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Abstract

Microaggregation is one of the most important statistical disclosure control tech-
niques for continuous data. The basic principle of microaggregation is to group
the observations in a data set and to replace them by their corresponding group
means. In this paper, we consider single-axis sorting, a frequently applied microag-
gregation technique where the formation of groups depends on the magnitude of a
sorting variable related to the variables in the data set. The paper deals with the
impact of this technique on a linear model in continuous variables. We show that
parameter estimates are asymptotically biased if the sorting variable depends on
the response variable of the linear model. Using this result, we develop a consistent
estimator that removes the aggregation bias. Moreover, we derive the asymptotic
covariance matrix of the corrected least squares estimator.

Keywords: Asymptotic variance, consistent estimation, disclosure control,
linear model, microaggregation, sorting variable.

1 Introduction

Microaggregation is one of the most frequently applied statistical disclosure
control techniques for continuous microdata (Defays and Nanopoulos (1993),
Domingo-Ferrer and Mateo-Sanz (2002)). The main idea of microaggrega-
tion is to subdivide the observations in a data set into small groups (with
minimum group size A) and to replace the original data values by their cor-
responding group means. Thus, as each observation in the microaggregated
data set appears at least A times, individual records cannot be identified,
and the disclosure risk of the anonymized data is kept low. However, mi-
croaggregation can severely affect the results of statistical analyses (see, e.g.,
Statistisches Bundesamt (2005)).

In a previous paper, Schmid and Schneeweiss (2005) have analyzed the effect
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of microaggregation on the least squares (LS) estimation of a linear regres-
sion in continuous variables. To aggregate the data, Schmid and Schneeweiss
have used the dependent variable in the linear model as a sorting variable,
thus obtaining groups consisting of observations that have similar values for
the sorting variable. As Schmid and Schneeweiss have shown, the naive LS
estimators of a linear model are asymptotically biased in this case. By tak-
ing the bias into account, Schmid and Schneeweiss have also developed a
consistent estimator for the model parameters.

The present paper generalizes the results of Schmid and Schneeweiss (2005) to
the case where an arbitrary sorting variable H is used for microaggregation.
In the literature, this technique has been referred to as single-axis sorting
microaggregation. We assume that the variables of the linear model and the
sorting variable are jointly normally distributed. Consequently, H does not
have to be the dependent variable or one of the regressors, but can also be
an arbitrary linear combination of the variables in the linear model (such as
the first principal component projection or the sum of z-scores).

In the following, we will derive analytically the asymptotic properties of the
naive LS estimators when applied to data that have been microaggregated
with respect to H. We will not only determine the (asymptotic) bias, but
also develop a new estimation procedure that corrects for the bias, leading
to a consistent estimator of the linear model. In addition, the asymptotic
covariance matrix of the corrected LS estimator of the slope parameter vector
β will be derived.

Section 2 starts with a brief description of single-axis sorting microaggrega-
tion. In Section 3 we derive theoretical results on the effects of this procedure
on the estimation of a linear model. Furthermore, a method for correcting
the aggregation bias is developed. Section 4 deals with the asymptotic co-
variance matrix of the corrected LS estimator of the slope parameter vector.
Section 5 contains a simulation study on the results derived in Sections 3
and 4. In Section 6 we apply our results to the 2003 Munich Rent Data.
Section 7 deals with the estimation of the aggregated values of H from the
anonymized data. The results of this paper are summarized in Section 8.
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2 Microaggregation by a Sorting Variable

We consider microaggregation with respect to a sorting variable in the data
set. The microaggregation procedure is as follows: First, the data set has to
be ordered according to the magnitude of the sorting variable. After having
chosen a fixed group size A, the sorted data set is subdivided into small
groups, each consisting of A adjacent data values. For simplicity, we assume
that the sample size n is a multiple of A. In each of the n/A groups the data
are averaged, and the averages are assigned to the items of the group.

For example, consider a data set with 6 observations and 3 variables X1, X2,
and Y :

x1 2.00 1.00 5.00 9.00 3.00 4.00
x2 1.00 3.00 4.00 2.00 8.00 6.00
y 2.00 7.00 6.00 8.00 3.00 1.00

.

The first principal component values of x1, x2, and y are given by h =
(−0.17, 0.09, 0.24, 0.97,−0.59,−0.54). Now, if the first principal component
projection is used as a sorting variable and A = 3, we obtain the sorted data
set

x1,sort 3.00 4.00 2.00 1.00 5.00 9.00
x2,sort 8.00 6.00 1.00 3.00 4.00 2.00
ysort 3.00 1.00 2.00 7.00 6.00 8.00

(hsort) (-0.59) (-0.54) (-0.17) (0.09) (0.24) (0.97)

and the microaggregated data set

x̃1 3.00 3.00 3.00 5.00 5.00 5.00
x̃2 5.00 5.00 5.00 3.00 3.00 3.00
ỹ 2.00 2.00 2.00 7.00 7.00 7.00

.
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3 Consistent Estimation

3.1 Notation

Consider the multiple linear regression model

Y = β0 + β1X1 + · · · + βpXp + ǫ . (1)

