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Abstract. Autonomous oscillations in biological systems may have a biochemical

origin or result from an interplay between force-generating and visco-elastic elements.

In molecular motor assemblies the force-generating elements are molecular engines

and the visco-elastic elements are stiff cytoskeletal polymers. The physical mechanism

leading to oscillations depends on the particular architecture of the assembly. Existing

models can be grouped into two distinct categories: systems with a delayed force

activation and anomalous force-velocity relations. We discuss these systems within

phase plane analysis known from the theory of dynamic systems and by adopting

methods from control theory, the Nyquist stability criterion.
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1. Introduction

Oscillations are ubiquitous in biological systems. Examples range from circadian

rhythms associated with external periodicities to autonomous bio-chemical [31] and

mechano-chemical oscillators. Voltage oscillations in systems of ion channels embedded

in a cell membrane are one of the most prominent examples for a biochemical oscillator.

At the heart of its explanation within the Hodgkin-Huxley model [19] there is a negative

differential current-voltage relation for the ion channels. Such biochemical oscillators

are by now well studied [31]. Recently, there has been growing interest in mechano-

chemical systems composed of visco-elastic biopolymer arrays and active molecular

machines driven by the chemical cycle of ATP hydrolysis; these will be the focus of

our contribution. We ask how the interplay between force-generation and energy-input

by the molecular motors and the restoring forces and damping mechanisms provided by

the biopolymer system may lead to oscillatory behavior.

There are many examples of functional units in cellular systems whose main

components are molecular machines and visco-elastic elements. The part list of auditory

hair bundles contains stereocilia (elastic rods composed of bundles of stiff biopolymers F-

actin), myosin (a force-generating molecular motor) and mechanosensitive ion-channels.

Spontaneous oscillations in such systems are by now well documented experimentally [27]

and explained within simple theoretical models [10, 42]. This oscillatory behavior of hair

bundles provides a mechanism for active amplification of acoustic signals [7]. Another

example are eucaryotic cilia and flagella which are used by many small organisms to

swim. Here the main structural element are axonemes, which consist of a cylindrical

arrangement of elastically linked microtubules (another example for a stiff biopolymer)

and an assembly of dynein motors located between neighboring microtubules. Forces

generated by the dynein motors induce relative sliding between microtubules which in

turn results into bending of the axonemes [5]. Oscillatory behavior in such systems is

generic and intimately connected with a Hopf bifurcation [8]. Sarcomeres, the contractile

units of muscle, are composed of two sets of protein filaments: myosin filaments

(containing myosin motors) and actin filaments. The shortening of the sarcomere is

achieved by the actin and myosin filaments sliding over one another. While the primary

function of most types of muscle is to generate a unidirectional force, some muscle

(notably the asynchronous, also known as fibrillar or myogenic insect flight muscle)

are specialized on autonomous oscillatory contraction. The oscillation mechanism

usually includes a number of regulatory proteins that constitute the delayed stretch-

activation mechanism. However, oscillations were also observed in skeletal muscle

fibrils, mostly under non-physiological conditions [32]. Theoretical studies show that

even skeletal muscle myosin could produce oscillatory motion [14, 13, 40], which is

normally not observable because the contributions of different sarcomeres cancel out.

However, a sudden change in applied load can lead to synchronization of sarcomeres

and the oscillations become observable for a certain period of time [15]. Assemblies of

molecular motors and stiff biopolymers also play an essential role during cell division.
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The duplicated genome is segregated into two daughter cells through the action of the

mitotic spindle. It consists of fibres (microtubule bundles) radiating from two poles and

meeting at the equator in the middle. The spindle poles have been found to oscillate

[16]. Recently it has been shown that these oscillations are again due to an interplay

between force-generating and elastic elements [17].

