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Abstract

In biomedical literature numerous prediction models for clinical
outcomes have been developed based either on clinical data or, more
recently, on high-throughput molecular data (omics data). Predic-
tion models based on both types of data, however, are less common,
although some recent studies suggest that a suitable combination of
clinical and molecular information may lead to models with better pre-
dictive abilities. This is probably due to the fact that it is not straight-
forward to combine data with different characteristics and dimensions
(poorly characterized high dimensional omics data, well-investigated
low dimensional clinical data). In this paper we analyze two publicly
available datasets related to breast cancer and neuroblastoma, respec-
tively, in order to show some possible ways to combine clinical and
omics data into a prediction model of time-to-event outcome. Differ-
ent strategies and statistical methods are exploited. The results are
compared and discussed according to different criteria, including the
discriminative ability of the models, computed on a validation dataset.
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1 Introduction

In the last 15 years, the progress in the generation of high-throughput molec-
ular data (omics data) has raised high expectations in biomedical research.
In particular, large scale gene expression data were generated and analysed
in numerous studies, often with an emphasis on their potential to identify
so-called gene signatures with the aim to predict a specific outcome of the
considered disease. In recent years, however, the initial enthusiasm has been
tempered, with the publication of a number of critical studies claiming the
inefficacy of omics data for predictive purposes [1, 2, 3, 4, 5]. While the
prediction ability of models based on omics data only is under debate, the
advantage of integrating clinical data and omics data seems to be gaining
consensus [6, 7, 8, 9] and is supported by recent comparative studies, in
which the combined models often outperform those models based only on
clinical or only on omics data [10, 11].

The different dimensions and characteristics of clinical and omics data,
however, make their combination not straightforward from a statistical point
of view. For example, if no particular attention is paid to the clinical vari-
ables, they can easily “get lost” in the high number of omics variables [11].
Some strategies to combine these two kinds of data have been reviewed in
a recent paper by Boulesteix and Sauerbrei [12]. We follow their theoretical
framework, showing how some statistical selection methods can be consid-
ered and adapted in practice in order to take simultaneously advantage of the
clinical and the omics information. The methods are demonstrated through
application to two publicly available datasets from to a breast cancer study
[13] and a neuroblastoma study [14], respectively. The resulting models are
compared in terms of goodness of prediction and discriminative ability.

The paper is structured as follow: the data are introduced in Section
2 while the statistical tools are described in Section 3: in particular, after
a short overview on the predictive methods, we show how to adapt them
in order to exploit the strategies reviewed in the aforementioned paper by
Boulesteix and Sauerbrei [12]. The numerical results of the study, together
with some comments, are presented in Section 4, while additional remarks
are presented in Section 5.
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2 Data

2.1 Breast cancer data

The first considered dataset was collected from patients with newly diag-
nosed ERBB2-negative breast cancer by Hatzis and colleagues [13] for their
study on a genomic predictor of response and survival following Texane-
Anthracycline chemotherapy. The censored response is the distant relapse
free survival time, i.e., the time interval between the initial diagnosis biopsy
and either the diagnosis of distant metastasis or the death [15]. The data
can be retrieved from the publicly available Gene Expression Omnibus repos-
itory (GSE25066). This dataset has the advantage that the clinical data are
also publicly available in addition to the omics information, which is (un-
fortunately) not common in publicly available repositories. The data are
contained in two clearly separated datasets, which are used in our analyses
as training and validation sets. In both sets, the number of observations is
relatively large, especially if compared to similar studies. In particular, they
contained information about 310 and 198 patients, respectively. However,
the effective sample size, i.e. the number of observed events (non-censored
observations) is much smaller (66 events in the training set and 45 in the
validation set). Nevertheless, this is common in survival analysis of omics
data. These numbers are larger than those of many comparable studies.
Due to the missing values, some observations are excluded from our analysis,
leading to training and validation sets of 283 (58 events) and 182 (41 events)
observations, respectively.

In order to construct a clinical model, we selected the variables presented
in Table 1 of the original paper [13], namely age, nodal status, tumor size,
grade, estrogen receptor and progesterone receptor. We did not consider
AJCC stage because it is a classification system based on nodal status, tumor
size and metastasis. The latter is identical in all patients (no metastasis) and
the two other are already considered as single predictors in our analysis. We
dichotomized the variable age using the threshold 40 years, which seems to
be more relevant for prediction than the cutpoint 50 used in the original anal-
ysis [16]. The most relevant difference between the original study and ours,
however, lies in the use of all available information for nodal status. While
in the original paper it was considered as a dichotomous variable (negative
versus positive lymph nodes), we use three indicator variables to differenti-
ate between N0 (no lymph node involved), N1 (from 1 up to 3), N2 (4-9)
and N3 (10 and more). Therefore, we considered nodal status as an ordinal
categorical variable with 4 modalities. Also tumor size and grade are ordinal
categorical variables, with 4 and 3 modalities, respectively. Three of the 508
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patients had a T0 tumor which we collapsed with the T1 group. Finally,
both estrogen receptor and progesterone receptor are dichotomous variables
which indicate whether the cancer has (or has not) the receptors for estrogen
or progesterone, respectively.

2.2 Neuroblastoma data

The second considered dataset refers to the study conducted by Oberthuer
and colleagues [14] on patients with neuroblastoma, a malignant pediatric
tumor. The original data, available at the ArrayExpress database (accession
number E-MTAB-16) contain microarray information about 9978 genes of
376 patients. The recorded outcome is the overall survival time. In our
analysis, we refer only to those 362 observations included in the analysis
performed by Bøvelstad and colleagues in their 2009 paper [10]. For these
patients, indeed, an important clinical predictor is available: the predictor
risk group according to the German neuroblastoma trial, which the authors
consider as a dichotomous variable with levels 0 (low/intermediate risk) and
1 (high risk). The other 14 observations were excluded due to lack of clinical
information. Unfortunately, by considering their version of the data, we do
not have any information on the original split between training and validation
set. We recover it arbitrarily by randomly splitting the observations into a
training and a validation set, the former with 240 patients, the latter with
122 (the cardinality of the two sets are derived by Bøvelstad and colleagues
[10]). In our split, the training set contains 51 events, the validation set
24. In addition, based on further information present in the aforementioned
repository, we could also include in our study also the variable age, through
a dichotomous variable indicating whether the patient is more or less than
444.5 days old (i.e., the median) at the time of the diagnosis.

