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SUMMARY

In this paper we extend the standard approach of correlation structure analysis in order
to reduce the dimension of highdimensional statistical data. The classical assumption of a
linear model for the distribution of a random vector is replaced by the weaker assumption
of a model for the copula. For elliptical copulae a 'correlation-like’ structure remains but
different margins and non-existence of moments are possible. Moreover, elliptical copulae
allow also for a 'copula structure analysis’ of dependence in extremes. After introducing
the new concepts and deriving some theoretical results we observe in a simulation study
the performance of the estimators: the theoretical asymptotic behavior of the statistics
can be observed even for a sample of only 100 observations. Finally, we test our method
on real financial data and explain differences between our copula based approach and
the classical approach. Our new method yields a considerable dimension reduction also in

non-linear models.

Keywords: copula structure analysis, correlation structure analysis, covariance structure analysis,

dimension reduction, elliptical copula, factor analysis, Kendall’s tau, tail copula, tail dependence.

1 Introduction

When analyzing high-dimensional data one is often interested in understanding the de-
pendence structure aiming at a dimension reduction. In the framework of correlation rep-
resenting linear dependence, correlation structure analysis is a classical tool; see Steiger
(1994) or Bentler and Dudgeon (1996). Correlation structure analysis is based on the
assumption that the correlation matrix of the data satisfies the equation R = R(9) for
some function R(¥) and a parameter vector ¥. Typically, a general linear structure model
is then considered for a d-dimensional random vector X, i.e. X = A€, where A = A(W) is
a function of a parameter vector ¥, and € represents some (latent) random vector.

The typical goal of correlation structure analysis is to reduce dimension, i.e. to explain
the whole dependence structure through lower dimensional parameters summarized in 9.

One particularly popular method is factor analysis, where the data X are assumed to



satisfy the linear model X = p + Lf + Ve, where p = (1, pm)t f=(f1, s f)?
(m < d) are non-observable and (usually) uncorrelated factors and e = (ey,...,eq)" is
some noise variables. Further, L € R¥™ is called loading matriz and V is a diagonal
matrix with nonnegative entries. An often used additional assumption is that (f,e”) has
mean zero and covariance matrix I, the identity matrix. Then, describing the dependence
structure of X through its covariance matrix yields Cov(X) = ¥ = LL” +V?, ie., the
dependence of X is described through the entries of L.

Provided that the data are normally distributed this approach of decomposing the
correlation structure is justified, since dependence in normal data is uniquely determined
by correlation. However, many data sets exhibit properties contradicting the assumption
of normality, see e.g. Cont (2001) for a study of financial data. Further, several covariance
structure studies based on the normal assumption exhibit problems for nonnormal data,
see e.g. Browne (1982, 1984). A modified approach is to assume an elliptical model, and
the corresponding methods can be found for instance in Muirhead and Waternaux (1980)
and Browne and Shapiro (1987). Browne (1982, 1984) also developed a method being
asymptotically free of any distributional assumption, but it was found that acceptable
performance of this procedure requires very large sample sizes; see Hu, Bentler, and Kano
(1992).

Relaxing more and more the assumptions of classical correlation structure analysis as
indicated above, one assumption still remains, namely that X 4 A(W)E, i.e. X can be de-
scribed as a linear combination of some (latent) random variables € with existing second
moments (and existing fourth moments to ensure asymptotic distributional limits of sam-
ple covariance estimators). For real multivariate data it may happen that some margins
are well modeled as being normal and some are more heavy-tailed (or leptokurtic). More-
over, nonlinear dependence can occur, e.g. in financial portfolios of assets and derivatives.
If this happens, it is hard to believe that some linear model is appropriate. Since the
primary aim of correlation or covariance structure analysis is to decompose and describe
dependence we present a simple method to avoid problems of non-existing moments or
different marginal distributions by using copulae. A copula is a d-dimensional distribution
function with unif(0, 1) margins and, by Sklar’s theorem, each distribution function can
be described through its margins and its copula separately. We will focus on elliptical
copulae being the copulae of elliptical distributions, which are very flexible and easy to
handle also in high dimensions. As a correlation matrix is a parameter of an elliptical
copula, correlation structure analysis can be easily extended to such copulae and we will
call this method copula structure analysis.

In many applications dependence in extremes is an important issue. For example,
financial risk management is confronted with problems concerning joint extreme losses,
and one of its prominent questions is how to measure or understand dependence in the

extremes; see e.g. McNeil, Frey, and Embrechts (2005). This requires a different approach



and is one of the major issue of this paper. We assess extreme dependence by a concept
called tail copula. For such elliptical copulae, which model extreme dependence, we present
a new structure analysis based on the tail copula. This focusses on dependence structure
in the extremes.

Our paper is organized as follows. We start with definitions and preliminary results on
copulae and elliptical distributions in Section 2. In Section 3 we introduce the new copula
structure model and show which (classical) methods can be used for a structure analysis
and model selection. In Section 4 we show two copula dependence concepts, one based
on Kendall’s tau, one on the tail copula, and develop estimators, which can then be used
for the copula structure analysis. These concepts lead to different estimates of the copula
structure model, and we derive asymptotic results for our estimates.

In Section 5 a simulation study shows that the derived asymptotic results hold already
for a rather small simulated sample. Finally, we fit a copula factor model to real data
based on both our dependence concepts and give an interpretation of the results. Proofs

are summarized in Section 6.

2 Preliminaries

First, we introduce the copula concept. For more technical background information we
refer to Nelsen (1999).

Definition 2.1. A copula C : [0,1]¢ — [0, 1] is a d-dimensional distribution function with

standard uniform margins, i.e. C(1,...,1,u;,1,...,1) =u;, 1 <j <d.

The following theorem shows that each multivariate distribution function can be sep-
arated in its dependence structure, i.e. the copula, and its margins. This important result
is used in essentially all applications of copulae. We shall need the notion of a generalized

inverse function. For a distribution function F' the generalized inverse is defined as
Fo(y) =inf{z e R F(z) =y}, ye(0,1).

Theorem 2.2 (Sklar’s Theorem (1996)). Let F' be a d-dimensional distribution func-
tion with margins Fy, ..., Fy. Then there exists a copula C' such that for all x € R?

F(zy,...,xq) = C(Fi(21), ..., Fy(zq)) .

The copula C' is unique on RanF} x --- x RanfFy.
If F is a continuous d-dimensional distribution function with margins Fy, ..., F,;, and

generalized inverse functions Fy~,..., F;, then the copula C of F is C(uy,...,uq) =
F(F(w),...,Fy (uq)).



We will focus on copulae of elliptical distributions, and we first give some definitions
and state some properties. For a general treatment of elliptical distributions we refer to
Fang, Kotz, and Ng (1990) and to Cambanis, Huang, and Simons (1981). Elliptical copulae
and their properties have also been investigated with respect to financial application by
Embrechts, Lindskog, and McNeil (2003) or Frahm, Junker, and Szimayer (2003).

Definition 2.3. A d-dimensional random vector X has an elliptical distribution, if, for
some p € RY, some positive (semi-)definite matriz ¥ = (04;)1<ij<a € R>?, a positive
random variable G and a random vector U™ ~ unif{s € R™ : sTs = 1} independent
of G it holds that X 4 p+ GAU™ A e R™>*™ AAT = % and some m € N. We write
X ~ &(p, 2, Q). The random variable G is called generating variable. Further, if the first
moment exists, then EX = u, and if the second moment exists, then G can be chosen

such that CovX =X.

