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Abstract

In this paper we develop a so called relative survival analysis, that is used to
model the excess risk of a certain subpopulation relative to the natural mortality
risk, i.e. the base risk that is present in the whole population. Such models are
typically used in the area of clinical studies, that aim at identifying prognostic fac-
tors for disease specific mortality with data on specific causes of death being not
available. Our work has been motivated by continuous-time spatially referenced
survival data on breast cancer where causes of death are not known. This paper
forms an extension of the analyses presented in Sauleau, Hennerfeind, Buemi and
Held (2007), where those data are analysed via a geoadditive, semiparametric ap-
proach, however without allowance to incorporate natural mortality. The usefulness

of this relative survival approach is supported by means of a simulated data set.

Key words: Relative Survival, Bayesian penalized splines, Gaussian Markov Random
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1 Introduction

Many clinical studies aim at identifying prognostic factors for disease specific mortality.
However, data on specific causes of death is often not available or not reliable (Percy,

Stanek and Gloeckler (1981)) and thus it is not possible to differentiate between cases of



death that are actually related to the disease of interest and those cases of death that
are related to other causes that are independent of this disease. Since the composition of
patients in a clinical study usually is quite heterogeneous concerning covariates like age
(which is the main influencing factor for natural mortality), the natural mortality risk may
differ heavily between patients. Thus it might very well be the case that a higher number
of deaths is observed with older people although a disease is more likely to be lethal with
younger people. In such situations the Cox model is not suitable since therewith it is not
possible to distinguish whether a variable such as sex or age has an effect on disease specific
mortality, on natural mortality or on both. Consequently this model will deliver effects
that represent some mixture of the effects on natural and disease related mortality and
may therefore be misleading regarding the identification of prognostic factors. Moreover,
comparisons of the results from different population—based prognostic studies are difficult
due to differences in the natural mortality of the populations. A remedy to this problem is
provided by a relative survival analysis which allows for a correction for the effect of other
independent causes of death by using the natural mortality in the underlying population

as a reference.

Several models for relative survival analysis in a frequentist setting have been discussed
in the literature. Esteve, Benhamou, Croasdale and Raymond (1990) assume that the ob-
served hazard for total mortality is the sum of two hazards, namely the expected, natural
mortality hazard and a disease related mortality hazard. Whereas the first component
is obtained from external sources the disease related hazard is estimated parametrically
assuming a piecewise constant baseline effect and time—constant fixed effects of covari-
ates. This approach was extended by Bolard, Quantin, Esteve, Faivre and Abrahamowicz
(2001) and Giorgi et al. (2003) by allowing for time—varying effects, i.e. dropping the
proportional hazards assumption. Bolard et al. (2001) consider time-by—covariate in-
teractions originally proposed by Cox (1972) as well as piecewise proportional hazards,
developed by Moreau, Le Minor, Myquel, Lellouch (1985) for ordinary survival analysis.
The drawbacks of these methods are that temporal variations in the effects of covariates
are limited to pre—specified parametric forms of interaction functions and step—functions
on pre—specified time intervals, respectively. A more flexible method is proposed by Giorgi
et al. (2003) who assume quadratic B-splines with two inner knots for the baseline effect

as well as for time—varying effects of covariates. In the Bayesian approach we present here



we extend the model of Esteve et al. (1990) by modelling the disease related hazard with
a flexible geoadditive predictor as developed for ordinary survival models in Hennerfeind,
Brezger & Fahrmeir (2006), that may include a log-baseline effect, nonlinear effects of
continuous covariates and time-varying effects modelled by penalized splines (P—splines),

as well as a spatial effect, random effects and the usual fixed effects.

The rest of this article is organized as follows. In Section 2 we describe models, likelihood
and priors for unknown functions and parameters. Some comments on the inference via
MCMC are given in Section 3. To illustrate our approach we present an application to
data on the survival of women suffering from breast cancer in Section 4. Reliability of
our approach is verified in Section 5 by means of a simulated data set with known risk

profile.

2 Model, likelihood and priors

2.1 Observation model and likelihood

Consider right—censored survival data in usual form, i.e., it is assumed that each individual
i in the study has a lifetime 7; (denoting survival time until death of any cause) and a
censoring time C; that are independent random variables. The observed lifetime is then

t; = min(7T;, C;), and 0; denotes the non-censoring indicator given by

1 T;<C;
5@' ==
0 else
The data are then given by
(i, 65505, c0v;), i=1,...,n, (1)

where a; denotes age at diagnosis and cov; is the vector of covariates (possibly including
age as well). Covariates may also be time-dependent, but we restrict discussion to time—
constant covariates for simplicity. The same applies to left truncation, which might easily
be included, but it is not discussed here for facility of inspection. Following Esteve et al.

