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Employing Monte Carlo simulations of semiflexible polymer rings in weak spherical confinement a
conformational transition to figure eight shaped, writhed configurations is discovered and quantified.

The conformation of biopolymers is an important as-
pect for their functionality. For DNA, transcription and
replication are governed by specific binding of proteins, a
mechanism strongly connected to polymer configuration
[1, 2]. Furthermore, conformational transitions of cy-
toskeletal filaments represent small engines [3], an idea
that might be transferable to build biomimetic nano-
actuators. Both biological processes and technological
applications of biopolymers are well-studied in in vitro
setups. Inevitably and sometimes also desirably accom-
panied with these experiments is the confinement of poly-
mers, for instance, into channels [4] or micro-chambers
[5]. Confinement is an effect that also arises ubiquitously
in biological systems due to cellular compartments and
bacterial or viral envelopes. Indeed, confinement affects
polymer conformation and induces conformational tran-
sitions as shown by the present work concerning semi-
flexible polymer rings. As an omnipresent form for DNA
[6] and as a new nano-biomaterial building block [7, 8],
semiflexible polymer rings are recently an object of grow-
ing interest. Especially biopolymer’s resistance against
bending on length scales of their persistence length lp,
their semiflexibility, turns them into an interesting ma-
terial, as the degree of overall bending can be tuned by
changing their absolute length L. The internal struc-
ture of polymers can be well characterized by the “self-
crossing number”, the writhe [9, 10] or by correlation
functions along the polymer backbone [11]. Thus, we can
assess conformational transitions due to confinement.

In this work we investigate the internal structure of
semiflexible polymer rings in spherical confinement estab-
lished by an impenetrable shell. Employing Monte Carlo
simulations we compare unconfined polymer rings and
polymer rings restricted by different degrees of spherical
confinement over the full range of flexibilities. A con-
formational transition is observed to arise in the semi-
flexible regime within weak confinement, non-existing in
the stiff regime; the mean absolute writhe exhibits an
sharp growth to up to two and a half times the uncon-
strained value. Evaluation of the writhe distribution for
different flexibilities reveals from the semiflexible regime
onwards a tremendous increase of polymer configura-
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FIG. 1: Writhe of exemplary polymer ring conformations. (a)
When no angular perspective reveals any self-crossings as for
a fully symmetric ring the writhe is zero. (b) Writhing occurs
when for example an ellipse is twined about itself, here to the
degree of Wr ≈ 0.5. (c) A point of self-intersection increases
the writhe by one as in the case of this planar figure eight
shaped trajectory.

tions with writhing numbers specifically centered around
|Wr| = 0.8 within confinement. Finally, the tangent-
tangent correlation discloses the conformational transi-
tion to figure eight shaped polymer rings due to spherical
confinement.

Semiflexible polymers are well described as a con-
catenated chain of N segments, with tangent vector
t, where the range of the angle between successive
bonds is narrowed by the elastic bending energy E =

NkbT (lp/L)
∑N
i=0(1 − titi+1) in the worm-like chain

model [12]. The flexibility L/lp therein determines the
stiffness against bending undulations provoked by ther-
mal energy kBT . A polymer ring is considered stiff, i.e.,
dominated by elastic forces, for flexibilities up to L/lp ≈
5 [8, 13], beyond semiflexible behavior smoothly crosses
over into the entropic, flexible regime for large L/lp.
Polymer conformations are investigated by a Metropolis
Monte Carlo simulation, where successive configurations
of a closed polygon are generated by crankshaft moves.
To collect uncorrelated data only every 105th of succes-
sive configurations is considered. Polymer conformations
that violate the spherical confinement are excluded when
sampling a set of 105 uncorrelated polymer configura-
tions. The statistical error of these ensembles lies within
the ranges of the symbols of all data shown.