Y denotes the response (or endogenous) variable, while X1, . . . , Xp de-
note the covariates (or exogenous variables). Further consider a random
variable H, which will later serve as the sorting variable. Y , X1, . . . , Xp,
and H are assumed to be jointly normally distributed random variables
with variances σyy, σ11, . . . , σpp, σhh. The random error ǫ is assumed to
be independent of (X1, . . . , Xp) with zero mean and variance σ2

ǫ . The ob-
jective is to estimate the parameter vector (β0, β1, . . . , βp)

′ and the resid-
ual variance σ2

ǫ from an i.i.d. sample (yz, xz1, . . . , xzp), z = 1, . . . , n.
Let y := (y1, . . . , yn)′ and xi := (x1i, . . . , xni)

′, i = 1, . . . , p, con-
tain the data values. Let h := (h1, . . . , hn)′ contain the data values
of H. The vectors containing the aggregated data are denoted by ỹ,
x̃1, . . . , x̃p, and h̃. For simplicity, it is assumed throughout that n is a
multiple of A. Note that in this case, the empirical means ȳ, x̄1, . . . , x̄p, h̄

of y, x1, . . . , xp, h are the same as the empirical means ¯̃y, ¯̃x1, . . . , ¯̃xp,
¯̃h

of ỹ, x̃1, . . . , x̃p, h̃, respectively. We denote the covariance of Xi and Xj

by σij, i, j = 1, . . . , p, the covariance of Xi and Y by σiy, i = 1, . . . , p,
the covariance of Xi and H by σih, i = 1, . . . , p, and the covariance of Y
and H by σyh.

Further denote the empirical covariance of xi and xj by sij and the empirical
covariance of x̃i and x̃j by s̃ij:

sij :=
1

n

n
∑

z=1

(xzi − x̄i)(xzj − x̄j) , i, j = 1, . . . , p , (2)

s̃ij :=
1

n

n
∑

z=1

(x̃zi − x̄i)(x̃zj − x̄j) , i, j = 1, . . . , p . (3)

The covariance matrix of (X1, . . . , Xp) is denoted by Σ := (σij)i,j=1,...,p. Simi-
larly let σxy := (σiy)i=1,...,p and σxh := (σih)i=1,...,p be the covariance (column)
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vectors of (X1, . . . , Xp) and Y and of (X1, . . . , Xp) and H, respectively. The
empirical variances of y, ỹ, h, and h̃ are denoted by syy, s̃yy, shh, and s̃hh,
respectively, and the empirical covariances of xi and y, x̃i and ỹ, xi and h,
and x̃i and h̃ are denoted by siy, s̃iy, sih, and s̃ih, respectively. Finally let

sxy :=







s1y
...

spy






, s̃xy :=







s̃1y
...

s̃py






, i = 1, . . . , p, (4)

sxh :=







s1h
...

sph






, s̃xh :=







s̃1h
...

s̃ph






, i = 1, . . . , p, (5)

and let S := (sij)i,j=1,...,p and S̃ := (s̃ij)i,j=1,...,p be the empirical covariance
matrices of (x1, . . . , xp) and (x̃1, . . . , x̃p), respectively.

3.2 Examples of Sorting Variables

It follows from the joint normality of Y,X1, . . . , Xp, and H that

H = cyY + c1X1 + · · · + cpXp + ϕ , (6)

where c := (cy, c1, . . . , cp)
′ is a vector of coefficients and ϕ is a normally

distributed random variable with zero mean and variance σ2
ϕ.

Usually, the sorting variable is an exact linear combination of the variables
in the linear model, implying that ϕ ≡ 0. Popular choices for the sorting
variable include

• the dependent variable Y : In this case, ϕ ≡ 0, cy = 1, c1 = · · · = cp = 0.

• a regressor Xi: In this case, ϕ ≡ 0, cy = 0, c1 = · · · = ci−1 = 0, ci = 1,
ci+1 = · · · = cp = 0.

• the first principal component projection of Y,X1, . . . , Xp: In this case,
ϕ ≡ 0, and c is the eigenvector associated to the largest eigenvalue of
the covariance or correlation matrix of Y,X1, . . . , Xp.
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• the sum of z-scores of the variables in the linear model: In this case
ϕ ≡ 0, cy = σ

−1/2
yy , c1 = σ

−1/2

11 ,. . . ,cp = σ
−1/2
pp .

In the latter two cases, the coefficients cy, c1, . . . , cp are not known to the
data providers and thus have to be estimated from the non-aggregated data.

Note that H can also be a variable of the originally collected data set, which
however is not used in the regression analysis. In this case, typically ϕ 6≡ 0.

