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1 Introduction

The choice of the relevant covariates in a linear regression model is an important and
much studied problem. For this purpose, various methods have been suggested in the
literature. One approach is via model selection criteria. Here one chooses the sub-model
which minimizes a certain criterion function, e.g. the AIC (Akaike, 1974) or the BIC
(Schwarz, 1978). Another approach is to specify the sub-model by testing the relevant
linear restrictions. Toro-Vizcarrondo and Wallace (1968), see also Wallace (1972), observed
that the sub-model may be superior to the complete model in terms of mean square error
(MSE) even if the sub-model is incorrect. Therefore they suggested to test in which model
the least squares estimator has smaller MSE. In this paper we suggest a related test which
focuses on validating the sub-model. More precisely, the test allows to validate the sub-
model up to a certain specified approximation error, and with a specified error probability.
The test is based on asymptotic normality of the test statistic and therefore does not
require normality of the errors in the regression model.
This paper is organized as follows. In Section 2 we introduce the model and the testing
problem. Section 3 presents the test statistics and its asymptotic distribution. Further
we discuss how to perform the test. In Section 4 we investigate the performance of our
method, as compared to the t-test and some model selection criteria in a simulation study.
Finally, in Section 5, we illustrate the practical usefulness of our method by analyzing the
US college spending data from 1994.

2 Testing problem

Consider the homoscedastic linear regression model

Y = Xβ + ε, (1)

where Y ∈ R
n is the response vector, X ∈ R

n×(p+q) is the design matrix, which is assumed
to be non-random, and β ∈ R

p+q denotes the unknown regression parameter vector of
interest. The errors ε = (ε1, . . . , εn) are assumed to be independent identically distributed
(i.i.d.) random variables with E(ε1) = 0 and V ar(ε1) = σ2.
Suppose that we want to check the validity of the sub-model

Y = X1β1 + ε, (2)

where X = [X1, X2] and X1 ∈ R
n×p, X2 ∈ R

n×q, and βt = [βt
1, β

t
2], where β1 ∈ R

p,
β2 ∈ R

q. Classically one verifies model (2) by testing the hypothesis

H0 : β2 = 0.

Let β̂ denote the least squares (LS) estimator in the full model (1), and let β̂r be the
restricted LS estimator in the submodel (2), which we also consider as a (p+q)-dimensional
vector by filling the last q entries by 0. Suppose for the moment that in addition the errors
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are normally distributed, and let SSE(b) denote the error sum of squares of an estimator
b of β. A popular statistic for testing H0 is via the F -statistic

T =
SSE(β̂r) − SSE(β̂)

qσ̂2
, (3)

where σ̂2 is the LS estimator of σ2 in the full model (1). Toro–Vizcarrondo and Wallace
(1968) show that T has a F distribution with degrees of freedom q and (n − (p + q)) and
non-centrality parameter (in the notation of Kotz and Johnsson, 1970),

λ = n
dn(β2)

σ2
, dn(β2) =

1

n
βt

2X
t
2MX1

X2β2,

where MX1
= In − PX1

, PX1
= X1(X

t
1X1)

−1X t
1 and In is the identity matrix of dimension

n. Thus, under H0, T is central F distributed with q and (n− (p + q)) degrees of freedom.

For many purposes it is not adequate to base a decision for or against the sub-model (2)
on testing the hypothesis H0. For example, Toro–Vizcarrondo and Wallace (1968) pointed
out that the estimator β̂r can have a smaller MSE (mean square error) than β̂, even if the
model (2) is incorrect. Therefore they suggested to test the hypothesis