The internal structure of polymers can be assessed by
the correlation of two tangent vectors separated a dis-
tance s ∈ [0, L] along the polymer backbone 〈t(s)t(0)〉.
This observable provides details about the relative orien-
tation of the whole contour line of a polymer, however,
it fails to reflect the position of polymer segments with
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regard to each other in space. This aspect is considered
by the writhe Wr [14] , which measures the degree of
coiling of a polymer by counting the number of crossings
of the polymer with its own axis. Projecting a three-
dimensional polymer trajectory into a plane defined by a
normal vector n results in a two-dimensional curve, which
may exhibit crossings. Counting these crossing with ±1
according to their handedness and averaging the number
of crossings over all angular perspectives given by all pos-
sible normal vectors n defines the writhe Wr of the three-
dimensional trajectory. Hence, a two dimensional curve
always exhibits integer writhing numbers, i.e., Wr = 0
for a circle and Wr = 1 for a figure eight shaped trajec-
tory, while three dimensional objects in general are char-
acterized by a real number as shown in Fig. 1. As only
the orientation in which a trajectory is traced decides if
the writhe is positive or negative, any writhe distribu-
tion is symmetric about the origin with the mean writhe
being equal to zero. Insights are therefore gained when
measuring the mean absolute writhe 〈|Wr|〉 of a writhe
distribution. To calculate the writhe of polymer configu-
rations generated by Monte Carlo simulations we follow
Klenin and Langowski [15]. Originally, the writhe has
been employed to characterize the supercoiled state of
nicked DNA [16, 17], recently, it has been extended as a
measure for the increased complexity of random polygons
due to knotting in strong confinement [18]. Our work
considers non-nicked, i.e., zero linking number, polymer
rings in the semiflexible regime, where knotting is pre-
vented by high bending energy cost. In addition, the con-
finement imposed in our study is very weak: The radius
R of the restricting sphere is greater or equal than the
contour radius Rc = L/2π of the polymer’s correspond-
ing rigid ring. Thus, the writhe is expected to reflect
only the increase in undulations by a linear growth with
flexibility L/lp, as predicted for stiff, unconfined polymer
rings [19, 20].

Despite the weak confinement considered, the mean
absolute writhe of semiflexible polymer rings displays
a strong increase proportional to the degree of confine-
ment for flexibilities L/lp > 4 as shown in Fig. 2. The
mean writhe grows roughly linearly for stiff, unconfined
polymer rings[23] in agreement with previous considera-
tions [19, 20]. Irrespective of the degree of confinement
all curves collapse on the unconfined state in the very
stiff regime up to L/lp ≈ 3. From there on the curves
of confined polymer rings start to deviate from the un-
constrained case, with strongest confinement rising first.
The increase in writhe is very sharp and only saturates on
an almost linear growth for higher flexibilities. Towards
even higher flexibility we expect the absolute writhe to
grow with the square root of polymer length

√
L as found

for the flexible limit of random polygons in spherical con-
finement [21]. The deviation in mean absolute writhe
between the different degrees of confinement decreases
slightly with growing flexibility.

To understand the sharp increase in mean absolute
writhe for confined polymer rings we compare the full
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FIG. 2: Mean absolute writhe versus flexibility L/lp for un-
confined polymer rings R = ∞ and polymer rings in weak
spherical confinement R = 1.3Rc, . . . , 1.0Rc of the order of the
extent of the polymer’s corresponding rigid ring Rc = L/2π.
From flexibilities of about L/lp ≈ 4 onwards the confinement
induces a sharp increase in absolute writhe proportional to
the degree of confinement.

distribution of the absolute writhe in both extreme cases
considered, unconfined and spherical confinement with
radius R = Rc as shown in Fig. 3. The writhe distribu-
tion of a free semiflexible polymer ring is monotonically
decaying from Wr = 0 continuously spreading out with
increasing flexibility [19].
In contrast, the writhe distribution of a confined polymer
ring displays a very different behavior. While the writhe
distributions decay from Wr = 0 in the stiff limit like
in the unconfined case, the distributions from L/lp ≈ 3
onwards become bimodal exhibiting a second maximum
at |Wr| = 0.8. This maximum gains statistical weight at
the expense of the first at Wr = 0 as flexibility grows. At
sufficiently high flexibilities both maxima have spread out
so much that they overlap to form a plateau that extends
up to the maximum at |Wr| = 0.8 before the writhe dis-
tribution decays for large absolute writhe. These qualita-
tive observations can also be quantified by extracting the
contributing polymer configurations as shown in Fig. 4.
Assuming that free P∞(|Wr|) and confined PRc