3.3 Consistent Estimation of β

We focus on the estimation of the vector of genuine regression coefficients
β := (β1, . . . , βp)

′. When we know how to estimate β consistently, it will be
clear how to estimate β0 and σ2

ǫ as well. We denote the naive least squares
estimator of β by b̃, which is given by

b̃ := S̃−1s̃xy . (7)

In order to study the bias of b̃ and to construct a consistent estimator for β,
we need the following lemma:

Lemma 1. Consider the inverse linear relationships

Xi = αi + γiH + δi , i = 1, . . . , p , (8)

Y = αy + γyH + δy , (9)

which exist due to the joint normality of Y,X1, . . . , Xp, and H. The δi’s,
i = y, 1, . . . , p, are random variables, independent of H, with zero mean and
variances and covariances σδiδj

, i, j = y, 1, . . . , p. The following probability
limits exist:

a) plimn→∞
s̃hh = σhh,

b) plimn→∞
s̃xh = σxh,

c) plimn→∞
s̃yh = σyh,

d) plimn→∞
S̃ = 1

A
Σ +

(

1 − 1

A

)σxhσ′

xh

σhh
=: Σ̃,

e) plimn→∞
s̃xy = 1

A
σxy +

(

1 − 1

A

)σyh

σhh
σxh =: σ̃xy.
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Proof: As H is a sorting variable related to Y,X1, . . . , Xp by the linear regres-
sion models (8) and (9), Lemma 1 directly follows from Lemma 1 in Schmid
and Schneeweiss (2005).

With Lemma 1 and setting a := (A − 1)/σhh, the probability limit of b̃ can
be evaluated as

β̃ := plimn→∞
b̃ = Σ̃−1σ̃xy

=
(

Σ + aσxhσ
′

xh

)

−1(

σxy + aσxhσyh

)

=
(

Σ−1 − Σ−1 aσxhσ
′

xh

1 + aσ′

xhΣ
−1σxh

Σ−1

)(

σxy + aσxhσyh

)

. (10)

In order to obtain (10), we used a matrix inversion formula which can be
found, e.g., in Dhrymes (1984), Corollary 5. Using β = Σ−1σxy, it follows
from (10) that

β̃ = β + aσyhΣ
−1σxh −

aσ′

xhΣ
−1σxy

1 + aσ′

xhΣ
−1σxh

Σ−1σxh

−a2σyhσ
′

xhΣ
−1σxh

1 + aσ′

xhΣ
−1σxh

Σ−1σxh

= β +
a(σyh − σ′

xhΣ
−1σxy)

1 + aσ′

xhΣ
−1σxh

Σ−1σxh . (11)

It is easily seen from (11) that the naive LS estimator b̃ is asymptotically
biased. In case of the non-aggregated data (i.e. A = 1), the asymptotic bias
is equal to 0.

In the special case where H is an exact linear combination of Y,X1, . . . , Xp

(see Section 3.2), we obtain σyh−σ′

xhΣ
−1σxy = cy(σyy−σ′

xyΣ
−1σxy). Thus (11)

becomes

β̃ = β +
acy(σyy − σ′

xyΣ
−1σxy)

1 + aσ′

xhΣ
−1σxh

Σ−1σxh . (12)

From (12) we see that b̃ is a consistent estimator of β as long as cy = 0.
This is the case when a particular regressor or a linear combination of the
regressors serves as the sorting variable.
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If Y is the sorting variable (cy = 1), we have σxh = σxy and σhh = σyy. With
a little algebra, it can be shown that in this case

β̃ =
A

1 + (A − 1)σ′

xyΣ
−1σxy/σyy

β . (13)

This is the same relationship as the one derived in Schmid and Schneeweiss
(2005). We see that if Y is the sorting variable, b̃ is asymptotically biased,
with β̃ being proportional to β.

In order to construct a consistent estimator of β, we start from β = Σ−1σxy

and replace Σ with

Σ =

(

AΣ̃ − (A − 1)
σxhσ

′

xh

σhh

)

(14)

from Lemma 1d). In addition, we replace σxy with

σxy =

(

Aσ̃xy − (A − 1)
σyh

σhh

σxh

)

(15)

from Lemma 1e). By algebraic manipulations similar to those that led to (11),
this yields

β = β̃ +
(A − 1)(σ′

xhΣ̃
−1σ̃xy − σyh)

Aσhh − (A − 1)σ′

xhΣ̃
−1σxh

Σ̃−1σxh , (16)

where β̃ = Σ̃−1σ̃xy was used. According to Lemma 1, σhh, σxh, and σyh can
be consistently estimated by s̃hh, s̃xh, and s̃yh. A consistent estimator b̃c is
thus given by

b̃c := b̃ +
(A − 1)(s̃′xhS̃

−1s̃xy − s̃yh)

As̃hh − (A − 1)s̃′xhS̃
−1s̃xh

S̃−1s̃xh . (17)

Note that the computation of (17) requires the aggregated data values of the
sorting variable H to be known to the data user. This either implies that
the data holder provides the aggregated data values of H or that h̃ can be
reconstructed from the aggregated data values ỹ, x̃1, . . . , x̃p (see Section 7).
With a little algebra, it can also be shown that if cy = 0 and ϕ ≡ 0, the
expression s̃′xhS̃

−1s̃xy − s̃yh in (17) is equal to 0. Thus, in this case, the
(consistent) naive estimator b̃ is equal to the corrected estimator b̃c.
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A consistent estimator of the intercept β0 is simply given by

b̃0c := ¯̃y − (b̃1c
¯̃x1 + · · · + b̃pc

¯̃xp) , (18)

where b̃1c, . . . , b̃pc are the elements of b̃c.