HMSE : MSE(β̂r) ≤ MSE(β̂),

where MSE(b) = E(b − β)(b − β)t, and MSE(β̂r) ≤ MSE(β̂) means that MSE(β̂) −
MSE(β̂r) is positive semidefinite. Toro–Vizcarrondo and Wallace (1968) showed that the
hypothesis HMSE is equivalent to λ ≤ 1, which they used to construct a uniformly most
powerful test for HMSE based on T . Hypotheses related to HMSE were investigated by
Wallace (1972) and by Yancey et al. (1973).
The hypothesis HMSE still has some drawbacks. Instead of comparing models, it compares
the performance of certain estimators. This is a somewhat arbitrary choice since there are
other estimators (e.g. the ridge estimator, cf. Farbrother, 1975), which have smaller MSE
than the LS estimator. Further, and more importantly, even if the hypothesis HMSE (or
H0) cannot be rejected with a large p-value, this does not imply that the sub-model (2) is
actually true. Therefore, we suggest to test a hypothesis which focuses on validating the
sub-model (2). A related approach to validating parametric functional forms of regression
models (against nonparametric alternatives) was suggested by Dette and Munk (1998).

To this end, note that dn(β2) is the normalized length (with factor n−1) of the n vec-
tor X2β2, when projected onto the orthogonal complement of the space spanned by the
columns of X1. Thus it provides a natural measure of distance between the restricted
model (2) and the full model (1), and we propose to validate sub-model (2) by testing the
hypothesis that

H∆,n : dn(β2) > ∆ against K∆,n : dn(β2) ≤ ∆,

for some ∆ > 0. Under normality we have that H∆,n is equivalent to Hλ,n : λ > n∆/σ2.
Since σ2 is unknown we cannot construct even under normality an exact test of H∆,n.
Therefore we give a condition under which dn(β2) converges as n → ∞, say to d(β2), and
consider testing H∆ : d(β2) > ∆ against K∆ : d(β2) ≤ ∆. For this testing problem we
will construct an asymptotic test which does not require normality of the errors.
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3 An asymptotic test

In order to formulate an asymptotic version of the hypotheses H∆,n, we need the following
assumption.

Assumption 1. The regressors X are non-random and we have X tX/n → G as n → ∞,
where G ∈ R

(p+q)×(p+q) is a symmetric positive definite matrix.

Split G into blocks as follows

G =

(

G11 G12

G21 G22

)

Then the asymptotic version of the distance dn(β) is defined as

d(β2) = βt
2(G22 − G21G

−1
11 G12)β2,

and the corresponding version of H∆,n as

H∆ : d(β2) > ∆ against K∆ : d(β2) ≤ ∆.

In fact, under assumption 1 one can show that dn(β2) → d(β2) as n → ∞. Note that the
matrix G22 − G21G

−1
11 G12, used in the definition of d(β2), is the Schur complement of the

block matrix G11 and is positive definite since G is assumed to be positive definite.
Let PX = X(X tX)−1X t and consider the test statistic

Rn =
1

n

(

SSE(β̂r) − SSE(β̂)
)

=
1

n
Y t

(

PX − PX1

)

Y,

which estimates dn(β2).

Theorem 1. Under assumptions 1 - 4 (cf. the appendix), if d(β2) > 0 we have that

√
n
(

Rn − d(β2)
)

L−→ N
(

0, 4σ2d(β2)
)

as n → ∞.

The proof of theorem 1 is given in the appendix. Using theorem 1, we construct an
asymptotic test for H∆ as follows. Given ∆ > 0, reject H∆ with level α > 0 if

√
n

Rn − ∆

2σ̂
√

∆
≤ uα, (4)

where uα denotes the α-quantile of the standard normal distribution. Thus, the choice of
∆ is evidently critical for the test decision. Note that for a given level α (e.g. α = 0.05),
one can determine the threshold ∆crit,α for which H∆crit,α

can be rejected at level α, while
H∆ cannot be rejected for ∆ < ∆crit,α:

∆crit,α =
(

(

Rn + σ̂2u2
α/n

)1/2 − σ̂uα/
√

n
)2

.
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Now ∆ is a threshold for d(β2), the limit of the distance dn(β2), which as mentioned
above measures the normalized (with factor n−1) distance of the projected vector X2β2.
Therefore, we suggest to normalize ∆crit,α by an estimate of the total normalized length
βtX tXβ/n:

Dα,n =
∆crit,α

β̂
t
X tXβ̂/n

.