3 Combining clinical and omics information

3.1 Notations and settings

Various approaches have been proposed in the literature to predict survival
times using high-dimensional data. Many of them can be seen as exten-
sions or variants of the multivariate Cox regression model. Important excep-
tions include the nonparametric random forest procedure based on recursive
partitioning [17, 18] or parametric and semi-parametric alternatives to the
proportional hazard models [19].

In this paper, we deliberately consider only methods based on the Cox
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model. The focus is on the construction of a linear predictor and on its
ability to discriminate between good and bad prognosis patients rather than
on the modelling of the relationship between linear predictor and survival
time—although both aspects are of course tightly interconnected. Here we
always assume a linear effect for all continuous variables and we consider
only models with main effects.

From now on we thus assume that the hazard can be modeled as the
product of a baseline hazard function λ0(t) with the exponential of a linear
combination of the predictors:

λ(t|Z1, . . . , Zq, X1, . . . , Xp) = λ0(t)·exp(γ1Z1+· · ·+γqZq+β1X1+· · ·+βpXp),

where γ1, . . . , γq and β1, . . . , βp are the regression coefficients of the clinical
predictors Z1, . . . , Zq and of the omics predictors X1, . . . , Xp, respectively.

The goal of this paper is to investigate and propose procedures to esti-
mate the regression coefficients γ1, . . . , γq and β1, . . . , βp, where the dimension
q (number of clinical predictors) is typically small (say, from 1 to 10) and
the dimension p (number of omics predictors) is typically very large (several
hundreds or thousands). Because of the second—high-dimensional—part of
the linear predictor γ1Z1 + · · ·+ γqZq +β1X1 + · · ·+βpXp, the regression co-
efficients cannot be simply estimated as usual by maximization of the partial
likelihood.

Thus, adaptations of the classical Cox regression have to be considered
to address two embedded problems. The first problem is the handling of the
high-dimensionality of the omics data that is challenging even in the absence
of clinical predictors. This issue is addressed in Section 3.3. In the liter-
ature, high-dimensionality is typically handled via either variable selection,
dimension reduction or regularization techniques. The second problem is
the relative importance given to the clinical predictors and omics predictors
respectively, an issue that we denote as the combination of low- and high-
dimensional data and address in the Section 3.4. Different proposals have
been made in the literature, often quite implicitly and without comparison
to other approaches.

This paper aims to address the two issues outlined above simultaneously
by presenting, illustrating and discussing the different associations of method
handling high-dimensional predictors and combination scheme for accommo-
dating low- and high-dimensional predictors into a single model. While all
discussed methods handling high-dimensional data and combination schemes
have been addressed previously in the literature, they have never been ad-
dressed in a unified framework, and many of them have never been considered
together. This paper aims to fill this gap. More precisely, we suggest a general
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framework formalizing the above mentioned issues and consider several pairs
of methods handling high-dimensional predictors and combination schemes.

3.2 Handling low-dimensional clinical data

In the construction of clinical models we tried to include all the available
information. For the breast cancer dataset, we included all the variables
described in Table 1 of the original study [13], but AJCC for the aforemen-
tioned reason. Consistently with this approach, we used also the information
on the number of lymph nodes involved (available on the repository although
not reported/not used in the original study). We proceeded in the same way
for the neuroblastoma data. Besides the information available in the dataset
provided by Bøvelstad (i.e., risk group) we included the age at the diagnosis
(available on the web repository). For some of the observations also the sex
was available, but the number of missing values was too large, and therefore
we decided to ignore this predictor in the clinical model. It is worth noting
that the small predictors (we know only age and the risk group) may not
cover all information generally available from the clinic and thus leaves more
room for the added predictive value of the omics data. As model selection
does not play a role in choosing the clinical model, the predictive ability
should be similar in training and validation data.

3.3 Handling high-dimensional omics data

This section is concerned with the selection and estimation of effects from
influential variables in high-dimensional data. As we consider survival time
data in our two examples, methods will be discussed in the context of the
Cox model. With the exception of the method with adjustment for clinical
predictors in 3.3.5, we assume that only omics predictors are available.

3.3.1 Univariate variable selection (U)

The first—most naive—way to estimate a multivariate Cox model from high-
dimensional data consists to consider the results of p univariate Cox models
of the form

λ(t|Xj) = λ0(t) · exp(βU
j Xj) (1)

(for j = 1, . . . , p) in order to select the most relevant variables, where the
exponent ’U’ in βU

j stands for “univariate”. In this paper, we fit a univariate
Cox model for each considered predictor and then use the p-value of the
likelihood ratio test as the measure of the predictor’s relevance. To choose
the number k of predictors to be selected, we consider multivariate Cox
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models based on the k top predictors (according to the univariate p-value),
with k varying from 1 to 25. The tuning parameter k is chosen via a 10-fold-
cross-validation procedure by minimizing the sum of the integrated Brier
score computed in each fold using the model trained in the other 9 folds.

Note that the choice of the number of predictors via cross-validation is
not yet common practice in the literature—in contrast to the choice of, say,
the penalty parameter in penalized regression, although these two types of
parameters (penalty and number k of predictors) are of similar nature and
should be handled similarly. By choosing k by cross-validation, we thus follow
good statistical practice with respect to the important topic of parameter
choice. We claim that in the literature k is too often chosen in an arbitrary
way, possibly also hiding “fishing-for-significance” practices.