Definition 2.4. Let X ~ &;(p, X, @) with ¥ = (04;)1<ij<da- We define the correlation
matrix R by R := (Uij/1 /Uiiajj)1<ij<d' If X has finite second moment, then CorrX = R.

Definition 2.5. We define an elliptical copula as the copula of an elliptical random
vector. Let R be the correlation matrixz corresponding to X. We denote the copula of

Ei(w, X, G) by EC4(R, G) and call R the copula correlation matrix.

The following corollary shows that the notation £C4(R, G) of elliptical copulae is rea-
sonable. It is a simple consequence of the definition and the fact that copulae are invariant

under strictly increasing transformations; see Embrechts et al. (2003, Theorem 2.6).

Corollary 2.6. An elliptical copula is characterized by the generating variable G and the
copula correlation matriz R. The generating variable G is uniquely determined up to some

positive constant.

Based on elliptical copulae, we can now formulate the copula structure model.

3 Copula structure models

First, we give some notations: let 4 € © C RP be a p-dimensional parameter vector
in some parameter space © with dim(©) < p. A correlation structure model is then a

function
R:0 — R™ 9 - R(®), (3.1)

such that R(J) is a correlation matrix, i.e. R(¥) is positive definite with diagonal 1. As
we will later also use vector notation, we denote by vec|-| the column vector formed from

the non-duplicated and non-fixed elements of a symmetric matrix. If a matrix A is not



symmetric, then vec[A] denotes the column vector formed from all non-fixed elements of

the columns of A. In case of a correlation matrix
r = vec[R] € R1D/2, (3.2)

For a general linear correlation structure model, (3.1) corresponds to the following situa-
tion: let £ € £,(0,1,G) and let A : © — R 9 — A(¥9), be some matrix valued function
and define

$:0 R 9 L) = AWAW)T.

Then, (3.1) can be written as R(d) = diag[E(d)] /22 (d)diag[E(9)] /2.

3.1 The model

As by Definition 2.5 a correlation matrix is a parameter of an elliptical copula, we can

extend the usual correlation structure model to elliptical copulae.

Definition 3.1. Let ¥ € © C R? be a p-dimensional parameter vector, A : © — R4 ¢
matriz valued function and & € £,(0,1,G) a g-dimensional elliptical random vector with
continuous generating variable G > 0. Further, denote by Capye the copula of A(9)€ € RY.

We say that the random vector X € R? with copula Cx satisfies a copula structure model,
if

Cx = Capye € ECa(R(V), G), (3.3)
where R(9) := diag[E(9)]~ /2L (9)diag[E(9)] /2 and Z(9) := A(9)A(I)".

Remark 3.2. (i) Define by F* (u) := (F; (u1), ..., F; (uq)) the vector of the inverses
of the marginal distribution functions of X and by H(x) := (Hi(x1),..., Hq(xq))
the vector of the marginal distribution functions of A(¢)€. Then, (3.3) is equivalent
to X L F— (H(A(9)€)), where all operations are componentwise. Hence, the copula
model can also be seen as an extension of a correlation structure model for elliptical
data: if not only Cx = Cjg)¢ holds but also H = F with existing second moment,
then this would be a classical correlation or covariance structure model. For normal
& it gives back the standard normal model and for elliptical £ the elliptical model
of Browne (1984).

(ii) The classical correlation structure model assumes some (functional) structure for the
correlation matrix of the observed data. In the copula structure model this functional
structure prevails. The only difference lies in the interpretation of the 'correlation’
matrix. In the classical model it represents the linear correlation between the data,
in the copula model it represents a dependence parameter which can be interpreted

as a 'correlation-like’ measure; see Lemma 2.6.
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Example 3.3. For classical factor analysis, (3.3) translates to 9 = vec[L, V], R(¥) =
LL" + V? for some m < d, L € R and a diagonal matrix (with nonnegative entries)

V € R¥4 The corresponding copula structure model assumes that there exists & €
Em+a(0,I, G) such that

Cx = C(Ly)g. (3.4)

We call this identity a copula factor model. An example of this copula factor model is
the Credit Metrics model in the framework of credit risk, see e.g. Bluhm, Overbeck,
and Wagner (2003, Section 2.4). There, a factor model X = (Xi,...,Xy)T = Lf +
Ve is assumed for the underlying (latent) variables of a set of credit default indicators
(I{Xi<5i})1<i<d and X is assumed to be normal. By Frey, McNeil, and Nyfeler (2001,
Proposition 2), the distribution of (I{Xi<5i})1 <i<q 1s uniquely determined by the single
default probabilities P(/{x,<s3 = 1) and the copula of X. Therefore, in this case the
assumption of X = Lf + Ve is equivalent to Cx = Cv)e with § ~ N,,14(0,I). The
model extends easily to non-normal X.

3.2 Estimation of 9

The next step is to estimate a structure model. Let X4,...,X, be an iid sequence of
d-dimensional random vectors and denote by R = ﬁ(X 1,--.,Xn) an estimator of R, a
correlation matrix. This estimator can be the empirical correlation or a copula correlation
estimator or some other correlation estimator. We review some results from the literature,
which we will need for the estimation of the copula structure model later.

Given this estimator R we want to find some parameter vector ¥ which fits the assumed
structure R(d) to R as good as possible. Similarly to (3.2), we define r := vec[ﬁ] and
r(9) := vec|R(9)].

Estimation of 4 is based on the minimization of a discrepancy function D = D(r,r(9))
which measures the discrepancy between the estimated correlation matrix represented by

r and (). A discrepancy function D has to satisfy
(i) D >0,
(ii) D(r,r) =0 if and only if ¥ =r and
(iii) D is twice differentiable with respect to both 7 and r.

Note that the concept of a discrepancy function (without condition (iii)) is weaker than
the concept of a metric, as a discrepancy function D does not have to be symmetric or
translation invariant in its arguments, nor does it have to satisfy the triangular inequality.

In the following example we present two classical discrepancy functions, for more

details about discrepancy functions, their properties, advantages and drawbacks, we refer



to Bentler and Dudgeon (1996) and Steiger (1994). For more details about the quadratic

form discrepancy function below see Steiger, Shapiro, and Browne (1985).
Example 3.4. (i) The normal theory mazimum likelihood discrepancy function is
Dy, r@) = WmR@)|+tr (RR@) ")~ n[R] - d. (3.5)
This function is the log-likelihood term of R(d) in case of normal data.

(ii) The quadratic form (or weighted least squares) discrepancy function is
Dap(r,r(®)|T) = (F—r@) T F—r), (3.6)

where T is a positive definite matrix or a consistent estimator of some positive
definite matrix T*. Note that Dqop(-,-|T) is a metric.

Given some discrepancy function D and some estimator R of the correlation matrix

R, we can define a consistent estimator of 9.

Proposition 3.5 (Browne (1984), Proposition 1). Let Ry be some correlation matriz,
ro := vec[Ro] € RU1/2 gnd © C RP a closed and bounded parameter space. Further
assume that T is an estimator based on an iid sample X 1, ..., X,, of d-dimensional random
vectors and let D be a discrepancy function. Assume that T £, rg as n — oo and that
¥o € O is the unique minimizer of D(ro,r(9)) in ©. Assume also that the Jacobian matrix
or(9)/09" is continuous in 9. Define the estimator

9 := argmin D(r,r(9)). (3.7)

)
~ p
Then ¥ — 9y as n — oo.

