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1. Introduction

There has been a growing interest in the biology and biophysics communities in the

study of the operation of motor proteins [1]. Such biological agents are typically

single enzymes that can act as thermodynamic engines, directly converting chemical

energy into mechanical energy [2] through a chemical cycle which occurs at constant

temperature [3]. Different classes of motor proteins are involved in biological processes

such as cellular transport, cellular mitosis or muscle contraction, to cite a few examples

of a plethora for which the presence of such agents is crucial.

In this article, we concentrate on two particular classes of motor proteins, namely

linear processive molecular motors and rotary molecular motors. Linear processive

motor proteins, of which myosin V and kinesin [4, 5] are important examples, catalyse

the ATP hydrolysis reaction, ATP → ADP+P, and use the energy so obtained to move

along linear molecular tracks, carrying organelles or membrane patches with them and

performing directed transport within cells with high efficiency [6]. These organelles are

too massive for molecular diffusion to move them efficiently in a crowded environment

such as the cytoplasm within the time scales relevant for biological processes. The

molecular tracks, which are composed of actin in the case of myosin V and of tubulin

in the case of kinesin, have a polar character, i.e. such motors can move in only one

direction. A different processive molecular motor, dynein, moves along the tubulin track

in the direction opposite to kinesin. Yet another example of a linear processive molecular

motor is the enzyme RNA-polymerase; see [7] and references therein for a more complete

discussion of the characteristics of this motor. Here it suffices to say that this enzyme

moves along a DNA-strand, also using ATP hydrolysis as its energy source. However,

the function of this enzyme is different from the motors described above, in that it does

not perform molecular transport; instead it promotes the transcription of messenger-

RNA from the underlying DNA-strand on which it moves. Another significant difference

is that the motion of this motor occurs in an heterogeneous medium such as the DNA-

strand, rather than in homogeneous media such as the actin or tubulin molecular tracks.

The chemical cycle that results in the hydrolysis of one ATP molecule by the

molecular motor is composed of several substeps, corresponding to changes in the

internal conformation of the motor, accompanied by chemical reactions, e.g. ATP

binding to the motor, ATP hydrolysis, ADP and P release, etc. Typically, one ATP

hydrolysis is necessary for the motor to advance one step along the track, docking to

the next available site in it, the size of such steps being around 35 nm in the case of

myosin V and 8 nm in the case of kinesin [8, 9, 10, 11]. It should also be noted that

the use of the word ’processive’ to classify a molecular motor is limited to motors whose

dwell time on the molecular track is much larger than the time for a complete chemical

cycle, i.e. the typical time for a single step along the track.

Another class of molecular motors to which one may also apply some of the results

presented in this paper are the so-called rotary molecular motors, of which F1-ATPase

is perhaps the most important example [12]. This motor can also catalyse the ATP
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hydrolysis reaction and use the energy so obtained to generate the rotary motion of a

shaft-like mechanism. The mechano-chemical cycle of such a motor is composed of three

rotations of 120 degrees, determined by the symmetry of the molecule in question, each

rotation being coupled to the hydrolysis of one ATP molecule, as described by the so-

called “binding change mechanism” [13]. If such a motor is coupled to the proton-driven

Fo motor, the assembly of these two motors can either work as a proton pump or use a

proton gradient to synthetise ATP, hence its name, ATPsynthase.

A great wealth of knowledge about the internal chemical cycle of linear processive

molecular motors has been acquired through bead-assay experiments [14, 15, 9, 16, 4,

5, 17, 18]. In such an experiment, performed in a fluid medium, a molecular motor

is coupled to a dielectric bead of micrometric size, the size of such a sphere being

nevertheless much larger than that of the motor protein. The bead can be manipulated

through the use of optical or magnetic tweezers. In certain situations, one can, using

an optical trap, perform experiments in which the molecular motor, moving along its

track, is subjected to a known constant force of several pN. The study of the motion for

different values of the applied force allows one to determine the force-velocity relation

characteristic of a given motor. At a given value of the force, known as the stalling

force, the motor usually decouples from the track (such decoupling can even occur in

the absence of force, but it is a much rarer event in that case [19]) or it may move

backwards along the track. Note that such experiments may be performed at distinct

values of the applied load and also at different ATP concentrations.

More recently, Cappello et al. [20, 21] have considered an experimental apparatus

containing a bead-motor assay that moves through the interference fringes of an

evanescent light-wave that exists in the proximity of a microscope glass plate. The

force which the electric field of such wave exerts on the bead is negligible, i.e. the

experiment is performed in a zero-load condition. However, the bead still scatters

photons of the evanescent field and the observation of such events may be used to

track the bead’s position with high spatial and time resolutions. In particular, such a

method allows for measurements with time resolutions of µs (MHz). In normal bead-

assays, the feedback mechanism used to keep the bead under constant force typically

limits the time resolution to a few milliseconds (kHz). Note that one may perform these

measurements at different ATP concentrations, but one is always limited to work at

zero external load, which constitutes both a strength (because it permits higher time

resolutions) and a weakness of the method (because it limits the parameter range in

which the system can be studied).

In essence, a clear qualitative picture has emerged from the different types of bead-

assay experiments, namely that a few of the substeps which compose the chemical

cycle of a molecular motor (known in the literature as the rate-limiting steps) are of

particularly long duration compared to the remaining substeps, and that the statistics

of the motion of the molecular motor are, for the time resolutions available, essentially

determined by the duration of such rate-limiting steps. Thus, the experimental study

of the motion of linear processive molecular motors can provide valuable information
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concerning the nature and the duration of the rate-limiting steps under different load

conditions or under different concentrations of ATP [18]. There is experimental evidence

that two rate-limiting steps are sufficient to describe the chemical cycle of myosin V,

namely ATP binding (by lowering enough the concentration of ATP it is always possible

to make ATP binding to the motor a rate-limiting step) and ADP release [4], whereas

three or four rate-limiting steps may be needed to describe the chemical cycle of kinesin,

depending on the ATP concentration. It is not yet well understood to which chemical

substeps these rates correspond [18].

The rotary movement of the γ sub-unit of the F1-ATPase motor can be visualised

by coupling such a motor to a microprobe, which can be either a fluorescent actin

filament, a gold or polysterene bead, or a single fluorescent dye [12, 22]. The rotation of

the probe can be recorded with a microscope and a CCD camera. It follows from such

studies that the 360-degree rotation can be decomposed into three 120-degree substeps,

each of which is in turn composed of two rate-limiting steps with approximately the

same duration. These steps involve rotations of 90 and 30 degrees, respectively [23].

One should note that of the three different types of microprobe experiments referred,

the use of a single fluorescent dye seems to be the most promising method of visualisation

[12, 22], as it does not involve a perturbation of the motion of the molecule. In the other

cases, the rotation of F1-ATPase is hindered by the large frictional coupling between

the microprobe (actin filament or gold or polysterene bead) and the surrounding fluid.

The theoretical tool that we will be applying to the analysis of such experiments is

the concept of renewal process. Such processes are ubiquitous in physics. These models

have been successfully applied to describe the motion of processive molecular motors

such as myosin V and kinesin [14, 20, 21], the statistics of detection of quantum particles

[24, 25, 26] and persistence phenomena in kinetic Ising models [27, 28]. Also, the results

that relate to persistent phenomena have applications to studies of the volatility of

financial markets [29]. The above list is not exhaustive.

Loosely speaking, a renewal process is a counting process where unit increments

occur at random times. We will consider only independently distributed renewal

processes, i.e. processes in which the probability distribution for the occurrence of

the next increment (also known as the waiting-time distribution of the renewal process)

depends only on the time elapsed since the occurrence of the last increment and not on

the previous history of the counting process.

If one wishes to be more specific, one can say that the purpose of this article

is to enumerate and classify a series of bead-assay experiments performed with linear

processive molecular motors or with rotary molecular motors. These experiments are

characterised by the fact that one can apply the simple (and exact) results obtained

from the calculation of multiple-time correlation functions of renewal processes with an

arbitrary waiting-time distribution to the analysis of the data obtained. In order to

apply such simple models to linear processive motors, one represents a forward step of a

molecular motor by an increment of the renewal process, whose waiting-time distribution

is dependent on the number of rate-limiting steps of the motor. Such an approximation
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is justified if the molecular motor performs backward steps only infrequently within

the time-window of observation, i.e. provided one is not working too close to the stall

force or at ATP concentrations which are too low, when the rates for a forward or a

backward step to occur become comparable and one needs to use a large time-window of

observation. The application of these results to the dynamics of rotary motors involves

the mapping of a rotation of the motor by a given angle to an increment of the renewal

process, but such a mapping is more subtle (see below for details). Such a mapping

can be justified provided that the motor performs backward rotations only infrequently

within the time-window of observation, which is the case if one is working at high ATP

concentrations.

The measurement of single-time correlation functions of the number of increments

N(T ), which have occurred in a renewal process until a given time T , is a common

practice in the context of the experimental study of linear processive molecular motors.

The measurement of these quantities was first undertaken by Svoboda and coworkers

in their experiments performed with the linear processive molecular motor kinesin [14].

These authors have considered the behaviour of the first and second moments of N(T ),

i.e. 〈N(T )〉 and 〈N2(T )〉, where the averaging is taken over different realisations of

the experiment. Such correlation functions contain information concerning both the

number of rate-limiting steps in a chemical cycle and the characteristic rates pertaining

to such steps. However, such single-time correlation functions do not fully characterise

the motor’s chemical cycle, in particular in the case of motors whose cycles are composed

of many rate-limiting steps, like kinesin. The measurement of multiple-time correlation

functions can provide additional valuable information in such a case [20, 21].