3.3.2 Forward variable selection (F)

The univariate variable selection approach outlined above has the major in-
convenience that the set of predictors yielding the smallest p-values in uni-
variate Cox regression may be very far from the optimal set of predictors
in terms of prediction error, especially because of potentially strong correla-
tions between them. To partially address this problem, an alternative is to
use forward variable selection, a technique that is widely used in the context
of low-dimensional data. In this paper we thus consider a forward selection
procedure: starting from the null model, we add stepwise new predictors to
the Cox model, using the p-value of the likelihood ratio test as entry cri-
terion. We stop the procedure when the optimal number of predictors k is
reached. Similarly to the univariate variable selection approach, k is com-
puted via 10-fold-cross-validation by choosing the value, among the candidate
k = 1, . . . , 25, which minimize the integrated Brier score.

3.3.3 Lasso (L1)

The lasso technique [20] introduced by Tibshirani and adapted by the same
author to survival analysis [21] is a penalized regression method, where the
penalization term, based on the L1 norm, forces many regression coefficients
to be exactly 0 and thus allows to select a sparser model containing only
the most relevant predictors, i.e. to perform intrinsic variable selection.
This characteristic, together with the lasso’s “shrinkage” property, has con-
tributed to its large popularity in the context of high-dimensional omics
data. The amount of penalization—and thus the sparsity of the resulting
model—depends on the penalty parameter λ that is chosen via 10-fold-cross-
validation in this paper. In order to have a fair penalty, the predictors are
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scaled and forced to have variance 1. Since the method is based on the Cox
model, centering the variables should not affect the estimate of the regression
coefficient. In any case, here we choose to center the predictors around 0.

3.3.4 Boosting regression: offset boosting (Coxboost, CB) and
gradient boosting (mboost, MB)

Boosting regression can be seen as another regularized regression technique
that exploits the repeated fitting of a weak estimator in order to obtain step
by step a good final model. The idea is to minimize stepwise a loss function:
as common practice in survival analysis, the considered loss function is the
negative partial log-likelihood or a penalized version of it. Here indeed we re-
fer to two boosting techniques known as “offset boosting” [11] and “gradient
boosting” [22]. The former is an adaptation of the boosting ridge regression
[23] to survival analysis, and therefore the loss function is the negative partial
log-likelihood with a L2 penalization. The estimator is a first order approx-
imation of the ridge estimator. The code to perform “offset boosting” in R
is publicly available in the package CoxBoost [24]. With “gradient boost-
ing”, instead, we refer to the componentwise L2-boosting technique [25, 26],
and, in particular, to its version for survival data [17]. The loss function, in
this case, is the negative partial log-likelihood, and the weak estimator is a
weighted version of the ordinary least square estimator, repeatedly applied
to the gradient of the partial log-likelihood [27] to obtain the final prediction
model. The algorithm is implemented in R package ’mboost’ [28].

Both boosting techniques depend on the two tuning parameters, namely
a shrinkage factor and the number of boosting steps to perform. The former
does not strongly affect the results as soon as it is set to a reasonable value.
In this paper we use the procedures recommended by the respective authors:
default value 0.10 for “gradient boosting”, a coarse investigation for “offset
boosting” (in our analysis, either as a result of the rough cross-validation-
based routine optimCoxBoostPenalty or by considering a rough set of values
in the selection of the number of boosting steps). Conversely, the latter is
crucial and directly related to the complexity of the resulting final model. To
set it, we use the 10-fold-cross-validated partial log-likelihood, available in the
R implementation of the two boosting techniques. Finally, as recommended
by the authors, we pre-process the data in order to be able to apply the
aforementioned methods: for the “offset boosting”, we center and scale the
predictors, while for “gradient boosting” we limit to center them. Since it is
not based on a penalty terms, indeed, the variance of the predictors is not
relevant.
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3.3.5 Adjustment to univariate (UA) and forward (FA) variable
selection

The term “adjustment” refers to the adjustment for clinical predictors in the
univariate and forward selection procedures, previously described, to take
them into account when selecting omics predictors. The adjustment part is
“somehow prespecified” (e.g., well established variables given from outside,
determined in an earlier study or selected in a preliminary step) without
considering the omics data. For adjustment of univariate selection (UA), in
place of model (1), the model used to assess predictor Xj is then

λ(t|Z1, . . . , Zq, Xj) = λ0(t) · exp(γ
UA(j)
1 Z1 + · · ·+ γUA(j)

q Zq + βUA
j Xj),

where the exponent ’UA’ in βUA
j stands for “univariate with adjustment”

and the exponent (j) indicates that these are the coefficients within the
model assessing predictor Xj. In this way, the omics predictors are ranked
based on their added predictive values to the clinical predictors and not to
their predictive value itself. For example, a omics predictor highly corre-
lated to the clinical data can be associated to a very small p-value in the
simple univariate selection (and therefore added in the final model), but it
is likely discarded within this adjusted procedure (larger p-value). Finally,
the stopping criterion is determined by the number of predictors to be in-
cluded, chosen by minimizing the integrated Brier score computed within a
10-fold-cross-validation procedure.

Adjustment for clinical predictors can also be performed within the for-
ward selection procedure (FA). The only difference is then that omics pre-
dictors are added in a stepwise fashion by starting from the clinical model

λ(t|X) = λ0(t) · exp(γclin
1 Z1 + · · ·+ γclin

q Zq) (2)

instead of starting from the null model. The aim is again to select those omics
predictors which better explain the outcome variability together and not
independently to the clinical ones. Also in this case the number of predictors
to consider in the model, again chosen by 10-fold-cross-validation minimizing
of the integrated Brier score, represents the stopping criterion.

3.4 Combination of low- and high-dimensional data

No matter whether high-dimensional data are handled through e.g. univariate
variable selection, lasso or boosting, it has to be defined whether clinical
predictors and omics predictors should be treated differently, and if yes, how.
This is what we denote as the combination strategy. Various existing general
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strategies are outlined in this section and discussed in the specific context of
clinical and omics predictors, following the line of Boulesteix and Sauerbrei
[12].