(1990) we assume that the hazard rate for total mortality \;(t, a;, cov;) := \;(t) at time ¢



after diagnosis of an individual ¢ is defined as the following sum of two hazards:
Ni(t, ai, covy) == Ni(t) = X(a; + t, covi™) + N(t, cov;) (2)
= \(a; +t, covf™) + exp (mi(t, cou;))

The first summand \¢(a; + ¢, covs*?) represents the expected hazard for natural mortality
in a population and is obtained from mortality tables using external sources, i.e. there
are no unknown parameters involved here. This component depends only on age at time
t after diagnosis (i.e. a; +t) and covi"’, a subvector including those covariates in cov;
mortality tables account for (usually sex and period). The second summand X (¢, cov;) is

the disease related mortality hazard rate which is estimated from the data at hand. This

component is modelled by a flexible, possibly geoadditive predictor. To simplify notation

the dependence on cov? and cov;, respectively will be suppressed in the following, i.e. we
define X¢(a; + t, covs™?) := X¢(a; + t) and (¢, cov;) := Xé(t). Depending on what kind
of covariates are given in cov; := (z;,x;, S;,v;), the predictor may be composed of the

following summands:
P q
ni(t, covy) == mi(t) = go(t) + Y gi()zij + D fi(@i) + Fapar(s0) + 0y + g, (3)
=1 =1

where go(t) = log{Ao(t)} is the disease related log-baseline hazard, g;(t) are time-varying
effects of covariates z;, and f;(z;) is the nonlinear effect of a continuous covariate x;. The
function fypat(s) is a (structured) spatial effect, where s, s = 1,...,S is either a spatial
index, with s; = s if subject i is associated with area s, or an exact spatial coordinate
s = (xs,ys), e.g. for centroids of regions or if exact locations of individuals are known. The
vector vy is the vector of usual linear fixed effects, and b, is a subject— or group-specific
frailty or random effect, with by; = b, if individual 7 belongs to group g, g =1, ...,G. For
G = n, we obtain individual-specific frailties, for G' < n, b, might be the effect of center
¢ in a multicenter study or the unstructured (uncorrelated random) spatial effect of an
area (i.e. b, = by), for example. Random slopes could also be introduced, but we omit
this here. For identifiability reasons, we center all unknown functions around zero, and

include an intercept term in the parametric linear term.

Once more, for a interpretation of equation (2) one may say that the natural mortality
hazard A{ covers the basic mortality risk a population is exposed to and the disease related

hazard \{ models the excess mortality risk that patients are exposed to beyond the basic
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risk due to the disease they suffer from. From a statistical point of view A{ is an additive

offset.

Under the assumption about noninformative censoring the likelihood is given by

L - ﬁ(Ai(ti))‘”.exp (— /0 ) )\i(u)du)

=1

Inserting (2) results in

i=1

L = H (N(as 4+ 1;) + X)) exp | — / (A (a; +u) + X (u)) du

t; t;

(Na; 4+ 1) + Xo(t:) " exp | — / Ao(u)du | exp | — / Aoa; 4+ u)du |, (4)

n

=1

where the last factor does not depend on the parameters to be estimated. Hence the
following proportionality holds

L ﬁ()\f(ai+ti)+)\f(ti))5i exp (— /0 ) Ag(u)du). (5)

i=1
This formula only differs from the likelihood of an ordinary survival model of the form

Ai(t) = X (¢, cov;) = exp (n:(t, cov;)) ,
were natural mortality is not accounted for, by the term A§(a; + t;).

To obtain a unified and generic notation, we rewrite the observation model in general
matrix notation. This is useful for defining priors in the next subsection and for developing

posterior analysis in Section 3.