We employ a method based on the use of the probability-generating functional

[30, 31] to compute multiple-time correlation functions of a renewal process. For

simplicity, and due to its experimental relevance, we explicitly compute the mean-

square deviation of the number of increments that occur between time t2 and a later

time t1. This correlation function is mathematically defined as 〈(N(t1) − N(t2))
2〉 −

〈N(t1) − N(t2)〉2, where the times t2 and t1 are large compared to the typical time of

a single chemical cycle. We show that this function contains additional information

concerning the rate-limiting steps of the chemical process, information which cannot

be extracted from single-time correlation functions. We also briefly indicate how the

computation of higher-order correlation functions can be performed. Furthermore, we

explicitly compute the density-density correlation function for a single motor, which was

considered in the experiments of Cappello and co-workers [20, 21]. Interestingly enough,

one can show that in a certain limiting case, such a function is identical to the spin-spin

correlation function considered by Godreche and Luck [27] in their study of persistence

phenomena in kinetic Ising models. Furthermore, the class of spin models obtained in

this particular limit (to which the model studied by Godreche and Luck belongs) may

be relevant for the experimental study of rotary molecular motors, and hence it is also

discussed here.

The structure of this paper is as follows: in the next section, we present the general
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results obtained and relate such results to the relevant experiments. In section 3, we

provide a mathematical introduction to renewal processes, following [30] and introduce

the probability-generating functional of the renewal process, together with some related

quantities whose usefullness will become apparent in section 4. In section 4, we provide

a general derivation of the results presented in section 2, concerning multiple-time

correlation functions of a renewal process, including the mean-square deviation and

the density-density correlation functions mentioned above, whose expressions we will

explicitly compute in the asymptotic regime of large times. A reader whose primary

interest is not mathematics may skip sections 3 and 4 without loss of continuity with

respect to the remainder of the paper. Finally, in section 5, we present our conclusions

and provide a brief outlook of the experimental work that we believe can be carried

in this field using the results that we have derived. In the appendices, we discuss two

simple examples of waiting-time distributions for which the quantities discussed in the

main text can be computed outside the asymptotic regime.

2. General discussion

The most elementary quantity one can measure in a bead-assay experiment is the average

displacement of a motor 〈x(T )〉 up to time T over many runs. The simplest model for

such a motor is that x(T ) = N(T ) d, where N(T ) is an integer variable, updated at

random intervals with a given distribution f(ζ) (a renewal process), and d is the motor’s

step size. In the limit of large time, Blackwell’s renewal theorem [32] guaranties that

〈x(T )〉 = T d/〈τ〉 asymptotically, where 〈τ〉 =
∫∞
0 dζ ζf(ζ) is the average waiting time

of the distribution and corresponds to the mean duration time (or turnover time) of a

single chemical cycle.

The simplest choice one can take for f(ζ) is the exponential distribution f(ζ) =

e−ζ/τ/τ . In this case, 〈τ〉 = τ . In their discussion of bead-motor assay experiments

performed on the processive motor kinesin, Svoboda, Mitra and Block [14] have

examined the more complicated situation where the waiting-time distribution f(ζ) is

given by the convolution of a finite number M of simple Poisson processes. Each of these

processes, which occur in series with typical times τ1, · · · , τM, is supposed to represent

a rate-limiting step of the motor’s chemical cycle. In such a case, the average waiting

time is given by

〈τ〉 =
M
∑

i=1

τi . (1)

Such a model is in good agreement with experiments where one measures the distance

travelled by the molecular motor alone. If one wishes to resolve the chemical

cycle substeps and its associated pathways, e.g. through the use of cryoelectron

microscopy [33, 5], or by using bead-motor assays where lateral or forward loads

are applied to the motor [18], one needs to make use of more involved models

[34, 35, 5, 36, 37, 38, 39, 40, 41] in order to interpret such experiments.
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Svoboda et al. [14] have also introduced the concept of the randomness coefficient

r, characteristic of a single molecular motor. Given that the quantity 〈x2(T )〉− 〈x(T )〉2
is the mean square deviation of the distance travelled by the motor, r is defined as

r = lim
T→∞

〈x2(T )〉 − 〈x(T )〉2
〈x(T )〉 d

. (2)

The randomness coefficient, being the ratio of the mean-square deviation of distance

travelled by the motor to the average distance travelled itself, represents a measure of

the deviation of the motors stepping from a deterministic motion, which would occur

if r = 0. Also, note that r is chosen to be dimensionless [42]. For the simple Poisson

process, 〈x2(T )〉 − 〈x(T )〉2 = T d2/τ , i.e. r = 1. For a renewal process composed of M
rate-limiting steps [43], one can show [14] that the randomness parameter is given by

r =

∑M
i=1 τ 2

i
(

∑M
i=1 τi

)2 . (3)

It follows from (3) that if M > 1, r < 1. For a renewal process composed of M rate-

limiting steps, r ≥ 1/M, the equality being obtained when all rates are equal. In the

limit of an infinite number of substeps whose characteristic time tends to zero, r = 0

and the motor performs a deterministic motion.

The measurement of the randomness parameter, which is robust against thermal

noise [14] or the influence of the initial conditions (i.e. of the experimental set up), is a

powerful experimental tool that can be used to rule out a proposed chemical cycle, if such

a cycle contains too small a number of rate-limiting steps. For example, a measurement

of r < 1/2 indicates that at least three rate-limiting steps are needed to describe the

motor’s chemical cycle [44].

Since the chemical cycle of myosin V appears to be composed of only two rate-

limiting steps, the joint measurement of r and of the average distance travelled by the

motor at large times is sufficient to determine the value of the typical times τ1 and

τ2 associated to each substep. However, if one is considering the experimental study

of motors with more than two rate-limiting steps in their cycle, such as kinesin, the

measurement of these two quantities is not equivalent to the complete determination of

the characteristic times τ1, . . . , τM (M > 2).

The statistical analysis of step duration using such bead-motors assays, which allows

for the direct extraction of the waiting-time distribution f(ζ), was also considered by

several authors [9, 4]. By fitting f(ζ) with an appropriate convolution of exponential

functions, one can obtain the values of all the characteristic times τ1, . . . , τM for arbitrary

M. However, such a technique requires the substitution of a signal with a rich structure

(the individual trajectories of the motor as a function of time) by a function in steps,

which leads to an effective truncation of the data, because possible substeps within

the chemical cycle are erased. Furthermore, such a technique requires a resolution of

individual steps, which is not always feasible.

One is thus led to consider the information provided by multiple-time correlation

functions. The simplest quantity one can consider is the average number of steps given
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by the motor between times t2 and t1, i.e. the correlation function 〈N(t1) − N(t2)〉,
which for large times t1, t2 → ∞ behaves as (t1 − t2)/〈τ〉, and which obviously does not

carry any new information. Its measurement yields, as above, the value of the turnover

time 〈τ〉 of the chemical cycle.

The same cannot be said of the mean-square deviation of this quantity, i.e. the

connected correlation function 〈(N(t1) − N(t2))
2〉conn = 〈(N(t1) − N(t2))

2〉 − 〈N(t1) −
N(t2)〉2. If one were to take t2 = 0, this correlation function would reduce to the mean

square deviation of the distance travelled by the motor up to time t1, introduced above,

and from which one can extract the randomness parameter, as defined in (2). However,

there are good reasons to consider instead the opposite limit in which both t1, t2 → ∞,

with t = t1 − t2 kept finite, as in this limit the correlation function becomes dependent

only on t, i.e. one recovers a form of time-translation invariance (we will write the

correlation function in this limit as C(t) = limt1,t2→∞〈(N(t1)−N(t2))
2〉conn). Such a limit

is of experimental relevance, since such a correlation function becomes independent of

the initial conditions, which can change from one experimental realisation to the other.

Furthermore, its measurement contains additional information concerning the waiting-

time distribution, rather than just the value of the randomness parameter, as we will

now discuss. Finally, such a measurement, just like the measurement of the average

number of steps 〈N(t1) − N(t2)〉, requires only the ensemble averaging of the data and

is not plagued by the limitations one encounters if one tries to measure f(ζ) directly, as

described above.

In our treatment, we will consider a renewal process with an arbitrary waiting-time

distribution, rather than the special choice made by Svoboda et al., since the study of

the general case does not involve a more complicated analysis. However, we will always

indicate the results for this particular waiting-time distribution, given its experimental

importance.

It will be shown in section 4 that this correlation function displays the following

behaviour in the limit of small and large time differences t = t1 − t2,

C(t) =















t

〈τ〉 if t ≪ 〈τ〉
r

〈τ〉 t + C if t ≫ 〈τ〉
, (4)

with r =
〈τ 2〉−〈τ〉2

〈τ〉2 and C =
〈τ 2〉2

2〈τ〉4 − 〈τ 3〉
3〈τ〉3 , where 〈τ 2〉 =

∫∞
0 dζ ζ2f(ζ) and 〈τ 3〉 =

∫∞
0 dζ ζ3f(ζ). Please note that the result just quoted for r, the randomness parameter,

is a generalisation of equation (3) to the case of general waiting-time distribution f(ζ)

[27]. The constant C can be written in terms of r and of the connected third-moment

of the waiting-time distribution, δ =
〈(τ − 〈τ〉)3〉

2〈τ〉3 , as

C =
1

6
+

1

2
r2 − 2

3
δ . (5)

In the case in which f(ζ) is given by the convolution of M Poisson processes, as

considered by Svoboda et al., one can show (see section 4) that r reduces to equation
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(3). In this case, δ =
∑

M

i=1
τ3
i

(
∑M

i=1
τi)

3 . The constant C is exactly zero for a simple Poisson

process.