The quantity Dα,n can be nicely interpreted as the estimated maximal relative error one
makes (with level α) if one uses sub-model (2) instead of the full model (1). In fact, one
has Dα,n → d(β2)/(βtGβ) in probability as n → ∞. Model validation now proceeds in
terms of Dα,n: If Dα,n is less than some fixed value which we allow as maximal relative
error (say 0.1 or 0.05), then we use the smaller sub-model.

4 Simulation study

In this section we conduct a small simulation study in which we investigate the performance
of our method for model selection as compared to the AIC, the BIC and the t-test. Here,
for the computation of the AIC and the BIC we use the residual sum of squares (with
appropriate penalty term), in spite of the fact that for non-normally distributed errors, it
is not the maximized log-likelihood function. This is because we do not want to assume a
specific distributional structure of the errors to be known in advance.

We use a linear regression model with 7 covariates and the intercept, where the covariates
are drawn uniformly from [−1, 1]. The vector of true regressions coefficients is chosen as

β = (β0, β1, β2, β3, β4, β5, β6, β7)
t = (2, 2, 0.1, 0.1, 0.1, 2, 0.1, 2)t.

Evidently, the relevant covariates that we want to identify are the 1st, 5th and 7th co-
variate and the intercept (which corresponds to β0 and in the following is assumed to be
contained in all submodels).

The distinct methods are applied in a backward selection procedure. More specifically, con-
sider the method suggested in section 3. In the first step, we compute Dα,n with α = 0.05
for all submodels of the full model with 6 covariates and the intercept. Let M1 be the
submodel with minimal Dα,n, denoted D1

α,n. If D1
α,n is smaller than some threshold, which

we take as 0.05, then we continue with model M1, otherwise we select the full model. In the
next step, consider all submodels of M1 with 5 covariates and the intercept, and compute
Dα,n for all these models, relative to M1 (i.e. the denominator is computed in model M1).
Let M2 denote the submodel with minimal Dα,n, denoted D2

α,n. If D2
α,n is smaller than 0.05,

then we continue with model M2, otherwise we select M1. We proceed in this way until
a model is selected or all covariates are discarded (and only the intercept remains). The
other methods are applied in a similar fashion. For the information criteria, we iteratively
discard covariates as long as the AIC and the BIC decreases in a submodel, and continue
with the submodel with the smallest AIC or BIC. Finally, for the t-test, in the first step for
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Table 1: Results of a single backward selection procedure for n = 100
step i submodel discarded cov. Di

α,n BIC AIC pi of t-test

1 x0, x1, x2, x4, x5, x6, x7 x3 0.027 363.02 395.05 0.736
2 x0, x1, x2, x5, x6, x7 x4 0.030 359.26 338.98 0.377
3 x0, x1, x5, x6, x7 x2 0.030 355.57 339.94 0.354
4 x0, x1, x5, x7 x6 0.031 352.01 341.02 0.320
5 x0, x1, x7 x5 0.264 405.47 342.18 0.000

each submodel with 6 covariates and the intercept we compute the p-value for the t-test
that the coefficient βi of the missing covariate is zero. Let M1 be the submodel for which
the corresponding t-test has maximal p-value p1. If p1 > 0.05, we continue with model
M1, otherwise we choose the full model. In the next step for each submodel of M1 with
5 covariates and the intercept we compute the p-value for the t-test that the coefficient
βj of the covariate missing from M1 is zero. If M2 denotes the submodel for which the
corresponding t-test has maximal p-value p2, we continue with M2 if p2 > 0.05, otherwise
we choose M1. We refer to Miller (2002) for other selection methods than backward selec-
tion. For example, one may modify our method in order to construct a forward selection
procedure by considering K∆ as the null hypothesis and H∆ as the alternative.

The simulation is conducted as follows. After drawing the covariates once, these remain
fixed subsequently, and we generate responses on model (1) for 1000 iterations, and for
sample sizes n = 100 and n = 200. In each case, we apply the backward selection proce-
dures described above.