(|Wr|)
polymer ensembles show the same decay from Wr = 0,
the contributing configurations from this decay can be
subtracted from the full absolute writhe distribution of
confined polymer rings by PRc

(|Wr|)− PRc (0)
P∞(0) P∞(|Wr|).

This discloses the underlying contributing polymer con-
formations, in particularly a distribution centered around
〈|Wr|〉 = 0.8 that is well approximated by a Gaussian
N (µ, σ2). Table I displays for different flexibilities the
total number of configurations and the variance of the
Gaussian distribution that was fitted to extract this in-
formation from the data. In addition, at lower absolute
writhe Gaussian shaped distributions are observed cen-
tered around 〈|Wr|〉 = 0.17 for L/lp = 3 then shifting
to 〈|Wr|〉 = 0.23 for L/lp = 4 and 〈|Wr|〉 = 0.3 for
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FIG. 3: Distribution of the absolute writhe for an unconfined polymer ring (a) and a polymer ring within weak spherical
confinement of radius R = Rc (b). Displayed are integer flexibilities from L/lp = 1 to L/lp = 10. The writhe distribution is
a monotonically decaying function of the absolute writhe for unconfined semiflexible polymer rings. In contrast, in spherical
confinement polymers becomes bimodal by developing in addition to the maximum at Wr = 0 a well visible local maximum
around |Wr| = 0.8 from L/lp ≈ 3 onwards. For sufficiently high flexibilities the two maxima overlap to form a plateau extending
up to |Wr| = 0.8.

4 < L/lp ≤ 6. Their percentage amounts at most to
20% and decays strongly for progressing flexibility. The
distribution centered around 〈|Wr|〉 = 0.8 is fixed in its
mean only spreading in variance for increasing flexibili-
ties. Moreover, the absolute percentage of polymer con-
formations centered around 〈|Wr|〉 = 0.8 grows up to
over 50% very slowly decaying in the flexible regime for
L/lp > 8. Thus, confinement provokes at flexibilities
larger than L/lp ≈ 3 additional writhed polymer con-
figuration whose portion amounts up to over 50% of all
states.

As a first step towards an understanding of these obser-
vations we consider overall polymer shape. In the limit-
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FIG. 4: Polymer conformations contribution to the writhe dis-
tribution of a confined polymer ring PRc(|Wr|) exemplarily
shown for L/lp = 6. Subtracting from the confined distribu-
tion the decay in writhe from Wr = 0 as exhibited by the
unconfined writhe distribution P∞(|Wr|) reveals additional
states, which can be attributed to two normal distributions
N (µ, σ2) centered at |Wr| = 0.3 and |Wr| = 0.8.

ing case of zero flexibility a polymer ring is a rigid planar
ring with zero writhe. For slightly higher flexibility the
first bending mode deforms the free polymer ring into a
planar, elliptical shape [13], whose axes grow and shrink,
respectively, with the square root of the flexibility, up to
L/lp ≈ 5. Surely, the writhe of any truly two-dimensional
ellipse is zero as well. However, thermal fluctuations do
excite small deviations out of the plane such that the
actual ensemble of free, stiff polymer rings does exhibit
crossings in a small fraction of angular perspectives and,
hence, displays a small writhing number. As flexibility
grows the writhing number slowly increases.
In contrast, even weakly confined polymer rings cannot
form the desired elliptical configuration of free polymers
as soon as the major axis of the ellipse exceeds the spher-
ical confinement. Instead they buckle into a banana-
like ellipse [22]. Any symmetrically buckled ellipse again
has zero writhe as the mirror plane through the ellipse’s
apices ensures that any crossing observed from a certain
perspective cancels in the summation with a crossing of
the opposite sign from the mirror perspective. Hence,
very stiff, weakly confined polymer rings only show a
small writhe due to undulations about the buckled curve
as in the unconfined case. In both cases the absolute
writhe grows with flexibility as the undulations increase
with L/lp; see Note [23]. Thus, writhe distribution and
mean absolute writhe collapse in the stiff regime.

