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Abstract

Inference about a parameter of interest in presence of a nuisance

parameter can be based on an integrated likelihood function. We an-

alyze the behaviour of inferential quantities based on such a pseudo-

likelihood in a two-index asymptotics framework, in which both sam-

ple size and dimension of the nuisance parameter may diverge to infin-

ity. We show that the integrated likelihood, if chosen wisely, largely

outperforms standard likelihood methods, such as the profile likeli-

hood. These results are confirmed by simulation studies, in which

comparisons with modified profile likelihood are also considered.
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1 Introduction

Consider stratified data y = (y1, . . . , yq), where yi is a realization of an

m−dimensional random variable Yi with density pi(·;ψ, λi). Suppose that

Y1, . . . , Yq are independent and consider ψ as the parameter of interest, with

λ = (λ1, . . . , λq) as a nuisance parameter. We assume that each λi has the

same meaning and the same parameter space, Λ.

It is well known that, in models in which the dimension of the nuisance

parameter is large relative to the sample size, methods of likelihood inference,

such as those based on the profile likelihood, can perform poorly. To deal

with this fact, several modifications to profile likelihood have been proposed;

see Barndorff-Nielsen & Cox (1994, Chapter 8) and Severini (2000, Chapters

8, 9) for general discussion of these methods and further references. An

alternative solution is offered by integrated likelihood functions (Kalbfleisch

& Sprott, 1970), which are formed by integrating the likelihood function

with respect to a weight function for the nuisance parameter. In our setting,

the weight function is of the form
∏q

i=1 g(λi;ψ) and the resulting integrated

likelihood is of the form

LI(ψ) =

q∏

i=1

∫

Λ

pi(yi;ψ, λi)g(λi;ψ) dλi.

Integrated likelihoods avoid the problems related to maximization common

to the methods based on the profile likelihood (see, for example, Berger

et al., 1999). Furthermore, recent developments in computational tools for

integration have made this approach even more appealing. Other properties

of the integrated likelihood from a non-Bayesian perspective are discussed in
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Severini (2007, 2010, 2011).

Inference for ψ proceeds by treating the integrated likelihood as a genuine

likelihood for ψ. Here we focus mainly on scalar ψ and on the properties of

the integrated signed root likelihood ratio statistic, R̄ = sgn(ψ̄−ψ){2[lI(ψ̄)−

lI(ψ)]
1
2}, where lI(ψ) = logLI(ψ) and ψ̄ denotes the maximizer of lI(ψ). In

particular, we consider cases in which both m, the within-stratum sample

size, and q, the number of strata, approach infinity. This type of “two-index

asymptotics” is more relevant to cases in which the number of strata is large

relative to the total sample size; see, e.g., Barndorff-Nielsen (1996) for a

general discussion of two-index asymptotics and Sartori (2003) for discussion

of the properties of profile and modified profile likelihoods in this setting.

Our analysis, therefore, represents an extension to the results provided by

Severini (2007, 2010), who studied integrated likelihoods in the standard

one-index asymptotic setting (q fixed).

In Section 2 we describe the approach we will use in our analysis and

establish some preliminary results. The selection of the weight function is

discussed in Section 3. The properties of the integrated score function and

of the maximum integrated likelihood estimator are presented in Section 4;

in Section 5 we study the behaviour of integrated likelihood ratio statistics.

Examples are presented in Section 6, in which comparisons with profile and

modified profile likelihoods are considered.
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2 Target likelihood

Let L(ψ, λ) =
∏q

i=1 pi(yi;ψ, λi) denote the likelihood function and l(ψ, λ) =
∑q

i=1 log pi(yi;ψ, λi) =
∑q

i=1 li(ψ, λi; yi) denote the log-likelihood function.

Let λ̂iψ denote the maximum likelihood estimator of λi for fixed ψ and let

lP (ψ) =
∑q

i=1 li(ψ, λ̂iψ; yi) denote the profile log-likelihood. Derivatives of the

log-likelihood will be denoted by subscripts; e.g., lλi(ψ, λi) = ∂l(ψ, λ)/∂λi =

∂li(ψ, λi)/∂λi; jψψ(ψ, λ) and jλλ(ψ, λ) will denote blocks of the observed

information matrix. Similarly, iψψ(ψ, λ) and iλλ(ψ, λ) will denote blocks of

the expected information matrix. Note that, due to independence among

the strata, jλλ(ψ, λ) and iλλ(ψ, λ) are block diagonal matrices, with generic

element jλiλi(ψ, λi) and iλiλi(ψ, λi) respectively. For notational simplicity,

we will consider scalar nuisance parameters; the results are easily extended

to the case in which the λi are vectors.