Let n = (1, ..., M,...,n,)" denote the predictor vector, where n; := n;(t;) is the value
of predictor (3) at the observed lifetime t;,4 = 1,...,n. Correspondingly, let g; =
(gj(t1),...,gj(tn))" denote the vector of evaluations of the functions g¢;(t),7 = 0,...,p,
i = (fi(x1;), ..., fj(wn;))" the vector of evaluations of the functions f;(z;),j =1,...,q,
Fspat = (fopat(51), -+ fpat(5n))" the vector of spatial effects, and b = (b,,,...,b,,)" the
vector of uncorrelated random effects. Furthermore, let g; = (g;(t1)z1;, - - -, 9;(tn)2n;), 7 =

1,...,p.
In the following, we can always express vectors gg, g, [, fspar @and b as the matrix prod-
uct of an appropriately defined design matrix Z, say, and a (possibly high—dimensional)

vector B of parameters, e.g. g; = Z;03;, f; = Z;3;, etc. Then, after reindexing, we can

represent the predictor vector 1 in generic notation as

n=V~y+Z,By+...+Z,0,,. (6)



2.2 Priors for parameters and functions

The Bayesian model formulation is completed by assumptions about priors for parameters
and functions. For fixed effect parameters « in (6) we assume locally constant priors
p(7y) o const. A weakly informative normal prior would be another choice. Uncorrelated
random effects are assumed to be i.i.d. Gaussian, b, ~ N(0,77) with unknown variance
2.
Priors for functions and spatial components are defined by a suitable design matrix
Zj, 3 =0,...,m, and a prior for the parameter vector 3;. The general form of a prior
for B, in (6) is

(Bl o7, e (- 818, ). )
where K; is a structure or penalty matrix of rank(K ;) = r;, shrinking parameters toward
zero or penalizing too abrupt jumps between neighboring parameters. For P—splines and
intrinsic Gaussian Markov random field (GMRF) priors (Rue and Held (2005)), K ; will be
rank deficient, i.e., r; < d; = dim(/3;), and the prior is partially improper. The variance
77 is unknown.
For unknown functions f;(x;) or g;(t), we assume Bayesian P-spline priors as in Lang
and Brezger (2004). Random walk priors, suggested in Fahrmeir and Lang (2001), may
be used as smoothness priors for the baseline effect and time—varying covariate effects in
a piecewise exponential model, correspond to the special case of P—splines with degree

zero. The basic idea of P—spline regression (Eilers and Marx (1996)) is to approximate a

function f;(x;) as a linear combination of B-spline basis functions B,,, i.e.

fila;) = Zﬁijm(ﬁj)- (8)

The basis functions B,, are B—splines of degree [ defined over a grid of equally spaced
knots Zpin = & < &1 < ... < & = Tymaa, d; = I+ 5. The number of knots is moderate,
but not too small, to maintain flexibility, but smoothness of the function is encouraged
by difference penalties for neighboring coefficients in the sequence 3, = (81, ..., Bjq,)"-

The Bayesian analogue are first or second order random walk smoothness priors

Bim = Bjm-1 + Ujm or Bim = 2Bjm-1 — Bjm—2 + Ujm 9)

with i.i.d. Gaussian errors w;,, ~ N(0, 7'j2) and diffuse priors p(5;1) o const, or p(3;1) and

p(Bj2) o const, for the initial values. A first order random walk penalizes abrupt jumps
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Bim — Bjm-1, and a second order random walk penalizes deviations from a linear trend.
The amount of smoothness or penalization is controlled by the variance TJZ, which acts
as a smoothness (hyper—)parameter, with hyperprior defined by (11). The joint prior of

the regression parameters 3. is Gaussian and can be easily computed as a product of

J

conditional densities defined by (9) as
o 1
Bj | 77 o7 exp (_Q—ﬂﬁj/Kjﬂj) : (10)
j
which is the generic form (7).

The penalty matrix K is of the form K; = D’D, where D is a first or second order
difference matrix. For second order random walks, for example, D is given by
1 -2 1
Dy, x4, =
1 -2 1

The matrix K; has band structure which is very useful for computationally efficient
MCMC updating schemes, compare Rue and Held (2005). It has rank r; = d; — 1 and
rj = d; — 2 for first and second order random walk priors, respectively. The n x d;
design matrix Z; consists of the basis functions evaluated at the observations z;;, i.e.,
Z;(i,m) = B,,(z;;). Priors for the unknown functions g;(t) are defined in complete
analogy as in (8) and (9). The design matrix for time-varying effect terms g;, j = 1,...,p
is derived as Z;(i,m) = 2;; B (xij).