As we will show in Appendix A, one can compute C(t) for arbitrary values of t,

rather than just the asymptotic limits given by (4), for processes whose waiting-time

distribution is given by the convolution of two or three Poisson processes, i.e. if M = 2, 3

(the case M = 1 is trivial, see section 4). Such computations are explicitly performed

because of the importance of such processes for the experimental study of myosin V and

kinesin. We plot the results of these calculations below, in figures 1 and 2, respectively,

with the choices τ1 = τ2 = 1/2 for the case of a renewal process composed of two rate-

limiting steps and τ1 = τ2 = τ3 = 1/3 for the case of a renewal process composed of

three rate-limiting steps. In both cases, 〈τ〉 = 1 (in arbitrary units), with r = 1/2 in

the first case and r = 1/3 in the second case. It is seen that the two functions have the

correct asymptotic limits at short and large times, as given by equation (4).

0.5 1 1.5 2
t

0.25

0.5

0.75

1

1.25

1.5

1.75

2
Correlation

Figure 1. Mean-square deviation of the number of steps in the regime of large times

(red curve), for a motor with two rate-limiting steps. Also shown are the linear regimes

at small and large time t.

0.5 1 1.5 2
t

0.25

0.5

0.75

1

1.25

1.5

1.75

2
Correlation

Figure 2. Mean-square deviation of the number of steps in the regime of large times

(red curve), for a motor with three rate-limiting steps. Also shown are the linear

regimes at small and large time t.

As stated above, the measurement of the average distance travelled by the motor

permits one to determine the turnover time 〈τ〉. Once this quantity is known, one
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can use the measurement of C(t) at large times to determine both the randomness

coefficient r (which is given by the slope of the straight line multipled by 〈τ〉), as well

as the constant C which is related to the second and third moment of f(ζ) [45]. For a

motor whose chemical cycle is composed of two rate-limiting steps, the constant C is

given by C =
2τ2

1 τ2
2

(τ1+τ2)4
. The measurement of C does not provide any new information

in this case, but it may provide a way to check or to improve the results obtained

from the joint measurement of the average distance travelled by the motor and of the

randomness parameter r. On the other hand, in the case of a motor whose chemical cycle

is composed of three rate-limiting steps, the measurement of the total distance travelled

by the motor, which permits one to determine the total turnover time 〈τ〉 = τ1 + τ2 + τ3,

of r and of C = 2
(τ1+τ2+τ3)4

(τ 2
1 τ 2

2 + τ 2
1 τ2τ3 + τ1τ

2
2 τ3 + τ 2

1 τ 2
3 + τ1τ2τ

2
3 + τ 2

2 τ 2
3 ) can be used

to determine the three time-constants τ1, τ2 and τ3, through a fit of the experimental

results. Such a measurement may be particularly useful in experiments with kinesin and

for concentrations of ATP for which ATP binding is not a rate-limiting step, because in

such a case the chemical cycle of kinesin appears to be composed of three rate-limiting

steps [18].

Another example of a multiple-time correlation function which can be measured

experimentally is the density-density correlator of an ensemble of independent molecular

motors, defined as S(q, t1, t2) = 〈 e−iqd (N(t1)−N(t2)) 〉, where q has the dimensions of a

wave-vector and d is the motor’s step size. This quantity is the Fourier transform of the

probability for the motor to move by a distance n × d between time t2 and t1. It was

directly measured in the experiments of Cappello and coworkers [46], where the bead-

motor assay moves through the interference fringes of an evanescent wave. In such an

experiment, q = 2π/Λ, where Λ is the period of the mask used to create the interference

pattern [20, 21]. In the long time limit t2, t1 → ∞, S(q, t1, t2) becomes solely dependent

on the time difference t = t1 − t2, in which case one simply writes S(q, t). One can show

(see section 4) that the Laplace transform of such a function, S̃(q, s) =
∫∞
0 dt e−st S(q, t),

is given, for a general distribution f(ζ) with a finite average time 〈τ〉, by

S̃(q, s) =
1

s

(

1 +
(e−iqd − 1)(1 − f̃(s))

〈τ〉 s (1 − e−iqdf̃(s))

)

, (6)

where f̃(s) is the Laplace transform of f(ζ). Note that in the experiments of Cappello

and co-workers, this function was taken to be a simple exponential distribution. The

equation above generalises their result to the case of a general waiting-time distribution.

One can relate the Fourier transform of S(q, t), S(q, ω) =
∫ +∞
−∞ dt eiωt S(q, t) to its

Laplace transform by S(q, ω) = 2ReS̃(q, s = −iω). The Fourier transform is more

amenable to computation from the measured data than the Laplace transform, or can

otherwise be directly measured. One can show from such a relation and from equation

(6) that S(q, ω) is given by

S(q, ω) =
2(1 − cos(qd))(1 − |f̃(−iω)|2)

ω2 〈τ〉 |1 − e−iqdf̃(−iω)|2
. (7)
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If f(ζ) is a simple exponential distribution, one obtains from (7),

S(q, ω) =
2τ(1 − cos(qd))

(ωτ − sin(qd))2 + (1 − cos(qd))2
, (8)

which becomes the result for asymetric diffusion in the continuum limit qd ≪ 1, i.e. one

obtains in this limit

S(q, ω) =
2D q2

(ω − qv)2 + D2 q4
, (9)

where we have introduced the motor’s velocity v = d/τ and the motor’s diffusion

constant D = d2/2τ , valid for a Poisson process, since equation (9) was derived from

(8). For a renewal process with waiting-time distribution f(ζ), one can still approximate

S(q, ω) by (9) if the Laplace transform f̃(s) is analytic at s = 0, i.e. if all moments

of the distribution f(ζ) exist. In such a case, v = d/〈τ〉 and D = d2 r/2〈τ〉. Such

approximation is valid at low-frequencies compared to the total turnover rate and at

low-momenta compared to the inverse step size, i.e. if ω〈τ〉 ≪ 1 and qd ≪ 1. In

other words, the motor behaves in such a limit as a Brownian particle, characterized

by the two parameters v and D [21], as one would expect. In Appendix B, we will

explicitly compute S(q, ω) outside this asymptotic region for the cases in which f(ζ)

is given by the convolution of two or three Poisson processes, which corresponds to a

chemical cycle composed of two or three rate-limiting steps. Again, such calculations

are carried through because of the experimental significance of these two cases for the

study of myosin V and of kinesin, since a measurement of S(q, t) and the subsequent

computation of S(q, ω) would permit the extraction of the relevant time constants by

fitting the measured S(q, ω) with the corresponding expression, appropriate for the

given number of rate-limiting steps, as given in Appendix B [47]. Note that in order to

perform such a fitting, one should first have a qualitative understanding of the nature

of the chemical cycle, in particular of the number of rate-limiting steps.

Interestingly enough, one may also use the results obtained above for S̃(q, s) to

interpret experiments performed with rotary molecular motors, such as F1-ATPase

[12, 13]. In this case, one assimilates the rotary motion of the probe attached to the

motor to the motion of classical spin in two dimensions (an XY model), with unit length

and Q internal states, where Q is an integer, such that the spin rotates around the z-axis

in one direction by an angle equal to 2π/Q. Such a model may be appropriately referred

to as a ’random-clock’.

In more mathematical terms, one defines the 2-dimensional vector variable ~σT =

(cos(2πN(T )/Q), sin(2πN(T )/Q)), where N(T ) is given by a renewal process with an

arbitrary waiting-time distribution f(ζ). Such a vector rotates in the 2-dimensional

circle by an angle equal to 2π/Q, with the waiting-time distribution of the renewal

process f(ζ). After Q rotations, the spin returns to its original state. It can

be easily seen that the spin-spin correlation function of such a model is given by

〈~σt1 · ~σt2〉 = Re S(q = 2π/Q, t1, t2), where S(q, t1, t2) is the density-density correlator

defined above for the renewal process with waiting-time distribution f(ζ) and d = 1,

since q is here an angular variable. In the long-time limit, t1, t2 → ∞, where this
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function is solely dependent on t = t1 − t2, one can read the Laplace transform of such

a quantity from equation (6). This transform is given by

L 〈~σt1 · ~σt2〉 = Re

[

1

s

(

1 +
(e−2πi/Q − 1)(1 − f̃(s))

〈τ〉 s (1 − e−2πi/Qf̃(s))

)]

. (10)

If we were to take Q = 2, the model would become that of an Ising spin variable and

equation (10) reduces to the result obtained by Godreche and Luck [27]. In effect, the

computation of S̃(q, s), as given by (6), can also be obtained from their results. We will

use a different method to derive such an expression.

In the case of F1-ATPase, the symmetry of the motor molecule implies that Q = 3,

i.e. the motor rotates by an angle of 120 degrees and requires three such rotations to

complete its cycle. If one were to assume that the waiting-time distribution for each of

these 120 degrees rotations was given by a simple Poisson process, it becomes trivial to

invert the Laplace transform given in equation (10) and one obtains (with t1 > t2)

〈~σt1 · ~σt2〉 = cos

(√
3(t1 − t2)

2τ

)

exp

(

−3(t1 − t2)

2τ

)

, (11)

i.e., the spin-spin correlation function, despite the irreversible character of the underlying

spin model, displays an oscillatory, albeit overdamped, behaviour. In fact, such

behaviour is always present if Q > 2. Its origin is trivial, being traceable to the

circular character of the motion. Nevertheless, the study of the motion may provide

valuable information concerning the chemical cycle. In equation (11), such information

is encoded in the turnover time τ .