We will study the asymptotic properties of integrated likelihoods by relat-

ing them to the least favourable target likelihood (Pace & Salvan, 2006). Let

E0 denote expectation with respect to the true parameter (ψ0, λ0). Define

λ0
ψ ≡ λ0

ψ(ψ0, λ0) as the maximizer of E0[l(ψ, λ)] in λ for fixed ψ; the target

log-likelihood is given by lT (ψ) = l(ψ, λ0
ψ).

The target likelihood is a function of ψ, the data, and the true parameter

value (ψ0, λ0); it is a genuine likelihood for ψ, but it is not available in

practice since it depends on (ψ0, λ0). In some sense, it is analogous to a

“true value” for a likelihood for a parameter of interest. Note that likelihood

quantities based on the target likelihood have the usual asymptotic properties

of functions of a likelihood for parameter ψ; for instance, the target score,
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lTψ, divided by
√
mq, has an asymptotic normal distribution with mean 0

and variance equal to the expected information. Thus, relating statistical

procedures based on an integrated likelihood to ones based on the target

likelihood is a useful and convenient way to establish asymptotic results in

complex settings such as the one considered here. The target likelihood is also

closely related to the modified profile likelihood and related pseudolikelihood

functions (Pace & Salvan, 2006).

Exact integration of the likelihood function will be possible only in ex-

ceptional cases; hence, we will rely on the use of Laplace approximations

in deriving the properties of procedures based on the integrated likelihood.

Since each λi appears only in a single stratum, a Laplace approximation for

lI(ψ) = logLI(ψ) can be obtained by using a Laplace approximation in each

stratum and then combining the results,

lI(ψ) = lP (ψ) +

q∑

i=1

log g(λ̂iψ;ψ)−
q∑

i=1

log |jλiλi(ψ, λ̂iψ)|1/2 +Op(q/m). (1)

Expansion of the target likelihood (Pace & Salvan, 2006) yields

lT (ψ) = lP (ψ)+
1

2

q∑

i=1

(λ̂iψ−λiψ)2lλiλi(ψ, λiψ)−1

6

q∑

i=1

(λ̂iψ−λiψ)3lλiλiλi(ψ, λiψ)+Op(q/m).

The second summand of the right hand side of this formula can be approxi-

mated (Pace & Salvan, 2006) by

−1

2

q∑

i=1

log(λ̂iψ − λiψ)2 − 1

2

q∑

i=1

log jλiλi(ψ, λiψ),

while the third summand is a term of order Op(max{
√
q/m, q/m}). The
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latter, rather unconventional, expression is required by the unconventional

two-index asymptotics, in which q and m may diverge at different rates (Sar-

tori, 2003). Hence

lT (ψ) = lP (ψ)−1

2

q∑

i=1

log(λ̂iψ−λiψ)2−1

2
log jλiλi(ψ, λiψ)+Op(max{

√
q/m, q/m}).

(2)

Combining (1) and (2),

lI(ψ) = lT (ψ)+

q∑

i=1

log g(λ̂ψi;ψ)+
1

2

q∑

i=1

log(λ̂iψ−λiψ)2+Op(max{
√
q/m, q/m}).

(3)

This equation can be used to relate quantities based on the integrated like-

lihood to the corresponding quantities based on the target likelihood.

3 Target weight functions

According to (3), lI(ψ) = lT (ψ)+O(q) in general. To reduce the order of the

error term in this relationship, we can choose a weight function g such that

log g(λ̂ψi;ψ) +
1

2
log(λ̂iψ − λiψ)2 = Op(1/m);

under this condition, lI(ψ) = lT (ψ) + Op(max{
√
q/m, q/m}). We will refer

to weight functions which satisfy this requirement as target weight functions.

Examples of target weight functions are

g(λ;ψ) =
jλλ(ψ, λ)

νλ,λ((ψ, λ), (ψ, λ); (ψ̂, λ̂))1/2
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and

g(λ;ψ) =
jλλ(ψ, λ)

νλ,λ((ψ, λ), (ψ̂, λ̂); (ψ̂, λ̂))
,

where νθ,θ(θ0, θ1; θ2) = Eθ2 [lθ(θ0)lθ(θ1)] (see, for instance, Pace & Salvan,

2006).

The construction of a target weight function is simplified by using an

orthogonal parameterization. If λi and ψ are orthogonal parameters, then

λ̂iψ = λ̂i +O(1/m) and (1/2)
∑q

i=1 log(λ̂iψ − λiψ)2 does not depend on ψ up

to order Op(q/m), for ψ = ψ̂ + O(1/
√
mq), where ψ̂ denotes the maximum

likelihood estimator of ψ. Hence, if we choose a weight function which does

not depend on ψ, then lI(ψ) = lT (ψ) +Op(max{
√
q/m, q/m}). That is, if λi

is orthogonal to ψ, any weight function for λi not depending on ψ is a target

weight function. In particular, the weight function g(λ;ψ) = 1 is useful in

this context; that is, it is sufficient to integrate the likelihood with respect

to λ to obtain the required integrated likelihood.

