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Abstract

In this paper we develop a so called relative survival analysis, that is used to

model the excess risk of a certain subpopulation relative to the natural mortality

risk, i.e. the base risk that is present in the whole population. Such models are

typically used in the area of clinical studies, that aim at identifying prognostic fac-

tors for disease specific mortality with data on specific causes of death being not

available. Our work has been motivated by continuous-time spatially referenced

survival data on breast cancer where causes of death are not known. This paper

forms an extension of the analyses presented in Sauleau, Hennerfeind, Buemi and

Held (2007), where those data are analysed via a geoadditive, semiparametric ap-

proach, however without allowance to incorporate natural mortality. The usefulness

of this relative survival approach is supported by means of a simulated data set.

Key words: Relative Survival, Bayesian penalized splines, Gaussian Markov Random

Fields, MCMC, structured hazard regression, breast cancer

1 Introduction

Many clinical studies aim at identifying prognostic factors for disease specific mortality.

However, data on specific causes of death is often not available or not reliable (Percy,

Stanek and Gloeckler (1981)) and thus it is not possible to differentiate between cases of
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death that are actually related to the disease of interest and those cases of death that

are related to other causes that are independent of this disease. Since the composition of

patients in a clinical study usually is quite heterogeneous concerning covariates like age

(which is the main influencing factor for natural mortality), the natural mortality risk may

differ heavily between patients. Thus it might very well be the case that a higher number

of deaths is observed with older people although a disease is more likely to be lethal with

younger people. In such situations the Cox model is not suitable since therewith it is not

possible to distinguish whether a variable such as sex or age has an effect on disease specific

mortality, on natural mortality or on both. Consequently this model will deliver effects

that represent some mixture of the effects on natural and disease related mortality and

may therefore be misleading regarding the identification of prognostic factors. Moreover,

comparisons of the results from different population–based prognostic studies are difficult

due to differences in the natural mortality of the populations. A remedy to this problem is

provided by a relative survival analysis which allows for a correction for the effect of other

independent causes of death by using the natural mortality in the underlying population

as a reference.

Several models for relative survival analysis in a frequentist setting have been discussed

in the literature. Esteve, Benhamou, Croasdale and Raymond (1990) assume that the ob-

served hazard for total mortality is the sum of two hazards, namely the expected, natural

mortality hazard and a disease related mortality hazard. Whereas the first component

is obtained from external sources the disease related hazard is estimated parametrically

assuming a piecewise constant baseline effect and time–constant fixed effects of covari-

ates. This approach was extended by Bolard, Quantin, Esteve, Faivre and Abrahamowicz

(2001) and Giorgi et al. (2003) by allowing for time–varying effects, i.e. dropping the

proportional hazards assumption. Bolard et al. (2001) consider time–by–covariate in-

teractions originally proposed by Cox (1972) as well as piecewise proportional hazards,

developed by Moreau, Le Minor, Myquel, Lellouch (1985) for ordinary survival analysis.

The drawbacks of these methods are that temporal variations in the effects of covariates

are limited to pre–specified parametric forms of interaction functions and step–functions

on pre–specified time intervals, respectively. A more flexible method is proposed by Giorgi

et al. (2003) who assume quadratic B–splines with two inner knots for the baseline effect

as well as for time–varying effects of covariates. In the Bayesian approach we present here
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we extend the model of Esteve et al. (1990) by modelling the disease related hazard with

a flexible geoadditive predictor as developed for ordinary survival models in Hennerfeind,

Brezger & Fahrmeir (2006), that may include a log–baseline effect, nonlinear effects of

continuous covariates and time–varying effects modelled by penalized splines (P–splines),

as well as a spatial effect, random effects and the usual fixed effects.

The rest of this article is organized as follows. In Section 2 we describe models, likelihood

and priors for unknown functions and parameters. Some comments on the inference via

MCMC are given in Section 3. To illustrate our approach we present an application to

data on the survival of women suffering from breast cancer in Section 4. Reliability of

our approach is verified in Section 5 by means of a simulated data set with known risk

profile.

2 Model, likelihood and priors

2.1 Observation model and likelihood

Consider right–censored survival data in usual form, i.e., it is assumed that each individual

i in the study has a lifetime Ti (denoting survival time until death of any cause) and a

censoring time Ci that are independent random variables. The observed lifetime is then

ti = min(Ti, Ci), and δi denotes the non-censoring indicator given by

δi =

⎧⎨
⎩ 1 Ti ≤ Ci

0 else

The data are then given by

(ti, δi; ai, covi), i = 1, . . . , n, (1)

where ai denotes age at diagnosis and covi is the vector of covariates (possibly including

age as well). Covariates may also be time–dependent, but we restrict discussion to time–

constant covariates for simplicity. The same applies to left truncation, which might easily

be included, but it is not discussed here for facility of inspection. Following Esteve et al.