In reality, the 120-degree rotation performed by F1-ATPase is composed of two

rate-limiting substeps, the first substep corresponding to a 90-degree rotation and the

second substep to a 30-degree rotation [12]. This implies that f(ζ) is given by the

convolution of two Poisson processes. In such a case, it is still possible to invert the

Laplace transform given by equation (11), but the resulting expression for the spin-

spin correlation function in the time domain is rather cumbersome and it is preferable

to work with its Fourier transform instead. However, there is one particular instance

in which the spin-spin correlation function in the time domain acquires a particularly

simple form, namely when the time-constants τ1 and τ2 are equal, i.e. τ1 = τ2 = τ/2.

One obtains for the spin-spin correlation function in this case, the result (with t1 > t2)

〈~σt1 · ~σt2〉 = cos

(√
3(t1 − t2)

τ

)

(

3

4
e−

(t1−t2)
τ +

1

4
e−

3(t1−t2)
τ

)

, (12)

whose form is clearly different from the one given in equation (11), as the period of

the oscillations is now shorter than its decay-time, i.e. the oscillations are no longer

overdamped. This property may actually permit the experimental observation of such

oscillations. We leave the derivation of equation (12) to Appendix C. We plot below,

in figure 3, the two functions given by (11) and (12) for comparison, in terms of the

variable t = t1 − t2.

The derivation of the expression of the Fourier transform of the spin-spin correlation

function, for a general choice of the two time constants τ1 and τ2, is also left to
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given waiting time distribution f(ζ) such that f(ζ) is positive and
∫∞
0 dζ f(ζ) = 1 (one

assumes that the process starts at u = 0 with N(0) = 0). Mathematically, this can be

written as

N(u) = n if Tn ≤ u < Tn+1 , (14)

with T0 = 0. If one defines Fk(T ) to be the probability that at least k increments have

occurred up to time T irrespective of whether more increments have occurred or not,

then it is easy to show [32] that Fk(T ) is given by

F0(T ) = 1 (15)

Fk(T ) =
∫ T

0
dζ Fk−1(T − ζ) f(ζ) k > 0 . (16)

One may equally regard the renewal process as a totally asymetric random-walk of a

structureless particle, in which case one speaks of the probability of observing at least

k forward steps of such a particle up to time T . As discussed above, this particle is

supposed to represent a molecular motor, with the waiting time-distribution f(ζ) being

determined by the internal chemical cycle of the motor.

In particular, it follows from this definition that F1(T ) =
∫ T
0 dζ f(ζ) is the

cumulative probability to observe an increment of N(u) in the time interval [0, T [. The

probability that exactly k increments have occurred up to time T is then given by

Pk(T ) = Fk(T ) − Fk+1(T ) . (17)

The average number of increments of N(u) (or the average number of steps of the

particle) up to time T , which we designate by m(T ), is given by m(T ) = 〈N(T )〉 =
∑∞

k=0 k Pk(T ). Using equation (17) for Pk(T ) and expressing Fk+1(T ) in terms of Fk(u)

at earlier times through equation (16), it follows that m(T ) necessarily obeys the integral

equation

m(T ) = F1(T ) +
∫ T

0
dζ m(T − ζ) f(ζ) , (18)

which is known in the literature as the ’renewal equation’, m(T ) being called the ’renewal

function’. For reasons that will become clear below, we prefer to work with the derivative

of m(T ) and we write l(T ) = m′(T ), which we will also call the renewal function.

Differentiating the above equation with respect to T and given that m(0) = 0, one

obtains

l(T ) = f(T ) +
∫ T

0
dζ l(T − ζ) f(ζ) , (19)

i.e. the equation has the same form as (18), but the non-homogeneous term is now

given by f(T ) rather than by F1(T ). From the above equation, it also follows that

l(0) = f(0). If one considers a Poisson process, where f(ζ) = e−ζ/τ/τ , it is trivial

to verify that l(T ) = 1/τ is the solution of equation (19) and one has m(T ) = T/τ ,

i.e. the average number of steps of the walker increases linearly with time. For more
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general forms of the waiting-time distribution, the renewal equation can still be solved

by Laplace transformation, and one obtains

l̃(s) =
f̃(s)

1 − f̃(s)
, (20)

where l̃(s) and f̃(s) are, respectively, the Laplace transforms of l(T ) and of f(T ). In

order to obtain l(T ) from this expression, one needs to invert the Laplace transform, an

operation one can only perform in a limited number of cases. Nevertheless, Blackwell’s

renewal theorem [32] asserts that provided that 〈τ〉 =
∫∞
0 dζ ζ f(ζ) is finite, then

l(T ) = 1
〈τ〉 asymptotically at large time T .

Having defined the random process that will be the object of our study, we now

proceed to define the quantities we wish to compute. We will first consider the restriction

of the renewal process given above such that exactly N increments have occurred

between time u = 0 and time u = T , i.e. the times of the increments are such that

0 < T1 < T2 < . . . < TN < T < TN+1 and we will consider correlation functions of the

random variable [31]

J (u) =
N
∑

i=1

g(u − Ti) , (21)

where 0 ≤ u < T and where g(u) is a function with at most a finite number of

discontinuities. If N = 0, we define J (u) ≡ 0 for all 0 ≤ u < T . Note that

N(u) =
∑N

i=1 θ(u − Ti), where θ(u) = 0 if u < 0, θ(u) = 1 if u ≥ 0, is of this form, and

therefore the number of increments N(u) (or the number of steps which the particle has

given) corresponds to a particular case of (21) in which one takes g(u) = θ(u). Thus,

we wish to determine the value of the correlation functions 〈J (t1)J (t2) . . . J (tm)〉N ,

where m ≥ 1 and where the averaging is over the distribution of the times T1 to TN .

For simplicity, we will restrict ourselves to m = 1 and m = 2 in the particular examples

discussed, though the formalism is valid for arbitrary m.

If one defines the probability-generating functional ZN [j] as

ZN [j] =

〈

exp

(

i
∫ T

0
dx j(x)J (x)

)〉

N

, (22)

where the averaging is performed over the increment times T1, . . . , TN , then it follows

that the computation of ZN [j] is equivalent to the computation of all correlation

functions, which can be obtained by functionally differentiating ZN [j] with respect to

j. Note that we choose the normalisation of ZN [j] to be given by

ZN [j = 0] = PN (T ) , (23)

where PN (T ) is the probability of occurrence of exactly N increments up to time T ,

introduced above.

One can now generalise the concept of probability-generating functional to

situations in which the total number of increments is not fixed by introducing the

(grand-canonical) functional [31]

Z[j] =
∞
∑

N=0

ZN [j] . (24)
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The functional Z[j] can again be functionally differentiated with respect to j in order

to obtain the relevant correlation function. Note that if one takes j = 0, one obtains

Z[j = 0] =
∞
∑

N=0

PN (T ) = 1 , (25)

i.e. the probability-generating functional is equal to one due to normalisation of the

total probability. This result justifies the normalisation chosen above for ZN [j]. In the

next section, we will develop a technique which will allow us to compute the correlators

of J (u) order by order.

4. Integral equation for the probability-generating functional and

associated multiple-time correlation functions

We first consider the case in which exactly N > 0 increments have occurred up to time

T . The exclusive probability density (also known as Janoussi local density) [50, 30] for

the increments to occur at times T1 < T2 < . . . < TN < T is given by

pN (T1, T2, . . . , TN ) = P0(T − TN )f(TN − TN−1) . . . f(T2 − T1)f(T1) , (26)

where P0(T −TN ) = 1− ∫ T−TN

0 dζ f(ζ) is the probability that no increment has ocurred

between TN and T , as given by equation (17) (with k = 0). The probability-generating

functional ZN [j] is given in terms of this quantity by

ZN [j] =
∫ T

0
dTN

∫ TN

0
dTN−1 . . .

∫ T2

0
dT1 pN (T1, T2, . . . , TN ) ei

∫ T

0
dx j(x)J (x)

=
∫ T

0
dTN P0(T − TN ) ei

∫ T

0
dx j(x) g(x−TN )

∫ TN

0
dTN−1 f(TN − TN−1) ei

∫ T

0
dx j(x) g(x−TN−1) . . .