Here, the orthogonal parameter can be taken to be the information-

orthogonal parameter discussed in detail by Cox & Reid (1987) and obtained

by solving a differential equation based on the expected information matrix.

Alternatively, it may be taken to be the zero-score expectation (ZSE) pa-

rameter used in Severini (2007), which is obtained by solving

E[`λi(ψ, λi);ψ0, φi] = 0 (4)

to obtain expression for φi in terms of ψ, λi, ψ0; ψ0 is then replaced by an

estimator, such as the maximum likelihood estimator.

The integrated likelihood based on a target weight function for the ZSE
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parameter has the advantage that it approximately satisfies the second Bartlett

identity; this is not true if the integrated likelihood is based on a target weight

function for an information-orthogonal parameter (Severini, 2007). One con-

sequence of this is that, in some cases, inferences based on an integrated like-

lihood using a target weight function for the ZSE parameter are preferable

to inferences based on an integrated likelihood using a target weight function

for the information-orthogonal parameter. On the other hand, the ZSE pa-

rameter requires a reliable estimator of ψ, which may not be available in the

setting considered here. Also, for some models the information-orthogonal

parameter is easier to obtain, while in other models the reverse is true. Thus,

both approaches are useful in practice; this is illustrated in the examples.

4 Score function and maximum integrated like-

lihood estimator

First consider the relationship between the score function based on an inte-

grated likelihood function and the score function based on the target likeli-

hood. Using (3),

lIψ(ψ) = lTψ(ψ) +

q∑

i=1

∂

∂ψ
log g(λ̂iψ;ψ) +

1

2

q∑

i=1

∂

∂ψ
log(λ̂iψ − λiψ)2

+ Op(max{
√
q/m, q/m}).
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The term

D(ψ) =

q∑

i=1

∂

∂ψ
log g(λ̂iψ;ψ) + (1/2)

q∑

i=1

∂

∂ψ
log(λ̂iψ − λiψ)2

is in general of order Op(q). If g is a target weight function, then D(ψ) =

Op(q/m) and the discrepancy between the two score functions is of order

Op(max{q/m,
√
q/m}).

Since, by definition, the target score is unbiased, this result allows us to

study the bias of the integrated score. In general, E[D(ψ)] is O(q), which

means that lI(ψ) has score bias of order O(q); this is the same order as

the score bias of the profile likelihood (Sartori, 2003). With a target weight

function, the order of the integrated score bias is O(q/m), that is the same as

the order of the score bias of the modified profile likelihood (Sartori, 2003).

Let ψ̄ and ψ̂T denote the maximizers of lI(ψ) and lT (ψ), respectively.

Note that
√
mq(ψ̂T −ψ) is asymptotically normally distributed, with 0 mean

and variance equal to the inverse of the partial expected information for ψ

iψψ;λ(ψ, λ) = iψψ(ψ, λ)− iψλ(ψ, λ)iλλ(ψ, λ)−1iλψ(ψ, λ),

which is the lower bound for the asymptotic covariance matrix of a regular

estimator of ψ when λ is unknown (Bahadur, 1964).

Recall that the maximizer ψ̂ of a log-likelihood l(ψ) based on n observa-

tions can be expanded (e.g., Severini, 2000, Section 5.3)

√
n(ψ̂ − ψ) = − Z1

µ2
ψψ

+

(
Z1Z2

µ2
ψψ

− 1

2

µψψψ
µ3
ψψ

Z2
1

)
1√
n

+Op

(
1

n

)
,
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where

Z1 =
lψ(ψ)− Eψ[lψ(ψ)]√

n

Z2 =
lψψ(ψ)− Eψ[lψψ(ψ)]√

n

µψψ =
1

n
Eψ[lψψ(ψ)]

µψψψ =
1

n
Eψ[lψψψ(ψ)].

Applying this expansion to ψ̄ and ψ̂T , we have

√
mq(ψ̄ − ψ) = − Z̄1

µ̄2
ψψ

+

(
Z̄1Z̄2

µ̄2
ψψ

− 1

2

µ̄ψψψ
µ̄3
ψψ

Z̄2
1

)
1√
mq

+Op

(
1

mq

)
,

√
mq(ψ̂T − ψ) = − Z̃1

µ̃2
ψψ

+

(
Z̃1Z̃2

µ̃2
ψψ

− 1

2

µ̃ψψψ
µ̃3
ψψ

Z̃2
1

)
1√
mq

+Op

(
1

mq

)
,

where the symbol ¯ denotes quantities based on lI(ψ), while ˜ denotes

quantities based on lT (ψ).