Of course, if we know the true correlation vector r( satisfying the structure model ro =
r(dy) for some parameter vector 9y, then 9 will always be such that ro = r(dy) = 'r‘('lA9),
independent of the choice of the discrepancy function. We also have D(ro,r(@)) =0 in
this case. Since in practice we neither know the true rg nor the true structure model, we

need a method to find an appropriate model.

3.3 Model selection

First, we show the asymptotic distribution of a certain test statistic, which will later be

used for model selection.
Definition 3.6. Under the settings of Proposition 77, we define the test statistic

T = nD = nDF (@) = nmin D(F,r(0)). (3.8)

The null hypothesis is that the true correlation vector ry satisfies a structure model, i.e.

Hy: 1o = r(dy) for somed, € O. (3.9)



To obtain the limit distribution of 7" we use a version of Steiger et al. (1985, Theo-
rem 1), adapted to our situation. We replace the regularity condition (R7) of that article
by the stronger assumption that the null hypothesis (3.9) holds. The equivalent statement
in case of the quadratic form discrepancy function Dqp(-,+|Y) is given in Browne (1984,
Corollary 4.1), where it is additionally required that Y is a consistent estimator of I", the

asymptotic covariance matrix of 7.

Theorem 3.7. Assume that the conditions of Proposition 7?7 hold and ¥ is an interior
point of ©. Further assume that /n(r —rg) LN N(0,T) as n — oo and that the Hessian
matriz

_ 9*D(r.§)
2, = S0 (3.10)

r=¢=rg

is nonsingular and satisfies Wy =T, In case of the quadratic form discrepancy function
Dqp(-,+|T) defined in (3.6), the assumption (3.10) is replaced by assuming that Y is a

consistent estimator of T'. Also assume that the p X d Jacobian matriz

A= T0) (3.11)
M |y,
is of full column rank p. Then, under the null hypothesis (3.9),
T = nD -5 X(Qifv n — 0o, (3.12)

where df = d(d —1)/2 — p* with p* < p is the number of free parameters of 9 € © C RP.

Remark 3.8. Under the conditions of Proposition ??, if ¥, = I'"' does not hold, the
limiting distribution of 7" in (3.8) under the null hypothesis (3.9) will not be xj, see
Satorra and Bentler (2001) or van Praag, Dijkstra, and van Velzen (1985). In this case,

df
T i) Z "{jCj , N — 00,
j=1
where the ¢; are iid x7 distributed and x; are the non-null eigenvalues of the matrix UT'
with

U = ¥y — U A(ATTA) AT,

where A is given in (3.11). An example for this situation is Dy, (a,0()) given in (3.5),
where @ is the vector of a covariance matrix estimator, o () is the vector of a covariance
structure model and ¢ has an asymptotic covariance matrix different from the asymptotic

covariance matrix of the empirical covariance estimator under a normal population.



From now on we will use the quadratic form discrepancy function D := Dqp from
Example 3.4(ii), where T = T is an estimator of T'. Tf T is consistent, Theorem 3.7 applies
and by Browne (1984, Corollary 2.1), D is asymptotically normal with covariance matrix
(ATI‘_IA)_I, where A is given in (3.11). Note that, if T is only consistent and does not
have a finite second moment, large sample sizes may be necessary to observe the limiting
y2-distribution of the test statistic 7" or the asymptotic normality of 9.

To select an appropriate structural model, we consider a set of g models (which all

have to satisfy the assumptions of Theorem 3.7)
r@ .00 — RAD2 9@ p(0) (19(i)), and O ¢ ]Rp(i), 1<i<yg. (3.13)

Further, we require that the g models are nested, i.e. for every 1 <1i < g—1 and 9D e 00
there exists some 9 € O such that ri+D (@) = O (YD), Next, define the null
hypotheses

a7 vy = rO@W,) for some ¥ € 09 1<i<y,

and assume that some of these null hypotheses are true. Then there exists some j such
that Héi) does not hold for 1 < i < j and does hold for 7 <i < g. As we are interested in
a structure model, which is likely to explain the observed dependence structure, and is as
simple as possible and, since the models are nested, we have to estimate j, the smallest
index where the null hypothesis holds. By Theorem 3.7, the corresponding test statistics
T = nDF,rO®)) := nmingeen DF,r®(9)) are not y? distributed for 1 < i < j
and are Xflf—distributed for j <1 < g with df given in Theorem 3.7. Consequently, we
reject a null hypothesis Héi), if the corresponding test statistic 7 is larger than some

Xfif—quantile. Hence, j is the smallest number, where Héj ) cannot be rejected.

Remark 3.9. (i) Note that classical estimates of I" rely on the estimation of second
and fourth moments of X. For non-normal or, especially, for heavy-tailed data these
estimates often have large sampling variability and in simulation studies it turned
out that large samples are necessary for acceptable performance of the test statistics,
see e.g. Hu, Bentler, and Kano (1992).

(ii) In general, a unique true parameter ¥y need not exist: in the classical factor model
(see Example 3.3, where R = LL” + V?), L can always be replaced by L* = LP
for any orthogonal matrix P. By a minor adaption of the parameter space © (i.e.
L”V™2L has to be diagonal), 9 can be forced to be unique and Proposition 77
applies, see Lawley and Maxwell (1971, Section 2.3). By Lee and Bentler (1980)
the degrees of freedom in (3.12) are then increased by the number of additional
constraints. For better interpretation, the factors can be rotated after estimation,

e.g. with the varimaz method, for details see Anderson (2003, chapter 14).



(iii) With the correction for uniqueness in (ii) above, the factor model of Example 3.3
satisfies the regularity conditions of Proposition 7?7 and Theorem 3.7, see Steiger
et al. (1985, Section 4) and Browne (1984, Section 5).

(iv) In case of the copula factor model (see Remark 3.2(iii)) we only need to estimate the
loading matrix L € R™™ since diag(V?) = 1 — diag(LL"). Therefore the number
of free parameters are dm minus the number of the additional constraints to ensure
that L7V L is diagonal, i.e. the degrees of freedom of the limiting x? distribution
are df =d(d—1)/2 —dm +m(m —1)/2.

(v) For the quadratic form discrepancy function D(-, -| f), where T is a consistent es-
timator of T, it can be shown that 7, 1 < i < j, has an approximate noncen-
tral xj-distribution with non-centrality parameter nD(rg,r® (19(()”)\ I'), see Browne
(1984, Corollary 4.1).

4 Methodology

As we consider a copula structure model, we need an estimator R of the copula corre-
lation matrix R, whose limit distribution is N'(0,T) for some non-degenerate covariance
matrix I' and a consistent estimator of I'. In the following we will introduce two copula
based dependence concepts and their corresponding correlation and asymptotic covariance

estimators (which are also consistent and asymptotically normal).

4.1 Dependence Concepts

A well known dependence concept is (linear) correlation or covariance, which is limited by
the fact that it measures only linear dependence. Further, since correlation is not invariant
under non-linear (strictly increasing) transformations, it is not a copula property. As we
want for our copula structure analysis a dependence concept which is at least related to
correlation we use the following one known as Kendall’s tau.

