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A SEQUENT CALCULUS FOR A NEGATIVE FREE LOGIC 
 
Abstract 
This article presents a sequent calculus for a negative free logic with identity, called N. The main 
theorem (in part 1) is the admissibility of the Cut-rule. The second part of this essay is devoted to 
proofs of soundness, compactness and completeness of N relative to a standard semantics for 
negative free logic. 
 
Keywords: Free Logic, Cut-elimination, Compactness, Completeness, Existence 
 
1 INTRODUCTION1 

K. Lambert introduced the term ‘free logic’ in the late 1960s. A standard 
definition of free logic is the following: A logic S is a free logic iff (1) S is free of 
existential presuppositions with respect to the singular terms of S, (2) S is free of 
existential presuppositions with respect to the general terms of S and finally (3) the 
quantifiers of S have existential import. There are three “families” of free logics: 
positive, negative and neutral. For our purposes it suffices to define a negative free 
logic: A negative free logic is a free logic, where each simple statement containing 
at least one empty singular term is false. E.g. ‘Vulcan is (identical with) Vulcan’ is 
false; and so is ‘Vulcan rotates’ (Cf. Lambert (1997, 81ff)). It should be mentioned 
that there is no particular formal system called “the” negative free logic, but there 
is a whole family of such systems. Since the sentence ‘Vulcan is (identical with) 
Vulcan’ is false in negative free logics, a general feature of these is that identity 
statements can only be true just in case they contain no non-denoting singular term 
(cf. Hintikka (1964), Schock (1969)). So, negative free logics have a non-standard 
identity theory, unlike positive free logics. Scales (1969) in his pioneering work in 
negative free logic presents strong arguments in favor of this family of free logics 
in general.  

The history of negative free logic can be traced back to Aristotle; a clear 
example for this is the following passage: “It might, indeed, very well seem that 
the same sort of thing does occur in the case of contraries said with combination, 
‘Socrates is well’ being contrary to ‘Socrates is sick’. Yet not even with these is it 
necessary always for one to be true and the other false. For if Socrates exists one 
will be true and one false, but if he does not both will be false; neither ‘Socrates is 
sick’ nor ‘Socrates is well’ will be true if Socrates himself does not exist at all.”2                 
                                            
1 Research on this paper was funded by the FWF (P17392-G04). 
2 Aristotle (1984, 21) 



 2 

Scott (1967) argued explicitly that free logic is relevant in some fields of 
mathematics and computer science. Though, as Gumb (2000, 2001) stresses the 
term ‘free logic’ is not in use in the literature of mathematics and computer 
science.  

G. Gentzen (1934/35) introduced sequent calculi as a new kind of formal 
system. These are not as close to actual reasoning as natural deduction systems, 
but they have very interesting metalogical properties. The most famous one is the 
Hauptsatz or the normal form theorem. In this essay we introduce a sequent 
calculus for negative free logic with identity and prove the Hauptsatz for this 
system. Consistency and the theorem concerning the sub-formula property are 
easily provable, given the proof of the Hauptsatz. The sub-formula property is one 
salient feature of sequent calculi because it follows from it that the information 
required for a derivation of a sequent is contained in the sequent itself. For this 
reason sequent calculi are particularly interesting for automated theorem proving. 
In contrast to this kind of formal system Hilbert-style formal systems lack the sub-
formula property. This is so, because in general modus ponens deprives formulas 
of the necessary information for their derivation. So far there is no sequent 
calculus fpr negative free logic in the literature on free logic. In section 1 a 
corresponding sequent calculus – called N – is introduced. In the second part 
soundness, compactness and completeness is proved for the system in question 
relative to a standard semantics for negative free logics. The completeness 
theorem provides us with another proof of the Hauptsatz but it is not constructive, 
i.e. this proof does not give us a procedure for effectively eliminating cuts. 

Before we present the formal system we have to state the language and some 
definitions. 
 
Language L 
The alphabet of L consists of 

(i) a denumerably infinite set of free individual variables (FV) 
(ii) a denumerably infinite set of bound individual variables  
(iii) an at most denumerably infinite set of (for any n) n-ary predicate 

symbols  
(iv) ¬, →, ⇒, ∀, E!, = 

 
We use as syntactical variables (with and without indices): 
a, b   for free individual variables 
x, y  for bound individual variables 
s, t   for terms  
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Fn, Gn   for n-ary predicate symbols 
D, G  for prime formulas 
A, B, C, … for formulas 
Γ, Δ, Ψ, Φ are finite (possibly empty) sequences of formulas 
 