(1990) we assume that the hazard rate for total mortality λi(t, ai, covi) := λi(t) at time t
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after diagnosis of an individual i is defined as the following sum of two hazards:

λi(t, ai, covi) := λi(t) = λe
i (ai + t, covsub

i ) + λc
i(t, covi) (2)

= λe
i (ai + t, covsub

i ) + exp (ηi(t, covi))

The first summand λe
i (ai + t, covsub

i ) represents the expected hazard for natural mortality

in a population and is obtained from mortality tables using external sources, i.e. there

are no unknown parameters involved here. This component depends only on age at time

t after diagnosis (i.e. ai + t) and covsub
i , a subvector including those covariates in covi

mortality tables account for (usually sex and period). The second summand λc
i(t, covi) is

the disease related mortality hazard rate which is estimated from the data at hand. This

component is modelled by a flexible, possibly geoadditive predictor. To simplify notation

the dependence on covsub
i and covi, respectively will be suppressed in the following, i.e. we

define λe
i (ai + t, covsub

i ) := λe
i (ai + t) and λc

i(t, covi) := λc
i(t). Depending on what kind

of covariates are given in covi := (zi, xi, si, vi), the predictor may be composed of the

following summands:

ηi(t, covi) := ηi(t) = g0(t) +

p∑
j=1

gj(t)zij +

q∑
j=1

fj(xij) + fspat(si) + v′
iγ + bgi

, (3)

where g0(t) = log{λ0(t)} is the disease related log–baseline hazard, gj(t) are time–varying

effects of covariates zj , and fj(xj) is the nonlinear effect of a continuous covariate xj . The

function fspat(s) is a (structured) spatial effect, where s, s = 1, . . . , S is either a spatial

index, with si = s if subject i is associated with area s, or an exact spatial coordinate

s = (xs, ys), e.g. for centroids of regions or if exact locations of individuals are known. The

vector γ is the vector of usual linear fixed effects, and bg is a subject– or group–specific

frailty or random effect, with bgi = bg if individual i belongs to group g, g = 1, ..., G. For

G = n, we obtain individual–specific frailties, for G < n, bg might be the effect of center

g in a multicenter study or the unstructured (uncorrelated random) spatial effect of an

area (i.e. bg = bs), for example. Random slopes could also be introduced, but we omit

this here. For identifiability reasons, we center all unknown functions around zero, and

include an intercept term in the parametric linear term.

Once more, for a interpretation of equation (2) one may say that the natural mortality

hazard λe
i covers the basic mortality risk a population is exposed to and the disease related

hazard λc
i models the excess mortality risk that patients are exposed to beyond the basic
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risk due to the disease they suffer from. From a statistical point of view λe
i is an additive

offset.

Under the assumption about noninformative censoring the likelihood is given by

L =

n∏
i=1

(λi(ti))
δi · exp

(
−
∫ ti

0

λi(u)du

)

Inserting (2) results in

L =
n∏

i=1

(λe
i (ai + ti) + λc

i(ti))
δi exp

⎛
⎝−

ti∫
0

(λe
i (ai + u) + λc

i(u)) du

⎞
⎠

=

n∏
i=1

(λe
i (ai + ti) + λc

i(ti))
δi exp

⎛
⎝−

ti∫
0

λc
i(u)du

⎞
⎠ exp

⎛
⎝−

ti∫
0

λe
i (ai + u)du

⎞
⎠ , (4)

where the last factor does not depend on the parameters to be estimated. Hence the

following proportionality holds

L ∝
n∏

i=1

(λe
i (ai + ti) + λc

i(ti))
δi exp

(
−
∫ ti

0

λc
i(u)du

)
. (5)

This formula only differs from the likelihood of an ordinary survival model of the form

λi(t) = λc
i(t, covi) = exp (ηi(t, covi)) ,

were natural mortality is not accounted for, by the term λe
i (ai + ti).

To obtain a unified and generic notation, we rewrite the observation model in general

matrix notation. This is useful for defining priors in the next subsection and for developing

posterior analysis in Section 3.