Further, we use two kinds of error distributions, namely a t distribution with 6 degrees of
freedom and an exponential distribution. For each distribution we consider two distinct
scaling parameters. For the t distribution, we use scaling factors of τ = 1 and of τ =

√
1.33,

which gives for the error variance 1.5 for τ 2 = 1, and 1.995 for τ 2 = 1.33, respectively. For
the exponential distribution, we use λ = 1 and λ = 1/

√
2, giving variances of 1 (λ = 1)

and 2 (λ = 1/
√

2). Further, we center the errors by their expectation. For the scaled t
distribution with τ = 1 (τ =

√
1.33) we observe that 50% of the regression data have a

signal to noise ratio (mean divided by standard error) larger than 1.65 (1.44) . For expo-
nentially distributed errors, the signal to noise ratio for 50% of the regression data with
λ = 1 (λ = 1/

√
2) is larger than 2.17 (1.54).

Table 1 shows the results for one simulation with t distributed errors (with τ = 1) and
n = 100. Since all methods depend monotonically on the statistic SSE(β̂r) − SSE(β̂),
they proceed in the same steps. The desired model appears in step 4, which is selected
by all methods except for the AIC (which includes too many covariates). Tables 2 and 3
show, for scaled t distributed and exponentially distributed errors, respectively, how often
among 1000 iterations the desired model was selected. Here different rows correspond to
different random covariates, whereas within the rows these covariates are fixed.

For n = 100 and τ = 1 or λ = 1 (yielding higher signal to noise ratios), the Dα,n

method selects the desired model in more than 90% of the simulations, and for n = 200
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Table 2: Number of iterations in which the desired submodel consisting of x0, x1, x5, x7 is
selected; errors are scaled t distributed with 6 df. For Dα,n, we choose α = 0.05 and the
threshold value also equal to 0.05.

sample size scenario Dα,n BIC AIC t test τ 2

n = 100 1 981 793 382 739 1
910 808 406 760 1.33

2 952 769 380 713 1
856 791 405 731 1.33

3 917 778 381 722 1
823 767 353 693 1.33

4 968 731 326 664 1
838 797 389 747 1.33

5 962 774 363 716 1
836 789 396 744 1.33

n = 200 1 1000 810 320 649 1
1000 835 349 691 1.33

2 1000 781 310 635 1
1000 807 346 675 1.33

3 1000 819 320 674 1
1000 846 362 703 1.33

4 999 801 309 638 1
994 826 340 676 1.33

5 1000 810 308 658 1
998 833 342 695 1.33
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Table 3: Number of iterations in which the desired submodel consisting of x0, x1, x5, x7 is
selected; errors are centered exponentially distributed with λ = 1 and λ = 1/

√
2. For Dα,n,

we choose α = 0.05 and the threshold value also equal to 0.05.

sample size scenario Dα,n BIC AIC t test λ
n = 100 1 998 769 362 698 1

850 831 423 753 1/
√

2
2 994 756 337 696 1

773 807 383 754 1/
√

2
3 996 764 352 716 1

803 808 413 753 1/
√

2
4 996 712 313 647 1

820 780 373 724 1/
√

2
5 999 777 351 714 1

916 825 410 769 1/
√

2
n = 200 1 1000 817 330 658 1

999 864 394 741 1/
√

2
2 1000 754 259 607 1

1000 834 364 704 1/
√

2
3 1000 798 303 645 1

999 861 390 738 1/
√

2
4 1000 770 263 608 1

1000 853 357 706 1/
√

2
5 1000 747 246 574 1

1000 843 340 704 1/
√

2
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it does so almost always. In contrast, the BIC, the AIC and the t-test more often select
larger models. This is mainly due to the thresholding used for the Dα,n. Only if the
Dα,n increases significantly (namely becomes larger than 0.05) we stop the model selection
procedure. Observing Table 1, for the first four covariates the values of AIC and BIC
change little, although they might increase slightly, which leads to the choice of a larger
model. A huge increase only occurs if the 5th covariate is discarded. Therefore, if one used
a threshold (say 350 for the BIC), one would get similarly precise results as for the Dα,n