3.4.1 Strategy 1: naive

The first strategy reviewed in the paper by Boulesteix and Sauerbrei [12]
is called “naive” and consists of treating clinical and omics predictors in
the same way. By definition this strategy cannot be applied together with
the procedure adjusting for clinical predictors, since it ignores the difference
between the two types of predictors. All predictors are merged together and
no difference is done between clinical and omics predictors when applying
univariate variable selection, forward variable selection, lasso regression or
boosting regression (either CoxBoost or mboost), i.e. the clinical predictors
are considered as X variables in the methods whose definition involves Xj.

The major inconvenience of this straightforward approach is that it ig-
nores the information that clinical predictors are generally on average more
predictive than omics predictors. Important clinical predictors are likely to
be lost within omics predictors that look important as a result of multiple
testing issues [11, 12].

3.4.2 Strategy 2: residuals

To address this issue, strategy 2 takes an opposite approach and first fully
exploits the prediction potential of clinical predictors by fitting the clinical
Cox model (2) to the data while completely ignoring omics predictors, yield-
ing estimates γ̂clin

1 , . . . , γ̂clin
q of the regression coefficients. Ideally it does not

only consider linear predictors, but also assesses whether continuous vari-
ables have non-linear effects and it checks for potential interactions between
predictors. However, here we restrict approaches to derive linear predictors.
A method handling high-dimensional data such as those described in the pre-
vious section is then applied to the residuals of this model, i.e. by considering
the fitted linear predictor

η̂clin = γ̂clin
1 Z1 + · · ·+ γ̂clin

q Zq

as an offset. Considering η̂clin as an offset can be seen as equivalent to in-
cluding η as a predictor in the model while forcing its coefficient to be 1.
This strategy can be applied together with all considered methods handling
high-dimensional data.

Together with the univariate variable selection method, including the
linear predictor η̂clin as an offset means that the linear predictor in the final
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Cox model is estimated as

η̂clin +
∑

j∈S
β̂U,offset
j Xj = γ̂clin

1 Z1 + · · ·+ γ̂clin
q Zq +

∑

j∈S
β̂U,offset
j Xj

where the coefficient of η̂clin is forced to be 1 and the coefficients βU,offset
j (for

j ∈ S) are simply estimated by maximization of the partial likelihood. Here
S is the set containing the indexes of the k omics predictors with smaller
p-values. The final Cox models fitted for the forward variable selection can
be expressed in a similar way by referring to its set of relevant predictors S.
Moreover, we consider the “adjusted” versions of the univariate and forward
selection within this strategy: although the estimates of γclin

j in η̂clin are
allowed to vary (this represents the main difference with the “not-adjusted”
versions), we are selecting the omics predictors based on the residuals of the
clinical model.

The ’residuals’ strategy can also be adopted together with the lasso or
both considered boosting techniques CoxBoost and mboost. With all these
techniques, η̂clin is entered in the model as an offset and the method are
then applied as usual to the omics predictors. The final linear predictor that
is then used to predict survival thus consists of two parts: the first part,
η̂clin = γ̂clin

1 Z1 + · · ·+ γ̂clin
q Zq, is the same for all techniques, while the second

part η̂omic differs for the three techniques.

3.4.3 Strategy 3: “favoring”

The third strategy lies somehow between the previous two. It consists in
favoring the clinical variables, in order to account for the known information
that the clinical predictors have already shown their predictive value in the
past. This subject-matter knowledge should be used (at least partly) in
the model building process. In addition, it balances for the difference in
cardinality between the clinical and omics sample spaces.

The univariate and forward variable selection procedures can be simply
modified in order to increase the probability of selection of clinical predictors
in an adequate way. The two types of predictors (clinical and omics) are
considered as two separate blocks that are first analysed separately from
each other. Univariate variable selection (resp. forward variable selection)
is performed for each block separately—except for the final cross-validation
procedure for the choice of the number of predictors to include in the model.

This final cross-validation procedure is conducted in a two-dimensional
fashion, i.e. by evaluating in turn the value of the integrated Brier score
obtained in the 10-fold cross-validation procedure for all pairs (kclin, komic)
of candidate numbers of predictors within a Cox model and by selecting the
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pair which minimizes it. Here kclin is allowed to vary between 0 and the total
number q of clinical predictors, and komic is allowed to vary between 0 and 25.
This two-dimensional scheme favors clinical predictors that have thus much
higher chance to get included in the model than with the naive approach.

Finally, together with the univariate method, if Sclin and Somic denote the
set of the selected clinical and omics predictors, respectively, we obtain the
linear predictor ∑

j∈Sclin

γ̂U,favorj Zj +
∑

j∈Somic

β̂U,favor
j Xj,

where the regression coefficients are estimated by maximization of the partial
likelihood in the corresponding Cox model. For forward selection the linear
predictor is similar, with Sclin and Somic denoting the related sets of relevant
predictors.

In order to adopt this “favoring” strategy via lasso, instead, we apply the
penalty term only on the omics predictors, while the clinical variables are left
un-penalized. The penalized partial log-likelihood is therefore in the form

plpen(γL1,βL1, λ) = pl(γL1,βL1)− λ
p∑

j=1

|βL1
j |, (3)

where γL1 and βL1 stand for the vectors of regression coefficients for the
clinical and omics predictors, respectively. The same idea works for the
“offset boosting” technique: since it is based on the ridge regression, the
negative partial log-likelihood (loss function) looks like Eq. (3) (obviously
multiplied by -1), with the only difference on the penalty term, which is based
on the L2 norm and not the L1 one. It is worth noting that this procedure
forces to include the clinical predictors in the final Cox model, in contrast to
the application of this strategy to univariate and forward selection.