Here we will focus on a discussion of the generic features of oscillations in molecular

motor assemblies to highlight the common physical mechanisms. For more system

specific and detailed discussions we refer the reader to the literature. The defining

elements of molecular motor assemblies are: (i) an external energy source driving

the system towards a non-equilibrium steady state, (ii) viscoelastic elements providing

restoring forces and damping mechanisms, (iii) possibly force-dependent biochemical

reactions which allow for switching between different states of the molecular motor

assembly. The particular interconnection between these components gives rise to the

system response which may be controlled by the biochemical reaction rates. Defined as

such there are obvious analogies to system and control theory which is a well established

discipline in engineering [12]. In particular, linear system analysis is a most fruitful

concepts which we will also employ to characterize the system’s dynamic response.

The mechanisms for oscillations in chemochemical models discussed in the literature

can be grouped into two distinct categories. In delayed force activation systems an

imposed displacement x is transduced into a force f with some delay time τ (Debye

relaxator). As such the system would evolve towards a time-independent steady state.

Oscillatory response is achieved only after coupling the Debye relaxator to other dynamic

elements with either a negative stiffness or some inertial (massive) load. Anomalous

force-velocity relations are an alternative route towards oscillatory behavior. This means

that an assembly of motors can move with two different velocities (e.g., one positive and

one negative) under the same load [35]. If attached to an external spring, the motors

will move forwards until the spring force exceeds a certain threshold, then they will

switch to the other stable state and slide backwards, until another threshold is reached

and so the cycle repeats [24].

2. Response Functions

To assess the stability of an active mechanical system like an insect muscle attached to

the wing or the dynein motor acting between two tubulin filaments in a flagellum, the

response function can be defined the following way. We connect the active system to a

mechanical actuator that keeps its length at the desired point of operation and at the

same time imposes small oscillations with the amplitude x0 around that point

∆x(t) = Re x0e
iωt . (1)

Fur sufficiently small oscillations the system responds with a force that oscillates with

the same frequency

〈∆f(t)〉 = Re f0e
iωt . (2)
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Here 〈〉 denote an ensemble average over different realizations of the response of the

stochastic system. Note that the sign in the exponent of the Fourier transform was

chosen in the way that is most common in the literature on muscle, although it is

opposite to the convention frequently used in physics. We define the force in the way

that it is positive if the motor system is being pulled upon in the direction of positive

x. In the limit of small amplitude x0, the relation becomes linear

f0 = G(ω)x0 , (3)

with the frequency dependent response function or modulus G(ω). Here the real part

of G corresponds to the elastic and the imaginary part to the dissipative response. For

a spring with a spring constant k the response function is G(ω) = k and for a damping

element (“dashpot”) G(ω) = iωγ.

One may also encounter a situation where for a given force f one is observing the

displacement x for various realizations of the system response,

〈x(ω)〉 = χ(ω) f(ω) . (4)

The two response functions become equivalent

χ(ω) = 1/G(ω) (5)

if the following two conditions are fulfilled. First, the system needs to be stable, so that

the operational point is the same regardless whether the position or the force is imposed.

Second, the systems are large enough such that variance of the stochastic variable is

small compared to its mean.

3. The Nyquist stability criterion

The Nyquist stability criterion is a convenient tool to analyze the stability of a dynamical

system if the complex response function G(ω) is known over the whole frequency range.

It states that the system is dynamically unstable if the plot of Im G(ω) vs. Re G(ω)

(Nyquist plot, sometimes also called Cole-Cole plot) encircles the coordinate origin in

clockwise direction. It is frequently used in engineering, especially for the stability

analysis of closed feedback loops in electrical circuits [12].

To derive it we first note that the system is dynamically unstable if it starts

oscillating with a growing amplitude in the absence of a force, 〈f〉 = 0. This is the

case if there exists an eigenmode, i.e., a complex solution of the equation 〈f(x0, ω)〉 = 0

with Im ω < 0, since then the corresponding solution ∆x(t) ∝ eiωt obviously diverges for

t → +∞. This means that G(ω) has a zero and χ(ω) has a pole in the lower half-plane

with Im ω < 0. The Nyquist criterion is based on the fact that G(ω) is an analytical

complex function and utilizes Cauchy’s theorem to relate the number of zeros in the

negative imaginary ω half-plane to the contour of G(ω), evaluated for real values of ω.