This copula-based dependence concept provides a good alternative to the linear corre-
lation as a measure also for non-elliptical distributions, for which linear correlation is an
inappropriate measure of dependence and often misleading. Originally, it has been sug-
gested as a robust dependence measure, which makes it also appropriate for heavy-tailed
data; for more details see Kendall and Gibbons (1990).

Definition 4.1. Kendall’s tau 7;; between two components (X;, X;) of a random vector
X is defined as

10



where ()?Z,f(]) is an independent copy of (X;, X;). Moreover, we call T := (7;;)1<i j<a the

Kendall’s tau matrix.

Concerning elliptical copulae the following result is given in Lindskog, McNeil, and
Schmock (2003, Theorem 2).

Theorem 4.2. Let X be a vector of random variables with elliptical copula C ~ EC4(R, G)

and continuous generating variable G > 0, then 1;; = 2 arcsin(p;;) /.

Considering extreme observations, we need the concept of regular variation. A textbook
treatment of this topic is to be found in Bingham, Goldie, and Teugels (1989), for a
multivariate extension we refer to Resnick (1987, 2004) or Basrak, Davis, and Mikosch
(2002).

Definition 4.3. A random wvariable G is called regularly varying at infinity with index
—a, 0 < a < oo, if limy_o P(G > tx)/P(G > ) = t%, for all t > 0. We write
G € RV _,.

In financial risk management, one is often interested only in the dependence of ex-
treme observations. By Sklar’s theorem, the copula is sufficient to describe dependence
in extremes. As C' is a uniform distribution on [0, 1]¢, extreme values happen near the
boundaries and extreme dependence happens around the points (0,...,0) and (1,...,1).

This can be captured by the following concept.

Definition 4.4. (i) We define the upper tail copula of X as

Affpper(“") = )\ffpper(xh s 7xd)

= Prrét_lP (1—F (X)) <txy,..., 1 - Fy(Xy) < txyg), (4.1)
for xy,... xq > 0 if the limit exists.

(ii) We define the lower tail copula of X as

M (@) = %in%t_lP (FL(X)) < tay,..., Fy(Xg) < txg). (4.2)
for xq,...,xq > 0 if the limit exists.

Remark 4.5. Since by symmetry XX .(x) = A ..(x) = A¥(z) holds for elliptical
copulae (see Definitions 2.3 and 2.5), we concentrate only on the upper tail copula and
call it tail copula. Of course, by definition, the tail copula is a copula property. For more

details about the tail copula, see Schmidt and Stadtmiiller (2005).

Notions like tail copula or tail dependence function go back to Gumbel (1960), Pickands
(1981) and Galambos (1987), and they represent the full dependence structure of the
model in the extremes. If M (z) > 0 for some > 0, X is called asymptotically dependent

11



and asymptotically independent, otherwise. Assuming elliptical copulae, Hult and Lindskog
(2002, Theorem 4.3) show that X is asymptotically dependent if X has an elliptical copula
with regularly varying generating variable G € RV _,, a > 0. For a textbook treatment
of multivariate extremes, see Resnick (1987).

By definition, M (z) = 0 if A\&X)(z;,2;) = 0 for some i, j and z > 0, i.e. X is
asymptotically independent if some bivariate margin (X;, X;) of X is asymptotically in-
dependent. Concerning asymptotic independence we refer to Ledford and Tawn (1996,
1997), and for a conditional modeling and estimation approach allowing for asymptotic
independence in some components and asymptotic dependence in others, see Heffernan
and Tawn (2004). We will use the assumption of asymptotic dependence for modeling and
estimation and therefore we omit further discussions about asymptotic independence.

For estimation of R we only need a representation of the bivariate marginal tail cop-
ula (4.1) for elliptical copulae. It follows from Hult and Lindskog (2002, Corollary 3.1),
Klippelberg, Kuhn, and Peng (2005a, Theorem 2.1) and transformation of variable. A
representation of the full multivariate version is given in Kliippelberg, Kuhn, and Peng
(2005b, Theorem 5.1).

Theorem 4.6. Suppose X has copula Cx € EC4(R,G) with generating variable G €
RV_,, a >0, and copula correlation matriz R = (p;ij)1<ij<a with max |p;;| < 1. Then the

bivariate marginal tail copula of X s given by

x,y) ey 00, X, 00, . .., 00, Y, 00, ..., 00)
/2 w/2 -1
x (cosp)*do +y / (cos @) do / (cos @) d¢
915 ((x/9)"/) 9i; ((@/y)=1/=) —m/2
= )\(33, o pz]) (43)

where x is the i-th, y the j-th component and g;;(t) := arctan <(t — pij)/+/1 — ,ofj).
Remark 4.7. The case of p := p;; = 1 can be interpreted as a limit, i.e.
Mz, y,a,1) = lirr% Mz, y,a,p).
p—

Then

+m/2, t>1,

gi;(t) = lin} arctan ((t —pij) /)1 — p%-) = 0, t=1,
p—

—m/2, t<1,

and we obtain A(z,y,«, 1) = x A y. Similarly, A(z,y,«, —1) = 0.

This bivariate marginal tail copula )\fj{ given in (4.3) measures the amount of depen-
dence in the upper right quadrant of (X;, X;). Note that by Kliippelberg et al. (2005b,

12



Theorem 5.1), M is completely characterized by the copula correlation matrix R and the
index « of regular variation of G.

By Theorems 4.2 and 4.6 we see that for an elliptical copula the correlation matrix R
is a function of Kendall’s tau or of the tail copula with the index « of regular variation of
G. In Sections 4.2 and 4.3 we will invoke this functional relationship for the estimation of
R. The two approaches differ in their interpretation: estimating R via Kendall’s tau fits a
robust dependence structure of the data to an elliptical copula. Using the tail copula for
estimation of R fits only the dependence structure in the upper extremes to an elliptical
copula and does not necessarily fit the dependence of the data in other regions. Of course,
copula structure analysis can be applied to any copula correlation estimator with a certain
limiting behavior as given by Theorem 3.7. Using Kendall’s tau for estimation can then
be seen as a robust extension of the usual correlation structure analysis, whereas using
the tail copula provides a structure analysis of dependence in the extremes. The next two

sections explain the estimation procedures and give asymptotic results.

4.2 Copula correlation estimator based on Kendall’s tau

The first method is based on Kendall’s tau, which can be used for estimating the corre-
lation matrix R by Theorem 4.2. For a general treatment of U-statistics see Lee (1990);
the results we use go back to Hoeffding (1948).

Definition 4.8. Given an iid sample X1,..., X, X; = (Xi1,...,X;a)", we define the
estimator T = (%\ij)1<ij<d of Kendall’s tau matrix T by 75 =1 fori=1,...,d and

1
~ n . .
Tij = (2) > sign (Xps — X0i) (Xey — X)), 1<i#j<d.

1<Ii<k<n

Estimating the copula correlation matrix via Kendall’s tau yields the following result.

Its proof can be found in Section 6.