3.4.4 Strategy 4a: Dimension reduction for omics predictors

Finally, the fourth strategy tackles the difference in dimensionality by sum-
marizing the omics predictors into a single score that is then considered to-
gether with the clinical predictors in a Cox model. More precisely, as a first
step we apply the chosen method for handling high-dimensional data to the
omics predictors only. When the selection method directly provides a linear
predictor, as in the case of lasso and the two boosting techniques, we use it
as omics score. In the case of univariate variable selection, instead, we apply
the principal component analysis on the space of the selected predictors, and
we keep the first principal component (but, in principle, more can be used) as
the score. This procedure is known in the literature as “supervised principal

12



Strategies to combine clinical and omics data
1 2 3 4a 4b

selection method naive residuals favoring mol. score scores
univariate selection (U) 4 4 4 4 4

forward selection (F) 4 4 4 4 4

lasso (L1) 4 4 4 4 4

offset boosting (CB) 4 4 4 4 4

gradient boosting (MB) 4 4 8 4 4

univariate sel. with adj. (UA) 8 4 8 4 4

forward sel. with adj. (FA) 8 4 8 4 4

Table 1: All the combinations strategy/predictive method considered in this
paper.

component” [29]. A similar procedure is followed for the adjusted version of
univariate selection and for forward selection (with or without adjustment).
Anyway, regardless of which technique we use to compute the score, this
is finally used, together with the clinical variables, to obtain the final Cox
model.

3.4.5 Strategy 4b: Dimension reduction for clinical predictors and
omics predictors

To be even fairer in the dimensionality comparison, it is possible to summa-
rize also the clinical information into one score. The easiest way to exploit
this variation of strategy 4 is by using the linear predictor of the clinical Cox
model as the clinical score. This score and the omics one computed as above
are then used as explanatory variables in the final Cox model. This strategy
is very similar to strategy 4a: the only difference is that in strategy 4a the
coefficients of the clinical predictors are fit individually, while in strategy 4b
they are re-fit together through the estimation of the coefficient of the clinical
score as a whole.

3.5 Evaluation criteria

Table 1 summarizes all the possible approaches considered in this paper.
The further step is to evaluate the prediction ability of the models resulting
from these combinations. As a measure of the overall prediction ability, we
take advantage of the integrated Brier score [30]. This measure, indeed, cap-
tures both the aspect of a good prediction, namely the calibration (similarity

13



between the actual and predicted outcomes) and the discrimination ability
(ability of predicting the survival times of the observations in the right or-
der) [11, 31]. The time-dependent Brier score is a quadratic score based on
the predicted time-dependent survival probability that, ideally, should be 1
at time t if the subject i is alive and 0 otherwise [32] and takes censoring
into account. The integrated Brier score is obtained by integrating the Brier
score over the time t. It is worth noting that we take advantage of the inte-
grated Brier score also in the 10-fold cross-validation procedure performed to
select the number of relevant predictors in the univariate and forward selec-
tion (with and without adjustment). The integrated Brier score, indeed, is
computed in each fold for the prediction models computed within the desired
combination selection method/strategy with a number of predictors from 1
to 25, fitted in the remaining 9 folds. The requested value of the tuning
parameter corresponds to the number of predictors of the model for which
the sum of the 10 integrated Brier scores is minimum.

Since an application of a re-calibration procedure is always possible, it
may also be advantageous to compare the models only in terms of discrimina-
tive ability. Usually this property is measured by estimating the concordance
probability, i.e. the probability that two observations are correctly ranked
by the model with respect to their survival time, through a suitable score.
The most popular score used for this purpose is the C-index [33], which esti-
mates the concordance probability by counting the proportion of the usable
pairs that are concordant [33]. Here “usable” means that censoring does not
prevent to order them, while “concordant” means that the actual and pre-
dicted survival times have the same ordering. As a ranked-order statistic,
the C-index is totally insensitive to error in calibration.

These measures can be used to assess models both on the training data
and the validation data. However, the results obtained on the former are
usually much too optimistic and the different strategies cannot be compared
depending on them [1, 34].

3.6 Implementation

We developed an R package, called combPreds, which contains all the func-
tions useful to perform the analyses presented in this paper. To implement
them, it takes advantage of existing packages, namely survival [35] (for Cox
proportional hazard model), glmnet [36] (for lasso), mboost [28] (for gra-
dient boosting), CoxBoost [24] (for offset-based boosting) and pec [37] (for
computation of integrated Brier score and C-index). The package provides
functions to automatically perform univariate and forward selections (with
and without adjustment), together with a function useful to obtain the best
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Figure 1: Breast cancer data: inte-
grated Brier score, computed in the
validation dataset up to 5 years, for
all the possible combinations selec-
tion method/strategy. The dotted
line represents the value for the clin-
ical model.
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Figure 2: Breast cancer data: inte-
grated Brier score, computed in the
training dataset up to 5 years, for
all the possible combinations selec-
tion method/strategy. The dotted
line represents the value for the clin-
ical model.

number of predictors (tuning parameter) in these four methods for each of
the reviewed strategies. Other functions permit to compute the prediction
error curves, the integrated Brier score and the C-index for all the statistical
tools considered here. For all the other aspects (tuning parameter and model
fitting in boosting and lasso), we used the functions from the original pack-
ages (mboost, CoxBoost, glmnet). The package combPreds and the R-code
necessary to reproduce the analyses are available at http://www.ibe.med.uni-
muenchen.de/organisation/mitarbeiter/070 drittmittel/de bin/index.html. The
analysis performed on the breast cancer example is totally reproducible, while
the analysis performed on the neuroblastoma example needs a dataset kindly
provided by Hege Maria Bøvelstad, which is not directly accessible on the
web.
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Table 2: Breast cancer data: clinical model based on 283 observations (58
events). The column “coeff” reports the log-hazard-ratio with respect to the
baseline, the column “distr” indicates the number of observations for each
modality of the predictors (with percentage between brankets).

variable distr coeff sd(coeff) p-value
age< 40 53 (0.19) 0.000 NA NA
age≥ 40 230 (0.81) -0.305 0.313 0.330
pr=- 151 (0.53) 0.000 NA NA
pr=+ 132 (0.47) 0.068 0.387 0.860
er=- 120 (0.42) 0.000 NA NA
er=+ 163 (0.58) -0.896 0.415 0.031
t stage=01 21 (0.07) 0.000 NA NA
t stage=2 155 (0.55) 0.356 0.621 0.567
t stage=3 60 (0.21) 0.484 0.663 0.465
t stage=4 47 (0.17) 0.874 0.659 0.185
nodal status=0 84 (0.30) 0.000 NA NA
nodal status=1 131 (0.46) 1.402 0.489 0.004
nodal status=2 38 (0.13) 1.677 0.564 0.003
nodal status=3 30 (0.11) 1.904 0.559 0.001
grade=1 19 (0.07) 0.000 NA NA
grade=2 115 (0.40) 1.025 0.982 0.326
grade=3 149 (0.53) 0.874 1.062 0.410

Table 3: Breast cancer data: number of clinical (first position) and omics
(second position) predictors respectively selected. The symbol “∗” indicates
that the number of predictors is fixed by the method, the symbol † that the
predictors are summarized in a single score.