∫ T2

0
dT1 f(T2 − T1) ei

∫ T

0
dx j(x) g(x−T1) f(T1) , (27)

where we have used the identity ei
∫ T

0
dx j(x)J (x) =

∏N
l=1 ei

∫ T

0
dx j(x) g(x−Tl). Note that if

j(x) = 0, the functional ZN [j = 0] reduces to PN (T ), as stated above. This equation can

be written in a more condensed form if one introduces the following set of functionals,

defined recursively by

l0(j, u) = f(u)

lN (j, u) =
∫ u

0
dv f(u − v) ei

∫ T

0
dx j(x) g(x−v) lN−1(j, v) . (28)

Using this notation, it is then easy to see that one can write the functionals ZN [j] in

the form

Z0[j] = P0(T )

ZN [j] =
∫ T

0
du P0(T − u) ei

∫ T

0
dx j(x) g(x−u) lN−1(j, u) if N > 0 . (29)
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Since we wish to compute the functional Z[j], we need to performed the summation

defined in equation (24). If one now introduces the functional

l(j, u) =
∞
∑

N=0

lN (j, u) , (30)

then one can show from equation (28) that l(j, u) obeys the integral equation

l(j, u) = f(u) +
∫ u

0
dv f(u − v) ei

∫ T

0
dx j(x) g(x−v) l(j, v) . (31)

Now, using the recursion relation (29), it is easy to show that Z[j] can be expressed in

terms of l(j, u) by

Z[j] = P0(T ) +
∫ T

0
du P0(T − u) ei

∫ T

0
dx j(x) g(x−u) l(j, u) . (32)

As they stand, equations (31) and (32) are of little use, since it is usually not possible

to solve (31) for l(j, u). However, if one takes j(x) = 0 in equation (31), one obtains,

after changing the integration variable from v → u − v, the equation

l(0, u) = f(u) +
∫ u

0
dv l(0, u − v) f(v) , (33)

with the initial condition l(0, 0) = f(0). But this is precisely equation (19) for the

renewal function l(u), with the same initial condition. Therefore, we conclude that

l(0, u) = l(u), a result which justifies the notation we are using. Now, we express f(u)

and f(u−v) in equation (31) in terms of l(u), using (33). After interchanging the limits

of integration in the resulting double integral and using (31), one obtains the integral

equation

l(j, u) = l(u) +
∫ u

0
dv l(u − v)

(

ei
∫ T

0
dx j(x) g(x−v) − 1

)

l(j, v) , (34)

which shows explicitly that l(j, u) reduces to l(u) when j(x) = 0. Now, substituting

P0(T ) = 1−∫ T
0 du f(u), P0(T−u) = 1−∫ T

u dv f(v−u) in equation (32) and interchanging

the limits of integration in the resulting double integral, one obtains, after using equation

(31)

Z[j] = 1 +
∫ T

0
du
(

ei
∫ T

0
dx j(x) g(x−u) − 1

)

l(j, u) , (35)

which shows explicitly that Z[j = 0] = 1. Equations (34) and (35) are the main results

of this section. In fact, these two equations are equivalent to the expansion of the

probability-generating functional Z[j] in terms of the conditional probability densities

for a renewal process, see [30] for details. The above form is more convenient for explicit

calculations, as shown below.

Before we discuss the general solution of (34), let us apply our results to compute

the functional Z[j] for the particular case of the simple Poisson process. Given that

l(u) = 1/τ , one concludes, substituting this result in equation (34), that l(j, u) obeys

the integral equation

l(j, u) =
1

τ
+
∫ u

0

dv

τ

(

ei
∫ T

0
dx j(x) g(x−v) − 1

)

l(j, v) . (36)
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Differentiating this equation with respect to u, one obtains the first-order linear

differential equation

dl(j, u)

du
=

1

τ

(

ei
∫ T

0
dx j(x) g(x−u) − 1

)

l(j, u) . (37)

with the initial condition l(j, 0) = 1/τ . Such an equation can be quickly integrated by

separation of variables, yielding the solution

l(j, u) =
1

τ
exp

(

∫ u

0

dv

τ

(

ei
∫ T

0
dx j(x) g(x−v) − 1

)

)

. (38)

This solution, when substituted in equation (35), yields

Z[j] = exp

(

∫ T

0

du

τ

(

ei
∫ T

0
dx j(x) g(x−u) − 1

)

)

, (39)

which is a well known result, being given in, e.g. [31]. However, this is in fact the

only case for which a closed expression for Z[j] can be found, as one can no longer

reduce the integral equation (34) to a first-order differential equation if one chooses a

different waiting-time distribution. Neither can one solve (34) using a Laplace transform

because the source term ei
∫ T

0
dx j(x) g(x−v) in (34) is not time-translation invariant. Such

difficulties stem from the fact that equation (34) is a Volterra integral equation for which

no analytical solution is known in the general case.

Nevertheless, one can show that all correlation functions can be obtained from

equations (34) and (35) in a closed form, provided one knows the renewal function l(u).

This point can be made clearer through the discussion of two examples which we will

use extensively in our applications of renewal processes to the study of the dynamics

of molecular motors. We wish to compute the average value 〈J (t1)〉 and the two-point

correlation function 〈J (t1)J (t2)〉. In the first case, one has

〈J (t1)〉 = − i
δZ[j]

δj(t1)

∣

∣

∣

∣

∣

j=0

=

(

∫ T

0
du g(t1 − u) ei

∫ T

0
dx j(x) g(x−u) l(j, u)

−i
∫ T

0
du

(

ei
∫ T

0
dx j(x) g(x−u) − 1

)

δl(j, u)

δj(t1)

)

j=0

=
∫ T

0
du g(t1 − u) l(u) , (40)

since the second term is zero if j(x) = 0 and l(j = 0, u) = l(u). Therefore, the average

value 〈J (t1)〉 can be expressed as an integral involving the known functions g(u) and

l(u). In particular, if J (t1) = N(t1), which is the number of increments which has

occurred up to time t1 or the displacement of the particle up to time t1, then one has

g(u) = θ(u) and one obtains

〈N(t1)〉 =
∫ t1

0
du l(u) = m(t1) , (41)

which is just the definition of the renewal function m(t1) given in the previous section.
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The procedure used to compute the two point correlator 〈J (t1)J (t2)〉 is analogous,

but it also involves the functional derivative δl(j,u)
δj(t1,2)

. One has

〈J (t1)J (t2)〉= − δ2Z[j]

δj(t1)δj(t2)

∣

∣

∣

∣

∣

j=0

=
∫ T

0
du g(t1 − u) g(t2 − u) l(u)

− i
∫ T

0
du g(t1 − u)

δl(j, u)

δj(t2)

∣

∣

∣

∣

∣

j=0

− i
∫ T

0
du g(t2 − u)

δl(j, u)

δj(t1)

∣

∣

∣

∣

∣

j=0

, (42)

since the term which involves the functional derivative δ2l(j,u)
δj(t1)δj(t2)

is zero if j(x) = 0.

Now, in order to compute the functional derivative δl(j,u)
δj(t1)

at j(x) = 0, one functionally

differentiates equation (34) with respect to j(t1) and sets j(x) = 0. One obtains

δl(j, u)

δj(t1)

∣

∣

∣

∣

∣

j=0

= i
(
∫ u

0
dv l(u − v) g(t1 − v) ei

∫ T

0
dx j(x) g(x−v) l(j, v)

+
∫ u

0
dv l(u − v)

(

ei
∫ T

0
dx j(x) g(x−v) − 1

)

δl(j, v)

δj(t1)

)

j=0

= i
∫ t

0
dv l(u − v) g(t1 − v) l(v) , (43)

since the second term is again zero if j(x) = 0 and l(j = 0, v) = l(v). The expression

for the derivative δl(j,u)
δj(t2)

is simply obtained from equation (43) by interchanging t1 by t2.

It should be clear from equation (40) that in order to compute the m-th variational

derivative of Z[j] at j(x) = 0, one needs only the derivative of order m − 1 of l(j, u),

because the term which involves the m-th derivative of l(j, u) is zero in that case, since

ei
∫ T

0
dx j(x) g(x−u) − 1 = 0 if j(x) = 0. More importantly, it should also follow from the

structure of equation (43) that in order to compute the m-th variational derivative of

l(j, u) at j(x) = 0, one only needs the derivative of order m − 1 of l(j, u), because the

term which involves the m-th derivative of l(j, u) is zero for the same reason. This

implies that one can express such variational derivatives in terms of quantities which

were previously calculated, assuming that we know the function l(u). Thus, the solution

of equation (19) is sufficient to compute all correlation functions in a recursive manner,

see [30] for a rigorous proof.

Finally, one can obtain a closed expression for 〈J (t1)J (t2)〉 by substituting the

result for δl(j,u)
δj(t1,2)

∣

∣

∣

j=0
given in equation (43) in equation (42). One has that 〈J (t1)J (t2)〉

is given by

〈J (t1)J (t2)〉 =
∫ T

0
du g(t1 − u) g(t2 − u) l(u)

+
∫ T

0
du g(t1 − u)

∫ u

0
dv l(u − v) g(t2 − v) l(v)

+
∫ T

0
du g(t2 − u)

∫ u

0
dv l(u − v) g(t1 − v) l(v) . (44)

If J (t1) = N(t1), J (t2) = N(t2), then g(u) = θ(u) and we obtain for the correlation

function 〈N(t1) N(t2)〉, the result

〈N(t1) N(t2)〉 =
∫ min(t1,t2)

0
du l(u) +

∫ t1

0
du

∫ min(u,t2)

0
dv l(u − v) l(v)
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+
∫ t2

0
du

∫ min(u,t1)

0
dv l(u − v) l(v) . (45)

In the context of the study of molecular motors, it is more appropriate to consider

the mean-square deviation of the displacement of the particle between time t2 and t1
(t1 > t2), i.e. the correlation function 〈(N(t1) − N(t2))

2〉conn = 〈(N(t1) − N(t2))
2〉 −

〈N(t1)−N(t2)〉2, as explained in section 2. If we use equations (41) and (45), we obtain,

after some trivial manipulations,

〈(N(t1) − N(t2))
2〉conn =

∫ t1

t2
du l(u) + 2

∫ t1

t2
du l(u)

∫ t1

u
dv (l(v − u) − l(v)). (46)

In the case of a Poisson process, l(u) = 1/τ and this expression reduces to the first

term, i.e. we obtain 〈(N(t1) − N(t2))
2〉conn = (t1 − t2)/τ , which is a well-known result

for the simple Poisson process. The expression for the full functional obtained above in

equation (39) allows one to compute correlation functions of any order, but only in this

simple case.