Furthermore, from (14) and (17), we obtain a consistent estimator of the
residual variance σ2

ǫ = σyy − β′Σβ:

σ2
ǫ,c :=

(

As̃yy − (A − 1)
s̃2

yh

s̃hh

)

− β̃′

c

(

AS̃ − (A − 1)
s̃xhs̃

′

xh

shh

)

β̃c . (19)

4 Asymptotic Covariance Matrix of b̃c

To derive the asymptotic covariance matrix of b̃c, we will use the following
notation:

• Two random sequences an and bn are said to be ”asymptotically equiv-
alent”, written an ∼ bn, if plimn→∞

√
n(an − bn) = 0.

• The asymptotic variance or covariance of a random sequence an is
said to be ”equal to σ2

a/n” if plimn→∞
an =: a∞ exists and if√

n(an − a∞) converges in distribution to N(0, σ2
a) as n → ∞.

The asymptotic variance or covariance of an is then denoted by
var(an) = σ2

a/n.

First note that, by (7) and (17),

b̃c = F (S̃) , (20)

where F is a continuously differentiable function of

S̃ :=













vech(S̃)
s̃xy

s̃xh

s̃yh

s̃hh













. (21)
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The vector vech(S̃) contains the lower triangular elements of S̃. Denote the
probability limit of S̃, which is known from Lemma 1, by S̄. Thus

S̄ =













vech(Σ̃)
σ̃xy

σxh

σyh

σhh













. (22)

The idea is now to show that

S̃ − S̄ ∼ G(S) + ∆ , (23)

where G is a continuously differentiable function of the second moments

S :=













vech(S)
sxy

sxh

syh

shh













(24)

based on the non-aggregated data. As will be shown, the ”error vector” ∆
is a function of the δi’s defined in (8) and (9). Moreover, it is independent
of S. Thus, by computing the covariance matrices of S and ∆ and by using
the delta method, the asymptotic covariance matrix of S̃ can be derived
from (23). From (20), by using the delta method once more, one can finally
obtain the asymptotic covariance matrix of b̃c.

To prove (23), we introduce the following fundamental lemma:

Lemma 2. Assume Y,X1, . . . , Xp, and H to be jointly normally distrib-
uted. Consider the inverse regression models (8) and (9). Let the empiri-
cal variances and covariances of the non-aggregated and aggregated values of
δi and δj, i, j = y, 1, . . . , p, be denoted by sδiδj

and s̃δiδj
, respectively (they

are defined in a similar way as (2) and (3)). The following relations hold
for i, j = y, 1, . . . , p:

a) s̃ij − σ̃ij ∼ 1

A
(sij − σij) + (1 − 1

A
)
(

sihsjh

shh
− σihσjh

σhh

)

+ (s̃δiδj
− 1

A
sδiδj

),

b) s̃ih − σih ∼ sih − σih,
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c) s̃hh − σhh ∼ shh − σhh.

Proof: As H is a sorting variable related to Y,X1, . . . , Xp by the linear regres-
sion models (8) and (9), Lemma 2 directly follows from Lemma 2 in Schmid
and Schneeweiss (2005).

Lemma 2 can now be used to define the elements of ∆: Let Sδ,xx := (s̃δiδj
−

1

A
sδiδj

)i,j=1,...,p and Sδ,xy := (s̃δiδy
− 1

A
sδiδy

)i=1,...,p. Then

∆ :=





vech(Sδ,xx)
Sδ,xy

0



 , (25)

where 0 is a (p + 2)-dimensional vector of zeros. From Lemma 2 and from
the definition of the elements of ∆, it is easily seen that equation (23) holds:
The function G is implicitly given by the right hand sides of the relations a),
b), and c) of Lemma 2, but without the term s̃δiδj

− 1

A
sδiδj

. Moreover, it can
be shown that G(S) and ∆ are asymptotically independent.

Next, we have to compute the asymptotic covariance matrix of ∆. To this
purpose, we introduce another lemma:

Lemma 3. For any i, j = y, 1, . . . , p, the expressions ∆ij := (s̃δiδj
− sδiδj

/A)
are asymptotically jointly normally distributed with zero mean. The asymp-
totic covariance of ∆ij and ∆mn, i, j,m, n = y, 1, . . . , p, is given by

σ∆ij∆mn
:=

1

n

A − 1

A2

(

σδiδm
σδjδn

+ σδiδn
σδjδm

)

. (26)

Proof: Lemma 3 follows from the Lemma 3 in Schmid and Schneeweiss (2005).

With the help Lemma 3, the covariance matrix of ∆ (denoted by Σ∆ in the
following) can be evaluated. Note that the elements of Σ∆ corresponding to
the zero subvector of ∆ are equal to 0.

Now, by applying the delta method, we obtain

cov(S̃) = DG cov(S)D′

G + Σ∆ , (27)

where DG is the Jacobian matrix of G(S) evaluated at plimn→∞
S.
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The covariance matrix of S in (27) can be derived as follows: Denote the
covariance matrix of (Y,X1, . . . , Xp, H) by ΣY,X,H and the empirical co-
variance matrix of (Y,X1, . . . , Xp, H) by SY,X,H . Now, as SY,X,H follows a
Wishart(p + 2, n − 1, ΣY,X,H) distribution, we have

cov(sij, smn) =
1

n
(σimσjn + σinσjm) , i, j,m, n = y, 1, . . . , p, h (28)

(compare Evans et al. (1993), p. 158).