Terms, formulas and sequents 

(1) Every free individual variable is a term. 
(2) If t1, …, tn are terms and Fn is an n-ary predicate, then Fnt1…tn is a formula. 
(3) If t is a term, then E!t is a formula. 
(4) If s and t are terms, then s = t is a formula. 
(5) If A and B are formulas, then ¬A, A → B are formulas. 
(6) If A[a] is a formula, s.t. in A the bound variable x does not occur, then 

∀xA[x] is a formula. 
(7) If A1, …, An and B1, …, Bm are formulas, then A1, …, An ⇒ B1, …, Bm is a 

sequent. (The left part of A1, …, An ⇒ B1, …, Bm is called the antecedent 
and the right part succedent. Intuitively, the antecendent is interpreted as a 
conjunction of the formulas occurring in the antecedent, i.e. A1 ∧ … ∧ An; 
and the succedent is interpreted as a disjunction of the formulas occurring 
in the succedent, i.e. B1 ∨ … ∨ Bm ) 

 
The notation A[a] is explained in the following way: the free variable a occurs in 
A in several distinguished places. A[x] is the formula which is obtained from A[a] 
by substituting the bound variable x for the distinguished occurrences of the free 
variable a in A[a]. 
∧, ∨, ↔, ∃ are defined as usual. Prime formulas are all formulas which are 
constructible by the clauses (2) – (4). 
 
For the proof of the Hauptsatz it is important to have the notion of the ‘degree of a 
formula’: 
Inductive definition of the degree of a formula 
(G1) g(A) = 0, if A is prime. 
(G2) g(A→B) = g(A) + g(B) + 1 
(G3) g(¬A) = g(A) + 1 
(G4) g(∀xA[x]) = g(A) + 1 
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1 THE FORMAL SYSTEM N 
 
Axioms 
 
(Ax1) D, Γ ⇒ Δ, D 
(Ax2) E!t, Γ ⇒ Δ, t = t 
(Ax3) s = t, D[s], Γ ⇒ Δ, D[t] 
(Ax4) D[t], Γ ⇒ Δ, E!t 
 
Rules 
 

Structural rules 
 
(P⇒) Γ, A, B, Δ ⇒ Ψ   (⇒P) Γ ⇒ Δ, A, B, Ψ 
 Γ, B, A, Δ ⇒ Ψ    Γ ⇒ Δ, B, A, Ψ 
  

Logical rules 
 
(¬⇒) Γ ⇒ Δ, A    (⇒¬) A, Γ ⇒ Δ 
 ¬A, Γ ⇒Δ     Γ ⇒ Δ, ¬A 
 
(→⇒) Γ ⇒ Δ, A  B, Γ ⇒ Δ   (⇒→) A, Γ ⇒ Δ, B 
      A → B, Γ ⇒ Δ    Γ ⇒ Δ, A → B 
 
(∀⇒) A[t], ∀xA[x], Γ ⇒ Δ   ∀xA[x], Γ ⇒ Δ, E!t 
   ∀xA[x], Γ ⇒ Δ 
 
(⇒∀) E!a, Γ ⇒ Δ, A[a]  (V!) 
 Γ ⇒ Δ, ∀xA[x] 
 
(I-Cut)  Γ ⇒ Δ, s = t  s = t, Γ ⇒ Δ  
       Γ ⇒ Δ 
 
Remarks 
 
• (V!) means that the free variable a must not occur below  the inference line. 
• One distinctive feature of free logic is that although it allows for its singular 
terms to be empty, the quantifiers of free logic retain their existential import. That 



 5 

the quantifiers have existential import in this logic is seen by the rules (∀⇒) and 
(⇒∀). 
• The last rule – (I-Cut) – termed inessential cut by Takeuti (Takeuti (1987, p. 40). 
It is ‘inessential’ because the only cut-formulas admitted by (I-Cut) are equality 
formulas. 
 
Inductive definition of derivability in N: 

(i) Every axiom is derivable in N. 
(ii) If the premise(s) of a (basic) rule of inference is (are) derivable in N, 

so is the conclusion of this (basic) inference derivable in N. 
 
A formula A is provable in N iff the sequent     ⇒ A is derivable in N (D A). 
An application of a logical rule is a logical inference. If Γ ⇒ Δ is a derivable 
sequent in N, then h(Γ ⇒ Δ) denotes the minimal number of logical inferences that 
are necessary for a derivation of Γ ⇒ Δ. We call h(Γ ⇒ Δ) the height of the 
sequent Γ ⇒ Δ. 
 