Let η = (η1, . . . , ηi, . . . , ηn)′ denote the predictor vector, where ηi := ηi(ti) is the value

of predictor (3) at the observed lifetime ti, i = 1, . . . , n. Correspondingly, let gj =

(gj(t1), . . . , gj(tn))′ denote the vector of evaluations of the functions gj(t), j = 0, . . . , p,

f j = (fj(x1j), . . . , fj(xnj))
′ the vector of evaluations of the functions fj(xj), j = 1, . . . , q,

f spat = (fspat(s1), . . . , fspat(sn))′ the vector of spatial effects, and b = (bg1 , . . . , bgn)′ the

vector of uncorrelated random effects. Furthermore, let g̃j = (gj(t1)z1j , . . . , gj(tn)znj)
′, j =

1, . . . , p.

In the following, we can always express vectors g0, g̃j, f j , f spat and b as the matrix prod-

uct of an appropriately defined design matrix Z, say, and a (possibly high–dimensional)

vector β of parameters, e.g. g̃j = Zjβj, f j = Zjβj, etc. Then, after reindexing, we can

represent the predictor vector η in generic notation as

η = V γ + Z0β0 + . . . + Zmβm. (6)
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2.2 Priors for parameters and functions

The Bayesian model formulation is completed by assumptions about priors for parameters

and functions. For fixed effect parameters γ in (6) we assume locally constant priors

p(γ) ∝ const. A weakly informative normal prior would be another choice. Uncorrelated

random effects are assumed to be i.i.d. Gaussian, bg ∼ N(0, τ 2
b ) with unknown variance

τ 2
b .

Priors for functions and spatial components are defined by a suitable design matrix

Zj, j = 0, . . . , m, and a prior for the parameter vector βj. The general form of a prior

for βj in (6) is

p(βj|τ 2
j ) ∝ τ

−rj

j exp

(
− 1

2τ 2
j

β′
jKjβj

)
, (7)

where Kj is a structure or penalty matrix of rank(Kj) = rj , shrinking parameters toward

zero or penalizing too abrupt jumps between neighboring parameters. For P–splines and

intrinsic Gaussian Markov random field (GMRF) priors (Rue and Held (2005)), Kj will be

rank deficient, i.e., rj < dj = dim(βj), and the prior is partially improper. The variance

τ 2
j is unknown.

For unknown functions fj(xj) or gj(t), we assume Bayesian P–spline priors as in Lang

and Brezger (2004). Random walk priors, suggested in Fahrmeir and Lang (2001), may

be used as smoothness priors for the baseline effect and time–varying covariate effects in

a piecewise exponential model, correspond to the special case of P–splines with degree

zero. The basic idea of P–spline regression (Eilers and Marx (1996)) is to approximate a

function fj(xj) as a linear combination of B–spline basis functions Bm, i.e.

fj(xj) =

dj∑
m=1

βjmBm(xj). (8)

The basis functions Bm are B–splines of degree l defined over a grid of equally spaced

knots xmin = ξ0 < ξ1 < . . . < ξs = xmax, dj = l + s. The number of knots is moderate,

but not too small, to maintain flexibility, but smoothness of the function is encouraged

by difference penalties for neighboring coefficients in the sequence βj = (βj1, . . . , βjdj
)′.

The Bayesian analogue are first or second order random walk smoothness priors

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm (9)

with i.i.d. Gaussian errors ujm ∼ N(0, τ 2
j ) and diffuse priors p(βj1) ∝ const, or p(βj1) and

p(βj2) ∝ const, for the initial values. A first order random walk penalizes abrupt jumps
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βjm − βj,m−1, and a second order random walk penalizes deviations from a linear trend.

The amount of smoothness or penalization is controlled by the variance τ 2
j , which acts

as a smoothness (hyper–)parameter, with hyperprior defined by (11). The joint prior of

the regression parameters βj is Gaussian and can be easily computed as a product of

conditional densities defined by (9) as

βj | τ 2
j ∝ τ

−rj

j exp

(
− 1

2τ 2
j

βj
′Kjβj

)
, (10)

which is the generic form (7).

The penalty matrix Kj is of the form Kj = D′D, where D is a first or second order

difference matrix. For second order random walks, for example, D is given by

Ddj−2×dj
=

⎛
⎜⎜⎜⎝

1 −2 1
. . .

. . .
. . .

1 −2 1

⎞
⎟⎟⎟⎠ .

The matrix Kj has band structure which is very useful for computationally efficient

MCMC updating schemes, compare Rue and Held (2005). It has rank rj = dj − 1 and

rj = dj − 2 for first and second order random walk priors, respectively. The n × dj

design matrix Zj consists of the basis functions evaluated at the observations xij , i.e.,

Zj(i, m) = Bm(xij). Priors for the unknown functions gj(t) are defined in complete

analogy as in (8) and (9). The design matrix for time–varying effect terms g̃j , j = 1, . . . , p

is derived as Zj(i, m) = zijBm(xij).