Strategies to combine clinical and omics data
1 2 3 4a 4b

selection method naive residuals favoring mol. score scores
univariate selection (U) (0− 2) (6∗† − 10) (4− 0) (6∗ − 13†) (6∗† − 5†)
forward selection (F) (0− 2) (6∗† − 1) (2− 0) (6∗ − 8†) (6∗† − 3†)
lasso (L1) (0− 46) (6∗† − 0) (6∗ − 0) (6∗ − 49†) (6∗† − 49†)
offset boosting (CB) (0− 64) (6∗† − 8) (6∗ − 9) (6∗ − 38†) (6∗† − 38†)
gradient boosting (MB) (0− 9) (6∗† − 1) - (6∗ − 32†) (6∗† − 32†)
univariate sel. with adj. (UA) - (6∗ − 1) - (6∗ − 12†) (6∗† − 25†)
forward sel. with adj. (FA) - (6∗ − 3) - (6∗ − 14†) (6∗† − 25†)
clinical model (6∗ − 0∗)
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Figure 3: Breast cancer data: C-
index for all the possible combi-
nations selection method/strategy
computed in the validation set. The
dotted line represents the value for
the clinical model.
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Figure 4: Breast cancer data: C-
index for all the possible combi-
nations selection method/strategy
computed in the training set. The
dotted line represents the value for
the clinical model.

4 Results

4.1 Breast cancer data

The performances of the different combinations method/strategy on the
breast cancer data in the validation set are reported in Figure 1 (integrated
Brier score) and Figure 3 (C-index). The most obvious result is that almost
all considered models are unable to noticeably exceed the predictive ability
of the clinical model. It seems, therefore, that in this example the omics
data have no added predictive value: in other words, their inclusion in a pre-
diction model does not improve the predictive ability of the clinical model.
This is not surprising, since in line with the results obtained by Bøvelstad
and colleagues [10] in a different breast cancer dataset [38]. Furthermore, this
example clearly illustrates the overfitting issues affecting prediction models
based on high-dimensional data. It can be seen by comparing the integrated
Brier score computed in the validation (Figure 1) and in the training (Figure
2) sets: in general, the more the model explains the outcome of the train-
ing set, the worse its predictive performance is in the validation set. In this
dataset, the risk of facing the overfitting issue seems to be more relevant when
we exploit the “naive” strategy: using a multivariate selection method (i.e.,
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gradient boosting, offset boosting, lasso or forward selection) we see that the
predictive performance of the prediction model fitted within this strategy is
worse than those built within the “residuals” and “favoring” ones.

With regards to the overfitting issue, further hints can be seen in the
results within strategies 4a and 4b. Let us firstly focus on those models
for which the omics score is computed using the linear predictor of a model
fitted to the omics data (offset boosting, gradient boosting, and lasso): the
results in terms of both integrated Brier score and C-index are worse than
the simple clinical model. This result can be interpreted as a combination
of two mechanisms: the aforementioned overfitting to the training data, and
the fact that, within this strategy, clinical and omics information are treated
in a completely separate way. The omics score, indeed, is constructed in
order to explain the outcome variability without taking into consideration
the information provided by the clinical data, and the risk that both omics
score and clinical data provide the same information is high. This latter
issue seems to be confirmed by the fact that summarizing also the clinical
information as a unique score (i.e., exploiting strategy 4b), the prediction
ability of the models increases. This seems counter-intuitive, since in this
way we are losing information, but it can make sense if we think that this
information may be redundant (clinical predictors and omics score explain
the same part of outcome variability) and may contribute to overfitting.

Within strategies 4a and 4b, methods that decrease the dependence of
the omics score on the training set seem to yield better results. This is the
case of univariate and forward selection, with and without adjustment, in
which the first principal component is used as omics score. The principal
component analysis, indeed, seems to be able to mitigate the effect of over-
fitting, even if, like in the case of the “adjusted” versions within strategy 4b,
the number of predictors involved in the omics score is large (25, see Table
3). Conversely, it can be dangerous to construct a principal component with
not enough predictors (forward selection/strategy 4b). Besides these con-
siderations about the number of predictors involved, we point out that the
performance of a model fitted within strategies 4a and 4b depends also on
the amount of variance explained by the first principal component itself and
its association with the outcome: if it is too large, overfitting may lead to
important problems, but if it is too small, the predictive ability of the re-
sulting omics score is also small. Unfortunately, it is difficult to handle this
problem: an option would be to include several principal components instead
of only one, but a model with more than one principal component makes the
medical interpretation more difficult, and the choice of the number of prin-
cipal components to be included would be a non-trivial issue. Despite this,
the good results obtained using this strategy are in line with the findings of

18



those studies which introduce gene-expression signatures based on the first
principal component of a suitably generated space of relevant omics predic-
tors [39, 40]. It is worth noting that, while the cross-validation procedure for
univariate and forward selection (with and without adjustment) optimizes
the tuning parameter (number of relevant predictors) within the strategies,
i.e. for the combined model, for CoxBoost, mboost and lasso it optimizes the
tuning parameter (penalty term, number of boosting steps) to construct the
omics score only.

Besides these considerations, the comparison between Figure 1 and Fig-
ure 2 highlights the importance of a validation in an independent dataset.
This is also true when dealing with low-dimensional problems but becomes
absolutely necessary when the prediction problem involves high-dimensional
data. We can see that, for the clinical model, the integrated Brier score
computed on the training data is not severely larger than the one computed
in the validation set (0.110 versus 0.116, dotted lines), while the difference
(over-optimism) can be huge for combined models.