Definitions 
A rule is called admissible in N provided that if the premises of the rule are 
derivable in N then the conclusion of this rule is derivable in N. 
A rule is called directly admissible in N if it is admissible and each application of 
the rule can be replaced by a finite number of basic rules. 
A rule is called indirectly admissible in N if it is admissible but not directly 
admissible. 
The most important difference between directly and indirectly admissible rules is 
that indirectly admissible rules are not invariant to extensions of the system.3 
 
1.1 Some directly admissible rules 
 
(∨⇒) A, Γ ⇒ Δ      B, Γ ⇒ Δ  (⇒∨) Γ ⇒ Δ, A, B 
       A ∨ B, Γ ⇒ Δ    Γ ⇒ Δ, A ∨ B 
 
(∧⇒)  A, B, Γ ⇒ Δ    (⇒∧) Γ ⇒ Δ, A    Γ ⇒ Δ, B 
 A ∧ B, Γ ⇒ Δ    Γ ⇒ Δ, A ∧ B 
 
(∃⇒) E!a, A[a], Γ ⇒ Δ  (V!) 
                                            
3 For further details (and examples) on directly/indirectly admissible rules see Schütte (1960, pp. 44f.). 
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 ∃xA[x], Γ ⇒ Δ 
 
(⇒∃) Γ ⇒ Δ, ∃xA[x], A[t]  Γ ⇒ Δ, ∃xA[x], E!t 
   Γ ⇒ Δ, ∃xA[x] 
 
All these rules are easily derivable by the definitions of the connectives and of the 
existential quantifier. 
 
1.2 Some indirectly admissible rules 
 
1.2.1 Substitution (Sub) 
Γ[a] ⇒ Δ[a]     Where: a does not occur under the 
Γ[b] ⇒ Δ[b]     inference line 
is admissible in N and it holds that h(Γ[b] ⇒ Δ[b]) ≤ h(Γ[a] ⇒ Δ[a]) 
 
Proof 
There is a derivation of Γ[a] ⇒ Δ[a] in N in tree-form (see e.g. Gentzen 1934/35). 
If therein occurs a (⇒∀)-inference, s.t. the variable b is subject to the condition on 
variables, then this variable will be replaced by a new variable which does not 
occur in the premises of this inference and which does not occur in any sequents 
that occur above this premise. Hence, a derivation of Γ[b] ⇒ Δ[b], where h(Γ[b] 
⇒ Δ[b]) ≤ h(Γ[a] ⇒ Δ[a]) is the case, is obtainable. 
 
 
1.2.2 Weakening 
(W⇒) Γ ⇒ Δ   (⇒W) Γ ⇒ Δ  
 A, Γ ⇒ Δ    Γ ⇒ Δ, A 
Where: h(A, Γ ⇒ Δ) ≤ h(Γ ⇒ Δ) and h(Γ ⇒ Δ, A) ≤ h(Γ ⇒ Δ). The proof is 
omitted. 
 
1.2.3 Inversion rules  
(I⇒→) Γ ⇒ Δ, B → C  (I⇒∀)   Γ ⇒ Δ, ∀xB[x] 
     B, Γ ⇒ Δ, C      E!a, Γ ⇒ Δ, B[a] 
 
(I⇒¬)    Γ ⇒ Δ, ¬A   (I¬⇒)     ¬A, Γ ⇒ Δ  
    A, Γ ⇒ Δ        Γ ⇒Δ, A 
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(I→⇒1) B → C, Γ ⇒ Δ  (I→⇒2)  B → C, Γ ⇒ Δ 
   C, Γ ⇒ Δ          Γ ⇒ Δ, B 
Where: the height h of the conclusions is less than or equal to the height h of the 
premises. 
 
We want to state here just the proof of (I⇒∀): 
There is a derivation of Γ ⇒ Δ, ∀xB[x] in N in tree-form. We keep track of the 
formula ∀xB[x] beginning at the bottom of the tree. We replace each occurrence 
of ∀xB[x] in the derivation with a formula B[a] and put E!a left of ⇒. If the 
branch originally ends with an axiom then after the application of this procedure 
the corresponding branch ends again with an axiom. If there is a (⇒∀)-inference 
such that a is subject to the restriction of variables, then we replace a in this 
inference by a new variable (according to (Sub)). The number of logical inferences 
does not increase. 
 
 
1.2.4 Contraction 
(C⇒) A, A, Γ ⇒ Δ   (⇒C) Γ ⇒ Δ, A, A 
    A, Γ ⇒ Δ    Γ ⇒ Δ, A 
Where: h(A, Γ ⇒ Δ) ≤ h(A, A, Γ ⇒ Δ) and h(Γ ⇒ Δ, A) ≤ h(Γ ⇒ Δ, A, A). 
The proof is accomplished by induction on the complexity of A. Note that we us 
(∀⇒) to prove Contraction and that (∀⇒) is stated in such a way that this is 
possible. 
 
1.3 Admissibility of Cut 
In this section we want to prove in some detail that Cut is an indirectly admissible 
rule in N. This result will be established in several steps. 
 