A common choice for approximating smooth curves are quadratic or cubic B–splines and

a second order penalty. This specification is also preferred by Eilers and Marx (1996) and

Lang and Brezger (2004) in order to obtain sufficiently smooth results. Computationally,

linear splines are simpler. The simplest choice are B–splines of degree zero, i.e. Bm(x) ≡ 1

over the m–th interval, and Bm(x) ≡ 0 elsewhere. Then the effect is approximated by a

piecewise constant function, and the function values follow a random walk model as in

Fahrmeir and Lang (2001). This special choice, with time t as covariate, is the easiest

way to smooth the baseline in the piecewise exponential model; moreover the integral in

the likelihood (4) reduces to a sum. With P–splines of higher degree, however, estimation

of smooth baseline effects is improved in terms of MSEs (compare Hennerfeind et al.

(2006)).

For the structured spatial effect fspat(s) we assume GMRF priors. Two–dimensional tensor

product P–spline priors, or Gaussian random field (GRF) priors, common in geostatistics
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(kriging) would be another choice (see Hennerfeind et al. (2006)). It depends mainly on

the data at hand, which of the different approaches leads to the best fit. For data observed

on a discrete lattice or on the level of geographical regions as in our application, GMRFs

seem to be most adequate, while surface smoothers as 2d P–splines or kriging may be

more natural in situations where exact locations are available.

In the case of GMRF priors (compare Rue and Held (2005), Section 3.3.2) we define areas

as neighbors if they share a common boundary and assume that the effect of an area s is

conditionally Gaussian, with the mean of the effects of neighboring areas as expectation

and a variance that is inverse proportional to the number of neighbors of area s. Setting

fspat(s) := βspat
s we have

βspat
s | βspat

s′ , s′ �= s ∼ N

(
1

Ns

∑
s′∈δs

βspat
s′ ,

τ 2
spat

Ns

)
,

where Ns is the number of neighbors of area s, and s′ ∈ δs denotes that area s′ is a

neighbor of area s. The n × S design matrix Zspat is now a 0/1 indicator matrix. Its

value in the i–th row and s–th column is 1 if observation i is located in site or region

s, and zero otherwise. The S × S penalty matrix Kspat has the form of an adjacency

matrix with rank(Kspat) = rspat = S−1. As for one–dimensional functions the amount of

spatial smoothness is controlled by the variance τ 2
spat. A generalization to weighted means

of neighboring areas is possible but not considered here.

In real data applications we do not know how much of the spatial variation is explained

by structured, spatially correlated effects and how much by unstructured, uncorrelated

effects. Therefore we may fit an additional (unstructured) area–specific random effect.

We recommend to interpret only the sum of the two effects, since identifiability is weak

in that case.

We routinely assign inverse Gamma priors IG(aj; bj)

p(τ 2
j ) ∝ 1

(τ 2
j )aj+1

exp

(
− bj

τ 2
j

)
(11)

to all variances. They are proper for aj > 0, bj > 0, and we use aj = bj = 0.001 as a

standard choice for a weakly informative prior.

The Bayesian model specification is completed by assuming that all priors for parameters

are conditionally independent, and that all priors are mutually independent.

8



3 Markov chain Monte Carlo inference

Let β = (β′
0, ..., β

′
m)′ denote the vector of all regression coefficients in the generic no-

tation (6), γ the vector of fixed effects, and τ 2 = (τ 2
0 , ..., τ 2

m) the vector of all variance

components. Full Bayesian inference is based on the entire posterior distribution, which

factorizes into the product of the likelihood and the prior:

p(β, γ, τ 2 | data) ∝ L(β, γ, τ 2) p(β, γ, τ 2).

Due to the (conditional) independence assumptions, the prior factorizes into

p(β, γ, τ 2) =

{
m∏

j=0

p(βj | τ 2
j )p(τ 2

j )

}
p(γ),

where the last factor can be omitted for diffuse fixed effect priors. The likelihood

L(β, γ, τ 2) is given by inserting (3) into (5). Note that the integral does not require

integration over the natural mortality hazard λe
i (ai + t) (which is fixed anyway), but just

over terms of the form

Ii =

∫ ti

0

exp

(
g0(u) +

p∑
j=1

gj(u)zij

)
du,

where gj(t) =
∑

βjmBm(t). For linear B–splines, the integrals can be solved analytically,

but expressions are rather messy and the computational effort is quite high, see Cai, Hyn-

dman and Wand (2002), Appendix. Following their suggestion, we use simple numerical

integration in form of the trapezoidal rule for linear B–splines as well as for the commonly

used cubic B–splines, where analytical integration is not possible anyway.