Theorem 4.9. Let X1, X, ... be an iid sequence of d-dimensional random vectors with
elliptical copula Cx € EC4(R, G) with continuous G. Further, define

A~ . 7TA

RT = (ﬁzj)lﬁi,jgd = Sin <§T> > (44)

A~

where the ’sin’ is used componentwise and define T, := vec[R;] and r := vec[R]. Then,
. d
\/ﬁ(r‘r —’I") — Nd(dfl)/2(0>r7')7 n—oo,

holds, where I', = (%Tj,kz)lgyéj,k;elgd with

T 2 m ™
Yijg — T COS (57'@']') cos <§Tkl) (Tijkt — TijTe)  and (4.5)
Tkl = E(E (sign [(X1,~X2) (X1,,~Xa;)] | X1) E (sign [(X1—Xon) (X1,—Xo0)] [ X1) )
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By (4.5), an estimator of I'; = (VZj,kl)lgi;«éj,k#sd can be defined by its empirical version.

Definition 4.10. Given an iid sample X1, ..., X, Xi = (X;1,...,Xia)", we define the

estimator I';, = (’ij,kz)lgi;éj,k#gd, where

:y\z-j,kl = 71'2 Ccos (g?@]> CcOs (g?kl> (?ij,kl — ?ij?kl) and (46)
~ 1 L n ]
Tijkl = mz [( > Slgn((Xp,i—Xq,i)(Xp,j—Xq,j))> X

p=1 =1, 9#p

X ( > sign ((Xp7k—Xq7k)(Xp7l—Xqvl))>] .4
q=1,q#p
The following result is also proved in Section 6.

A~

Theorem 4.11. The estimator vec|[';| is consistent and asymptotically normal.

4.3 Copula correlation estimator based on the tail copula

The second estimation method is based on the tail copula. If someone is interested in the
dependence structure of the extreme data and assumes an elliptical copula, (4.1) shows
how A\X can be expressed as a function of R and a. By estimation of A* one can estimate
R and « (i.e. the elliptical structure), which is likely to generate the observed extreme
dependence.

We use an approach closely related to Kliippelberg et al. (2005b); i.e. we use the tail
copula for the estimation of R and «. By Theorem 4.6 we need an estimator of a and of
all bivariate marginal tail copulae. We start with an empirical tail copula estimator, for
details see Kliippelberg et al. (2005a, 2005b) (and references therein) and estimate R and

« from this.

Definition 4.12. Given an iid sample X1,...,X,, X; = (Xi1,...,X14)", we define the

empirical tail copula estimator for & = (x1,...,x4) >0 as
Xemp(m'k) _ ! i[ 1— ﬁ(Xl-) < Em j=1,...,d (4.8)
) L . i 7)) = n E ) ) )

where 1 < k <n and ]3] denotes the empirical distribution function of {X;;},, 1 <j <

d. Further, we define the empirical estimator of the bivariate marginal tail copula as

Aj]mp<x7y7k') = )\emp(OO,...,OO,I'7OO,...,OO,y,OO,...,OO)
1 ~ k = k
= > I(1-FXy< e l-FXy)<-y), (49
=1

where x is at the i-th and y at the j-th component, respectively.
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Since A*™P estimates the tail copula, the number £ should be small in comparison to n.
Setting x; = 1,1 < j < d, only the k largest observations of X ; satisfy 1 _ﬁj(le) < k/n,
therefore k can be interpreted as the number of the largest order statistics which are used

for the estimation as is typical in extreme value theory.

Immediately by definition (4.1), AX is homogenous of order 1, and, for large k and n,
also X?fp is (see (4.8)). Consequently, setting § = arctan(y/x), i.e. (z,y) = (ccos b, csin )
for some constant ¢ > 0, we have ijr-np(:c,y; k) = Xffp(ﬂcos 0,+/2sin 0; k*) for some
appropriate k*. Hence, for the estimation, we follow the convention and only consider
points (z,y) = (v/2cos,v/2sinh), § € (0,7/2).

For estimation of a we use the approach of Kliippelberg et al. (2005b), which is based

on inversion of the tail copula with respect to a.

Definition 4.13. Define X=%(-;x,y, p) as the inverse of AN(z,y, «, p) (given in (4.1)) with
respect to a and, using py; given in (4.4) and emp given in (4.9), define fori # j

In(tanf) |
(o, Vo)) f

G = {9 (02): It < ) 30180 o5 ) o

Qi = {9 € <0,g> : Xf;np(\@cose,ﬂsine; k) <
< A (ﬁcos@,\@sin&

Q; = {9 e (o, g)  [In(tan )| < o |In(p;; \/O)\},

where for 0 € @ij we define ay; as the estimator of a based on the empirical bivariate tail
copula (4.9)

ai;(V2cos0,v/2sin 6; k)

= A\ (Xf]mp(\/i cos6,v/2sinb; k); V2 cos 6, v/2sin 6, ﬁ;) : (4.10)
Further, let w be a nonnegative weight function. Then we define the smoothed estimator
a of a as
2 1
alk,w) = — ﬁ/ &;; (V2 cos0,v/2sin 0; k) W(dh), (4.11)
d(d—1) S;jgd W(Qiy; N Qy) Jocaynay,

where W is the measure induced by w.

To define an estimator of R via extreme observations, we invert the bivariate tail

copula with respect to p. Using (4.3) it is straightforward to show the following.

Lemma 4.14. For fived z,y, o > 0 define p* := ((x Ay)/(xVy)"*. Then, for all
p < p*, %)\(x,y,a,p) > 0 holds and the inverse X=P(-; x,y,«) of A\ with respect to p

exists.
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By Remark 4.7, A(1,1,,1) = 1 and A(1,1,, —1) = 0 for a > 0. Hence, we can define
511 k) = AP (Xg;ﬂp@, 1 k) 1, 1,&(k,w)) . (4.12)

Since this estimator only employs information at (z,y) = (1,1), it may not be very
efficient. Therefore, we define an estimator based on /):g-np(x, y; k) for other values (z,y) =
(vV2cosf, v/2sinb) € R?.

To ensure existence and consistency of the estimator, we define the following sets and

give some explanations below:
(/jij = {9 € <0, g) : X?;np (ﬂcosﬁ,x/isin@; k) <
<\ <\/§ CcOS 0’ \/QSiII 97 a(k7 'LU), 6—|1n(tan9)|/&(k,w)> } ’

oy = {9 e (o, %)  |In(tan )] < (1 — k~YNa(k, w) [In (55(1,1; k) vo)\} and
Uz = {9e (o, g) : [In(tan )| <Oz|1n(pij\/0)|}.

By Lemma 4.14 there exists a unique p such that
A (\/§COS 0, ﬁsin@,@(k:,w),p) = Xgnp (\/icos 0,v/2sin 6; k:) , fe [7@]
Hence, we can define

ii(V2 cos 0,/ 2sin 6; k) (4.13)
Aij" (ijr-np(\/icos 0,V2sin6; k); V2 cos¥), ﬁsin@,&(k,w)) . 0eU;.

Note that, by the definition of p;;(1,1; k) in (4.12), it always holds that 7/4 € (7”- provided
tjlat /)\\f;np(l, 1; k) < 1. Hence, if (Afij = (), we can replace it byjj\'ij := {7/4} and also replace
U} = {m/4}. To ensure consistency we further require ¢ € U};. This implies that the true

pij is smaller than e~|n(tand)l/alkw

) with probability tending to one. The set U} is then
the true set of 6 € (0,7/2), where Lemma 4.14 applies.