A common choice for approximating smooth curves are quadratic or cubic B—splines and
a second order penalty. This specification is also preferred by Eilers and Marx (1996) and
Lang and Brezger (2004) in order to obtain sufficiently smooth results. Computationally,
linear splines are simpler. The simplest choice are B-splines of degree zero, i.e. B,,(z) = 1
over the m—th interval, and B,,(z) = 0 elsewhere. Then the effect is approximated by a
piecewise constant function, and the function values follow a random walk model as in
Fahrmeir and Lang (2001). This special choice, with time ¢ as covariate, is the easiest
way to smooth the baseline in the piecewise exponential model; moreover the integral in
the likelihood (4) reduces to a sum. With P—splines of higher degree, however, estimation
of smooth baseline effects is improved in terms of MSFEs (compare Hennerfeind et al.

(2006)).

For the structured spatial effect fspat(s) we assume GMRF priors. Two-dimensional tensor

product P—spline priors, or Gaussian random field (GRF) priors, common in geostatistics

7



(kriging) would be another choice (see Hennerfeind et al. (2006)). It depends mainly on
the data at hand, which of the different approaches leads to the best fit. For data observed
on a discrete lattice or on the level of geographical regions as in our application, GMRF's
seem to be most adequate, while surface smoothers as 2d P—splines or kriging may be

more natural in situations where exact locations are available.

In the case of GMRF priors (compare Rue and Held (2005), Section 3.3.2) we define areas
as neighbors if they share a common boundary and assume that the effect of an area s is
conditionally Gaussian, with the mean of the effects of neighboring areas as expectation

and a variance that is inverse proportional to the number of neighbors of area s. Setting

fspat(s) = ﬁ;pat we have

1 72
spat spat _/ ~N | — 2 : s/pat spat
ﬁs ‘ ﬁs’ » 8 7é § <N ﬁs ’ Ns ) >

5 s'eds
where N, is the number of neighbors of area s, and s’ € 0, denotes that area s’ is a
neighbor of area s. The n x § design matrix Z,, is now a 0/1 indicator matrix. Its
value in the i-th row and s-th column is 1 if observation ¢ is located in site or region
s, and zero otherwise. The S x S penalty matrix K,, has the form of an adjacency
matrix with rank(K sp.) = 7spat = S — 1. As for one-dimensional functions the amount of
spatial smoothness is controlled by the variance Tfpat. A generalization to weighted means

of neighboring areas is possible but not considered here.

In real data applications we do not know how much of the spatial variation is explained
by structured, spatially correlated effects and how much by unstructured, uncorrelated
effects. Therefore we may fit an additional (unstructured) area—specific random effect.
We recommend to interpret only the sum of the two effects, since identifiability is weak

in that case.
We routinely assign inverse Gamma priors 1G(a;; b))

o) o e (-3 (1)

7j

to all variances. They are proper for a; > 0, b; > 0, and we use a; = b; = 0.001 as a

standard choice for a weakly informative prior.

The Bayesian model specification is completed by assuming that all priors for parameters

are conditionally independent, and that all priors are mutually independent.



3 Markov chain Monte Carlo inference

Let B8 = (By, ..., 3,,) denote the vector of all regression coefficients in the generic no-
tation (6), v the vector of fixed effects, and 72 = (7¢,...,72) the vector of all variance
components. Full Bayesian inference is based on the entire posterior distribution, which

factorizes into the product of the likelihood and the prior:

p(ﬁa s 7 ‘ data) X L(ﬂ’ s 7-2) p(ﬁa v 7-2)'

Due to the (conditional) independence assumptions, the prior factorizes into

p(Bs v, ™) = {Hp(ﬁj | Tf)p(Tf)}p(W),

where the last factor can be omitted for diffuse fixed effect priors. The likelihood
L(B,~,T?) is given by inserting (3) into (5). Note that the integral does not require
integration over the natural mortality hazard A$(a; +t) (which is fixed anyway), but just

over terms of the form

t; p
I, = / exp (go(u) + Zgj(u)zij> du,

where g;(t) = > BjmBm(t). For linear B-splines, the integrals can be solved analytically,
but expressions are rather messy and the computational effort is quite high, see Cai, Hyn-
dman and Wand (2002), Appendix. Following their suggestion, we use simple numerical
integration in form of the trapezoidal rule for linear B—splines as well as for the commonly

used cubic B-splines, where analytical integration is not possible anyway.