Full Bayesian inference via MCMC simulation is based on updating full conditionals of

single parameters or blocks of parameters, given the rest of the data. For updating the

parameter vectors βj , which correspond to the time–independent functions fj(xj), as well

as spatial effects βspat, fixed effects γ and random effects b, we use a slightly modified

version of an MH–algorithm based on iteratively weighted least squares (IWLS) proposals,

developed for fixed and random effects by Gamerman (1997) and adapted to generalized

additive mixed models in Brezger and Lang (2006).

Suppose we want to update βj, with current value βc
j of the chain. Then a new value βp

j

is proposed by drawing a random vector from a (high–dimensional) multivariate Gaussian

proposal distribution q(βc
j , β

p
j), which is obtained from a quadratic approximation of the
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log–likelihood by a second order Taylor expansion with respect to βc
j , in analogy to IWLS

iterations in generalized linear models. More precisely, the goal is to approximate the

posterior by a Gaussian distribution, obtained by accomplishing one IWLS step in every

iteration of the sampler. Then, random samples have to be drawn from a high dimensional

multivariate Gaussian distribution with precision matrix and mean

P j = Z ′
jW (βc

j)Zj +
1

τ 2
j

Kj, mj = P−1
j Z ′

jW (βc
j)(ỹ − η̃).

where η̃i = ηi(ti)−fj(xij), W (βc
j) = diag(w1, . . . , wn) is the weight matrix for IWLS with

weights

wi = Λc
i(ti) −

λe
i (ai + ti)λ

c
i(ti)δi

λi(ti)2

obtained form the current state βc
j and with Λc

i(ti) =
∫ ti

0
λc

i(u)du. The working observa-

tions ỹi are given by

ỹi = ηi(ti) +
δiλ

c
i(ti)/λi(ti) − Λc

i(ti)

wi

.

See Hennerfeind (2006), Appendix A2, for a detailed derivation of those quantities. The

proposed vector βp
j is accepted as the new state of the chain with probability

α(βc
j, β

p
j ) = min

(
1,

p(βp
j | ·)q(βp

j , β
c
j)

p(βc
j | ·)q(βc

j, β
p
j )

)

where p(βj | ·) is the full conditional for βj (i.e. the conditional distribution of βj given

all other parameters and the data).

4 Application

We illustrate our method by an application to data on breast cancer that was gathered in

the years from 1988 to 2002 by a cancer registry that covers the Haut–Rhin ’department’

which is located in the north-east of France, adjacent to Germany and Switzerland. This

department has 3525 km2 and 707555 inhabitants (in 1999) and is partitioned into 377

municipalities. The largest distance between the centroids of two municipalities is about

95 kms. The data set contains 3726 cases of breast cancer diagnosed between January the

1st 1988 and January the 1st 1998. There were 1235 (≈ 33%) deaths observed whereas

the causes of death are unknown. Observed lifetimes are given in days and range from 0

to 14 years, with a median of 6.4 years. Covariates are age at time of diagnosis (ranging
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from 20.6 years to 87.1 years), date of diagnosis (ranging from 1988.0 (i.e. 01.01.1988) to

1998.0), area of residence (one of 377 municipalities) and number of metastases at the

date of diagnosis (no metastasis, one metastasis or more than one metastasis). This is

part of a data set that has been analyzed via ordinary survival analysis in Sauleau et al.

(2007).

For comparison only we analyze the data with an ordinary survival model although this

model does not account for natural mortality and is thus not appropriate to the data at

hand where causes of death are not available. Generally the specification of the hazard

rate is given by

λi(t, covi) = exp(ηi(t, covi)) (12)

covi = (ai, pi, si, meta1i, meta2i),

where t is time since diagnosis and covi is the vector of covariates with ai denoting the

age of patient i at date of diagnosis pi (period), si denoting the municipality patient i

resides in and the dummy–coded covariates meta1i and meta2i denoting, whether patient

i has one metastasis and more than one metastasis, respectively.

A relative survival analysis should be more suitable and deliver better results. Therefore

we alternatively assume a composed hazard rate of the following structure

λi(t, covi) = λe
i (ai + t, pi + t) + exp(ηi(t, covi)) (13)

covi = (ai, pi, si, meta1i, meta2i),

where λe
i (ai + t, pi + t) is the natural mortality rate of women of age ai + t at date

pi + t as recorded in mortality tables for the Haut–Rhin department. The second term

λc
i = exp(ηi(t, covi) represents the disease related hazard rate and is modelled in the same

way as the hazard rate in (12).