Since, in general,

lIψ(ψ) = lTψ(ψ) +Op(q)

and

lIψψ(ψ) = lTψψ(ψ) +Op(q),
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Z̄1 = Z̃1 +Op(
√
q/m)

Z̄2 = Z̃2 +Op(
√
q/m)

µ̄ψψ = µ̃ψψ +Op(1/m)

µ̄ψψψ = µ̃ψψψ +Op(1/m).

It follows that

Z̄1

µ̄ψψ
=

Z̃1

µ̃ψψ
+Op(

√
q/m) +Op(1/m)

and

Z̄1Z̄2

µ̄ψψ
− 1

2

µ̄ψψψ
µ̄3
ψψ

Z̄2
1 =

Z̃1Z̃2

µ̃2
ψψ

− 1

2

µ̃ψψψ
µ̃3
ψψ

Z̃2
1 +Op(1/m) +Op(max{

√
q/m, q/m}),

and, hence, that, in general,

√
mq(ψ̄ − ψ) =

√
mq(ψ̂T − ψ) +Op(1/m) +Op(max{

√
q/m, q/m})

For an integrated likelihood based on a target weight function,

lIψ(ψ) = lTψ(ψ) +Op(q/m)

and

lIψψ(ψ) = lTψψ(ψ) +Op(q).
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Therefore

Z̄1 = Z̃1 +Op(
√
q/m3)

Z̄2 = Z̃2 +Op(
√
q/m)

µ̂ψψ = µ̃ψψ +Op(1/m)

µ̂ψψψ = µ̃ψψψ +Op(1/m),

which lead to

Z̄1

µ̄ψψ
=

Z̃1

µ̃ψψ
+Op(

√
q/m3) +Op(1/m).

and

Z̄1Z̄2

µ̄ψψ
− 1

2

µ̄ψψψ
(µ̄ψψ)3

Z̄2
1 =

Z̃1Z̃2

µ̃2
ψψ

− 1

2

µ̃ψψψ
µ̃3
ψψ

Z̃2
1 +Op(

√
q/m) +Op(1/m) +Op(max{

√
q/m3, q/m3}).

Hence,

√
mq(ψ̄ − ψ) =

√
mq(ψ̂T − ψ) +Op(1/m) +Op(

√
q/m3).

It follows that, in general, ψ̄ has the same asymptotic distribution as ψ̂T

and, hence, is asymptotically efficient, provided that q/m = o(1). When the

integrated likelihood is based on a target weight function, instead, ψ̄ has the

same asymptotic distribution as ψ̂T and it is asymptotically efficient provided

that q/m3 = o(1).
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5 Integrated likelihood ratio statistics

We now consider likelihood-ratio-type statistics based on the integrated like-

lihood. Since the target likelihood is a likelihood for ψ based on a sample of

size mq, the likelihood ratio statistic for ψ based on the target likelihood, WT ,

is asymptotically distributed according to a chi-squared distribution with

p degrees-of-freedom, where p = dim(ψ). Using the relationships between

derivatives of lI and derivatives of lT , along with the relationship between ψ̄

and ψ̂T , it is straightforward to show that

lI(ψ̄)− lI(ψ) = lT (ψ̂T )− lT (ψ) + ∆q,m

where, in general, ∆q,m = Op(
√
q/m) and for a target weight function,

∆q,m = Op(1/
√
m) +Op(

√
q/m3).

Let W̄ denote the likelihood ratio statistic for ψ based on the integrated

likelihood. It follows that, in general,

W̄ = WT + ∆q,m

and, hence, that W̄ is asymptotically chi-squared-distributed, provided that

q/m = o(1). For an integrated likelihood based on a target weight function,

this condition is weakened to q/m3 = o(1).

The same approach can used for signed likelihood ratio statistics for a

scalar parameter ψ. Using the results above, it is easily shown that the

signed integrated likelihood ratio statistic R̄ is approximately equal to RT ,

the signed likelihood ratio statistic based on the target likelihood, with error
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∆q,m. Since RT is asymptotically standard normal with error 1/
√
mq it

follows that, in general, R̄ is asymptotically standard normal provided that

q/m = o(1); if the integrated likelihood is based on a target weight function,

the required condition is q/m3 = o(1).

The target weight function used to form the integrated likelihood can be

based on either the ZSE parameter or on an information-orthogonal param-

eter and the properties of R̄ discussed in this section hold in either case.

However, there is a sense in which the properties of R̄ are better if a ZSE-

based integrated likelihood is used. Specifically, in this case, the standard

deviation of R̄ can be expanded as 1 + O(1/m2) + O(1/(mq)) while for the

information-orthogonal-based integrated likelihood, the standard deviation

of R̄ can be expanded as 1 +O(1/m) +O(1/(mq)). However, in both cases,

E[R̄] can be expanded as O(
√
q/m3) + O(1/

√
mq) and these terms will of-

ten be more important than the error in the standard deviation. Moreover,

issues related to the ease in solving for the parameter and the necessity of

finding a useful estimator of ψ to use in forming the ZSE parameter, as

discussed in Section 2, typically play a more important role in choosing a

parameterization.