According to Cauchy’s theorem, the change of phase along a closed contour in

clockwise direction in the complex ω plane equals
∮

d(arg G(ω)) = 2π



−
Nz
∑

k=1

nz,k +
Np
∑

k=1

np,k



 , (6)
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where Nz is the number of encircled zeros of G(ω), Np the number of poles and nz,k

and np,k their multiplicities. For example, the function G(ω) = iωγ has a single zero

(Nz = 1) with multiplicity 1 (nz,1 = 1) at ω = 0. Accordingly, it changes its phase by

−2π on a clockwise circle around the origin. The function G(ω) = −mω2, on the other

hand, has a zero with multiplicity nz,1 = 2 at ω = 0 and it changes its phase by −4π on

the same circle.

We apply Cauchy’s theorem to a path that runs along the real ω axis from ω = −∞

to ω = +∞ and close it in the negative imaginary plane as shown in Fig. 1a. We further

note that in a real system G(ω) can have no poles in the negative imaginary half-plane,

because they would imply an infinite force response to a finite displacement growing in

time. Therefore, any phase change along that path indicates a zero with Im ω < 0, and

therefore a dynamical instability.

Re

Im

ω

ω

Re

Im

A B C

A

B

C

G

G

a) b)

Figure 1. a) The integration path for Eq. 6 in the complex ω plane. Encircled zeros

(marked ”×”) correspond to unstable eigenmodes. b) G in the complex plane, with

ω as a parameter. The points denoted as A,B and C correspond to a negative, 0 and

a positive value of ω. The curve shown has a typical shape measured on insect flight

muscle [26].

Now we can look at the same path in the complex G plane, i.e., Im G(ω) plotted

against Re G(ω), where ω acts as a curve parameter. The strand along the real axis

in the ω plane corresponds to the (ReG(ω), ImG(ω)) curve, with ω taking real values

values from −∞ to ∞. In case G(−∞) 6= G(∞), we close the path in the positive

real half-plane (Fig. 1b), which corresponds to the closure in the Im ω < 0 half-plane.

A change of phase of G along the path in the ω plane by a multiple of −2π directly

represents the same number of origin encirclements in the G plane. Therefore, it follows

from (6) that the complex G(ω) curve encircles the coordinate origin
∑Nz

1 nz,k times in

clockwise direction.

Note that the curve is symmetric with respect to the real axis. This becomes
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evident from the following consideration. Because G(t) is a real function, its Fourier

transformed has to fulfill the following symmetry relation:

G(−ω∗) = G∗(ω) . (7)

For real ω values, this means G∗(ω) = G(−ω), and for each G value its complex

conjugate is part of the curve as well.

An additional consequence of the Nyquist criterion is that the origin can only be

encircled in clockwise direction, because G contains zeros but no poles in the relevant

region.

4. Delayed force activation

One type of models, often used to explain oscillations generated by molecular motors

involves a delayed force activation mechanism. This means that when the system is

displaced by the distance x in one direction, it develops a restoring force f , however not

instantaneously, but according to a differential equation like:

df

dt
= (KAx − f)/τ . (8)

Here τ represents the time constant with which the force reacts to a position change

and KA an effective steady state stiffness of the active system. There are many different

physical mechanisms that can produce a delayed force response (Fig. 2):

(i) Stretch-activation of insect flight muscle: a number of regulatory proteins

facilitate the activation of myosin motors following a mechanical stretch (a relative

displacement of thin filaments relative to thick) [33, 11, 1]. After the activation,

the development of force does not follow instantaneously, but with a certain time

constant, typically with the attachment rate of motors.

(ii) In a sarcomere a position change can bring myosin heads closer to the accessible

actin sites [39, 38]. This mechanism has been proposed for insect flight muscle [44],

although experiments have later refuted it in many cases [36].