Cut 

Γ ⇒ Δ, A   A, Γ ⇒ Δ 
    Γ ⇒ Δ 

The admissibility of Cut is proved by double induction. The main induction is on 
the complexity of (the cut-formula) A and the auxiliary induction is on the height 
h of the derivation of the right premise of the Cut.  
 
We prove (Cut) in the above form and not in the version of 
(Cut*) 

Γ ⇒ Δ, A   A, Φ ⇒ Π 
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    Γ, Φ ⇒ Δ, Π 
However, as it is easily seen by the axioms and rules of N (Cut) and (Cut*) are 
derivable from each other. 
 
The admissibility of Cut will be proved in several stages. We shall first define a 
formal system, called N′ , as follows: 
Let N′  be the formal system containing the axiom (Ax1) and the rules (⇒P), 
(P⇒), (¬⇒), (⇒¬), (→⇒), (⇒→), (∀⇒) and (⇒∀).  
 
1.3.1 Theorem. 
Cut is indirectly admissible in N′ . 
Proof. 
We outline a few steps of the proof. 
Basis 
A is prime; i.e. A is of the form E!t or Fnt1…tn. 
There is a treelike derivation in N′  of Γ ⇒ Δ, A and A, Γ ⇒ Δ. We keep track of 
the formula A in Γ ⇒ Δ, A – beginning at the bottom – and delete simultaneously 
every occurrence of A. We delete the sequence A, Γ ⇒ Δ and the whole right 
branch and obtain thereby a derivation of Γ ⇒ Δ in N′ . By this method an axiom 
will be transformed into in axiom. One problem may occur:  When there has been 
a basic sequent, i.e. an instance of an (Ax1)-axiom, at the top of a derivation 
branch, but now there is a sequent of the form Γ ⇒ Δ; in this case we obtain a 
derivation of Γ ⇒ Δ from A, Γ ⇒ Δ by putting this sequent and its derivation on 
top of Γ ⇒ Δ and then eliminating occurrences of A. 
 
Step 
A is ¬B. 
There is a treelike derivation in N′  of Γ ⇒ Δ, ¬B and ¬B, Γ ⇒ Δ. Due to the 
inversion rules (I⇒¬) and (I¬⇒) we obtain derivations of B, Γ ⇒ Δ and Γ ⇒ Δ, 
B. g(B) < g(¬B). Hence we may apply the inductive assumption and obtain: Γ ⇒ 
Δ. 
 
In the case where A is of the form B → C we argue similarly. 
 
A is ∀xB[x]. 
This induction step is proved by induction on the minimal number of logical 
inferences, which are needed in order to obtain ∀xB[x], Γ ⇒ Δ. The hypothesis of 
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the main induction remains unchanged; i.e. the inductive assumption can be 
applied on formulas of a smaller degree than the original formula. 
 
Basis of the side induction 
If h(∀xB[x], Γ ⇒ Δ) = 0, then ∀xB[x], Γ ⇒ Δ is an axiom. The conclusion Γ ⇒ Δ 
is derivable without logical inferences. 
 
Side induction hypothesis 
If h(∀xB[x], Γ ⇒ Δ) ≤ h(Γ ⇒ Δ, ∀xB[x]), then Cut is applicable with the cut-
formula ∀xB[x] and the second premise ∀xB[x], Γ ⇒ Δ. Note: We refer to 
premises of the last logical inference in a minimal derivation of ∀xB[x], Γ ⇒ Δ. 
 
We outline two cases: (¬⇒)- and (∀⇒)-inferences. 
 
The last logical inference is of the form: (¬⇒): 
∀xB[x], Γ ⇒ Δ, C (¬⇒) 
¬C, ∀xB[x], Γ ⇒ Δ 
Thus h(∀xB[x], Γ ⇒ Δ, C) ≤ h(¬C, ∀xB[x], Γ ⇒ Δ). So Cut is applicable on Γ 
⇒Δ, ∀xB[x] and ∀xB[x], Γ ⇒ Δ, C. 
 