These results can be compared to those for likelihood ratio statistics based

on the profile and modified profile likelihoods. For example, Sartori (2003)

shows that, if q/m = o(1), then the usual signed likelihood ratio statistic

is asymptotically normally distributed and that the signed likelihood ratio

statistic based on the modified profile likelihood is asymptotically normal

provided that q/m3 = o(1). Hence, from a theoretical point of view, an in-

tegrated likelihood based on a target weight function guarantees the same
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inferential accuracy as the modified profile likelihood. On the other hand,

from a practical point of view, there may be instances in which the inte-

grated likelihood approach may be preferable, both in terms of accuracy and

computational requirements, as illustrad in some of the examples below. An-

other example is small sample meta-analysis, as described in Bellio & Guolo

(2013).

6 Examples

Example 1: gamma samples with common shape parameter. Let Yij, i =

1, . . . , q, j = 1, . . . ,m, be independent gamma random variables with shape

parameter ψ and scale parameter 1/λi, as in Sartori (2003, Example 2).

Writing s = u−m∑q
i=1 log vi, where u =

∑q
i=1

∑m
j=1 log yij and vi =

∑m
j=1 yij

are the components of the sufficient statistic, the conditional and profile log-

likelihoods are

lC(ψ) = ψs+ q log Γ(mψ)−mq log Γ(ψ),

lP (ψ) = ψs+mqψ logmψ −mqψ −mq log Γ(ψ),

while, if we use as a weight function the density function of an exponential

random variable with mean 1, the integrated log-likelihood is

lI(ψ) = ψ

q∑

i=1

m∑

j=1

log yij −mψ
q∑

i=1

log(
m∑

j=1

yij + 1) + q log Γ(mψ + 1)

−mq {ψ + log Γ(ψ)} . (5)
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Table 1: Example 1. Empirical coverage for R, RC = R̄, RI and RMP .

nominal R RC = R̄I RI RMP

0·01 0·000 0·010 1·000 0·010
0·025 0·000 0·024 1·000 0·022
0·05 0·000 0·051 1·000 0·044
0·10 0·000 0·104 1·000 0·093
0·25 0·000 0·257 1·000 0·234
0·50 0·000 0·509 1·000 0·482
0·75 0·000 0·755 1·000 0·736
0·90 0·000 0·902 1·000 0·894
0·95 0·001 0·951 1·000 0·948
0·975 0·002 0·974 1·000 0·972
0·99 0·007 0·989 1·000 0·988

The integrated likelihood with target weight function, instead, is com-

puted by applying a constant weight function to the likelihood reparame-

terized with the zero-score-expectation parameter (4), φi = ψ̂λi/ψ. In this

case, we obtain an integrated likelihood that is exactly equivalent to the the

conditional likelihood. It is worth noting that the conditional likelihood for

the shape parameter of a Gamma is also a marginal likelihood. Hence, the

same result can be achieved also using as a weight function φ−1
i , the weight

function related with the right invariant measure (see Pace & Salvan, 1997,

Example 7.29). As a final remark, we note that the modified profile likeli-

hood in this example is not exactly equivalent to the conditional likelihood

(Sartori, 2003, Example 2).

We perform a simulation study with q = 1000 and m = 10. We chose

rather extreme values of m and q in order to investigate the importance of

the asymptotic condition on q/m3 in practice.

Table 1 shows the empirical coverages of several signed root likelihood

ratio statistics based on 8,000 replications, where the nuisance parameters
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Table 2: Example 1. Bias and Root Mean Squared Error (RMSE) for differ-
ent estimators.

ψ̂ ψ̂C = ψ̄I ψ̂I ψ̂MP

bias 0.253 0.006 -1.040 0.009
RMSE 0.283 0.110 1.040 0.111

λi have been generated from a χ2 with 10 degrees of freedom and considered

fixed in each replication, while the true value of ψ is 2. The empirical cover-

ages of R and RI are, as expected, very poor. Here, with RI we denote the

signed square root integrated likelihood ratio statistic based on (5). Using a

target weight function in the construction of integrated likelihood, instead,

we obtain empirical coverages for the signed likelihood ratio statistics, R̄I ,

very close to the nominal ones. As seen, it is equivalent to RC , while the

performance of RMP , the signed modified profile likelihood ratio, is slightly

worse due to the inability of the modified profile log-likelihood to recover

lC(ψ). The same conclusions can be drawn from bias e root mean squared

error of the corresponding estimators, reported in Table 2.