Full Bayesian inference via MCMC simulation is based on updating full conditionals of
single parameters or blocks of parameters, given the rest of the data. For updating the
parameter vectors 3;, which correspond to the time-independent functions f;(z;), as well

spat - fixed effects 4 and random effects b, we use a slightly modified

as spatial effects 3
version of an MH-algorithm based on iteratively weighted least squares (IWLS) proposals,
developed for fixed and random effects by Gamerman (1997) and adapted to generalized

additive mixed models in Brezger and Lang (2006).

Suppose we want to update 3;, with current value 3; of the chain. Then a new value ﬁ?
is proposed by drawing a random vector from a (high-dimensional) multivariate Gaussian

proposal distribution ¢(/35, ,8? ), which is obtained from a quadratic approximation of the

9



log-likelihood by a second order Taylor expansion with respect to 37, in analogy to IWLS
iterations in generalized linear models. More precisely, the goal is to approximate the
posterior by a Gaussian distribution, obtained by accomplishing one IWLS step in every
iteration of the sampler. Then, random samples have to be drawn from a high dimensional
multivariate Gaussian distribution with precision matrix and mean
c 1 — CN [~ ~
P;= Z;‘W(ﬁj)zj + ﬁKja m; = Pj 1Z;’W(ﬁj)(y —n).
J
where 7; = 0;(t;) — f;(2i;), W(Bj) = diag(ws, . .., w,) is the weight matrix for IWLS with

weights

_ )\f(ai + tl))\f(tz)éz
Ai(t;)?

obtained form the current state 87 and with Af(t;) = fotl X (u)du. The working observa-

tions g; are given by

Gi = mi(ts) + N (ti)/Niti) — Aj(ti)

W;
See Hennerfeind (2006), Appendix A2, for a detailed derivation of those quantities. The

proposed vector B? is accepted as the new state of the chain with probability

RCARTC ALY
WIARIEANA

where p(3; | -) is the full conditional for 3, (i.e. the conditional distribution of 3; given

a5, ) = min
all other parameters and the data).

4 Application

We illustrate our method by an application to data on breast cancer that was gathered in
the years from 1988 to 2002 by a cancer registry that covers the Haut-Rhin 'department’
which is located in the north-east of France, adjacent to Germany and Switzerland. This
department has 3525 km® and 707555 inhabitants (in 1999) and is partitioned into 377
municipalities. The largest distance between the centroids of two municipalities is about
95 kms. The data set contains 3726 cases of breast cancer diagnosed between January the
1st 1988 and January the 1st 1998. There were 1235 (= 33%) deaths observed whereas
the causes of death are unknown. Observed lifetimes are given in days and range from 0

to 14 years, with a median of 6.4 years. Covariates are age at time of diagnosis (ranging
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from 20.6 years to 87.1 years), date of diagnosis (ranging from 1988.0 (i.e. 01.01.1988) to
1998.0), area of residence (one of 377 municipalities) and number of metastases at the
date of diagnosis (no metastasis, one metastasis or more than one metastasis). This is
part of a data set that has been analyzed via ordinary survival analysis in Sauleau et al.
(2007).

For comparison only we analyze the data with an ordinary survival model although this
model does not account for natural mortality and is thus not appropriate to the data at
hand where causes of death are not available. Generally the specification of the hazard

rate is given by

Ni(t, cov;) = exp(n;(t, cov;)) (12)

cov; = (a;,pi, si,metal;, meta2;),

where ¢ is time since diagnosis and cov; is the vector of covariates with a; denoting the
age of patient i at date of diagnosis p; (period), s; denoting the municipality patient i
resides in and the dummy—coded covariates metal; and meta2; denoting, whether patient

1 has one metastasis and more than one metastasis, respectively.

A relative survival analysis should be more suitable and deliver better results. Therefore

we alternatively assume a composed hazard rate of the following structure

Ai(t,cov) = N(a; +t,p; +1t) + exp(n(t, cov;)) (13)

cov; = (a;,pi,Si,metal;, meta2;),

where A{(a; + t,p; + t) is the natural mortality rate of women of age a; + t at date
p; + t as recorded in mortality tables for the Haut—Rhin department. The second term
¢ = exp(n;(t, cov;) represents the disease related hazard rate and is modelled in the same

way as the hazard rate in (12).