From (27), by applying the delta method once more, we finally obtain

var(b̃c) = DF (DG cov(S)D′

G + Σ∆)D′

F , (29)

where DF is the Jacobian matrix of F (S̃) evaluated at S̄. Obviously, as seen
from (26) and (28), var(b̃c) is a function of the variances and covariances σδiδj

and σij and also of Σ̃ and σ̃xy. The asymptotic variance of b̃c can thus be
estimated by replacing

• σih, i = y, 1, . . . , p, with their consistent estimators s̃ih, i = y, 1, . . . , p,

• σhh with its consistent estimator s̃hh,

• σδiδj
, i, j = y, 1, . . . , p, with their consistent estimators (see Corollary 1

in Schmid and Schneeweiss (2005))

σ̃δiδj ,c := A

(

s̃ij −
s̃ihs̃jh

s̃hh

)

, i, j = y, 1, . . . , p, (30)

• σij, i, j = y, 1, . . . , p, with their consistent estimators (see equation (33)
in Schmid and Schneeweiss (2005))

σ̃ij,c := As̃ij + (1 − A)
s̃ihs̃jh

s̃hh

, i, j = y, 1, . . . , p, (31)

• Σ̃ with S̃,

• σ̃xy with s̃xy.



13

5 Finite Sample Behavior of b̃c

In this section we check whether the asymptotic results derived in Sections 3
and 4 hold in realistic data situations. To this purpose, we carried out a
systematic simulation study using the statistical software R. The model we
studied was a linear regression with two normally distributed covariates X1

and X2. The variance parameters have been chosen to be σ11 = 1, σ22 = 4,
and σ12 = 1, which corresponds to a correlation of 0.5 between the two
covariates.

5.1 Bias of b̃c for Finite Samples

To study the bias of b̃c, we took A = 3 (which is the group size commonly
used in practice) and β0 = 0. For simplicity, we kept β2 = −1 fixed. The
residual variance σ2

ǫ was set to 9, which is a rather large value if compared
to the values of σ11 and σ22.

Now, for various values of β1, the bias of b̃ and b̃c was estimated from 1000
randomly generated data sets (xz1, xz2, yz), z = 1, . . . , n. The sorting vari-
ables we used were 1. the first principal component projection using the
empirical correlation matrix of (Y,X1, X2), 2. the sum of z-scores using the
empirical variances of Y , X1, and X2, 3. the dependent variable Y , 4. the
regressor X1. In Figs. 1 - 4, bias(b̃1) and bias(b̃1,c) are plotted vs. β1 for
n = 150 and n = 600. Apparently, the finite sample bias of b̃1,c is close to
zero if n ≥ 150. Moreover, it can be seen from Figs. 1 and 3 that the bias of b̃1

does not converge to 0 as n increases. As expected, the only exception is the
case where X1 is the sorting variable: In this case b̃1 is a consistent estimator
of β1. The estimators b̃2 and b̃2,c show a similar behavior as b̃1 and b̃1,c.



14

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

beta1

bi
as

(b
et

a1
)

y
pca
zs
x1

n=150

Figure 1: Bias of b̃1 for various sorting variables (pca = first principal com-
ponent projection, zs = sum of z-scores), dotted lines = true asymptotic bias
curves
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Figure 2: Bias of b̃1,c for various sorting variables (pca = first principal com-
ponent projection, zs = sum of z-scores)
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Figure 3: Bias of b̃1 for various sorting variables (pca = first principal com-
ponent projection, zs = sum of z-scores), dotted lines = true asymptotic bias
curves

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

beta1

bi
as

(b
et

a1
)

y
pca
zs
x1

n=600

Figure 4: Bias of b̃1,c for various sorting variables (pca = first principal com-
ponent projection, zs = sum of z-scores)
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5.2 Variance of b̃c for Finite Samples

Figs. 5 and 6 contain the variances of
√

nb̃1,c, which were estimated from the
above simulation study for n = 150 and n = 600. Moreover, Figs. 5 and 6
show the averages of the estimated asymptotic variances of

√
nb̃1,c, as well as

the corresponding true asymptotic variances. We see that if the sample size
is small (n = 150), var(b̃1,c) is underestimated by its asymptotic counterpart.
For large sample sizes (n = 600), we see that the asymptotic variance of b̃1,c

is a good approximation of the true variance of b̃1,c. The variance of b̃2,c and
the covariance of b̃1,c and b̃2,c show a similar behavior as the variance of b̃1,c.
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Figure 5: Variance of
√

n b̃1,c, estimated from simulation (dashed lines: true
variances, solid lines: averages of the estimated asymptotic variances, dotted
lines: true asymptotic variances) - n = 150
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Figure 6: Variance of
√

n b̃1,c, estimated from simulation (dashed lines: true
variances, solid lines: averages of the estimated asymptotic variances, dotted
lines: true asymptotic variances) - n = 600

6 Analysis of the Munich Rent Data

The simulation results presented in Section 5 are based on samples drawn
from a multivariate normal distribution. In fact, the joint normality of the
variables in model (1) is one of the key assumptions made to derive the
asymptotic covariance matrix of b̃c. In practice, however, the normality as-
sumption will usually not hold.