Example 2: matched binomial. Let us consider Yi1 and Yi2, i = 1, . . . , q,

two independent random variables with distribution Bi(m, pi1) and Bi(1, pi2)

respectively. Let λi = log{pi1/(1− pi1)} be the stratum nuisance parameter

and ψ = log{pi2/(1− pi2)} − log{pi1/(1− pi1)} be the parameter of interest,

common among strata. We may deal with a model like this in case-control

studies where we are interested in studying the effect of a certain factor by

the comparison among one case and m controls (Sartori, 2003, Example 3).
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The likelihood is

L(ψ, λ) = (

q∏

i=1

e(yi1+yi2)λ+yi2ψ)/{(1 + eλ)m(1 + eψ+λ)}q,

while the conditional likelihood is a noncentral hypergeometric distribution,

see, for instance, Davison (1988, Example 6.1). In order to find a target

weight function, we use here an idea suggested by Cox & Reid (1993), i.e.,

we choose a weight function based on the original parameterization that

would act like a uniform one in an orthogonal parameterization, (ψ, ξi). Since

the model is a full exponential family, (ψ, ξi) might be given by the mixed

parameterization. Hence, we have ∂ξi/∂λi = meλi/(1 + eλi)2 + eψ+λi/(1 +

eψ+λi)2, which leads to an integrated likelihood

LO(ψ) =

q∏

i=1

∫

R

e(yi1+yi2)λi+yi2ψ

(1 + eλi )
m+2(1 + eψ+λi)3

{eλi (1 + eλi+ψ)2 + eψ+λi(1 + eλi )
2}dλi.

After a change of variable λi(ωi) = log{ωi/(1 − ωi)} and some algebra, we

obtain

LO(ψ) =

q∏

i=1

eψyi2
{

2F1(1, yi1 + yi2 + 1,m+ 2, 1− eψ)

+eψ 2F1(3, yi1 + yi2 + 1,m+ 2, 1− eψ)
}
, (6)

where 2F (a, b, c, z)1 = [Γ(c)/{Γ(b)Γ(c− b)}]
∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx

(Abramowitz & Stegun, 1964, formula 15.3.1, page 558). We also use the

procedure based on the ZSE parameterization (4). Exploiting the exponen-

tial family framework, the new nuisance parameter φi is the solution of the
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implicit equation

Kλi(ψ̂, φi)−Kλi(ψ, λi) = 0, (7)

where K is the cumulant function and the subscript denotes the derivative

with respect to λi. Then we can obtain the integrated likelihood by a change

of variable from φi to λi in the integrals,

L̄I(ψ) =

q∏

i=1

∫
Li(ψ, λi)

∂φi(ψ, λi; ψ̂)

∂λi
dλi

=

q∏

i=1

∫
Li(ψ, λi)

Kλiλi(ψ, λi)

Kλiλi(ψ̂, φi(ψ, λi; ψ̂))
dλi. (8)

where the Jacobian ∂φi(ψ, λi; ψ̂)/∂λi is obtained by differentiating (7) with

respect to λi. Of course we need φi as well in the integrand function; but

for fixed λi, ψ and ψ̂, it is possible to solve (7) numerically and get the

corresponding φi.

We perform a simulation study with q = 300 and m = 7, ψ = log(5), and

λi equal to 1/8 plus a standard normal random noise. In Table 3 we report

the empirical coverage probabilities, based on 8,000 replications, of signed

root likelihood ratio statistics based on profile likelihood (R), on conditional

likelihood (RC), on integrated likelihood with ZSE parameterization and uni-

form weight function (R̄I), on (6) (R̄O), and on modified profile likelihood

(RMP ). Bias and root mean squared error of the corresponding estimators

are reported in Table 4. The empirical coverages of R̄I and R̄O are compara-

ble, with the first being slightly more accurate and very close to the behavior

of RMP . Both R̄I and RMP give a reasonable approximation for RC and im-

prove substantially over R. The close agreement between R̄I and RMP can
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Table 3: Example 2. Empirical coverage of R, RC , R̄I , R̄O, and RMP .

nominal R RC R̄I R̄O RMP

0·01 0·000 0·010 0·006 0·005 0·006
0·025 0·000 0·023 0·017 0·016 0·018
0·05 0·001 0·050 0·036 0·033 0·037
0·10 0·005 0·102 0·078 0·073 0·080
0·25 0·026 0·250 0·210 0·198 0·211
0·50 0·104 0·497 0·448 0·429 0·448
0·75 0·263 0·744 0·706 0·686 0·702
0·90 0·471 0·895 0·874 0·858 0·871
0·95 0·604 0·946 0·935 0·925 0·932

0·975 0·709 0·973 0·969 0·960 0·965
0·99 0·815 0·988 0·985 0·982 0·983

Table 4: Example 2. Bias and root mean squared error (RMSE) of different
estimators.