Another fact that seems to be highlighted by the analysis of this dataset,
and that is connected with the overfitting issue, is the advantage of fitting
a “sparse” model. In this dataset, indeed, the more predictors we select,
the higher is the chance to face overfitting. We have already stated that,
within the ‘naive” strategy, models derived performing offset boosting and
lasso do not well perform. If we look at Table 3, we see that the number of
predictors involved is high (64 and 46, respectively), while models with less
predictors (e.g., 9 for the model fitted with a gradient boosting technique)
perform better. This is even more important if we select the model within a
strategy, like univariate selection and forward selection, which has no prop-
erty that permits to attenuate the overfitting issue, for example shrinkage. It
is probably for this reason that the cross-validation procedure, in these two
cases, selects only 2 predictors for the best model.

Finally, we have already stated that in this dataset the clinical model
(Table 2) has itself a prediction performance in line with the best combined
models. This is confirmed by the performance of lasso and gradient boost-
ing within strategy 2 and 3. Looking at the number of selected predictors
reported in Table 3, in particular, we can see that they both yield the clin-
ical model, i.e. select no omics predictor (lasso) or a model including only
one omics predictor (gradient boosting). Since in these two methods the
“favoring” approach consists in considering the clinical predictors as manda-
tory, the results for strategies 2 and 3 do not substantially differ. In any
case, the only (really small) improvement to the clinical model is obtained
within strategy 3 and offset boosting. This result is also in agreement with
the findings of Bøvelstad and colleagues [10]: in their application to breast
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Table 4: Neuroblastoma data: clinical model based on 240 observations (51
events). The column “coeff” refers to the log-hazard-ratio with respect to the
baseline, the column “distr” indicates the number of observations for each
modality of the predictors.

variable distr coeff sd(coeff) p-value
risk = low/intermediate 150 (0.62) 0.000 NA NA
risk = high 90 (0.38) 2.855 0.424 1× 10−11

age < 444.5 95 (0.40) 0.000 NA NA
age ≥ 444.5 145 (0.60) −0.530 0.320 0.097

cancer data, indeed, the only method able to outperform the clinical model
is ridge regression, which is the basis of this particular kind of boosting pro-
cedure. A more noticeable improvement by using the “favoring” strategy
rather than the “residuals” strategy can be observed for the univariate and
forward selection methods: here the “favoring” does not force the selection
method to select all the clinical predictors and the univariate selection pro-
cedure selects only the relevant clinical predictors. The resulting model leads
to better prediction ability, both with respect to the “naive” and “residuals”
strategy. In particular, with respect to the latter, this result highlights the
importance to have a good clinical model when constructing a combining
prediction model, especially within strategy 2: this is an interesting issue,
which needs more investigation. We will sketch some possible solutions in
the Discussion section.

4.2 Neuroblastoma data

The considerations on this second dataset begin with the fact that, in this
case, the prediction models derived by the different combinations strategy/method
generally perform better than the clinical model (especially in discriminative
ability, see Figure 6), although the differences are not huge. The clinical
model is displayed in Table 4: it contains a strong predictor, namely the risk
group, and one whose significance is border line, the age at the diagnosis.
The regression coefficient of the former is very significant, and in this case it
may happen that it is included in a prediction model also within the “naive”
strategy (e.g., in this example, for gradient boosting).

In this dataset we can observe again some situations seen in the previous
example. First of all, there seems to be a general (although small) advantage
of following “residuals” and “favoring” strategies rather than the “naive”
one in the construction of a predictive model based on the boosting and
lasso techniques. A behaviour similar to the breast cancer example occurs
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Figure 5: Neuroblastoma data: inte-
grated Brier score, computed in the
validation dataset up to 5 years, for
all the possible combinations selec-
tion method/strategy. The dotted
line represents the value for the clin-
ical model.
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Figure 6: Neuroblastoma data: C-
index for all the possible combina-
tions selection method/strategy in
the validation data. The dotted line
represents the value for the clinical
model.

Table 5: Neuroblastoma data: number of clinical (first position) and omics
(second position) predictors considered. The symbol “∗” indicates that the
number of predictors is fixed by the method, the symbol † that the predictors
are summarized in a single score.

Strategies
1 2 3 4a 4b

Selection method naive residuals favoring mol. score scores
univariate selection (U) (0− 5) (2∗† − 21) (1− 5) (2∗ − 24†) (2∗† − 25†)
forward selection (F) (0− 1) (2∗† − 1) (2− 3) (2∗ − 16†) (2∗† − 16†)
lasso (L1) (0− 26) (2∗† − 5) (2∗ − 19) (2∗ − 29†) (2∗† − 29†)
offset boosting (CB) (0− 17) (2∗† − 8) (2∗ − 9) (2∗ − 19†) (2∗† − 19†)
gradient boosting (MB) (1− 17) (2∗† − 17) - (2∗ − 18†) (2∗† − 18†)
univariate sel. with adj. (UA) - (2∗ † −16) - (2∗ − 23†) (2∗† − 22†)
forward sel. with adj. (FA) - (2∗ † −19) - (2∗ − 25†) (2∗† − 25†)
clinical model (2∗ − 0∗)
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also for the univariate selection method: the approach based on the “residu-
als” strategy performs quite badly, probably due to the too large number of
selected variables (21, see Table 5), which may cause overfitting to the train-
ing data. On the contrary, a model constructed with this method within
the “favoring” strategy works relatively well, leading to results which are
among the best in this example. Furthermore, we see also in this example
the possible advantage of using the first principal component instead of a
linear predictor in constructing the omics score for strategies 4a and 4b. In
particular, again the models constructed with the univariate selection with
adjustment have very good performances both in terms of overall prediction
ability (integrated Brier score, Figure 5) and discriminative ability (C-index,
Figure 6). In this dataset, the results for strategies 4a and 4b do not sub-
stantially differ from each other; this can probably be explained by the small
amount of clinical predictors: the results do not noticeably change whether
we summarize the clinical information in one score or not.