Now we can define an estimator for p;; as a smooth version of p;:

Definition 4.15. Let w* be a nonnegative weight function and W* be the measure induced
by w*. Then we define for i # j and with (4.13)

1
2\ . N | *
Fig k,w = = =< / Dii \/_ZC S 7\/_S] 7]{ W 50\, L4

v

Further, define pi(k,w*):=1,1<i<d, and f{,\(k:,w*) = (7 (k, w*))

1<i,j<d’

The next theorem shows the asymptotic properties of f{,\(k:,w*). We use the theory
developed in Schmidt and Stadtmiiller (2005) and give a formal proof in Section 6.
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Theorem 4.16. Suppose the following regularity conditions hold:

(C1) X4,..., X, are iid with copula Cx € ECy4(R,G), G € RV_, for a > 0 and
max;-; ’pZ]| < 1.

(C2) There exists A(t) — 0 such that for i # j

t—0 A(t)
uniformly on Sy == {s € R* : sTs = 1}, where bEjCZ)(x,y) is some non-constant
function.

(C3) k=k(n) — o0, k/n — 0 and VEA(k/n) — 0 as n — co.

Let w* be a nonnegative weight function with supycy- w*(0) < oo for all i # j, N and
ij
N denotes the derivative of X with respect to p and a, respectively, and (AP)"* denotes

the derivative of X=P with respect to «. Define

Dy, (415)

. 0
Bij<x>y) = Bij(ZU,y)—Bij(l":OO)_ By

ax)\ij(xv y) — Bij(00,y)
Bij(z,y) = B(oo,...,00,2,00,...,00,Y,00,...,00),
where x is the i-th, y the j-th component and B is a centered tight continuous Gaussian

random field on R? with covariance structure
E(B(z)B(y)) = M(zAy), zye 0,0 (4.16)

where x\y is taken componentwise. Set as beforer := vec[R] and 7 (k, w*) := Vec[ﬁ,\(k, w*)],
then

N . d
VE @k, w*) —r) - Na@-1)72(0,Tx), n — oo,
where Ty = (9 y)1<izi hti<d With
rYiAj,kl = Oq+ Oij.a + Okla + Oij,kls (417>

and

2
%o = B(d D)W U)W (U (4.18)

X H /eU (A=P) (Af(\/icos@,\/ﬁsinﬁ),\/icosﬁ,\/ﬁsine’a> W*(d6)
Ut

Jedig,kl}

1
< 2. *>W< )

1<p<q,r<s<d pq rs

V2 cos0;,v/2sin 91)§ +(v/2cos by, 1/25sin 62)>
<[ W (dfs) W (d0) |
1 €Qyq J02€Q5

)\’a 00591,8111 b1, @, ppg) N (cos B2, sin b5, v, pys)
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1 1
Oija = * * *
" d(d — YW*(U)W*(Uyy)

X (4.19)

1<p<q<d (Q;q)

/ / / (AP« /\X(\/5c0891,\/ﬁsinél),\/écosﬁl,\/ﬁsinel,a> X
b1eU;; Joreuy, Joseqy,
< pq(\/_cosﬁg,\/Esin93)Bkl(\/§cosé’2,ﬂsin%))

X
N (cos B3, sin 05, o, ppg ) NP (cos O, sin Oy, o, prr)

W (dbs) W™ (db2)W (dbh) |

similarly oy (by interchanging the indices iy’ and 'kl’), and

1

. 4.20

T 2W*<U*>W*<U,:l> 20
200301,ﬁsinGl)EM(\/icoseg,\/ﬁsin92)>

W*(dOs)W*(db,).

/gleU* /GQGU* e ( 00891,51n01,a i )NP(cos Oy, sin 02, ;) pry) (db2) W™ (db1)

Remark 4.17. If condition (C3) in Theorem 4.16 is replaced by
(C3) k = k(n) — oo, k/n — 0 and VEA(k/n) — b € (o0, 0) as n — oo,
an asymptotic bias occurs in Vec[ﬁ,\(k, w*)]. Using the delta method it immediately follows
that
VE@Ea(k,w?) =1) % Nia2(b, +ba.T),

where ].-‘)\ 18 giVGl’l n (417) b = VeC[(bZ‘j p)1<ij<d] b = VeC[<bZ’j’a)1§iJSd],

o ) / B (V2 cos B, /2 5in )
97 T e, X(r0056, 3580071

Wr(do), i #j, and

1
bi'oz -
’ W(U:-)

/ (AP ()\fj( (\/ﬁcos 0,v/2sin 9) V2cos0,v/2sin#, a) W*(do) x
by,

H(E3) b(m)(ﬂ cos @, v/2sin 0)
> @ o /0 W (d6).

1<p< <d €Qs, Ne(y/2cosf,v/2sin b, a  Poa)

Using (4.17), we can define an estimator of T'y.

—1

Definition 4.18. We define the estimator of Tx = (7} x)1<izik4; by T, = (V5 k) 1<t ot
with

ikt = Oa =+ Oija+ Okta + Oijiks (4.21)
the o are defined in (4.18)—(4.20), where o, p;; and py are replaced by their estimators
alk,w), pw(k: w*) and pyy(k,w*), respectively, the sets U* and Q* are replaced by their
estimators U N U* and @ N @*, respectively, and the covariances E (RJ()EM()> are
replaced by their estimators E <§,]()§kl()> using (4.15) and (4.16) and estimating \X
by AP,
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The asymptotic properties of Aemp , Q, ﬁf‘j in combination with the delta method yield

immediately the following result.

~

Theorem 4.19. Under the reqularity conditions (C1)-(C3), the estimator vec[T',] is con-

sistent and asymptotically normal.

Estimation of dependence in extremes is always a difficult topic, for some methods
of estimation of A} (1,1) and pitfalls we refer to Frahm, Junker, and Schmidt (2005).
The problem of estimating tail dependence lies in its definition as a limit, see (4.1).
Estimators of the tail dependence are based on a sub-sample using the largest (or smallest)
observations. Concerning the optimal choice of the threshold, we refer to Danielsson,
de Haan, Peng, and de Vries (2001), Drees and Kaufmann (1998) and to Kliippelberg
et al. (2005a, 2005b).

Remark 4.20. It may happen that the correlation matrix estimators (4.4) or (4.14) are
not positive definite. In this case we use the approach of Higham (2002), i.e. we replace

R by the (positive definite) correlation matrix R* solving

IR —R*

, = min { Hﬁ — RH2 : R is a correlation matrix} ,

where Rz = 37, . pf; is the Euclidean or Frobenius norm of a matrix R = (pi;)1<i j<a- Let
R have spectral decomposition R = QDQ” with Q orthogonal and D = diag(k1, ..., Kq).
By Higham (2002, Theorem 3.1 and 3.2), Py(R) := R — diag(R —1I) is the projection of
R to the set of symmetric matrices with diagonal 1 and Ps(R) := Q diag(max(x;,0)) Q"
is the projection of R to the set of positive definite matrices, respectively. Then, Higham

(2002, Algorithm 3.3) calculates Y; converging to R* with respect to the Frobenius norm

as 1 — oo: R
ASy—0,Y,=R
forte=1,2,...

Z; = Y;1—-A8,
X; = Ps(Z;)
NS, = X, —Z;
Y, = Pu(X))
end.

Considering covariance matrices, we do not need the projection F. Hence, if we observe
not positive definite covariance estimators (4.6) or (4.21), we project them to the set of

positive definite matrices by Ps (f)

5 The new methods at work

Using the estimators (4.4) and (4.6) or (4.14) and (4.21) together with the quadratic form

discrepancy function (3.6), we can now apply copula structure analysis. In the following,
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we consider the copula factor model, i.e. we choose the setting Cx = Cv), where
L € R¥>*™ V € R4 is a diagonal matrix with nonnegative entries and € € &,,,4(0,1, G);
also see Remark 3.2(iii).