(iii) The switching of bound myosin heads between two conformations with different

detachment rates can lead to an effective stretch-dependent activation [40, 9].

(iv) The opening of a mechanically gated ion channel can cause the influx of calcium

ions, which then promote channel reclosure. This is called the fast adaptation

mechanism in auditory hair cells and can generate spontaneous hair bundle

oscillations [34, 20, 10, 42]. If the hair cell is on the verge of spontaneous oscillations

(i.e., close to a Hopf bifurcation) it has the best sensitivity, dynamic range and

frequency selectivity [7].

(v) Calcium ions, entering the ion channel, can reduce the force generated by adaptation

motors of type myosin 1C [3], a mechanism known as slow adaptation in auditory

hair cells [21, 29, 28].
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Myosin (thick filament)

Actin (thin filament)

Flightin

GST−2
Tropomyosin

Head (post−powerstroke)

Head (pre−powerstroke)

i) ii) iii)

��
��
��
��

��
��
��
��

Channel

Myosin motors

Tip link

Ca

Ca

Ca Ca

Ca

iv) v)

Figure 2. Different biological mechanism that lead to delayed force activation: i)

Stretch activation in insect flight muscle, after [30]. The applied stretch activates

myosin mechanically through conformational changes involving flightin, GST-2,

troponin-H and tropomyosin. ii) The alternative match-mismatch mechanism, where

the myosin heads are activated when they are brought to appropriate positions along

the actin helix. iii) The mechanism involving switching of myosin heads between two

bound conformations. A stretch brings more myosin heads into the pre-powerstroke

state, which is less likely to detach from actin, and therefore the total number of

active heads increases [40]. iv) The fast adaptation mechanism in auditory hair cells.

When the transduction channel opens, calcium ions enter and promote the reclosure

of the channel. v) The slow adaptation mechanism in auditory hair cells: calcium ions

entering the cells reduce the force generated by myosin motors, therefore they slip back

and the channel is more likely to close again.

(vi) Some models for flagellar dynein are based on a strain-controlled [25] or curvature-

controlled [5] activation.

The solution of (8) can be expressed with a Green’s function GA(t), so that

f(t) =
∫ t

−∞
GA(t − t′)x(t′)dt′ with GA(t) =

KA

τ
e−t/τ . (9)

Such behavior is well known from many branches in physics under the term Debye

relaxator. The corresponding response function

GA(ω) =
KA

1 + iωτ
(10)
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is represented by a circle in a Nyquist plot (see Fig. 3 (a)). It does have a negative
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Figure 3. Nyquist plots (also called Cole-Cole plots or vector modulus plots) of

the response function of a system with delayed force activation. a) The response

function of the delayed force activation alone, given by Eq. (10). b) Response

function of the delayed force activation, combined with a damping element, GA + GD

(spring K = 5KA, dashpot with a constant γ/K = 100/τ). c) System as in (b),

additionally combined with an element with negative effective elasticity; GA+GD+GN

(K1 = −0.2KA). d) Response function GA + GI of the system with delayed force

activation, combined with a damped inertial oscillator (ω0 = 10/τ , K = 2KA,

β = 10/τ).

imaginary part, however, the real part is always positive. Hence the Nyquist plot of

GA(ω) cannot encircle the coordinate origin and thereby satisfy the Nyquist criterion for

an instability. The stationary state of the Debye relaxator simply is a time-independent

displacement x⋆ = f/KA. Note, that a dynamics with a one-dimensional phase space,

i.e. first order differential equations of the form df/dt = x(f), is either monotonic or

constant [37]. Only if the dynamic variable is on a circle or if the phase space has more

than two dimensions oscillations emerge as possible solutions.
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One way to make the system unstable is to connect the active mechanism with an

element that shifts the Nyquist plot towards negative values on the real axis; for an

illustration of the type of connection see Fig. 3. This can be trivially achieved through

an element with a negative effective stiffness, or, as we will show below, through an

inertial load.