The cut-formula is ∀xB[x] and the last logical inference in a minimal derivation of 
∀xB[x], Γ ⇒ Δ is a (∀⇒)-inference of the following form: 
∀xB[x], Γ ⇒ Δ, E!a    B[a], ∀xB[x], Γ ⇒ Δ 
  ∀xB[x], Γ ⇒ Δ 
The following holds: h(∀xB[x], Γ ⇒ Δ, E!a) ≤ h(∀xB[x], Γ ⇒ Δ) and  h(B[a],  
∀xB[x], Γ ⇒ Δ) ≤ h(∀xB[x], Γ ⇒ Δ). Hence, the hypothesis of the auxiliary 
induction is satisfied and the inductive assumption is applicable on Γ ⇒ Δ, ∀xB[x] 
and ∀xB[x], Γ ⇒ Δ, E!a; result (1) Γ ⇒ Δ, E!a. the inductive assumption is also 
applicable on Γ ⇒ Δ, ∀xB[x] and ∀xB[x], B[a], Γ ⇒ Δ; result: (2) B[a], E!a, Γ ⇒ 
Δ. From Γ ⇒ Δ, ∀xB[x] we obtain by an application of (I⇒∀): (3) E!a, Γ ⇒ Δ, 
B[a]. Since the hypothesis of the main induction is satisfied we may apply 
successively the inductive assumption and obtain a derivation of Γ ⇒ Δ. 
 
This establishes the theorem. 
 
1.3.2 Intermediate Steps 
We call the system, that originates from N′  by adding of  the rule Cut: N′C.  
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In order to prove the admissibility of Cut we follow a method proposed by Takeuti 
(1987, 34ff.). 
We define a strings of formulas ΦE as follows: ΦE is the set of all formulas of the 
form E!t → t = t, s = t → (D[s] → D[t]) and D[t] → E!t, which are constructible 
from the predicates and singular terms in Φ. 
If Γ and Δ are strings of formula, then we write (Γ ∪ Δ) for the string Γ, Δ.4 
N plus Cut is called: NC. 
 
1.3.3 Theorem (Hauptsatz). 
Cut is indirectly admissible in N. 
 
In order to prove that Cut is indirectly admissible in N, we want to prove the 
following: 
(S) If NC D Γ ⇒ Δ, then N D Γ ⇒ Δ. 
 
(S) follows from: 

(I) If NC D Γ ⇒ Δ, then N′C D Γ, (Γ ∪ Δ)E ⇒ Δ. 
(II) If N′C D Γ, (Γ ∪ Δ)E ⇒ Δ, then N′  D Γ, (Γ ∪ Δ)E ⇒ Δ. 
(III) If N′  D Γ, (Γ ∪ Δ)E ⇒ Δ, then N D Γ ⇒ Δ. 

 
Proof of (I) 
Basis: h(Γ ⇒ Δ) = 0. 
There are four cases to consider. 
Case 1 
Γ ⇒ Δ is an axiom of the form (Ax1), hence it also an axiom of N′C. 
Case 2 
Γ ⇒ Δ is an axiom of the form (Ax2). E!t → t = t is a member of (Γ ∪ Δ)E. We 
have to prove that E!t, Γ’, E!t → t = t, ⇒ Δ, t = t is provable in N′C. 

E!t, Γ ⇒ Δ, t = t, E!t  t = t, E!t, Γ ⇒ Δ, t = t 
  E!t → t = t, E!t, E!t, Γ ⇒ Δ, t = t, t= t 
       E!t, Γ’, E!t → t = t, ⇒ Δ, t = t 
Case 3 
Γ ⇒ Δ is an axiom of the form (Ax3); s = t → (D[s] → D[t]) is a member of (Γ ∪ 
Δ)E. We have to show that s = t, D[s], Γ’, s = t → (D[s] → D[t]) ⇒ Δ’, D[t] is 
derivable in NC. The following is a derivation of that sequent: 
                                            
4 Here and below we make use of the notations ‘(Γ ∪ Δ)’ and ‘(Γ ∪ Δ)E’; these notations should not be 

understood as sets but as strings of formulas. This understanding is justified by the strucutural rules of N. 
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  D[s], Γ’ ⇒ Δ’, D[s]   D[t], Γ’ ⇒ Δ’, D[t] 
              s = t, D[s], Γ’ ⇒ Δ’, D[t], s = t                       D[s] → D[t], D[s], Γ’ ⇒ Δ’, D[t] 
 s = t → (D[s] → D[t]), s = t, D[s], Γ’ ⇒ Δ’, D[t] 
 s = t, D[s], Γ’, s = t → (D[s] → D[t]) ⇒ Δ’, D[t] 
 Γ, (Γ ∪ Δ)E

 ⇒ Δ 
Case 4 
Γ ⇒ Δ is an axiom of the form (Ax4); D[t] → E!t is a member of (Γ ∪ Δ)E. We 
have to prove that D[t], Γ’, D[t] → E!t ⇒ Δ’, E!t is provable in NC. 
 E!t, Γ ⇒ Δ, E!t D[t], Γ ⇒ Δ, D[t] 
  D[t] → E!t, D[t], Γ ⇒ Δ, E!t 
  D[t], Γ’, D[t] → E!t ⇒ Δ, E!t 
 
For the induction step, we have to argue that if the premise(s) of an inference rule 
is (are) derivable, then so is the conclusion. This part is easy and is therefore 
omitted. 
 