To understand the structural transition which is pro-
voked by the spherical confinement beyond the stiff

L/lp 3 4 5 6 7 8 9 10

% 3 18 34 47 54 55 50 49

σ2 0.16 0.19 0.21 0.25 0.31 0.35 0.40 0.47

TABLE I: Percentage and variance σ2 of structural distinct
polymer states centered around 〈|Wr|〉 = 0.8. Error of 3% in
percentage and 0.03 in variance.
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FIG. 5: Mean tangent-tangent correlation 〈t(s)t(0)〉 along the whole polymer backbone s ∈ [0, L] for a free (a) and a spherically
confined R = Rc (b) semiflexible polymer ring over flexibilities L/lp = 0, . . . , 10. The correlation of an unconfined polymer ring
smoothly crosses over from the tangent-tangent correlation along an “ellipse” in the stiff regime to an exponential decay with
periodic boundary conditions in the flexible limit. In contrast the correlation of a spherically confined polymer ring displays
the correlation of a “figure eight” shaped trajectory from L/lp > 3 onwards, only slowly saturating for large flexibilities.

regime the tangent-tangent correlation 〈t(s)t(0)〉 along
the polymer backbone s ∈ [0, L], is considered in the
cases R = ∞ and R = Rc, see Fig. 5. The symme-
try of the correlation function about the point of anti-
correlation situated at half the distance along the poly-
mer backbone s = L/2 arises due to the topology of a
ring. For example, the tangent-tangent correlation of a
rigid ring yields 〈t(s)t(0)〉 = cos(2πs/L). In the event
of no confinement the elliptically shaped polymers in the
stiff regime L/lp < 5 display a tangent-tangent corre-
lation that resembles the correlations along an elliptical
trajectory in agreement with analytic calculations [24].
In contrast to the correlations of a real ellipse the anti-
correlations do not reach down to 〈t(L/2)t(0)〉 = −1
due to fluctuations which distort the direction of mir-
ror polymer segments half the backbone distance apart.
At higher flexibilities beyond the stiff regime the ellip-
tical character is lost as higher modes crumple up the
polymer configuration. This fact is also marked by a
change in the initial curvature of the correlation func-
tion from convex to concave. With increasing flexibility
the topological constraint becomes locally less and less
important, thus the correlation function gradually ap-
proaches a symmetric exponential decay similar to an
open semiflexible polymer. Quite strikingly the tangent-
tangent correlations for all flexibilities intersect at s/L =
0.2744 . . . , 0.7744 . . . as calculated from the analytic re-
sult for the correlation function in the stiff regime pre-
sented in Note [24]. This suggests a certain symmetry
in the undulations excited in an unconfined semiflexible
polymer ring, they all seem to be superpositions of those
generated in the stiff limit. This symmetry is, however,
broken for spherically confined polymer rings.
In the very stiff regime up to L/lp ≈ 3 the tangent-
tangent correlation of a polymer ring in spherical con-
finement of R = Rc displays an elliptical character, but
compared to the unrestricted case the anti-correlation is
notably less pronounced. As the confined polymer ring

is forced to extend in three dimensional space due to
buckling, the probability for deviating directions between
mirror segments along the polymer backbone is consid-
erably higher than for an unconstrained planar poly-
mer. Beyond the stiff range the tangent-tangent correla-
tion reveals the internal structure corresponding to the
new polymer configurations induced by confinement. For
L/lp > 3 the correlation function displays decay and in-
crease with twice the frequency as observed for elliptically
shaped polymers. In fact, a figure eight shaped trajectory
exhibits a correlation function of that frequency given
by 〈t(s)t(0)〉 = cos(4πs/L). Indeed an elliptical trajec-
tory that is twined about its longest axis could account
for both the correlation function and a writhing number
around 〈|Wr|〉 = 0.8. The states of smaller writhe are
again hidden in the full distribution due to their small
percentage in number. The figure eight correlation be-
comes most pronounced around L/lp = 7, when the per-
centage of 〈|Wr|〉 = 0.8 is largest. For higher flexibilities
the function smoothes out, as the distribution of states
broadens in accordance with observations from the writhe
distribution.