A hierarchy of models is analyzed with both approaches and compared via the Deviance

Information Criterion (DIC) developed in Spiegelhalter, Best, Carlin and van der Linde

(2002). It is given as

DIC = D(θ) + 2pD = D(θ) + pD,

where θ is the vector of parameters, D(θ) is the deviance of the model evaluated at

the posterior mean estimate θ, D(θ) is the posterior mean of the deviance and pD =

D(θ) − D(θ) is the effective number of parameters. Since it is at least unclear, how the
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saturated model should be defined in the case of survival data when the baseline hazard

and other nonparametric functions are parameters of interest, we use the unstandardized

deviance D(θ) = −2·log–likelihood instead of the saturated deviance. Note however, that

the proportionality in (5) was used for the calculation of the DIC in the case of a relative

survival model and the DIC resulting from a relative survival model is not to be compared

to the DIC resulting from an ordinary survival model.

Whilst a log–baseline effect g0(t) modelled by a cubic P–spline prior with 20 knots is

included in any model, covariate effects are only included gradually. Effects fa(ai) and

fp(pi) of continuous covariates are modelled by cubic P–splines with 20 knots. An un-

structured (random) spatial effect bsi
is included additionally or alternatively in some of

the models. Table 1 gives values for fit and complexity of a selected number of models

according to the two components of the deviance information criterion. Model I, which

contains a structured spatial effect modelled by a GMRF–prior, the effect of the number

of metastases and the effect of age, yields a DIC of 9308 for the ordinary survival model

with hazard rate (12) and 9249 for the relative survival model. Leaving out one or more

of these effects leads to a larger DIC. As Table 1 shows the DIC is slightly reduced by

the additional inclusion of a period effect. Models III and IV are versions of model II

where the spatial effect is modelled by an unstructured (random) effect bs and the sum

of a structured and an unstructured effect, respectively. However, those models will not

be discussed here since they do not lead to an improvement in terms of DIC.

Figure 1 displays the estimated nonparametric effects of model II with predictor

ηi = g0(t) + fa(ai) + fp(pi) + fspat(si) + γ1meta1 + γ2meta2.

All unknown functions are centered around zero, and an intercept term is included in the

parametric linear term for identifiability reasons. For plotting, the estimated effects of

age ai and period pi are all centered at the observed values, i.e.

3726∑
i=1

f̂a(ai) =

3726∑
i=1

f̂p(pi) = 0,

while the intercept is added to the log–baseline effects. Hence it can be derived from Figure

1(a) and (b) that the estimated global risk level is higher with the ordinary survival model

(since the log–baseline effect resulting from an ordinary survival analysis exceeds the log–

baseline effect resulting from a relative survival analysis). This results from the fact that
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the ordinary survival analysis delivers an estimation of the risk of dying of any cause,

whereas only the disease related excess mortality risk of breast cancer patients is estimated

by means of a relative survival analysis, where the natural mortality risk is accounted for

separately. Panels (a) and (b) further reveal that the ordinary survival analysis yields

a fairly constant log–baseline effect g0(t), whereas a relative survival analysis results in

an effect, that is increasing in the first two years and decreasing in the time between the

third and the 11th year after diagnosis. Presumably the decrease in risk is not reflected

in panel (a) as not accounting for natural mortality that is increasing with time after

diagnosis (since patients are aging) might lead to a neutralization. The estimated effects

of age at time of diagnosis exhibit an u–shaped risk profile and are displayed in panels

(c) and (d). While an ordinary survival analysis yields an increased risk for patients

diagnosed with breast cancer in their younger days, but a still much higher risk for those

women diagnosed at an age of more than 70 years, a relative survival analysis suggests

that women diseased in early life have the greatest risk. This result is in accordance

with the fact that cancers are often more aggressive with younger people. The differences

between the two approaches were to be expected since older women have a higher natural

mortality risk that is not accounted for separately with the ordinary, but only with the

relative survival analysis.

As displayed in panels (e) and (f) both approaches yield a higher risk for patients that

were diagnosed with breast cancer in earlier periods. This effect might be explained by

medical progress. Figures 2 (a) and (b) display the values of the structured spatial effect

in each municipality. The two approaches yield a similar spatial pattern, but it is more

pronounced with the relative survival analysis. The risk seems to be higher in the south of

the region. For a nominal level of 95% none of these effects has strictly positive or negative

credible intervals, i.e for none of the regions more than 95% of the posterior samples are

either all positive or all negative. However, a couple of regions exhibit strictly positive

or strictly negative credible intervals for a nominal level of 80%, such as some regions in

the north–east that have a lower risk (Figures 2(c) and (d)). The estimated parameters

γ̂1 and γ̂2 for the fixed effects of meta1 and meta2 are greater with the relative survival

approach. In detail the results are as follows:
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ordinary survival relative survival