In order to see how our method works in practice and also to
find out how sensitive our results are with respect to deviations
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from the normality assumption, we applied our estimation method to
the 2003 Munich Rent Data (http://www.statistik.lmu.de/service/
datenarchiv/miete/miete03 e.html), which certainly deviate from nor-
mality (see later). The data set contains 2053 households interviewed for
the 2003 Munich rent standard. As it is publicly available, the origi-
nal parameter estimates can be computed, and the impact of microag-
gregation on a linear regression can be studied directly. We are inter-
ested in the relationship between the monthly net rent of the households
in EUR (nr, dependent variable), the floor space in m2 (fs, independent
variable), and the year of construction of the buildings (yc, independent
variable). These variables clearly are not normally distributed (compare
Fig. 7).
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Figure 7: Histograms of nr, fs, and yc
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To see whether our results hold despite the non-normality of nr, fs, and yc,
we estimated a linear model based on the original (non-aggregated) data. We
then compared the resulting estimates to the linear model estimates based on
the microaggregated data set with group size A = 3. The sorting variables
we used are the same as those used in Section 5. To obtain a sample size
which is a multiple of A (i.e. n = 2052), we sorted the original data set with
respect to nr and deleted the median observation.

The naive linear model estimates are shown in Table 1. As expected, mi-
croaggregation with respect to pca, zs, or the dependent variable nr leads
to biased estimates of the model parameters βfs and βyc. In contrast to the
results of Section 3, the naive estimators are also severely biased if one of
the regressors (fs or yc) is used as the sorting variable. Although nr, fs,
and yc are not normally distributed, this is a surprising result: Feige and
Watts (1972) showed that in a linear model, b̃ is an unbiased estimator of β
if H is independent of ǫ, no matter what distribution(s) the variables follow.
Thus the results in rows 6 and 7 of Table 1 are probably due to the large
variance of b̃. A more plausible result is obtained if a ”z-score” linear com-
bination of the regressors is used as the sorting variable: In this case, the
naive estimators of βfs and βyc are remarkably close to the original estimates
(see the last row in Table 1). It thus seems recommendable to use a linear
combination of the regressors to sort the data, instead of one single regressor.

Table 2 shows that the correction of b̃ works as it should: The corrected
estimates are close to the original estimates, implying that the corrected
estimators are robust against violations of the normality assumption. We
also see that the standard errors of the parameter estimates, as estimated
by the procedure described in Section 4, are larger than the standard errors

Sorting variable b̃fs b̃yc σ̂b̃fs
σ̂b̃yc

non-aggregated data 7.28 1.93 0.15 0.15

nr 10.20 2.56 0.13 0.19
pca 10.40 2.60 0.12 0.17
zs 8.78 2.64 0.11 0.13

fs 7.57 3.28 0.12 0.19
yc 9.90 2.47 0.13 0.11
fs/σ̂fs + yc/σ̂yc 7.39 1.83 0.10 0.11

Table 1: Regression of nr on fs and yc - naive estimates
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Sorting variable b̃fs,c b̃yc,c σ̂b̃fs,c
σ̂b̃yc,c

σ̂b̃fs,c,bs
σ̂b̃yc,c,bs

nr 6.82 1.71 0.21 0.22 0.24 0.19
pca 7.46 1.99 0.21 0.22 0.26 0.19
zs 7.36 1.68 0.19 0.22 0.27 0.24

fs 7.57 3.28 0.21 0.33 0.20 0.31
yc 9.90 2.47 0.23 0.19 0.30 0.18
fs/σ̂fs + yc/σ̂yc 7.39 1.83 0.18 0.18 0.22 0.20

Table 2: Regression of nr on fs and yc - corrected estimates (columns 2 - 5)
and bootstrap variance estimates (columns 6 & 7)

of the estimates based on the non-aggregated data. This is not a surprising
result, as the application of anonymization techniques to data sets always
implies an efficiency loss in parameter estimation.

To see whether the standard errors in rows 4 and 5 of Table 2 are reliable
estimates of the true standard errors of b̃fs,c and b̃yc,c, we additionally esti-
mated var(b̃fs,c) and var(b̃yc,c) from 10000 bootstrap samples of size n = 2052.
The results obtained are shown in columns 6 and 7 of Table 2. Apparently,
most of the bootstrap variance estimates are close to their counterparts based
on the multivariate normal distribution. Thus the correction procedure pro-
posed in Sections 3 and 4 seems to be robust against violations of the model
assumptions.