The admissibility of Cut is already established for N′ ; therefore step (II) is already 
proved. 
 
Proof of (III) 
Basis: h(Γ, (Γ ∪ Δ)E ⇒ Δ) = 0. 
There are again four cases to consider. 
 
Case 1 
If Γ, (Γ ∪ Δ)E ⇒ Δ is an axiom of the form (Ax1), then it is also an axiom in N. 
 
Case 2 
By assumption N′  D Γ, (Γ ∪ Δ)E ⇒ Δ s.t. (Γ ∪ Δ)E ⊇ {E!t → t = t}. E!t, Γ ⇒ Δ, t 
= t is an axiom of N. We obtain from E!t → t = t, Γ ⇒ Δ by means of the inversion 
rules (I→⇒1) and (I→⇒2) the following sequents: 

(1) t = t, Γ ⇒ Δ 
(2) Γ ⇒ Δ, E!t 

E!t, Γ ⇒ Δ, t = t is an axiom of N. We may apply Cut and I-Cut to obtain a 
derivation of Γ ⇒ Δ in N. 
 
Case 3 
By assumption N′  D Γ, (Γ ∪ Δ)E ⇒ Δ, such that (Γ ∪ Δ)E ⊇ {s = t → (D[s] → 
D[t])}. We obtain from this the sequent: 
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(1) s = t → (D[s] → D[t]), Γ ⇒ Δ 
From (1) we obtain with an application of (I→⇒2): 

(2) Γ ⇒ Δ, s = t 
And again from (1) we obtain with an application of (I→⇒1): 

(3) D[s] → D[t], Γ ⇒ Δ 
From (3) we get after applications of (I→⇒2) and (I→⇒1) the following 
sequents: 

(4) Γ ⇒ Δ, D[s] 
(5) D[t], Γ ⇒ Δ 

The sequent  
(6) s = t, D[s], Γ ⇒ Δ, D[t] 

 is an axiom of N. With an application of I-Cut on (6) and (2) we obtain  
(7) D[s], Γ ⇒ Δ, D[t] 

From (7) and (4) and (5) with two applications of Cut we finally get Γ ⇒ Δ. 
 
Case 4 
By assumption N′  D Γ, (Γ ∪ Δ)E ⇒ Δ, such that (Γ ∪ Δ)E ⊇ {D[t] → E!t}. By 
means of the inversion rules (I→⇒2) and (I→⇒2) we obtain the sequents: 

(1) Γ ⇒ Δ, D[t] 
(2) E!t, Γ ⇒ Δ 

D[t], Γ ⇒ Δ, E!t is an axiom of N; thus, we apply Cut twice and obtain a 
derivation of Γ ⇒ Δ. 
 
The induction step is analogous to the induction step for the proof of (I) and is 
omitted here. 
 
This establishes the Hauptsatz for N. 
 
1.4 Some Consequences of the Hauptsatz 
 
1.4.1 Restricted Sub-formula Property 
Definition 
(SF1) A is prime: A is a sub-formula of A. 
(SF2) If A is ¬B, then ¬B and all subformulas of B are sub-formulas of A. 
(SF3) If A is B → C, then B, C and all subformulas of B and C are sub-formulas 
of A. 
(SF4) If A is ∀xB[x], then B[t] for all t are sub-formulas of A. 
Sub-formulas of a sequent S are all sub-formulas of formulas of S. 
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1.4.1.1 Theorem: Restricted Sub-formula Property. 
If there is a tree-like derivation of Γ ⇒ Δ in N, then all formulas occurring in Γ ⇒ 
Δ are sub-formulas of this sequent – with the only exception of formulas of the 
form E!t and s = t. 
The proof is established by the length of a proof in N.  
 
1.4.1.2 Corollary: Separation Property  
Any provable sequent Γ ⇒ Δ in N always has a derivation using only the logical 
rules and/or axioms for the logical operators occurring in Γ ⇒ Δ.5 
Proof. 
This corollary follows immediately from the theorem concerning the sub-formula 
property. 
 
1.4.2 Consistency 
Definition. 
N is consistent iff …⇒… (the empty sequent) is not derivable in N. 
 
1.4.2.1 Theorem: N is consistent. 
Proof. 
Suppose …⇒… is derivable in N, then there is a derivation in tree-form of 
…⇒… in N without an application of Cut. Since the theorem concerning the sub-
formula property holds, this is impossible. 
 