As for the test statistic 7" based on the quadratic form discrepancy function (3.6) we

first compare in a simulation study 7 to its limiting y2-distribution. Therefore, we define

by
Top = n%leiélDQD <?T,r('t9)|l"T>

the quadratic form test statistic obtained from the Kendall’s tau based estimators 7, =
vec[R;] and I'; given in (4.4) and (4.6), respectively.

Similarly,
Ty = kminDop (Far@)|Th),

where k is the number of the largest order statistics used for estimation, ¥y = vec[fb\]
and Iy given in (4.14) and (4.21), respectively. As a weight function we choose a discrete

version of

w(®) = 1—(7%4—1)2, ogegg, (5.1)

both for the estimation of & and R given a copula C € EC(R,G), G € RV_,, and « > 0.
We also compare the copula factor model to the classical factor model X = (L, V)&,
€ € &,:4(0,1,G). To this end we define

ngp = nglin Dqp (?emp,r('ﬂﬂ femp) ,
€O
where Pepp = vec[ﬁemp] is the vector of the standard empirical correlation estimator with
its asymptotic covariance matrix estimator femp under normal assumptions, for details
see Browne and Shapiro (1986).

The parameter ¥ is then estimated also in three different ways, denoted by @T, 9 A and

1A99mp, by minimizing 7¢p, Té‘D and TGp", respectively.

Example 5.1. [Model selection by y?-tests]

To see the performance of the quadratic form test statistics T3, and T3, we perform a
simulation study. We choose a d = 10 dimensional setting with m = 2 factors and loadings
as given in Table 1. Then LL” +V? = R is a correlation matrix.

Define a multivariate ¢,-copula as the copula of the random vector GN, where G ~
Va/x2 , a > 0, is independent of N ~ AN(0,R). Note that the t,-copula is elliptical
and, since G € RV _,, its tail copula satisfies (4.3). Choose o = 3, then GN has finite
second moment, but its fourth moment does not exist. Hence, classical factor analysis
cannot be applied to GN, see Proposition 7?7 and Theorem 3.7. Also, if the model with
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Component‘ 1 2 3 4 5 6 7 8 9 10
L., 9 9 9 9 9 0 0 0 0 O

L., o 0 0 0 0 9 9 9 9 9
diag(V®) .19 .19 .19 .19 .19 .19 .19 .19 .19 .19

Table 1: Factor loadings of Example 5.1

a < 8 is considered, which has finite fourth moment but non-existing eight moment, the
estimator of I' will only be consistent and large sample sizes may be necessary to observe
the limiting y? distribution of the test statistic 7. As the test statistics T4 and TQ\D are
based on the copula of the sample, they are not affected by the existence or non-existence
of moments.

We simulate 500 iid samples of length n = 1000 of the t3-copula, calculate the
Kendall’s tau based estimators (4.4) and (4.6) and estimate T4y, from these. To ensure
uniqueness of the loadings, we use the restriction that L¥V 2L is diagonal, hence we
have m(m —1)/2 = 1 additional constraints, see Lawley and Maxwell (1971, Section 2.3).
Using this restriction and the 2-factor setting, T¢), should be (for a large sample) X¢2if
distributed with df = d(d —1)/2 — dm + m(m — 1)/2 = 26 degrees of freedom; see Theo-
rem 3.7. Therefore, we compare the 500 estimates of 7¢), with the X3s-distribution by a
(Q-plot, see Figure 1, left plot. From this plot we see that the distribution of T¢), fits the
X3s-distribution quite well. Similarly, we estimate TéD based on the tail copula estima-
tors (4.14) and (4.17) with weight function (5.1) using the same samples as for T4, and
based on the k£ = 100 largest observations; see Figure 1, right plot. Also here we observe
a reasonable fit to the y34-distribution — not as good as before since the estimators are
calculated from a smaller (sub)sample. Note that under the assumption of m = 1 factor
the corresponding T¢)p’s and T SD’S were always larger than 600, which clearly rejects the

1-factor hypothesis.

Example 5.2. [Oil-currency data)]

In this example we consider an 8-dimensional set of data, (oil, s€/p500, gbp, usd, chf, jpy,
dkk, sek), i.e. we are interested in the dependence structure between the oil-price, the
S&P500 index and some currency exchange rates with respect to euro. Each time series
consists of 4904 daily logreturns from May, 1985 to June, 2004. To this data set we fit
a copula factor model using the Tqp", T4, and TéD statistics for estimation and model
selection. Estimation of T(Q\D is based on the k& = 300 largest observations. The values of
these test statistics, based on different numbers of factors are given in Table 2. To estimate
the number of factors, we use a 95% confidence test, i.e. we reject the null hypothesis of
having a m-factor model if the test statistic 7" is larger than the 95%-quantile of the
Xif—distribution. This yields 4 factors under the empirical, Kendall’s tau based and tail

copula based test statistics.
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Kendall’s tau based estimator Tail copula based estimator

40 50
0

X3-quantiles
30
X3e-quantiles
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5 5
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(Tp)(in) (T4p) i)

Figure 1: QQ-plot of ordered estimates T against the y34-quantiles.
Left plot: T¢), obtained from Kendall’s tau based estimators (4.4) and (4.6).
Right plot: T(SD obtained from tail copula based estimators (4.14) and (4.17).

number of factors df ‘ Ton, Tap  Top ‘ X3£.0.95

2 13 | 298.5 252.7 52.7 | 22.36
3 71337 174 240 | 14.07
4 2123 3.3 0.9 |5.99

Table 2: Test statistics Tgp,", Tgp and TéD of oil-currency data under different number of
factors.

Applying factor analysis based on the different correlation estimates (and their asymp-
totic covariance estimates) yield different results; see Figure 2. The first four plots show the
loadings of the four factors, obtained from the empirical correlation estimator, Kendall’s
tau based and tail copula based estimator. The last plot shows the loadings of the specific
factors for all three correlation estimators.

We want to emphasize that, although we have plotted the factors in the same figures,
the factors obtained by the three different estimation methods are not known and may
have different interpretations. We call them empirical factors, Kendall’s tau factors and
tail copula factors.

For the first factor all loadings of the different correlation estimators behave very
similar with respect to factor 1, which has a weight close to one for usd. Hence, factor
one can be interpreted as the usd-factor. It also can be seen that this factor has a positive
weight for all currencies, but not for the oil-price and s&p500 (almost 0 or very small
negative), and the largest dependence is observed for ghp, and jpy.

For factor 2 we observe for all correlation estimators a large weight on Swiss Francs
chf, so we call it chf-factor. We observe that the empirical and Kendall’s tau factor has

almost no (or only little) correlation with oil, s&p500, gbp, usd and jpy. The weights on
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dkk and sek are larger and also moderate for gpd for the tail copula factor indicating that
extreme dependence between all European currencies is present.

Considering factor 3, we see for the empirical and Kendall’s tau factor a large loading
for sek and dkk with only little impact on the other components. If scandinavian currencies
were merged, then only a specific factor would remain. The tail copula factor indicates
moderate dependence between oil and gbp.