A particular important limit of (46) is the one in which t2, t1 → ∞, but in which

the time difference t = t1−t2 is kept finite, since C(t) = limt1,t2→∞〈(N(t1)−N(t2))
2〉conn

becomes a function of t only, i.e. one recovers a form of time translation invariance.

In this limit, l(u) → 1

〈τ〉 and one obtains, substituting this result above, the following

result for C(t)

C(t) =
t

〈τ〉 +
2

〈τ〉
∫ t

0
du (t− u)

(

l(u) − 1

〈τ〉

)

. (47)

If t ≪ 〈τ〉, it is easy to see that the second term of this equation is at least O(t2) and

therefore C(t) ≈ t

〈τ〉 , if t ≪ 〈τ〉. This observation justifies the first line of equation (4).

In order to extract the long-time behaviour of C(t), one needs to consider instead the

Laplace transform C̃(s) of C(t). One has, from equation (47),

C̃(s) =
1

〈τ〉s2

(

1 + f̃(s)

1 − f̃(s)
− 2

〈τ〉s

)

, (48)

where we have used equation (20) to express l̃(s) in terms of f̃(s). If f̃(s) is analytic

a s = 0, i.e. if all moments of the distribution f(ζ) exist, one can write, for small s

f̃(s) = 1−〈τ〉 s+
〈τ 2〉

2!
s2− 〈τ 3〉

3!
s3 + . . .. Performing a Taylor expansion of (48) at s = 0

using such a result for f̃(s) and keeping only the most divergent terms, one obtains

C̃(s) ≈ r

〈τ〉s2
+

C

s
, (49)

with r =
〈τ 2〉−〈τ〉2

〈τ〉2 and C =
〈τ 2〉2

2〈τ〉4 − 〈τ 3〉
3〈τ〉3 , where 〈τ 2〉 =

∫∞
0 dζ ζ2f(ζ) and 〈τ 3〉 =

∫∞
0 dζ ζ3f(ζ). Furthermore, one can write C in the form given by equation (5), using

the definitions of the connected second- and third-moment r and δ, given above. The

behaviour of C(t) for t ≫ 〈τ〉 is determined by the behaviour of the Laplace transform

C̃(s) at small s, as given by (49) and one can directly identify the coefficients of the
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most divergent terms of C(t) from those in equation (49). One thus concludes that C(t)

is given, in this limit, by the second line of equation (4).

Let us now consider the case in which the waiting-time distribution of the renewal

process is given by a convolution of M Poisson processes, each of which is supposed to

represent a rate-limiting step of the molecular motor. Mathematically, this is expressed

by saying that such function, which we denote by fM(ζ), is given recursively by

fM(ζ) =
∫ ζ

0

dη

τM
e
− ζ−η

τM fM−1(η) if M > 1 , (50)

where fM−1(η) is the waiting-time distribution of a process with M − 1 rate-limiting

steps and f1(ζ) = e−ζ/τ1/τ1. Given that the Laplace transform of a single Poisson process

is given by f̃1(s) = (1 + τ1s)
−1, one concludes from equation (50) and the convolution

theorem that the Laplace transform of fM(ζ) is given by

f̃M(s) =
M
∏

k=1

1

1 + sτk
. (51)

Since 〈τ〉 = −f̃ ′(0), 〈τ 2〉 = f̃ ′′(0) and 〈τ 3〉 = −f̃ (3)(0), one concludes, differentiating

equation (51), that 〈τ〉, r and C are given, respectively, by equations (1), (3) and (5)

with δ =
∑M

i=1
τ3
i

(
∑

M

i=1
τi)

3 . The form which f̃M(s) takes for M = 2, 3 even allows one to

invert the Laplace transform l̃(s) and obtain l(u) in these two cases. One can therefore

determine C(t) for arbitrary time t, using equation (47). This calculation is explicitly

performed in Appendix A, as stated above.

In the above derivation, we have assumed that all moments of the distribution f(ζ)

exist, in other words that the Laplace transform f̃(s) is an analytic function at s = 0.

Such assumption is enterily justified when discussing the motion of a molecular motor

in a homogeneous environment, as is the case of myosin V or kinesin. On the other

hand, if one considers the motion of tracer particles in a rapidly rotating fluid [51], one

is led to consider a renewal process with a waiting-time distribution with fat tails, which

reflects the diverging sticking-times of the tracer particles. In a biological context, some

of these results may also be applicable to the study of the motion of RNA-polymerase

along a DNA-strand [7].

It is beyond our means to provide a complete discussion of this issue, However, one

may consider a very simple model for a waiting-time distribution with fat tails, namely

we take f(ζ) = (ν−1)Aν−1

(A+ζ)ν , where ν > 1, such that f(ζ) is normalisable. For 2 < ν < 3,

the assymptotic decay of f(ζ) is the same as that of a stable Lévy distribution [52]. The

Laplace transform of f(ζ) can be readily calculated, at least in the limit of small s, and

one may carry through a significant number of calculations with this simple model.

One should start by considering the consequences of taking ν ≤ 2, in which case

the distribution f(ζ) has an infinite first moment 〈τ〉. In such a case, one can neither

obtain equation (47) from equation (46) nor equation (6) from equation (59) (see below),

since we are assuming that 〈τ〉 is finite in the derivation of these results. Likewise, the

equations that follow from equation (47), such as equation (48), and from equation (6),
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such as equation (7), are equally invalid. In physical terms, the assumption that fails is

that one can consider the existence of a time-translation invariant regime, t1, t2 ≫ 〈τ〉,
for which the correlation functions 〈(N(t1) − N(t2))

2〉conn and S(q, t1, t2) depend only

on t = t1 − t2, since 〈τ〉 is formally infinite.

In the case in which ν > 2, a time-translational regime does arise and our results

hold through, except equation (49) which relies on the assumption that f̃(s) is analytical

at s = 0. In particular, one may substitute the Laplace transform f̃(s) in equation (47),

and extract the asymptotic behaviour of C(t) at large t, by considering the limit of small

s. The results we have obtained are simply a limiting case of those obtained by Weeks

et al. [51], and we will therefore only quote the final result.

One can show that at large t, C(t) has the following asymptotic behaviour

C(t) ∼















t4−ν if 2 < ν < 3

t ln t if ν = 3
r

〈τ〉 t if ν > 3
, (52)

with r = ν−1
ν−3

> 1 being the motor’s (finite) randomness coefficient if ν > 3.

The result obtained in the parameter region 2 < ν < 3, in which the second

moment of the distribution, or r, is formally infinite, can be interpreted as a super-

diffusive behaviour of the tracer particle. Such a behaviour is also present in the model

studied by Kafri and co-workers [7, 53].

We now consider the derivation of the Laplace transform of the density-density

correlation function S(q, t1, t2) = 〈 e−iqd (N(t1)−N(t2)) 〉 in the long time limit t1, t2 → ∞,

which is given in equation (6). Such a correlation function can be obtained from the

general expression for the probability-generating functional Z[j] by a judicious choice

of g(u) and of the source function j(x) in equations (22,24). If we take g(u) = θ(u) and

j(x) = qd ( δ(x− t2) − δ(x − t1) ) (53)

then it is easy to see that Z[j] reduces to S(q, t1, t2) for this particular choice of the

functions g(u) and j(x). It also follows from equation (35) that S(q, t1, t2) obeys the

following integral equation

S(q, t1, t2) = 1 + (e−iqd − 1)
∫ t

0
dζ l(q, t2 + ζ) , (54)

where t = t1 − t2 and where l(q, t2 + ζ) is given by the solution of the integral equation

l(q, t2+ζ) = l(t2+ζ)+(e−iqd−1)
∫ ζ

0
dη l(ζ−η) l(q, t2+η) if 0 ≤ ζ < t.(55)

This equation follows from (34) for the particular choice we made for g(u) and j(x). Such

a system of equations can be solved using Laplace transformation. Following Godreche

and Luck [27], we define the following Laplace transforms

l̃(s ; t2) =
∫ ∞

0
dζ e−sζ l(t2 + ζ) , (56)

l̃(q, s ; t2) =
∫ ∞

0
dζ e−sζ l(q, t2 + ζ) , (57)

S̃(q, s ; t2) =
∫ ∞

0
dt e−st S(q, t2 + t, t2) . (58)
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Substituting equations (54,55) in (57,58), one obtains, after some trivial manipulations,

the following result for S̃(q, s; t2)

S̃(q, s ; t2) =
1

s

(

1 +
e−iqd − 1

1 + (1 − e−iqd) l̃(s)
l̃(s ; t2)

)

(59)

where l̃(s) is the Laplace transform of l(u), given by (20). In the long time limit t2 → ∞,

l(t2 + ζ) → 1

〈τ〉 and l̃(s ; t2) = 1

〈τ〉s , which is independent of t2. Therefore, S̃(q, s ; t2)

is also independent of t2 and we write it simply as S̃(q, s) in this limit. Substituting

l̃(s) by its expression in terms of f̃(s), as given by equation (20), in equation (59), we

conclude that S̃(q, s) is given by equation (6) [54].