method. However, for the Dα,n method such a threshold has a natural interpretation as
maximal relative error, whereas there is no such interpretation for the values of the BIC
and the AIC. The t-test also uses a threshold, i.e. for the p value. If we chose it much
smaller (e.g. 0.005) we would also recover the relevant model almost always. However,
such a high precision is unnatural for a sample size n = 100 or n = 200. Furthermore, if
we do not reject with a p-value of 0.04, this does not say anything about how good the
smaller model still is.
Finally, we investigate the quality of the normal approximation in Theorem 1. We have to
consider a testing situation where the hypothesis H∆=0.05 is true, and where the complete
model is included under this hypothesis. Therefore, we test the complete model against
the model where the covariate x7 is excluded, and simulate the statistic Rn 10000 times
for sample sizes n = 30, 50 and 100 and centered exponentially distributed errors. For
visualization in Figure 1 we use P-P plots, which show for each α ∈ [0, 1] the empirical
probability of the event {√n[Rn − dn(β2)] ≤ Qα}, where Qα is the α-quantile of the
asymptotic normal distribution with consistently estimated variance. From the top row
of Figure 1 we see that the asymptotic approximation is quite good already for rather
small sample sizes. Note that for the test decision (4), the approximation for small α’s is
relevant, which can be assessed using the bottom row.

Summarizing the results of the simulation study we see that the performance of our
method depends to some extend on the signal to noise ratio, especially for small sample
sizes. In such cases (n = 100), it performs well for signal to noise ratios larger than 1.5.
For large n, the dependence on the signal to noise ratio becomes weaker.

5 College spending data

To illustrate our method in a practical application we analyze the college spending data
from U.S. News and World Report 1994 College Guide. The complete data can be found
in Dielman (1996) and its short description is given in Table 4. The variable of interest is
educational spending per full-time equivalent (SPEND) given for 147 US colleges. A simple
explorative data analysis shows that there is a presence of variance heterogeneity and a
log transformation of the response SPEND is needed. Further, for numerical stability, all
variables including the response SPEND are centered and normalized by their sample mean
and sample standard deviation. In Table 5, the results of a backward selection procedure
for the Dα,n method, the BIC, AIC and the t-test, applied to the college spending data,
are given. Here, we always keep the intercept in the submodels. Further, for the Dα,n we
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Figure 1: P-P plots for
√

n[Rn − dn(β2)] based on 10000 replications (top row α ∈ (0, 1),
bottom row α ∈ (0, 0.1))
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use a level of α = 0.05 and a threshold of 0.05.
The BIC, the t-test and the Dα,n method choose a submodel consisting of the three covari-
ables SAT, TOP10 and RATIO, and only the AIC prefers a model with 4 covariates. This
is in agreement with the simulation results in Section 4. Let us stress that in contrast to
the BIC and the t-test (with a p-value of 0.89 in the final step), the Dα,n-method allows for
a clear interpretation of the quality of the resulting submodel, namely that the maximal
relative error we make when using this smaller submodel is less than 0.05, with probability
0.95.

6 Conclusion

In this paper we introduced a new method for testing linear restrictions in linear regression
models. It allows to test the validity of the linear restriction, up to a specified approxima-
tion error and with a specified error probability. The method can also be used to estimate
a quantity Dα,n, which can be interpreted as the estimated maximal relative error (with
level α) that one makes when using the smaller submodel. This quantity Dα,n can be con-
veniently used for model-selection purposes. In contrast to classical model selection criteria
such as the AIC and the BIC, the value Dα,n has a clear interpretation (as maximal relative
error), and therefore allows for model selection strategies based on a threshold value for
Dα,n. As illustrated in a simulation study as well as a real data example, this might lead
to good results in the model selection process.
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Table 4: Variables of college spending data in USA from 1994

Notation Short description

SAT average SAT score

TOP10 freshmen in the top 10% of their
high school class (in percentage)

ACCRATE acceptance rate (in percentage)

PHD faculty with PhD (in percentage)

RATIO student faculty ratio

SPEND educational spending per full-time
equivalent student (in dollars)

GRADRATE graduation rate (in percentage)

ALUMNI alumni giving rate (in percentage)