Figure 3 shows the response function of the delayed activation system (10),

combined with different elements. The first is an element consisting of a spring (constant

K) and a dashpot (damping coefficient γ) in series. Their combined response function

reads

GD(ω) =

(

1

K
+

1

iωγ

)−1

. (11)

A second element we connect to the motor assembly is an element with negative effective

elasticity,

GN(ω) = K1 < 0 . (12)

The third element is a damped inertial oscillator (a spring connected to a mass, with an

additional damping element connecting both to a fixed point). The response function

of such an element reads

GI(ω) =

(

1

K
+

1

−mω2 + iωγ

)−1

= K

(

1 −
ω2

0

ω2
0 − ω2 + iβω

)

(13)

with ω2
0 = K/m and β = γ/m.

Negative stiffness can be generated by the gating compliance of ion channels [22, 29]

or by motors switching between two states [18, 40]. Inertial load is the likely mechanism

of ensuring an instability in insect flight muscle [41]. Also in many types of hair cells,

no negative stiffness has been observed, but as the hair bundle is often attached to the

tectorial membrane, inertial load could play an important role as well [2].

5. Anomalous force-velocity relations

A class of models that were frequently discussed in relation to dynamical instabilities in

systems of molecular motors is based on an anomalous force-velocity relation, meaning

that a group of coupled motors produces a force that displays a region with negative

slope as a function of velocity. Models for dynein [6], myosin [43], propulsion by actin

polymerization [4], mitotic spindle oscillations [17] as well as generic motors [23, 24]

were based on this mechanism.

A common feature of such models is translational invariance, meaning that the

force f(t) does not depend on the position x, but only on the velocity v and the history

thereof. The translational invariance can be achieved even on periodic tracks (like

actin filaments) if the motors (myosin heads) are arranged incommensurate to the track

periodicity [23].

An instructive example of a system displaying an anomalous force-velocity relation

is a two-state cross-bridge model for motors like myosin. In this model, motors can
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attach to actin in a forward-leaning position with rate ra, then quickly undergo a

conformational change, which makes them strained. When the filaments moves, this

strain changes with time (for forward-running motors, it decreases), and when the motor

eventually detaches with a strain-dependent rate rd(ξ) the cycle can repeat. Each motor

generates a force kξ, proportional to its strain ξ. A full description of this system requires

Master equations for the probability of a motor for being in the detached state (Φd)

and for the probability density of a motor for being in the attached state with strain ξ

(Φa(ξ)).

(∂t − v∂ξ) Φa(ξ, t) = Φd(t)raP (ξ) − Φa(ξ, t)rd(ξ) (14a)

∂tΦd(t) = − Φd(t)ra +
∫ ∞

−∞
dξ Φa(ξ, t)rd(ξ) , (14b)

Both probabilities are not independent but normalized such that Φd +
∫∞
−∞ Φa(ξ)dξ = N

gives the total number of motors. P (ξ), normalized as
∫∞
−∞ P (ξ)dξ = 1 is the distribution

of strains on newly attached motors, with an expectation value d =
∫∞
−∞ P (ξ)ξdξ. A

general analytical solution for the stationary state of these equations is given in [43].

To illustrate the key physical features of this model we neglect the strain-

dependence of the attachment probability and assume that all attached motors have

the same strain y(t),

Φd(ξ, t) = n(t) δ(ξ − y(t)) . (15)

Then the number of attached motors n(t) is related to the number of detached motors

by Φd(t) = N −n(t). Upon inserting these relations into Eqs.14a,b , multiplying Eq.14a

with ξ and integrating over all values of ξ one obtains a simplified set of dynamic

equations for y(t) and n(t):

ẏ = [d − y]
N − n

n
ra − v (16a)

ṅ = [N − n]ra − nrd(y) (16b)