Model D(θ̄) pD DIC D(θ̄) pD DIC

I g0(t) + f(a) + fspat(s) + meta 9268 20 9308 9208 20 9249

II g0(t) + f(a) + f(p) + fspat(s) + meta 9259 24 9307 9200 23 9246

III g0(t) + f(a) + f(p) + bs + meta 9264 24 9312 9205 24 9253

IV g0(t) + f(a) + f(p) + fspat(s) + bs + meta 9250 29 9308 9192 28 9248

V g0(t) + f(a) + f(p) + fspat(s) + g(t) ∗ meta 9239 28 9296 9187 27 9241

Table 1: Deviance, effective number of parameters pD and DIC for some of the models we

compare.

ordinary relative

γ̂1 0.66 (st.dev. 0.06) 0.96 (std.dev. 0.08)

γ̂2 2.23 (st.dev. 0.14) 2.74 (std.dev. 0.15)

meaning that compared to patients with no metastases the hazard rate is about 1.9 (9.3)

and 2.6 (15.5) times higher for patients with one (more than one) metastasis, respectively.

In praxis the proportional hazards assumption does often not hold, and Sauleau et al.

(2007) have shown that an ordinary survival model actually gives clear hints for a violation

of the proportional hazards assumption. For this reason the number of metastases is

included as a covariate with time–varying effect in model II, i.e. the disease–related log–

hazard of model V is

λc
i = exp (g0(t) + meta1i · g1(t) + meta2i · g2(t) + fage(ai) + fp(pi) + fspat(si)) .

Here g0(t) is the log–baseline effect for patients without metastases, g0(t) + g1(t) corre-

sponds to the log–baseline for patients with one metastasis and g0(t) + g2(t) for patients

with more than one metastasis. The time–dependent functions gk(t), k = 0, 1, 2 are mod-

elled with cubic P–spline priors with 20 knots. As displayed in Table 1 the DIC is reduced

by allowing for a temporal variation in the effect of the number of metastases. The three

log–baseline effects are plotted in Figure 3 and reveal that the differences in risk between

the patient groups seem to diminish with time after diagnosis. The log–baseline effect for

patients with more than one metastasis even crosses the other curves, but this result must

not be over–interpreted since there are only 70 patients with more than one metastasis in

the study. The remaining estimated effects of model V resemble the results of model II

and are not shown for this reason.
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Figure 1: Model II: Posterior means and pointwise 80% and 95% confidence intervals for the

baseline effect including the intercept term (a,b), the centered effect of age (c,d) and the centered

effect of period (e,f). Figures b,d and f result from a relative survival analysis. Black dots in

the lower part of each figure mark observed lifetimes, ages and periods, respectively.
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Figure 2: Model II: posterior means of the structured spatial effect (a, b) and posterior prob-

abilities for a nominal level of 80% (c, d), where black denotes regions with strictly negative

credible intervals and white denotes regions with strictly positive credible intervals. Remaining

gray areas in c) and d) exhibit neither strictly positive nor strictly negative credible intervals.

Panels b) and d) result from a relative survival analysis.
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Figure 3: Model V: posterior means of the log–baseline effects for patients with no metastases,

one metastasis and more than one metastasis (dots in the lowest, middle and highest row mark

observed lifetimes of patients with no metastases, one metastasis and more than one metastasis,

respectively)

5 Simulation

To verify the reliability of our relative survival model and to show that a model that

does not account for natural mortality can indeed be misleading concerning the effects of

covariates in such cases where data on specific causes of death is not available, we simulate

an appropriate data set with known risk profile. Survival times are generated according

to a hazard rate that is the sum of a natural hazard rate and a disease related hazard

rate. This data set is then analyzed with an ordinary survival model and with a relative

survival model like in (2) and the results are compared subsequently.

As for the data generation we simulate survival times based on the covariates of our real

breast cancer data set, using known specifications for the baseline and the covariate effects

that resemble the effects estimated by the relative survival analysis of the real data set.