ψ̂ ψ̂C ψ̄I ψ̂O ψ̂MP

bias 0.250 0.006 0.026 0.035 0.027
RMSE 0.320 0.171 0.170 0.176 0.174

be explained by the results for exponential families in Severini (2007). The

same indication can be found looking at bias and root mean squared error of

the corresponding estimators in Table 4.

Example 3: first-order non stationary autoregressive model.

Consider the first-order autoregressive model defined by

yij = λi + ρyij−1 + εij , (9)

where εij are independent normal random variables with zero mean and vari-

ance σ2, i = 1, . . . , q, j = 1, . . . ,m.

When the time series in each stratum are stationary, that is when we
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assume yi0 ∼ N{0, σ2/(1 − ρ2)}, then λi is orthogonal to ψ = (ρ, σ2), and

the modified profile likelihood and the integrated likelihood proposed in this

paper are equivalent and they both coincide with a marginal likelihood. The

latter yields consistent estimates for ψ when q diverges, even for fixed m

(Bartolucci et al., 2013, Example 1).

Here, we consider the non stationary case, which appears to be the dom-

inant one in the econometric literature (see, for instance, Lancaster, 2002,

Section 3). This means that we condition on the observed initial value yi0

and permit the autoregressive parameter to equal or exceed unity. Without

loss of generality, in the following we will assume that yi0 = 0, i = 1, . . . , q.

Indeed, this corresponds to assuming model (9) for the differences yij − yi0,

with λi reparameterized as λi − yi0(1− ρ).

The log likelihood for model (9) is the sum of q independent components

of the form

li(ρ, σ
2, λi) = −m

2
log(σ2)− 1

2σ2

m∑

j=1

(yij − λi − ρyij−1)2 .

Lancaster (2002, page 655) shows that an information orthogonal parame-

terization is given by ξi = λi exp{b(ρ)}, where

b(ρ) =
1

m

m−1∑

j=1

m− j
j

ρj . (10)

The parameter ξi is orthogonal to both ρ and σ2, with the latter two being

orthogonal to each other.

Alternatively, we can use the ZSE parameterization (4), with φi solution
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of

Eρ0,σ2
0 ,λi0
{lλi(ρ, σ2, λi)}|(ρ0,σ2

0 ,λi0)=(ρ̂,σ̂2,φi) = 0 . (11)

Using again the results in Lancaster (2002), we find φi = λi/{1 + (ρ̂ −

ρ)b′(ρ̂)}, where b′(ρ) = (1/m)
∑m−1

j=1 (m − j)ρj−1 is the first derivative of

(10). For this model computation of profile and integrated log likelihoods is

straightforward since all maximization and integration involved can be easily

done analytically. In particular, focusing interest on the parameter ρ, we

have

lP (ρ) = −mq
2

logSS(ρ) ,

lO(ρ) = −m(q − 1)

2
logSS(ρ) + qb(ρ) , (12)

l̄I(ρ) = −m(q − 1)

2
logSS(ρ)− q log{1 + (ρ̂− ρ)b′(ρ̂)} , (13)

where SS(ρ) =
∑q

i=1

∑m
j=1{wij(ρ)− w̄i(ρ)}2, with wij(ρ) = yij − ρyij−1, and

w̄i(ρ) = m−1
∑m

j=1 wij(ρ). Formulae (12) and (13) are the integrated log-

likelihoods with the orthogonal parameters ξi and with the ZSE parameters

φi, respectively. In both cases we used a constant weight function for the

incidental parameters and for log σ. These integrated log likelihoods could

be also obtained by first integrating out the incidental parameters, thus ob-

taining the integrated log likelihoods for (ρ, σ2), and then profiling out σ2.

Since the maximum likelihood estimate is generally highly biased, this

could have an effect on the accuracy of the integrated likelihood (13). A

possible solution could be given by using in (11) alternative estimates for ρ

and σ2 in place of ρ̂ and σ̂2. One solution could be the use of a parametric
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bootstrap bias corrected version of ρ̂ and σ̂2. Alternatively, one could use a

different estimate, such as for instance the maximizer of (12), or the maxi-

mizer of (13) itself, leading to a two-step solution. In the numerical example

and in the simulations below we used the former option, thus obtaining the

new ZSE parameter φIi = λi/{1 + (ρ̂O−ρ)b′(ρ̂O)}, where ρ̂O denote the max-

imizer of (12). The corresponding integrated likelihood has the form (13),

with ρ̂ replaced by ρ̂O, and will be denoted by l̃I(ρ).