                                            
5 Cf. Troelstra/Schwichtenberg (2000, 106). 
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2 SEMANTICS 
 

There is a standard semantical approach to negative free logic 
(Morscher/Simons 2001, Lambert 2001, Burge 1991) and we shall follow it here. 
This approach consits basically of a partial interpretation-function ϕ concerning 
singular terms of L; however, the extension of ϕ to formulas and sequents of L is 
total, i.e. those are either true or false under a given interpretation. It furthermore 
captures the underlying view from a standpoint of negative free logic, that every 
simple statement containing an empty singular term is false. 
 
2.1 Partial Interpration 
We define a partial interpretation ℑ = 〈D, ϕ〉 as follows: 

(1) D is (a possibly empty) set, 
(2) For every t, if t is in the domain of ϕ, then ϕ(t)∈D, wehere t is a FV. 
(3) For every n-ary predicate Fn: ϕ(Fn) ⊆ Dn. 
(4) There is a name d in L (thereby L is extended by those new individual free 

individual variables) for each object d in D 
The function ϕ will be recursively extended as follows: 

(5) ϕ(Fnt1…tn) = t iff ti (1 ≤ i ≤ n) is in the domain of ϕ and <ϕ(t1), …, ϕ(tn)> 
∈ ϕ(Fn). 

(6) ϕ(E!t) = t iff t is in the domain of ϕ. 
(7) ϕ(s = t) = t iff both s and t are in the domain of ϕ and ϕ(s) = ϕ(t). 
(8) ϕ(¬A) = t iff ϕ(A) = f. 
(9) ϕ(A → B) = t iff ϕ(A) = f or ϕ(B) = t. 
(10) ϕ(∀xA[x]) = t iff ϕ(A[d]) = t for every object name d. 
(11)  ϕ(Γ ⇒ Δ) = t iff there is at least one A of Γ such that ϕ(A) = f or there is 

 at least one B of Δ such that ϕ(B) = t. 
 
The semantics developed meets the requirement stated for negative free logic, that 
every simple formula containing a non-denoting singular term is false. 
 
Definitions. 
A formula A is valid in a partial interpretation iff A is true in the partial 
interpretation (i.e. iff ϕ(A) =1). 
A formula A is valid iff A is valid in all partial interpretations. 
A set of formulas Γ is valid in a partial interpretation iff every formula of Γ is 
valid in this partial interpretation. 
Γ logically implies A iff A is valid in every interpretation in which Γ is valid. 
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Γ ⇒ Δ is valid iff Γ ⇒ Δ is true in every partial interpretation 
Φ logically implies Γ ⇒ Δ iff  Γ ⇒ Δ is valid in every interpretation in which Φ is 
valid.  
 
2.2 Soundness  
 
Soundness of N 
Every derivable sequent Γ ⇒ Δ in N is valid. 
The proof is as usual. 
 
2.3 Completeness and Compactness 

In this section we will prove the completeness and (countable) compactness 
theorem for N. We employ the methods of S. Buss (1998, 34ff) in order to 
establish the theorems. 
 
Theorems. 
Let Γ ⇒ Δ be a sequent of the language L. 

(1) If Γ ⇒ Δ is valid, then it has a cut-free proof. 
(2) If Φ be a set of formulas. If Φ logically implies Γ ⇒ Δ, then there are  

C1, …, Ck ∈ Φ s.t. C1, …, Ck, Γ ⇒ Δ has a cut-free proof. 
 
We mean by a “cut-free proof” a proof without any application of Cut, but there 
may be some applications of I-Cut.  
(1) states the completeness theorem and (2) the compactness theorem. Like in 
classical logic (2) implies (1). So we outline here the proof of (2).  
 

The main idea of the proof is as follows: try to construct a derivation of  
Γ ⇒ Δ in N from the bottom up to the initial sequents.6 Because of the quantifier 
∀ the proof-search procedure can be infinite. However,  if the proof-search 
procedure does not terminate, then the sequent Γ ⇒ Δ is not valid (cf. Buss (1998, 
34) and there is a “counter”-intpretation based on this proof-search procedure. 

The language L is countable, thus we may enumerate all L-formulas as A1, 
A2, A3, … and we may enumerate all L-terms as t1, t2, t3, … in such a way that 
every formula and every term occurs infinitely often in this enumeration. 
We shall attempt to construct a (cut-free) proof P of Γ ⇒ Δ. The construction of P 
proceeds in stages. 
                                            