A hierarchy of models is analyzed with both approaches and compared via the Deviance
Information Criterion (DIC) developed in Spiegelhalter, Best, Carlin and van der Linde
(2002). It is given as

DIC = D(0) +2pp = D(0) + pp,

where 0 is the vector of parameters, D(0) is the deviance of the model evaluated at

the posterior mean estimate @, D(0) is the posterior mean of the deviance and pp =

D(0) — D(8) is the effective number of parameters. Since it is at least unclear, how the
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saturated model should be defined in the case of survival data when the baseline hazard
and other nonparametric functions are parameters of interest, we use the unstandardized
deviance D(0) = —2-log-likelihood instead of the saturated deviance. Note however, that
the proportionality in (5) was used for the calculation of the DIC in the case of a relative
survival model and the DIC resulting from a relative survival model is not to be compared

to the DIC resulting from an ordinary survival model.

Whilst a log-baseline effect go(t) modelled by a cubic P-spline prior with 20 knots is
included in any model, covariate effects are only included gradually. Effects f,(a;) and
fp(pi) of continuous covariates are modelled by cubic P-splines with 20 knots. An un-
structured (random) spatial effect b, is included additionally or alternatively in some of
the models. Table 1 gives values for fit and complexity of a selected number of models
according to the two components of the deviance information criterion. Model I, which
contains a structured spatial effect modelled by a GMRF-prior, the effect of the number
of metastases and the effect of age, yields a DIC of 9308 for the ordinary survival model
with hazard rate (12) and 9249 for the relative survival model. Leaving out one or more
of these effects leads to a larger DIC. As Table 1 shows the DIC is slightly reduced by
the additional inclusion of a period effect. Models III and IV are versions of model II
where the spatial effect is modelled by an unstructured (random) effect bs and the sum
of a structured and an unstructured effect, respectively. However, those models will not

be discussed here since they do not lead to an improvement in terms of DIC.

Figure 1 displays the estimated nonparametric effects of model II with predictor

ni = go(t) + fala:) + fo(pi) + fopar(si) + yimeta; + yometay.

All unknown functions are centered around zero, and an intercept term is included in the
parametric linear term for identifiability reasons. For plotting, the estimated effects of
age a; and period p; are all centered at the observed values, i.e.

3726 3726

Z fa(ai) = pr(pi) =0,

while the intercept is added to the log—baseline effects. Hence it can be derived from Figure
1(a) and (b) that the estimated global risk level is higher with the ordinary survival model
(since the log—baseline effect resulting from an ordinary survival analysis exceeds the log—

baseline effect resulting from a relative survival analysis). This results from the fact that
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the ordinary survival analysis delivers an estimation of the risk of dying of any cause,
whereas only the disease related excess mortality risk of breast cancer patients is estimated
by means of a relative survival analysis, where the natural mortality risk is accounted for
separately. Panels (a) and (b) further reveal that the ordinary survival analysis yields
a fairly constant log—baseline effect go(t), whereas a relative survival analysis results in
an effect, that is increasing in the first two years and decreasing in the time between the
third and the 11th year after diagnosis. Presumably the decrease in risk is not reflected
in panel (a) as not accounting for natural mortality that is increasing with time after
diagnosis (since patients are aging) might lead to a neutralization. The estimated effects
of age at time of diagnosis exhibit an u—shaped risk profile and are displayed in panels
(c) and (d). While an ordinary survival analysis yields an increased risk for patients
diagnosed with breast cancer in their younger days, but a still much higher risk for those
women diagnosed at an age of more than 70 years, a relative survival analysis suggests
that women diseased in early life have the greatest risk. This result is in accordance
with the fact that cancers are often more aggressive with younger people. The differences
between the two approaches were to be expected since older women have a higher natural
mortality risk that is not accounted for separately with the ordinary, but only with the

relative survival analysis.

As displayed in panels (e) and (f) both approaches yield a higher risk for patients that
were diagnosed with breast cancer in earlier periods. This effect might be explained by
medical progress. Figures 2 (a) and (b) display the values of the structured spatial effect
in each municipality. The two approaches yield a similar spatial pattern, but it is more
pronounced with the relative survival analysis. The risk seems to be higher in the south of
the region. For a nominal level of 95% none of these effects has strictly positive or negative
credible intervals, i.e for none of the regions more than 95% of the posterior samples are
either all positive or all negative. However, a couple of regions exhibit strictly positive
or strictly negative credible intervals for a nominal level of 80%, such as some regions in
the north—east that have a lower risk (Figures 2(c) and (d)). The estimated parameters
41 and “5 for the fixed effects of metal and meta2 are greater with the relative survival

approach. In detail the results are as follows:
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ordinary survival relative survival