However, for the sake of simplification we neither consider a spatial effect nor a period

effect. We first simulate survival times for each subject and the censoring is done in a

second step. In detail, survival times Ti, i = 1, . . . , 3726, are generated according to the

following hazard rate model

17



λi(t, ai, meta1i, meta2i) = λe
i (ai + t) + λc

i(t, ai, meta1i, meta2i)

= λe
i (ai + t) + exp(g0(t) + fage(ai) + γ1meta1i + γ2meta2i),

where the natural hazard rate λe
i is chosen in order to resemble the natural mortality

rates used with the application, but only depends on ai + t, which is the age of individual

i at time t after diagnosis. In our application natural mortality also depends on calendar

time, but we did not consider this here. As illustrated in Figure 4(a) the natural hazard

rate is increasing exponentially with age at time t after diagnosis. The disease related

hazard rate λc
i depends on time t after diagnosis, the age at time of diagnosis ai, and

the two binary covariates meta1i and meta2i, which indicate whether an individual i has

one and more than one metastasis, respectively. As displayed in Figure 4(b) the disease

related log–baseline g0(t) is increasing in the first 2.5 years after diagnosis, decreasing in

the time span between 2.5 and 12 years and staying constant afterwards. In contrast to

the natural mortality risk, the effect of age on the disease related risk is u–shaped and

highest with patients diseased in early life, whereas it is less increased with the initially

oldest patients in the study, who are diagnosed with breast cancer at the age of 87 (Figure

4(c)). Finally the disease related log–hazard is increased by γ1 = 0.95 and γ2 = 2.75 for

individuals with one metastasis (meta1i = 1) and more than one metastasis (meta2i = 1),

respectively. Since the data used in our application were only gathered until the year 2002

we consider all survival times exceeding the year 2002 as censored, i.e. observed survival

times are given by ti = min(Ti, 2002.0 − pi) with pi denoting the exact date of diagnosis

observed in the real data set. This mechanism results in a censoring rate of approximately

60% (compared to approximately 67% with the real data set).

The data set generated in this way is initially analyzed with an ordinary survival model

that does not distinguish between natural mortality and disease related mortality. More

precisely we wrongly assume a hazard rate as follows:

λi(t, ai, meta1i, meta2i) = exp(g0(t) + fage(ai) + γ1meta1i + γ2meta2i),

where the log–baseline g0(t) and the age–effect fage are modelled as cubic P–splines with 20

knots (with second order random walk smoothness priors and IG(0.001, 0.001) priors for

the variance components) and γ1 and γ2 are fixed effects with diffuse priors. Expectedly

the estimated log–baseline and the effect of age do not reflect the true disease related
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Figure 4: Simulation: specifications for the natural hazard rate, the disease related log–baseline

effect and the disease related effect of age at time of diagnosis
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effects but rather present a mixture of the two effects on natural mortality and disease

related mortality. The estimated log–baseline effect is increasing in the first years after

diagnosis, but the subsequent decline is less steep than with the true log–baseline effect

(Figure 5(a)). While the disease related log–baseline is decreasing between the 2.5th and

12th year after diagnosis, the natural mortality risk of each single patient is increasing

with time (since people are getting older) and these two effects seem to kind of balance.

As can be seen from Figure 5(c) the ordinary survival model underestimates the risk for

women diagnosed with breast cancer in early years and overestimates the risk of women

diseased at an old age. Again, this high risk for older people results from the increasing

natural mortality risk that is not accounted for separately. Finally also the fixed effects of

the covariates meta1 and meta2 are not estimated correctly, but are rather underestimated

by γ̂1 = 0.68 and γ̂2 = 2.33 (with standard deviations of 0.05 and 0.13, respectively). This

underestimation is due to the fact that only a part of the cases of death (namely those

cases that are related to the disease) are in association with the number of metastases,

whereas the ordinary survival analysis estimates the average influence based on all cases

of death.

Now we re–analyze the generated data set with a relative survival model as described in

(2). That is we assume a hazard rate as follows:

λi(t, ai, meta1i, meta2i) = λe
i (ai + t) + λc

i(t, ai, meta1i, meta2i)

=
exp

(
ai+t−30

10

)
2500

+ exp(g0(t) + fage(ai) + γ1meta1i + γ2meta2i),

where the disease related hazard rate λc
i is modelled as the total hazard rate λi was mod-

elled before. However, the total hazard is now amended by the known natural mortality

rate λe
i in order to account for cases of death that are not related to the disease of interest.

As displayed in Figures 5(b) and (d) the true disease related log–baseline and the effect

of age are now estimated quite satisfactorily, even though the effect of age is a bit too flat

which might be due to the very small number of young patients. Also the fixed effects of

meta1i and meta2i are estimated quite well with γ̂1 = 0.98 and γ̂2 = 2.79 (with standard

deviations of 0.07 and 0.15, respectively).
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6 Conclusion

In summary it can be ascertained that the simulation supports the usefulness of the

relative survival approach since it yields results that are highly comparable to those of

our application. As the simulation has shown, a model that does not account for natural

mortality is not suitable for the identification of prognostic factors for disease specific

mortality in cases where data on causes of death is not available since effects of covariates

on natural mortality and effects on disease specific mortality intermix and can not be

separated easily ex post.
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