In this example, it seems that the omics predictors can add predictive
value to the clinical data in the fitting of a prediction model. It is worth not-
ing that the simple forward selection is not able to capture this added value:
the cross-validation procedure, indeed, selects only few omics predictors for
strategies “naive”, “residuals” and “favoring”. This is maybe due to the
fact that, without any property attenuating the overfitting issue (conversely
to boosting and lasso techniques), this method cannot manage enough omics
predictors without leading to a model strongly related with the training data.
This is supported by the results for strategies 4a and 4b: the reduction of the
overfitting issue obtained by the principal component analysis (performed to
construct the omics predictor) permits the method to handle more omics
predictors (in this case 16, see Table 5), leading to a prediction model with
good predictive and discriminative ability.

5 Discussion

We have demonstrated how low-dimensional clinical data and high-dimensional
omics data can be combined into a global prediction model incorporating the
two types of information. The high dimension of the omics data makes most
classical approaches inapplicable and leads to substantial problems such as
overfitting or the risk to not fully exploit relevant information from the clin-
ical data.

As far as the different investigated combinations between strategy and
selection methods are concerned, none of them outperforms the others in
both datasets. In this context it is important to note that:
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• This is something expected, since each selection method and each strat-
egy has its own advantages, which can be more or less relevant depend-
ing on the specific characteristics of a dataset. We think, therefore,
that it is useful to have provided several options that researchers can
exploit in their analysis.

• At the same time, it could be interesting to better investigate which are
those characteristics of a dataset which correspond to a better perfor-
mance of a specific combination selection method/strategy. This can
be done in a systematic simulation study, which is in our plans.

• Even if our study had identified a clear winner over the two investigated
datasets, it would not necessarily be representative of the performance
on the whole domain of interest. Making general conclusions on the
performance of prediction approaches based on only n = 2 datasets
would be as if a medical doctor would make conclusions on the efficacy
of treatments based on only n = 2 patients: nonsense! Hence, our
study is definitely meant as illustrative. Even if we try to interpret the
results, it does not mean that this interpretation is universally valid
and that similar results would be observed for other similar datasets.
A thorough discussion of these problems can be found elsewhere [41].

• Even if there were a real winner method that truly performs best on
average over the datasets of interest, the power of our study with n = 2
datasets would be too limited to discover it [42]. We again point out
that our comparison study is of illustrative nature.

That said, our study illustrates important aspects that have to be taken
into account when fitting a combined model. Firstly, the combined use of
clinical and omics predictors makes sense only when the latter contain added
predictive value, and do not simply provide similar information as the clinical
ones. This point is highly relevant: we have seen in our first example how
the clinical model competes in terms of predictive ability with all the other
models, which are built by taking advantage also of the omics information.

Secondly and in the same vein, it is important to have a good clinical
model. The presence of an irrelevant predictor can worsen the results. The
analysis of the breast cancer dataset shows that this problem can affect the
prediction ability of those models built within the “residual” strategy or
those implementations of the “favoring” strategy which consider the clinical
predictors as mandatory (namely lasso and boosting). Even if the effect
of including an irrelevant predictor does not directly worsen the prediction
ability, it affects some other properties of a prediction model, such as its
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sparsity and, somehow correlated, the simplicity of its interpretation. An
issue related to the adequateness of the clinical model is whether the effects
are all additive—as implicitly assumed in our paper— or whether, e.g., non-
linear effects or interactions may be present. A too simplistic clinical model
may artificially increase the apparent added predictive value of omics data,
especially if clinical and omics data are correlated.

A possible solution to these problems in the context of the residuals strat-
egy is to exploit a model selection procedure (for example, based on AIC)
or a procedure for handling non-linear effects in order to use a better linear
predictor as an offset. This solution is practicable only when the following
step does not involve the clinical predictors (“residuals” and “dimensionality
reduction”), and therefore cannot be easily extended to the favoring strategy.
It is worth noting that also the two selection methods with adjustment for
the clinical predictors do use their information in the building procedure, and
therefore in these cases a different solution should be found, in order to not
use twice the clinical data (firstly to select the best clinical model, then to
fit the prediction model). It is worth noting, however, that a preselection of
the clinical model may introduce some bias due to the model selection pro-
cedure, and the inference/interpretation of the regression coefficients may be
incorrect [43].

Finally, another critical topic that we have not deeply considered here is
the choice of the tuning parameter, which may be problematic and strongly
affect the performance of the selection methods. In our study we tried to be
as fair as possible by implementing the same procedure (maximization of a
cross-validated likelihood based on 10 folds split) for all the selection meth-
ods, but this aspect should be investigated more deeply. In particular, the
randomness of the split into 10 folds can lead to results that may be slightly
different, especially in the case of high-dimensional data. This introduces
some variance in the results, which should be taken into consideration when
comparing the different strategies. However, this issue is more relevant in
terms of identification of the significant variables than to the overall predic-
tive performance itself. In any case, possible solutions to partly reduce the
variability due to cross-validation are available in the literature, based on
bootstrap [44] or repetition of the cross-validation procedure [45, 46] at the
expense of computational time.
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[17] Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival ensembles. Biostatistics

2006; 7:355–373.

[18] Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. The Annals of Applied

Statistics 2008; :841–860.

[19] Schmid M, Hothorn T. Flexible boosting of accelerated failure time models. BMC Bioinformatics 2008;

9:269.

[20] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.

Series B (Methodological) 1996; 58:267–288.

[21] Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine 1997;

16:385–395.

25



[22] Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001;

29:1189–1232.

[23] Tutz G, Binder H. Boosting ridge regression. Computational Statistics & Data Analysis 2007; 51:6044–

6059.

[24] Binder H. CoxBoost: Cox models by likelihood based boosting for a single survival endpoint or competing

risks 2011. URL http://CRAN.R-project.org/package=CoxBoost, R package version 1.3.
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