7 Estimation of the coefficients cy, c1, . . . , cp

The computation of the corrected estimator b̃c requires the aggregated data
values of the sorting variable H to be known to the data user. This either
implies that data holders have to provide the aggregated data vector h̃ or
that data users are able to estimate h̃ from the aggregated data vectors
ỹ, x̃1, . . . , x̃p. In this section, we discuss some special cases of sorting variables
where it is possible to estimate h̃ from the aggregated data.
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7.1 Microaggregation with respect to a Particular

Variable in the Data Set

Consider the case where H is an exact linear combination of Y,X1, . . . , Xp:
In this case the aggregated data values of H can be easily reconstructed from
ỹ, x̃1, . . . , x̃p:

h̃ = cyỹ + c1x̃1 + · · · + cpx̃p . (32)

This implies that data users only have to know (or estimate) the values of the
coefficients cy, c1, . . . , cp instead of the full vector h̃. Consequently, if one of
the variables in the linear model is the sorting variable, it is sufficient to tell
data users which variable has been used to sort the data. As in this case all
of the coefficients are 0 except one coefficient (which ”belongs” to the sorting
variable and is equal to 1), h̃ is equal to the vector of aggregated values of
the variable in the linear model that was used to sort the data.

7.2 Microaggregation with respect to the First Princi-

pal Component Projection

If H is an arbitrary linear combination of Y,X1, . . . , Xp and no information
on cy, c1, . . . , cp is provided by the data holder, the coefficients cy, c1, . . . , cp

have to be estimated from the aggregated data. In the following, we will show
that cy, c1, . . . , cp can be consistently estimated if

1. H is the first principal component projection of Y,X1, . . . , Xp and

2. the covariance matrix ΣY,X of Y and X1, . . . , Xp is used to compute
the first principal component projection.

Lemma 4. Let Σz be the covariance matrix of Z := (Y,X1, . . . , Xp) and Σ̃z

be the probability limit of the empirical covariance matrix S̃z based on the
aggregated data. Denote the eigenvector associated to the largest eigenvalue λ
of Σz by c = (cy, c1, . . . , cp)

′. Then c is also the eigenvector corresponding to
the largest eigenvalue of Σ̃z.

Proof. We first show that
Σ̃zc = Σzc . (33)
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To prove equation (33) we make use of the relationship H = Z ′c. Thus

σhh = c′Σzc , (34)

σzh = Σzc , (35)

where σzh is the covariance vector of Z and H. From (34), (35), Lemma 1d)
and e), and from a corresponding formula for plimn→∞

s̃yy, it follows that

Σ̃z =
1

A
Σz +

(

1 − 1

A

)Σzcc
′Σz

c′Σzc
. (36)

We thus obtain

Σ̃zc =
1

A
Σzc +

(

1 − 1

A

)

Σzc = Σzc = λc . (37)

Note that equation (33) not only holds for the eigenvector c corresponding
to the largest eigenvalue of Σz but for any vector of coefficients c that is
used to construct the aggregated values of H (given that H is an exact linear
combination of Y,X1, . . . , Xp).

From (37) it follows that λ is an eigenvalue of Σ̃z. To prove Lemma 4, we
have to show that λ is also the largest eigenvalue of Σ̃z.

As λ is defined as the largest eigenvalue of Σz, the following relationship
holds:

λ = max
d

d′Σzd

d′d
, (38)

where d is an arbitrary vector of length p + 1. Clearly, the right hand side
of (38) is maximized by c. It thus remains to show that

max
d

d′Σ̃zd

d′d
=

c′Σ̃zc

c′c
(= λ) . (39)

Without loss of generality we only consider vectors d ∈ R
p+1 with ‖d‖ =

d′d = 1. Note that each d can be written as a linear combination of the
(orthonormal) eigenvectors c, p1, . . . , pp of Σz:

d = uc +

p
∑

i=1

uipi , (40)



23

where |u| ≤ 1, |ui| ≤ 1, i = 1, . . . , p. It follows that

d′Σ̃zd

d′d
=

1

A

d′Σzd

d′d
+
(

1 − 1

A

)(d′Σzc)(c
′Σzd)

d′d · c′Σzc

=
1

A
d′Σzd +

(

1 − 1

A

)(c′Σzd)2

c′Σzc

=
1

A
d′Σzd +

(

1 − 1

A

)(λc′(uc +
∑p

i=1
uipi))

2

c′Σzc

=
1

A
d′Σzd +

(

1 − 1

A

) λ2u2

c′Σzc
(41)

Due to (38), the left summand in (41) is maximized by c. As |u| ≤ 1, the
right summand in (41) is maximal if u = ±1 (implying that d = ±c). This
proves (39).

Lemma 4 implies that c can be consistently estimated by the eigenvector
associated with the largest eigenvalue of the empirical covariance matrix S̃z

based on the aggregated data. Thus the corrected estimator b̃c (using the
reconstructed aggregated data values of H) will be a consistent estimator
of β. While the estimation of c introduces additional variance to the corrected
estimator b̃c, simulations similar to those performed in Section 5 show that
the increase in variance is negligible.