Sometimes lO(ρ) can be monotonic increasing for large values of ρ. On the

other hand, for values of m, q and ρ of practical interest, it has a local maxi-

mum for ρ ∈ (−ρl, ρu), where ρl, ρu > 0 are threshold values that can exceed

one. Lancaster (2002), developing the integrated likelihood from a Bayesian

perspective, shows that such a local maximum is a consistent estimator of ρ

for large q, even for fixed m. Also l̄I(ρ) and l̃I(ρ) can be monotonic increasing

for large values of ρ, and this problem seems to occur “sooner” than for lO(ρ).

Moreover, the second term in the right hand side of (13) cannot be computed

for values of ρ greater than ρ̂+1/b′(ρ̂) (which is however always greater than

1). A similar comment applies also to l̃I(ρ). Even in these cases, in practice,

this has not proven to be a problem for maximization and inference.

As a numerical illustration, Figure 1 shows the relative log likelihoods

for a simulated sample with m = 8, q = 500, ρ = 0.9, σ2 = 1 and λi

generated from a normal with mean and variance equal to 1. The left panel

shows the monotonicity issue for the integrated log likelihoods, while the right

panel gives a zoomed version in an interval of values of practical interest for

inference.

We also run some simulation studies comparing the empirical coverage
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Figure 1: Example 3. Relative log likelihoods for simulated data of the
nonstationary autoregressive model: m = 8, q = 500, ρ = 0.9, σ2 = 1 and
λi ∼ N(1, 1). The solid line corresponds to lP (ρ), the dashed line to lO(ρ),
the dot-dashed line to l̄I(ρ), and the long-dashed line to l̃I(ρ). The vertical
dotted line indicates the true parameter value, while the horizontal dotted
line provides confidence intervals of level 0.95 based on the corresponding
likelihood ratio statistics. The left panel shows the uncostrained plot, while
the right panel shows a zoomed version in a region of interest.
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Table 5: Example 3. Empirical coverage of R, RO, R̄I and R̃I .

nominal R RO R̄I R̃I
0·010 1·000 0·014 0·003 0·013
0·025 1·000 0·031 0·011 0·027
0·050 1·000 0·056 0·021 0·050
0·100 1·000 0·105 0·041 0·100
0·250 1·000 0·259 0·122 0·252
0·500 1·000 0·496 0·312 0·496
0·750 1·000 0·746 0·568 0·753
0·900 1·000 0·896 0·781 0·903
0·950 1·000 0·944 0·872 0·949
0·975 1·000 0·971 0·925 0·975
0·990 1·000 0·988 0·963 0·990

probabilities for the signed likelihood ratio statistics based on lP (ρ), lO(ρ),

l̄I(ρ), and l̃I(ρ), which are denoted by R, RO, R̄I and R̃I , respectively. Also

bias and mean squared errors of the corresponding estimators have been con-

sidered. Tables 5 and 6 report the results for the same setting of Figure 1,

with 10,000 simulated samples. The results indicate that l̄I(ρ), although

largely improving over lP (ρ), is far from having the same accuracy of lO(ρ).

On the other hand, R̃I seems to be slightly more accurate than RO, in par-

ticular in the tails. Results in more extreme settings, such as with m = 4

and q = 1000, confirm these findings.

Table 6: Example 3. Bias and root mean squared error (RMSE) of various
estimators of ψ = (ρ, σ2).

ρ̂ ρ̂O ρ̄I ρ̃I
bias -0.052 1.0 · 10−5 3.38 · 10−3 −1.2 · 10−5

RMSE 0.0525 0.0067 0.0078 0.0067

σ̂2 σ̂2
O σ̄2

I σ̃2
I

bias -0.144 −3.06 · 10−4 2.58 · 10−3 −3.16 · 10−4

RMSE 0.1455 0.0244 0.0248 0.0244
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Finally, we note that the modified profile likelihood is not straightforward

to obtain in this model. A possibility is to use the approximation of Severini

(1998), avoiding the sometimes cumbersome analytical calculation of required

expected value by means of Monte Carlo simulation. This approach is quite

general, although computationally more intensive, and has been used also

by Bartolucci et al. (2013) for a dynamic regression model for binary data.

Claudia Di Caterina, in an unpublished Master Thesis of the University

of Padova, proved that Severini’s approximation of the mixed derivative is

linear in ρ. This implies that the modified profile log likelihood does not

exist for certain values of ρ, similarly to l̄I(ρ). Moreover, it also shares

the other drawbacks of l̄I(ρ), i.e., it could be monotonic increasing for not

very large values of ρ, and the normal approximation for the corresponding

signed likelihood ratio statistic has an accuracy very close to that of R̄I ,

which is unsatisfactory for practical purposes when m is moderate and q is

very large. We note that also the modified profile likelihood depends on the

maximum likelihood estimates. Therefore it is likely that the use of better

estimates could improve also its accuracy, as for the integrated likelihood

l̃I(ρ), although, to our knowledge, this has not been investigated yet.
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