Model D) pp DIC D) pp DIC
T go(t) + f(a) + fpat(s) + meta 9268 20 9308 9208 20 9249
1T go(t) + f(a) + f(p) + fepar(s) + meta 9259 24 9307 9200 23 9246
I go(t) + f(a) + f(p) + bs + meta 9264 24 9312 9205 24 9253
IV go(t) + f(a) + f(p) + fepar(s) + bs +meta 9250 29 9308 9192 28 9248
Vo ogo(t) + fla) + f(p) + fspar(s) + g(t) *xmeta 9239 28 9296 9187 27 9241

Table 1: Deviance, effective number of parameters pp and DIC for some of the models we

compare.

ordinary relative
71 0.66 (st.dev. 0.06) 0.96 (std.dev. 0.08)
7o 2.23 (st.dev. 0.14) 2.74 (std.dev. 0.15)

meaning that compared to patients with no metastases the hazard rate is about 1.9 (9.3)
and 2.6 (15.5) times higher for patients with one (more than one) metastasis, respectively.

In praxis the proportional hazards assumption does often not hold, and Sauleau et al.
(2007) have shown that an ordinary survival model actually gives clear hints for a violation
of the proportional hazards assumption. For this reason the number of metastases is
included as a covariate with time—varying effect in model II, i.e. the disease-related log—

hazard of model V is

)\Zc = €Xp (QO(t) + metali g1 (t) + meta2i : g2(t) + fage(a'i) + fp(pl) + fspat(si)) .

Here go(t) is the log—baseline effect for patients without metastases, go(t) + ¢1(t) corre-
sponds to the log—baseline for patients with one metastasis and go(t) + go(t) for patients
with more than one metastasis. The time-dependent functions gi(t), k = 0,1, 2 are mod-
elled with cubic P—spline priors with 20 knots. As displayed in Table 1 the DIC is reduced
by allowing for a temporal variation in the effect of the number of metastases. The three
log—baseline effects are plotted in Figure 3 and reveal that the differences in risk between
the patient groups seem to diminish with time after diagnosis. The log—baseline effect for
patients with more than one metastasis even crosses the other curves, but this result must
not be over—interpreted since there are only 70 patients with more than one metastasis in
the study. The remaining estimated effects of model V resemble the results of model 11

and are not shown for this reason.
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Figure 1: Model II: Posterior means and pointwise 80% and 95% confidence intervals for the
baseline effect including the intercept term (a,b), the centered effect of age (c,d) and the centered
effect of period (e,f). Figures b,d and f result from a relative survival analysis. Black dots in

the lower part of each figure mark observed lifetimes, ages and periods, respectively.
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Figure 2: Model II: posterior means of the structured spatial effect (a, b) and posterior prob-
abilities for a nominal level of 80% (c, d), where black denotes regions with strictly negative
credible intervals and white denotes regions with strictly positive credible intervals. Remaining
gray areas in ¢) and d) exhibit neither strictly positive nor strictly negative credible intervals.

Panels b) and d) result from a relative survival analysis.
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Figure 3: Model V: posterior means of the log-baseline effects for patients with no metastases,
one metastasis and more than one metastasis (dots in the lowest, middle and highest row mark
observed lifetimes of patients with no metastases, one metastasis and more than one metastasis,

respectively)
5 Simulation

To verify the reliability of our relative survival model and to show that a model that
does not account for natural mortality can indeed be misleading concerning the effects of
covariates in such cases where data on specific causes of death is not available, we simulate
an appropriate data set with known risk profile. Survival times are generated according
to a hazard rate that is the sum of a natural hazard rate and a disease related hazard
rate. This data set is then analyzed with an ordinary survival model and with a relative

survival model like in (2) and the results are compared subsequently.

As for the data generation we simulate survival times based on the covariates of our real
breast cancer data set, using known specifications for the baseline and the covariate effects
that resemble the effects estimated by the relative survival analysis of the real data set.
However, for the sake of simplification we neither consider a spatial effect nor a period
effect. We first simulate survival times for each subject and the censoring is done in a
second step. In detail, survival times T;,7 = 1,...,3726, are generated according to the

following hazard rate model
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Ai(t,a;,metal; meta2;) = A(a; +1t)+ A{(t,a;,metal; meta2;)
= X(a; +1t) +exp(go(t) + fage(a;) + yimetal; + yometa2;),