We will now consider the relation between the Fourier and the Laplace transforms

of S(q, t). From its definition, one immediately concludes that for t > 0,

S(q,−t) = S(−q, t) = S(q, t) . (60)

If we substitute this identity in the definition of S(q, ω), we obtain

S(q, ω) =
∫ 0

−∞
dt eiωt S(q, t) +

∫ ∞

0
dt eiωt S(q, t)

=
∫ ∞

0
dt eiωt S(q, t) +

∫ ∞

0
dt eiωt S(q, t)

= 2 Re S̃(q, s = −iω) , (61)

where we have performed the change of variable t → −t in the first term of the first line

of (61). Equation (7) then follows from (6) and from (61). Finally, one obtains (8) by

substituting f̃(−iω) = (1 − iωτ)−1, valid for a simple Poisson process, in (7).

Before closing this section, we will briefly explain how one can obtain the expression

for the spin-spin correlation function 〈~σt1 ·~σt2〉 in the time domain in the cases in which

the waiting-time distribution of the renewal process is given either by a single Poisson

process, as in (11), or in which the waiting time-distribution is given by the convolution

of two Poisson processes with the same characteristic time τ/2, as in (12), leaving

the details to Appendix C. If the waiting-time distribution f(ζ) is a simple exponential,

then, substituting the result for its Laplace transform f̃(s) in equation (10), with Q = 3,

one observes that the Laplace transform of the spin-spin correlation function has a simple

pole, and one can directly read 〈~σt1 · ~σt2〉 from it. If the waiting-time distribution is

given by the convolution of two Poisson processes with the same characteristic time, the

Laplace transform of 〈~σt1 · ~σt2〉, as given by equation (10), with Q = 3, has two simple

poles and this expression can always be written in terms of partial fractions involving

one or the other of these poles. In that case, one can also read 〈~σt1 · ~σt2〉 directly from

it.

5. Conclusion and outlook

We have modelled the dynamics of a processive or rotary molecular motor as a renewal

process, in line with the work of Svoboda and co-wokers. Using a functional technique,
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we have computed the mean-square deviation of the distance travelled by a processive

motor and extracted its asymptotic limit at large times. For renewal processes composed

of two or three Poisson substeps, we have computed this function outside the asymptotic

regime, given the relevance of such processes for the study of myosin V and kinesin. It

follows from our results that the measurement of this correlation function would permit

one to extract additional information concerning the time constants which characterise

the motor’s chemical cycle.

We have also used the same functional method to compute the density-density

correlation function of an ensemble of independent processive motors, which can be

measured using the experimental techniques developed by Cappello and co-workers.

We have also shown that in a particular limit such a function reduces to the spin-spin

correlation function of a ’random-clock’ model that has applications to the dynamics

of rotary motors, such as F1-ATPase. The measurement of this correlation function,

followed by its Fourier transformation to frequency space, would permit one, in both

cases, to fit such a quantity to the theoretical results discussed above. Thus, one could

obtain all the time constants characterising the molecular motor’s chemical cycle, even

in the case of chemical cycles composed of a large number of rate-limiting substeps.

As possible avenues of future research, one can indicate at least two experimental

issues that still need to be addressed. The first experimental issue is the repetition of

the experiments of Cappello and co-workers with an interference mask with a smaller

period or the use of myosin V, rather than kinesin, as the subject of study of such

an experiment, which would allow the measurement of the density-density correlation

function away from the limit of long wavelengths, where the motor simply behaves

as a Brownian particle. The second issue is the direct measurement of the spin-spin

correlation function in F1-ATPase using fluorescence microscopy and how one can

improve the time resolution of the present technique.

In closing, we may say that the results presented in this paper can be used, in the

different experimental contexts to which they apply, to provide for a precise fitting of

the time constants associated with the rate-limiting steps of a molecular motor chemical

cycle. It remains to be seen to what extent such information is of crucial importance

to the understanding of the chemical kinetics of processive or rotary molecular motors,

or if a qualitative understanding of the nature of the chemical cycle is by itself sufficient.
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Glossary

Bead-motor assay: Experimental apparatus where a spherical plastic bead of

micrometric size is coupled to a single molecular motor. The position of the bead

can be controlled with high precision using two intense laser beams focused at a spot

(known as optical tweezers). Due to its optical properties, the bead is attracted to the

focus of the two beams and may be controlled at a distance.

Molecular motor stepping: Directed motion of a processive molecular motor (e.g.

myosin V, kinesin, dynein) along a specific molecular track in the cell (e.g. actin in

the case of myosin V, tubulin in the case of kinesin and dynein). Such a motion is

composed of individual steps of fixed length, which occur at random times, determined

by the chemistry of the process.

Probability-generating functional: Mathematical object which encodes in itself

all the information that can be obtained (measured) from a random process. In the

main text, we have computed the explicit form of such an object (39) for a renewal

process where the interval distribution function was a simple exponential. From such

an expression, one can obtain all the correlation function pertaining to such a renewal

process. Thus, the ultimate goal of applied probability theory is the computation of the

probability-generating functional for a given random process. All too often, one has to

content oneself with well less than that.

Renewal process: Random counting process where an integer variable is increased

by one unit at random times, the statistical distribution of the length of time intervals

between sucessive counting events being a known function.

Appendix A. Mean-square deviation of the displacement for a renewal

process composed of two or three Poisson substeps

In this appendix, we derive the explicit form, valid for arbitrary time t, of the mean-

square deviation of the distance travelled by the motor C(t), for a renewal process whose

waiting-time distribution is given by the convolution of two or three Poisson processes.

As can been seen from equation (47), the knowledge of the renewal function l(u) suffices

to determine C(t).

We start with the simplest case, namely the case in which the waiting-time

distribution is given by the convolution of two Poisson processes. In that case, the

Laplace transform of the waiting-time distribution is given by f̃(s) = 1
(1+sτ1)(1+sτ2)

, as

follows from equation (51). Substituting this result in equation (20), one can show that

the Laplace transform of the renewal function can be written in terms of partial fractions

as

l̃(s) =
1

τ1 + τ2

(

1

s
− 1

s + 1/τ1 + 1/τ2

)

. (A.1)

From this equation, one can directly determine the inverse transform l(u), which is given
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by

l(u) =
1 − e

−

(

1
τ1

+ 1
τ2

)

u

τ1 + τ2

, (A.2)

which tends to l(u) → 1
τ1+τ2

in the limit of large u, in agreement with Blackwell’s

renewal theorem. Substituting this result for l(u) in equation (47) and performing the

integration over u, one obtains for C(t) the result

C(t) =
r t

τ1 + τ2
+

2τ 2
1 τ 2

2

(τ1 + τ2)4

(

1 − e
−( 1

τ1
+ 1

τ2
)t
)

, (A.3)

where r =
τ2
1 +τ2

2

(τ1+τ2)2
is the randomness parameter for a motor whose chemical cycle is

composed of two rate-limiting steps. It can be easily checked that this function has the

correct asymptotic forms at small and large t, has given by (4). We have plotted this

function in figure 1, with τ1 = τ2 = 1/2, i.e. when r = 1/2.

In the case of a renewal processes whose waiting-time distribution is given

by the convolution of three Poisson processes, it follows from (51) that f̃(s) =
1

(1+sτ1)(1+sτ2)(1+sτ3)
. Substituting this result in equation (20), one can show that the

Laplace transform of the renewal function can be written as

l̃(s) =
1

τ1 + τ2 + τ3

[

γ+

γ+ − γ−

(

1

s
− 1

s + γ−

)

− γ−

γ+ − γ−

(

1

s
− 1

s + γ+

)]

, (A.4)

where γ± = 1
2

[

(

1
τ1

+ 1
τ2

+ 1
τ3

)

±
√

(

1
τ1

+ 1
τ2

+ 1
τ3

)2 − 4
(

1
τ1τ2

+ 1
τ1τ3

+ 1
τ2τ3

)

]

. One can also

directly determine the inverse transform l(u) from this equation, which is given by

l(u) =
1

τ1 + τ2 + τ3

(

γ+

γ+ − γ−
(1 − e−γ−u) − γ−

γ+ − γ−
(1 − e−γ+u)

)

. (A.5)

This function tends to l(u) → 1
τ1+τ2+τ3

in the limit of large u, which also agrees with

Blackwell’s renewal theorem. Substituting this result for l(u) in equation (47) and

performing the integration over u, one obtains for C(t) the result

C(t) =
rt

τ1 + τ2 + τ3
+

2

(τ1 + τ2 + τ3)2

(

γ+

γ2
−(γ+ − γ−)

(

1 − e−γ−t
)

− γ−

γ2
+(γ+ − γ−)

(

1 − e−γ+t
)

)

, (A.6)

where r =
τ2
1 +τ2

2 +τ2
3

(τ1+τ2+τ3)2
is the randomness parameter for a motor whose chemical cycle is

composed of three rate-limiting steps. It can be easily checked that this function has

the correct asymptotic forms at small and large t, has given by (4). We have plotted

this function in figure 2, with τ1 = τ2 = τ3 = 1/3, i.e. when r = 1/3.

Appendix B. Density-density correlation function in Fourier space for a

renewal process composed of two or three Poisson substeps

All one has to do is to substitute the appropriate form for f̃(−iω) in equation (7). For

a renewal process whose waiting-time distribution is given by the convolution of two
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Poisson processes, f̃(−iω) = 1
(1−iωτ1)(1−iωτ2)

and S(q, ω) is given by

S(q, ω) =
2(τ1 + τ2) (1 − cos(qd)) (r + αω2)

(ω(τ1 + τ2) − sin(qd))2 + (1 − cos(qd) − τ1τ2 ω2)2
, (B.1)

where r =
τ2
1 +τ2

2

(τ1+τ2)2
and α =

τ2
1 τ2

2

(τ1+τ2)2
.