From factor 4 we observe for the empirical factor a loading close to one for the oil-price
and loadings close to 0 for the rest of the factors. This indicates that a 3-factor model
is sufficient in this case. In combination with the model selection procedure as seen in
Table 2 this indicates that the distribution of T(Z%p is far away from a y? distribution. For
the Kendall’s tau factor there is some dependence between the European currencies and
the usd. The tail copula factor behaves different: there is dependence observed between
large positive jumps of s&ph00 and large negative jumps of the oil price which would not
be detected when only considering the other correlation estimators.

Finally, we give an interpretation of the specific factors, where we find the correlation
which is not explained through the common factors. For the empirical factor oil is com-
pletely explained by factor 4, which is the specific factor for oil, and s&p500 has a loading
close to one, showing there is (almost) no correlation to oil and the other currencies. For
the Kendall’s tau factor, oil and s&p500 are uncorrelated and uncorrelated from the rest.
Contrary, for the tail copula factor, oil and s&p500 are not uncorrelated from the common
factors. Oil has a rather large specific loading factor, but s&p500 is explained to a large
extend by factor 4.
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Figure 2: Oil-currency data: factor analysis based on 4 factors and different statistics,

for the loadings @emp, "tau” for 1/9\7 and ”tail” for 9 A

Upper row: loadings of factor 1 (left) and 2 (right).

Middle row: loadings of factor 3 (left) and 4 (right).

Lower row: specific factors diag(V?).
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6 Proofs

Proof of Theorem 4.9: Define t := vec['f‘] and t := vec[T]. Since t is a vector of

U-statistics, and, obviously,
E (sign (X1; — Xa,) (X1; — X2))?) < o0, i#7,

Lee (1990, Chapter 3, Theorem 2) applies (together with the remark at the end of p.7
therein that all results also hold for random vectors). The covariance structure is stated
in Lee (1990, Section 1.4, Theorem 1), hence

Vit —t) -5 Nyan2(0,47) , n— oo,

where T = (730 — Tikal)lgi;,éj’k#lSd and 7,4 is given in (4.5). Note that the Jacobian
matrix D := 0 (sin (¢7/2)) /Ot is a diagonal matrix with
diag(D) = gcos (gt) :

Hence, by the delta method (see Casella and Berger (2001, Section 5.5.4)),
\/ﬁ(?— ’I") i> Nd(dfl)/g (0,4DTTD) , N — 00,

and the proof is complete.

Proof of Theorem 4.11: We first consider 7;;x and rewrite it as a linear combination
of some U-statistics. Define for 1 <a<b<c<n

OPM (0, my) = sign[(zay — 2,0)(Tay — T0)] sigN [(Ta — o) (Tag — 30)]
ot = UM (@, 3, T,)

= sign [(2a; — Tp4)(Tay; — b )] sign [(Tak — Tep)(Tag — Tey)]  and

q)gj,kl(xa,xb’xc) — (q)w,kl + q)l],kl + q)zj,kl + (I)zj,kl + (I)zj,kl + (I)ZJ,kl) )

6 abc ach bac bea cab cba

5.kl i,k o :
Hence, &5 and @5 are symmetric in their arguments. Next, define

~i7,kl . ij,kl

gt = —= Y oYX, X,) and
’ 7’L(7’L o 1) 1<a<b<n ’

~i7,kl . 1.kl

U = E oI X,, Xy, X ),
’ TL(TL o 1>(n o 2) 1<a<b<c<n ’ ’ ’

and note that both are U-statistics. Obviously,
g 2 g 2
E ((@;J’kl(xl,X2>) ) <oo and F ((q)?’kl(Xl,XQ,Xg)) ) < 00,
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therefore, by Lee (1990, Chapter 3, Theorem 2), the vector of all 75" and 75" is consis-

tent and asymptotically normal. Since

1 —1) 4, —1 —2) i
E (n(ng )u],k:l 1 n(n )(n )u],kl) ’

n(n—1 2 6 ’

Tij kl

Tijki 18 a linear combination of U-statistics and is therefore also consistent and asymptot-
ically normal. The result then follows using the delta method.

Proof of Theorem 4.16: First, by homogeneity,
AMV2cos 0y, v/2sin 05, v, p) = V2\(cos b5, sin b5, av, p)

holds. Let "=’ denote weak convergence in the space of all functions f : Ri — R which
are locally uniformly-bounded on every compact subset of Ki. Next, extending Schmidt

and Stadtmiiller (2005, Theorem 6) from the bivariate to the d-dimensional setting, we

have
- 09
VE (X2(; k) = 3 (@)) > Bla) - Z 5o X (@) Bi(x)
where B;(z) = B(c0,...,00,x,00,...,00), x is the i-th component and B is a zero mean

Wiener process with covariance structure E(B(z)B(y)) = M (z A y).

To show asymptotic normality we use an extended version of the classical delta-
method, for details see van der Vaart and Wellner (1996, p.374). First, note that for
all i # j and for A defined in (4.3)

ei%f IN(V2cos0,V/2sin 6, a, pij)| > 0,

€Q;;

Girlljf INP(V2cos6,v/2sin 6, a, pij)| >0 and
euy;

sup |(A7")*(V2cos 0, v2sin b, a, p;;)| < oo.

0eU;;

Next, define 7C as the set of all d-dimensional tail copulae. By Schmidt and Stadtmiiller
(2005, Theorem 1(iii)) a tail copula is Lipschitz-continuous, hence 7C is a subset of a
topological vector space. Abbreviate for A defined in (4.3) and p € 7C with f;; being the
17-th marginal of

Qi (0, p,p) = A°T° <,uij(\/§cos 0,v/2sin6); V2 cos 0, V/2sin G,p) , and
pij (0, ) == ATF <u,~j(\/§cos 0, \/§sin0); V2 cos ), v/2sin 9,a> )
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Next, define for some correlation matrix R = (p;;)1<i j<a

1 1

a(p,R) = - / ;i (0, u, pi;) W(do),
1 ~ «

PR = i | L, PO alp R W (a0), - and

r(u,R) = vec [(pij(,uvR))lgi,jgd}'

m—00

Write a (1) := a(u,R) and note that o () is Hadamard-differentiable, i.e. let ¢, — oo

m—0o0

and h,, — h € TC such that u+ h,,/t,, € TC for all m. Then, using Taylor expansion,

T}Liinoo b (@t + B [1) — ()

hij(\/ﬁ cos 0, /2 sin 0)

1 1
d(d— 1) ; w(Q3) /eeQ;;- N (V2eost, v2sinb, ap), pij) i
=: aL(h),

which obviously is a linear map. Analogously, p;;(1t) = pi;(1t,R) is Hadamard differen-
tiable, i.e.
it (pig (14 o /) = pig (1))

B 1 / hij(\/ﬁcose,\/isiHG) n
W=(U}) oeuy, NP (\/§COS 0, ﬁsin&,a(u),pij)

+ o, (R)(ATF) (,Uij(\/iCOS 0,V2sin0); V2cos 6, V2sin 6,04(/1)) W*(do)
= p;j;,u(h)’

and similarly for r(u,R). Since R,—-R= 0,(1/Vk),

polk,w’) = py (N (5k).R, ).

and similarly for 7(k, w*), the delta method yields

Vi @k w) —r) 5 i (B).

The result then follows using

£ (@), (D)) = oo oo o

with 04, 0ijas Okia, 0ij defined through (4.18)-(4.20).
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