6 Kleene (1967) presents a very good exposition of this kind of completeness proofs. 



 16 

Initially, P consists of just the sequent Γ ⇒ Δ. At each stage, P will be modified. 
A sequent in P is said to active provided that it is a leaf sequent, and it is not an 
axiom. 
Each stage of the construction of P considers a pair <Ai, tj>. 
At each state we do the following: 
Loop: Let <Ai, tj> be the next pair in the enumeration. 
Step (1): If Ai is in Φ, then replace every sequent Γ’ ⇒ Δ’ in P with the sequent 
Γ’, Ai ⇒ Δ’.  
Step (2): If Ai is prime, do nothing and proceed to the next stage. Otherwise, we 
will modify P at the active sequents, which contain Ai, by doing one of the 
following: 
Case (2a): If Ai is ¬B, then every active sequent in P, which contains Ai of the 
form ¬B is replaced by  
¬B, Γ’ ⇒ Δ’, B 
¬B, Γ’ ⇒ Δ’ 
Every active sequent in P of the form Γ’ ⇒ Δ’, ¬B is replaced by  
B, Γ’ ⇒ Δ’ ¬B 
Γ’ ⇒ Δ’, ¬B 
 
Case (2b): If Ai is of the form B → C, then every active sequent in P of the form 
B → C, Γ’ ⇒ Δ’ is replaced by 
 B → C, Γ’ ⇒ Δ’, B  C, B → C, Γ’ ⇒ Δ’ 
   B → C, Γ’ ⇒ Δ’ 
Every active sequent in P of the form Γ’ ⇒ Δ’, B → C is replaced by the 
derivation  
 B, Γ’ ⇒ Δ’, B → C, C 
      Γ’ ⇒ Δ’, B → C 
 
Case (2c): If Ai is of the form ∀xB[x], then every active sequent in P of the form 
∀xB[x], Γ’ ⇒ Δ’ is replaced by the derivation 
  
  B[tj], ∀xB[x], Γ’ ⇒ Δ’   ∀xB[x], Γ’ ⇒ Δ’ E!tj 

         ∀xB[x], Γ’ ⇒ Δ’ 
 
(Remember the enumeration of all pairs <Ai, tj>) 
 
Any active sequent of the form Γ’ ⇒ Δ’, ∀xB[x] is replaced by the derivation 
  E!a, Γ’ ⇒ Δ’, ∀xB[x], B[a] 
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                    Γ’ ⇒ Δ’, ∀xB[x] 
where a is new in P. 
 
Step (3): 
If there are no active sequents remaining in P, exit from the loop; otherwise 
continue with the next loop iteration. 
 
If the algorithm constructing P ever halts, then P gives a (cut-free) proof of C1, …, 
Ck, Γ ⇒ Δ for some C1, …, Ck ∈ Φ. 
It remains to show that if the construction of P never halts, then the sequent Γ ⇒ Δ 
is not logically implied by Φ. 
Suppose the above construction of P never halts and consider the result of 
applying the entire infinite construction process. P will be an infinite tree. P is a 
finitely branching tree, so by König’s Lemma, there is at least one infinite branch 
π in P starting at the roots and proceeding up through the tree. We use π to 
construct a partial interpretation. 
D′ = {t: t occurs at least once in a formula of the form E!t in an antecedent of a 
sequent of π} 
We define a relation ~ on D as follows: 
 s ~ t :↔  s = t occurs in π on the left side of a sequent 
The relation ~ is an equivalence relation on D (i.e. on the set of existents), since 
the following sequents are provable in N: 

(1) D E!t ⇒ t = t 
(2) D s = t ⇒ t = s 
(3) D s = r, r = t ⇒ s = t 
(4) D E!t, s=t ⇒ E!s 

 
Since N D s=t, A[s] ⇒ A[t] the relation ~ is a congruence relation. 
 
Next we define a partial interpretation ϕ over D as follows: 

(1) If t ∈ D, then ϕ(t) = t~. 
(2) ϕ(Fn) = {<t1

~, …, tn
~>: Fnt1…tn occurs on the left of π} 

 
It has to be proved by induction on the complexity of A, that every formula in the 
antecedent of π is true in this partial structure and and every formula in the 
succedent of π is false. We shall state here the “critical” case for A = ∀xB[x].  
We outline the case for A = ∀xB[x]. 
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A occurs in the antecedent. Due to the algorithm π branches either trough (i) B[t], 
∀xB[x], Γ ⇒ Δ or through (ii) ∀xB[x], Γ ⇒ Δ, E!t. Suppose (i): ϕ(B[t] = t for 
every t, since with respect to the algorithm eventually every t occurs in π; thus 
ϕ(A) = t. Suppose (ii): ϕ(E!t) = f, for every t, since eventually every t will occur in 
π. With respect to the semantic clause for ∀-formulas and by (2) above: ϕ(A) = t. 
If A occurs in the succedent of a sequent of π, then there is a free variable a such 
that  E!a occurs in antecedent and B[a] occurs in a succedent of π. Hence ϕ(E!a) = 
t and ϕ(B[a]) = f, thus ϕ(A) = f. 
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