.0238
n = 200 0.0160 0.0092 0.0099 0.0145 0.0124

σ = 1 n = 60 0.1112 0.0631 0.0833 0.0830 0.0686
n = 100 0.0501 0.0349 0.0530 0.0463 0.0406
n = 200 0.0278 0.0163 0.0209 0.0250 0.0210

Table 2: Function 2, mean averaged squared error over 200 simulated datasets

for several fitting methods. The two best performers are given in bold faces.
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Figure 2: Boxplots of log ASE for different fitting methods for f3(.) with differ-

ent noise levels. In each panel, sample sizes of n = 60 (left) and n = 100 (right)

are given.

As mentioned earlier, economic theory assumes a concave relationship between
working experience and the logarithm of the income (see e.g. [5]).

In Figure 3, the unconstrained smoothing spline fit is given, along with an
AICc-stopped CurveBoost and the restricted fits by COBS and QProg. The same
settings of knots and parameter selection as in the simulations are used (boosting
stops after lAICc

opt = 15584 iterations). It is seen that the concavity assumption is
violated by the unconstrained fit at an age about 40 to 50. QProg is influenced
by some observations with low income values at the left boundary. We observed
similar behavior also in the simulations. Since COBS uses a L1-loss function, it
yields a rather robust fit. CurveBoost seems to provide a sensible compromise
between robustness and accuracy.

5 Conclusion

A novel approach to curvature constrained fitting based on regression splines has
been proposed. In contrast to former approaches which are based on linear or
quadratic programming methodology, estimation is done by a boosting algorithm
which controls the curvature constraint in a quite easy way in each step. Sim-

9



20 30 40 50 60

12
13

14
15

age

lo
g(

in
co

m
e)

SS
CurvBoost (AIC_c)
COBS
QProg

Figure 3: Age and income data, along with an unconstrained spline fit (dot-

ted), and concave fits by CurveBoost (AICc-stopped, solid), COBS (dashed) and

Dierckx (dash-dotted).

ulations suggest that the proposed procedure is very competitive and is able to
outperform more traditional approaches in a variety of settings.

The approach may be extended to an additive setting with p > 1 covariates
by using p sets of basis functions and by including all of the basis functions in the
fitting and selection step of the algorithm. Furthermore, a similar algorithm can
be derived for curvature and monotonicity restricted smoothers by modifying the
basis functions and constraints slightly.
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