Altogether our observations confirm that weak spher-
ical confinement imposed by an impenetrable shell in-
duces a conformational transition to polymer rings above
a certain flexibility. Very stiff polymer rings below L/lp ≈
3 exhibit very symmetric conformations whose mean tra-
jectory obeys zero linking number. Only small undu-
lations around this mean trajectory yield a finite mean
writhe increasing identically with flexibility for weakly
confined and unrestricted polymer rings. Differences in
internal structure are only visible by the tangent-tangent
correlation reflecting the planar configuration of uncon-
fined and buckled three-dimensional state of confined
polymers.
Increasing flexibility further beyond this stiff regime in-
duces more and more undulations. For a free polymer
ring these lead to more and more crossings in projec-
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tion planes broadening the writhe distribution. Crum-
pled configurations do not exhibit the symmetry of an
elliptical trajectory any more, which in the stiff limit
provoked cancelations in the sum over crossings, hence
yielding smaller writhing numbers. Thus, beyond the
stiff regime the mean absolute writhe shows a steeper
increase with flexibility. In confinement, however, it is
not only the increase in undulations that raises the mean
writhe with flexibility. In addition, there is a qualitative
change in the writhe distribution. From L/lp ≈ 3 on-
wards the writhe distribution becomes bimodal as poly-
mer configurations with a writhing number distinctly dis-
tributed around 〈|Wr|〉 = 0.8 start to develop. Also
the tangent-tangent correlation shows from this threshold
onwards the characteristics of a figure eight trajectory.
We, therefore, deduce that confinement induces a con-
formational change to figure eight shaped polymers with
〈|Wr|〉 = 0.8. Additional polymer states centered around
〈|Wr|〉 = 0.17, 0.23, 0.3 are few in number and only tran-
siently occur between 3 ≤ L/lp ≤ 6. Configurations cen-
tered around 〈|Wr|〉 = 0.8 grow strongly in percentage
with flexibility and only slowly decay from L/lp > 8 on-
wards. In fact, the first bending mode induces an ellipti-
cal polymer form that has to buckle transversely within
spherical confinement. Thus, it seems plausible that an
increase in flexibility and, hence, in ellipse eccentricity
but also in possible curvature results in a polymer con-
formation, where the free energy to bend a polymer into
a writhed state is equal or less than the free energy of
stronger transverse bending. Therefore, a polymer ring
chooses to intertwine with itself as an alternative way to

fit inside a sphere. This picture is also in agreement with
the subsequent and less pronounced increase in mean ab-
solute writhe for larger cavities. In larger confinement the
energy for buckling becomes comparable to the bending
energy paid for writhing at higher flexibility and also to
less extend. It is, however, quite remarkable that the
structural transition selects specific writhing numbers.
Already the tangent-tangent correlation of free polymer
rings suggests a selection of bending modes, which might
be extended to a selection of “writhing modes” within
confinement. Surely regarding the specific writhing num-
ber the exact geometry and strength of confinement en-
ters.
In summary, our work discloses the occurrence and kind
of conformational transitions in semiflexible polymers
due to an impenetrable shell. The probability curve
and the absolute quantity of the restructured state for
a given flexibility is accessible from the writhe distribu-
tion presented. This turns the conformational transition
due to confinement a predictable event to be employed
in in vitro investigations. Thus, polymer conformations
influence on gene regulation or controlled dynamics of
conformational transitions due to administered changes
in confinement become accessible opening up new per-
spective both concerning the study of biological process
as well as the invention of biomimetic devices.
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