In practice, however, it is more common to use the correlation matrix of
Y,X1, . . . , Xp instead of the covariance matrix Σz to determine the first prin-
cipal component projection. Note that in this case, the results of Lemma 4
cannot be applied, and another estimation technique has to be applied to
estimate the coefficients cy, c1, . . . , cp (see Subsection 7.3).
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7.3 Microaggregation with respect to the Sum of Z-

Scores

If H is the sum of z-scores, it is convenient to consider the system of equations

AΣ̃z − (A − 1)
Σzcc

′Σz

c′Σzc
− Σz = 0 , (42)

(

1
√

σyy

,
1√
σ11

, . . . ,
1

√
σpp

)

′

= c , (43)

where (42) is just a reformulation of (36). By using the empirical covariance
matrix S̃z instead of Σ̃z and by solving (42) and (43) numerically, we can
obtain an estimate Σ̂z of the covariance matrix Σz. Thus, an estimate of c is
given by

ĉ :=

(

1
√

σ̂yy

,
1√
σ̂11

, . . . ,
1

√

σ̂pp

)

′

, (44)

where σ̂yy, σ̂11, . . . , σ̂pp are the diagonal elements of Σ̂z. The estimates of the
coefficients cy, c1, . . . , cp can then be used to construct h̃, and the correction
of β̃ can be performed as described in Sections 3 and 4.

Note that the above described procedure to estimate the vector of coeffi-
cients c can be applied for any c that depends on the second order moments
of Y,X1, . . . , Xp. For example, if H is the first principal component projection
based on the correlation matrix of Y,X1, . . . , Xp, the system of equations

AΣ̃z − (A − 1)
Σzcc

′Σz

c′Σzc
− Σz = 0 , (45)

diag(Σz)
−1/2 Σz diag(Σz)

−1/2c = λc (46)

has to be solved instead of (42) and (43). Again, simulations similar to those
performed in Section 5 show that the increase in variance induced by the ad-
ditional estimation of c is small if compared to the variance increase induced
by microaggregation.
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8 Conclusion

We have analyzed the effects of single-axis-sorting microaggregation on the
estimation of a linear regression model in continuous variables. In Section 3
we have shown that the naive least squares estimators of a linear model are
not necessarily consistent estimators of the true model parameters. However,
in the special case where the sorting variable is a linear combination of the
regressors, the naive estimator of the slope parameter vector β turns out to
be consistent. Although aggregating with respect to a linear combination of
the regressors therefore seems to be more convenient for statistical analysis,
it has to be pointed out that data providers usually do not know before
anonymization which variables will later serve as the regressors in a linear
model. Thus, investigating microaggregation with respect to an arbitrary
sorting variable is a very relevant case.

The main result of the paper is the development of a consistent estimator that
removes the aggregation bias of the naive LS estimator of β. We also derived
the asymptotic covariance matrix of the corrected estimator for the slope
parameter vector β. The simulation study in Section 5 as well as the analysis
of the Munich Rent Data in Section 6 show that the correction procedure
already works well if the sample size is moderately high (n ≥ 150).

To prove our results, we assumed the variables in the linear model and the
sorting variable to be jointly normally distributed. Although this assumption
usually does not hold in practice, the analysis of the Munich Rent Data shows
that the estimation procedure is robust against deviations from normality.
The only exception is the case where a single regressor is used as the sorting
variable: In this case the naive estimates (which are equal to the corrected
estimates) turn out to be severely biased.

In order to carry out the estimation procedure developed in Sections 3 and 4,
data holders are required to provide the aggregated data values of the sorting
variable. In most cases, this requirement will not severely affect the disclosure
risk of a data set. If the sorting variable is an exact linear combination of the
variables in the linear model, data holders only have to provide the coefficients
of this combination. Moreover, there are special types of sorting variables
where the coefficients can be consistently estimated from the aggregated data
set, see Section 7. Simulations show that the additional variance induced by
the estimation of the coefficients is negligible in most cases.
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In summary, we have derived a method that allows data users to consistently
estimate linear models with microaggregated data. Thus the disclosure risk
of data sets is kept low, while the results obtained from the anonymized data
are still guaranteed to be analytically valid.

Acknowledgements

I thank Hans Schneeweiss for very helpful discussions and comments. Finan-
cial support from the Deutsche Forschungsgemeinschaft (German Science
Foundation) is gratefully acknowledged.

References

Defays, D. and P. Nanopoulos (1993): ”Panels of Enterprises and Confi-
dentiality: The Small Aggregates Method,” Proceedings of the 1992
Symposium on Design and Analysis of Longitudinal Surveys, Ottawa,
Statistics Canada, 195-204.

Dhrymes, P. J. (1984): Mathematics for Econometrics, Second Edition.
New York: Springer.

Domingo-Ferrer, J. and J. M. Mateo-Sanz (2002): ”Practical Data-
Oriented Microaggregation for Statistical Disclosure Control,” IEEE
Transactions on Knowledge and Data Engineering, 14, No. 1, 189-201.

Evans, M., N. Hastings and B. Peacock (1993): Statistical Distributions,
Second Edition. New York: Wiley.

Feige, E. L. and H. W. Watts (1972): ”An Investigation of the Conse-
quences of Partial Aggregation of Micro-Economic Data,” Economet-
rica, 40, No. 2, 343-360.

Schmid, M. and H. Schneeweiss (2005): ”Estimation of a Linear Regres-
sion under Microaggregation with the Response Variable as a Sorting
Variable,” Discussion Paper 462, SFB 386, Department of Statistics,
University of Munich.

Statistisches Bundesamt (2005): Handbuch zur Anonymisierung
wirtschaftsstatistischer Mikrodaten. Statistik und Wissenschaft 4,
Wiesbaden: Statistisches Bundesamt.