where the natural hazard rate A{ is chosen in order to resemble the natural mortality
rates used with the application, but only depends on a; + ¢, which is the age of individual
1 at time ¢ after diagnosis. In our application natural mortality also depends on calendar
time, but we did not consider this here. As illustrated in Figure 4(a) the natural hazard
rate is increasing exponentially with age at time ¢ after diagnosis. The disease related
hazard rate \{ depends on time t after diagnosis, the age at time of diagnosis a;, and
the two binary covariates metal; and meta2;, which indicate whether an individual ¢ has
one and more than one metastasis, respectively. As displayed in Figure 4(b) the disease
related log—baseline go(t) is increasing in the first 2.5 years after diagnosis, decreasing in
the time span between 2.5 and 12 years and staying constant afterwards. In contrast to
the natural mortality risk, the effect of age on the disease related risk is u—shaped and
highest with patients diseased in early life, whereas it is less increased with the initially
oldest patients in the study, who are diagnosed with breast cancer at the age of 87 (Figure
4(c)). Finally the disease related log—hazard is increased by v; = 0.95 and v, = 2.75 for
individuals with one metastasis (metal;, = 1) and more than one metastasis (meta2; = 1),
respectively. Since the data used in our application were only gathered until the year 2002
we consider all survival times exceeding the year 2002 as censored, i.e. observed survival
times are given by t; = min(7},2002.0 — p;) with p; denoting the exact date of diagnosis
observed in the real data set. This mechanism results in a censoring rate of approximately
60% (compared to approximately 67% with the real data set).

The data set generated in this way is initially analyzed with an ordinary survival model
that does not distinguish between natural mortality and disease related mortality. More

precisely we wrongly assume a hazard rate as follows:
Ai(t,a;,metal; meta2;) = exp(go(t) + fage(a;) +yimetal; + yometa2;),

where the log-baseline go(t) and the age-effect f,,. are modelled as cubic P-splines with 20
knots (with second order random walk smoothness priors and /G(0.001,0.001) priors for
the variance components) and ; and 7, are fixed effects with diffuse priors. Expectedly

the estimated log—baseline and the effect of age do not reflect the true disease related
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effects but rather present a mixture of the two effects on natural mortality and disease
related mortality. The estimated log-baseline effect is increasing in the first years after
diagnosis, but the subsequent decline is less steep than with the true log—baseline effect
(Figure 5(a)). While the disease related log-baseline is decreasing between the 2.5th and
12th year after diagnosis, the natural mortality risk of each single patient is increasing
with time (since people are getting older) and these two effects seem to kind of balance.
As can be seen from Figure 5(c) the ordinary survival model underestimates the risk for
women diagnosed with breast cancer in early years and overestimates the risk of women
diseased at an old age. Again, this high risk for older people results from the increasing
natural mortality risk that is not accounted for separately. Finally also the fixed effects of
the covariates metal and meta2 are not estimated correctly, but are rather underestimated
by 71 = 0.68 and v, = 2.33 (with standard deviations of 0.05 and 0.13, respectively). This
underestimation is due to the fact that only a part of the cases of death (namely those
cases that are related to the disease) are in association with the number of metastases,

whereas the ordinary survival analysis estimates the average influence based on all cases

of death.

Now we re—analyze the generated data set with a relative survival model as described in

(2). That is we assume a hazard rate as follows:

Ai(t,a;,metal; meta2;) = A(a; +t)+ \(t,a;, metal; meta2;)
exp (2£E30)

9500 + exp(go(t) + fage(ai) + vimetal; + yometa2;),

where the disease related hazard rate A{ is modelled as the total hazard rate \; was mod-
elled before. However, the total hazard is now amended by the known natural mortality
rate A in order to account for cases of death that are not related to the disease of interest.
As displayed in Figures 5(b) and (d) the true disease related log-baseline and the effect
of age are now estimated quite satisfactorily, even though the effect of age is a bit too flat
which might be due to the very small number of young patients. Also the fixed effects of
metal; and meta2; are estimated quite well with +; = 0.98 and v, = 2.79 (with standard

deviations of 0.07 and 0.15, respectively).
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6 Conclusion

In summary it can be ascertained that the simulation supports the usefulness of the
relative survival approach since it yields results that are highly comparable to those of
our application. As the simulation has shown, a model that does not account for natural
mortality is not suitable for the identification of prognostic factors for disease specific
mortality in cases where data on causes of death is not available since effects of covariates
on natural mortality and effects on disease specific mortality intermix and can not be

separated easily ex post.
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