Table 5: Results of a backward selection procedure for college spending data
step i submodel discarded cov. Di

α,n BIC AIC pi

of t-test
1 SAT, TOP10, ACCRATE,

PHD, RATIO, GRADRATE ALUMNI 0.025 253.7 229.8 0.789
2 SAT, TOP10, ACCRATE,

PHD, RATIO GRADRATE 0.026 248.8 227.9 0.808
3 SAT, TOP10, PHD,RATIO ACCRATE 0.037 245.5 227.5 0.211
4 SAT, TOP10, RATIO PHD 0.042 243.5 228.5 0.089
5 TOP10, RATIO SAT 0.110 247.0 235.1 0.004
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Appendix

Assumption 2. The errors ε1, . . . εn are i.i.d. with E(εi) = 0, V ar(εi) = σ2 and E(ε4
1) <

∞.

Assumption 3. We have that

√
n
(

n−1X tX − G
)

→ 0. (5)

Assumption 4. The entries of the covariate matrix X2 lie in a compact set K ⊂ R for all
n.

Note that from Assumptions 3 and 4 it follows that

√
n
[

( 1

n
X tX

)−1 − G−1
]

→ 0 (6)

since taking the inverse of a matrix is a Lipschitz continuous mapping on compact sets.

Proof of Theorem 1. First note that from (5) and (6) it follows that

√
n
(

dn(β2) − d(β2)
)

→ 0.
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Since by assumption, d(β2) > 0, dn(β2) will be bounded away from 0 and we get

√
n

Rn − d(β2)

2σ
√

dn(β2)
=

√
n

1
n
Y t(PX − PX1

)Y − dn(β2)

2σ
√

dn(β2)
+ o(1) (7)

¿From Theil (1973), p. 146,

PX − PX1
= MX1

X2(X
t
2MX1

X2)
−1X2MX1

=: Q,

where MX1
= In−PX1

. The matrix Q is symmetric and idempotent and satisfies QX1 = 0.
Therefore

1

n
Y t(PX − PX1

)Y =
1

n
εtQε +

2

n
βt

2X
t
2Qε +

1

n
βt

2X
t
2QX2β2

= S1 + S2 + dn(β2). (8)

Now ES1 = tr Q/n ≤ q/n, and from Seber and Lee (2003, Theorem 1.6),

V ar (S1) =
1

n2

[

(µ4 − 3σ4)hth + 2σ4tr(Q)
]

,

where µ4 = E(ε4
1
) and h is the vector of diagonal elements of the matrix Q, for which

hth ≤ q2. Thus

S1 = OP (|ES1| + |S1 − ES1|) = OP (n−1).

Furthermore, ES2 = 0 and

V ar (S2) =
4

n
· σ2dn(β2) ∼

4

n
· σ2d(β2),

and therefore the term S2 dominates the asymptotics in (8). It remains to show asymptotic
normality of S2. To this end we check the Lyapounov condition

1

n3/2

n
∑

i=1

E |biεi|3 =
E|ε1|3
n3/2

n
∑

i=1

|bi|3 → 0 as n → ∞,

where b := 2βt
2X

t
2Q = (b1, . . . , bn). It will be enough to show that the entries bi are

uniformly bounded. To this end, from assumption 4,

max
i=1,...,n

|bi| = max
i=1,...,n

|[QX2β2]i|

≤ max
i=1,...,n

{

n
∑

k=1

|[Q]ik| · |[X2β2]k|
}

≤ C max
i=1,...,n

{

n
∑

k=1

|[Q]ik|
}

,

13



where C > 0 and [ · ]ik denotes the (i, k)-th entry of the corresponding matrix. Since Q is
symmetric and positive semi-definite, |[Q]ik| ≤ (Qii + Qkk)/2, and thus

max
i=1,...,n

|bi| ≤ C max
i=1,...,n

{

1

2

n
∑

k=1

[Q]ii + [Q]kk

}

= C max
i=1,...,n

{

1

2
[Q]ii +

1

2
tr(Q)

}

≤ C · q.
This finishes the proof of theorem 1.
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