The external force on the system, which equals the total force produced by the motors,

is given as

f = −nky (17)

where k denotes the spring constant of each motor. These are nonlinear flow equations

with a two-dimensional phase space consisting of the strain y(t) and the number density

n(t) of the attached motors. For a constant velocity v, they always have a stable

stationary solution. However, if we take the system consisting of the group of motors,

coupled to an external spring with a spring constant K, so that the force equilibrium

states f + Kx = 0, we obtain a new system of two nonlinear equations for two

independent variables (e.g., x and n). Depending on the parameter values, they can

have a stable fixed point or a limit cycle (oscillatory steady state). These two examples

are shown in Fig. 4.

In the following we will again use the stability analysis of linear response functions

to characterize the system. In the absence of an external velocity (v = 0), Eqs. 16a,b
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Figure 4. Numerical solution of the equations of motion (16a,b) for the system of

motors, coupled to a spring with a constant K = 0.4×Nk (a) and K = 0.3×Nk (b).

The force-dependent detachment rate was chosen as rd(y) = ra exp(2(x/d)2 − 2). The

system has a stable fixed point in the first case and an unstable one, surrounded by a

limit cycle, in the second case.

have a stable stationary solution with y0 = d and n0 = ra

ra+rd(d)
N . For small values of v

we can linearize the flow equations to

ẏ = − rd(d)∆y − v (18a)

ṅ = − n0r
′
d(d)∆y − (ra + rd(d))∆n (18b)

where ∆y = y − y0 and ∆n = n − n0. These equations have two negative eigenvalues,

−λ1 = −rd(d) and −λ2 = −ra − rd(d). The solution of the coupled system then has the

form

∆y(t) = −
∫ t

−∞
dt′e−λ1(t−t′)v(t′) (19a)

∆n(t) =
n0r

′
d(d)

ra

∫ t

−∞
dt′
[

e−λ1(t−t′)v(t′) − e−λ2(t−t′)
]

v(t′) (19b)

The force can be determined as

f(t) = −nky = f0 +
∫ t

−∞
dt′kn0

[

(1 − α)e−λ1(t−t′) + αe−λ2(t−t′)
]

v(t′) . (20)

Where α =
dr′

d
(d)

ra
is a dimensionless coefficient. With a more precise solution, or with

more complex model equations, the solution could contain more than two relaxation

constants, but its basic form would remain. Inserting a stationary velocity (v(t) ≡ const)

in Eq. (20) one can see that the system displays an anomalous stationary force velocity

relation if α is sufficiently large that

1 − α

λ1

+
α

λ2

< 0 (21)

The response function in Fourier space follows from Eq. (20):

G(ω) = n0k(1 − α)
iω

λ1 + iω
+ n0kα

iω

λ2 + iω
(22)
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In the limit ω → ∞, the response is always that of the elastic elements involved,

G = n0k. Figure 5 shows the resulting Nyquist plot for two scenarios: with a normal

and an anomalous force-velocity relation. In case of an anomalous force velocity relation

the curve encircles the origin and the system is dynamically unstable.
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Figure 5. Nyquist plots (Cole-Cole plots, vector modulus plots) of the response

function G(ω) (22) for α = 0 (a) and α = 5 (b). Other parameter values: rd(d) = ra,

implying λ2 = 2λ1. Negative ω values are shown with dashed lines. The system in (a)

is dynamically stable, because the curve does not encircle the origin, while that in (b)

oscillates spontaneously.

If the assembly of motors is coupled to an elastic element (spring constant K), the

curve in the Nyquist plot is shifted to the right by the amount K. There is a critical

value of K at which the oscillations stop. In the example shown in Fig. 4, this value

would lie between those used in both diagrams. At the transition point the system

exhibits a Hopf bifurcation [24, 17].

In summary, based on the foregoing discussion, we feel that a combination of

methods from the engineering sciences like control theory and methods from the theory

of dynamic systems may be fruitful for future analysis of molecular motor assemblies or

other functional units in cellular systems.
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