For a renewal process whose waiting-time distribution is given by the convolution

of three Poisson processes, f̃(−iω) = 1
(1−iωτ1)(1−iωτ2)(1−iωτ3)

and S(q, ω) is given by

S(q, ω) = 2(τ1 + τ2 + τ3) (1 − cos(qd)) (r + αω2 + βω4)/N (B.2)

where

N = [ω(τ1 + τ2 + τ3) − sin(qd) − τ1τ2τ3 ω3]2

+ [1 − cos(qd) − (τ1τ2 + τ1τ3 + τ2τ3) ω2]2 , (B.3)

and r =
τ2
1 +τ2

2 +τ2
3

(τ1+τ2+τ3)2
, α =

τ2
1 τ2

2 +τ2
1 τ2

3 +τ2
2 τ2

3

(τ1+τ2+τ3)2
and β =

τ2
1 τ2

2 τ2
3

(τ1+τ2+τ3)2
.

Appendix C. Spin-spin correlation function for a renewal process composed

of two Poisson substeps

We first obtain the spin-spin correlation function in the time domain, as given by

equation (12), if the two time constants are equal, i.e. if τ1 = τ2 = τ/2. In such a

case, the Laplace transform of the waiting-time distribution is given by f̃(s) = 1
(1+sτ/2)2

.

Substituting such a result in equation (10), one can write the Laplace transform of the

spin-spin correlation function in terms of partial fractions as

L 〈~σt1 · ~σt2〉 = Re

[

3

4

1

s + 2
τ
(1 − e−iπ/3)

+
1

4

1

s + 2
τ
(1 + e−iπ/3)

]

. (C.1)

From such a result, one can immediatelly read its inverse Laplace transform, which is

given by equation (12). Note that if the renewal process is a simple Poisson process,

f̃(s) = 1
1+sτ

and the Laplace transform of the spin-spin correlation function involves a

simple pole, which make its inversion trivial and we obtain (11).

For a general choice of the time constants τ1 and τ2, one can also write the

Laplace transform of the spin-spin correlation function in terms of partial fractions,

which permits to invert such a transform. However, extracting the real part of such an

expression becomes a cumbersome exercise, albeit a trivial one. It is simpler, also from

the viewpoint of the experimental fitting of the data, to consider instead the Fourier

transform of the spin-spin correlation function, which is defined as FT 〈~σt1 · ~σt2〉 =
∫+∞
−∞ dt eiωt 〈~σt1 · ~σt2〉, with t = t1 − t2. Since one can write the spin-spin correlation

function as 〈~σt1 ·~σt2〉 = 1
2
( S(2π/3, t)+S(2π/3,−t) ) (with d = 1), the Fourier transform

of this function is given by

FT 〈~σt1 · ~σt2〉 =
1

2
(S(2π/3, ω) + S(2π/3,−ω)) . (C.2)
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where S(q = 2π/3, ω) is given by (B.1), valid for a renewal process composed of two

Poisson substeps. We finally obtain

FT 〈~σt1 · ~σt2〉 =
3

2
(τ1 + τ2)(r + αω2)

[

1

(ω(τ1 + τ2) −
√

3/2)2 + (3/2 − τ1τ2 ω2)2

+
1

(ω(τ1 + τ2) +
√

3/2)2 + (3/2 − τ1τ2 ω2)2

]

, (C.3)

where r =
τ2
1 +τ2

2

(τ1+τ2)2
and α =

τ2
1 τ2

2

(τ1+τ2)2
. We plotted this function for three different choices

of the time constants τ1 and τ2, such that τ1 + τ2 = 1, in figure 4.



Renewal processes and fluctuation analysis of molecular motor stepping 31

References

[1] M. Schliwa (ed.). Molecular Motors. Wiley VCH, 2002.

[2] The best analogy one can make between a molecular motor and a macroscopic thermodynamic

engine would be to a fuel-cell coupled to an electric engine, operating at constant temperature.

However, such an analogy is far from being perfect, since in such an arrangement the generation

of an electric current and its convertion into motion occur in physically distinct regions, whereas

in a molecular motor the conformational changes of the molecule, which engender its overall

motion, occur directly due to chemical transformations.

[3] F. Juelicher. Force and motion generation of molecular motors: A generic description. In Transport

and Structure: Their Competitive Roles in Biophysics and Chemistry, Lecture Notes in Physics.

Springer, 1999.

[4] M. Rief, R. S. Rock, A. D. Mehta, M. S. Mooseker, R. E. Cheney, and J. A. Spudich. Myosin-v

stepping kinetics: A molecular model for processivity. Proc. Natl. Acad. Sci. (USA), 97:9482–

9486, 2000.

[5] W. Schief and J. Howard. Conformational changes during kinesin motility. Current Opinion in

Cell Biology, 13:19–28, 2001.

[6] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. Molecular Biology of the Cell.

Garland Publishing, 1994.

[7] Y. Kafri, D. Lubensky, and D. Nelson. Dynamics of molecular motors and polymer translocation

with sequence heterogeneity. Biophys. J., 86:3373–3391, 2004.

[8] M. Schnitzer and S. Block. Kinesin hydrolyses one atp per 8-nm step. Nature, 388:386–390, 1997.

[9] A. Mehta, R. Rock, M. Rief, J. Spudich, M. Mooseker, and R. Cheney. Myosin-v is a processive

actin-based motor. Nature, 400:590–593, 1999.

[10] M. Ali, S. Uemura, K. Adachi, H. Itoh, K. Kinosita, and S. Ishiwata. Myosin v is a left-handed

spiral motor on the right-handed actin helix. Nature Structural Biology, 9:464–467, 2002.

[11] In reality, the step-size of 34.8 nm is just an average value, since myosin V may perform steps

involving the attachment of the free head to the 11th or 13th unit (with respect to that of the

bound head) along the actin spiral[10]. The description of the motion of myosin V in terms of

a renewal process with a constant step size is thus just an approximation, but which should be

valid for length scales (times) much larger than the distance of 5.5 nm (crossing-time) between

the neighbouring units.

[12] M. Yoshida, E. Muneyuki, and T. Hisabori. Atp synthase–a marvellous rotary engine of the cell.

Nature Reviews, 2:669–677, 2001.

[13] P. Boyer. The atp synthase: a splendid molecular machine. Annu. Rev. Biochem., 67:717–749,

1997.

[14] K. Svoboda, P. Mitra, and S. Block. Fluctuation anylysis of motor protein movement and single

enzyme kinetics. Proc. Natl. Acad. Sci. (USA), 91:11782–11786, 1994.

[15] A. Mehta, M. Rief, J. Spudich, D. Smith, and R. Simmons. Single-molecule biomechanics with

optical methods. Science, 283:1689–1695, 1999.

[16] A. Mehta. Myosin learns to walk. J. Cell Science, 114:1981–1998, 2001.

[17] C. Veigel, F. Wang, M. Bartoo, J. Sellers, and J. Molloy. The gated gait of the processive molecular

motor, myosin v. Nature Cell Biology, 4:59–65, 2002.

[18] S. Block, C. Ashbury, J. Shaevitz, and M. Lang. Probing the kinesin reaction cycle with a 2d

optical force clamp. Proc. Natl. Acad. Sci. (USA), 100:2351–2356, 2003.

[19] M. Schnitzer, K. Visscher, and S. Block. Force production by single kinesin motors. Nature Cell

Biology, 2:718–723, 2000.

[20] G. Cappello, M. Badoual, A. Ott, J. Prost, and L. Busoni. Kinesin motion in the absence of

external forces characterized by interference total internal reflection microscopy. Phys. Rev. E,

68:021907–7, 2003.

[21] M. Badoual, G. Cappello, K. Zeldovich, and J. Prost. Simulations of interference total internal



Renewal processes and fluctuation analysis of molecular motor stepping 32

reflection microscopy experiments with processive molecular motors. unpublished.

[22] K. Adachi, R. Yasuda, H. Noji, H. Itoh, Y. Harada, M. Yoshida, and K. Kinosita. Stepping

rotation of f1-atpase visualized through angle-resolved single-fluorophore imaging. Proc. Natl.

Acad. Sci. (USA), 97:7243–7247, 2000.

[23] K. Kinosita, K. Adachi, and H. Itoh. Rotation of f1-atpase: How an atp-driven molecular machine

may work. Annu. Rev. Biophys. Biomol. Struct., 33:245–268, 2004.

[24] R. Glauber. Quantum theory of coherence. In Quantum Optics, pages 53–125. Academic Press,

1970.

[25] C. Benard and O. Macchi. Detection and ’emission’ processes of quantum particles in a ’chaotic

state’. J. Math. Phys., 14:155–167, 1973.

[26] V. Apanasovich and S. Paltsev. Distortion of photon-correlation functions in detection systems

with paralyzable dead-time effects. J. Opt. Soc. Am., 9:1550–1554, 1995.

[27] C. Godreche and J. Luck. Statistics of the occupation time of renewal processes. J. Stat. Phys.,

104:489–524, 2001.

[28] P. Allegrini, G. Aquino, P. Grigolini, L. Palatella, A. Rosa, and B. West. Correlation function

and generalized master equation of arbitrary age. condmat-0409600, 2004.
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