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Abstract

For the last eight years, microarray-based class prediction has been the sub-

ject of numerous publications in medicine, bioinformatics and statistics journals.

However, in many articles, the assessment of classification accuracy is carried

out using suboptimal procedures and is not paid much attention. In this paper, we

carefully review various statistical aspects of classifier evaluation and validation

from a practical point of view. The main topics addressed are accuracy measures,

error rate estimation procedures, variable selection, choice of classifiers and val-

idation strategy.

Keywords: Accuracy measures, classification, conditional and unconditional error

rate, error rate estimation, validation data, variable selection

1 Introduction

In the last few years, microarray-based class prediction has become a major topic in

many medical fields. Cancer research is one of the most important fields of application

of microarray-based prediction, although classifiers have also been proposed for other

diseases such as multiple sclerosis (Bomprezzi et al., 2003). An interesting overview

of studies published until April 2003 can be found in Ntzani and Ioannidis (2003).

The two major applications of such methods are prediction of future events, e.g., re-

sponse to treatment or disease course, and molecular diagnosis, though both of them

are identical from a statistical point of view – as long as no measurement error occurs.

Let us consider a standard class prediction problem where expression data of p

transcripts and the class information are available for a group of n patients. From a

statistical point of view, patients are observations and transcripts are variables. Note

that a particular gene might be represented several times. To avoid misunderstandings,

we prefer the statistical term ’variable’ to the ambiguous term ’gene’. In microarray

studies, p is huge compared to n (typically, 5000 ≤ p ≤ 50000 and 20 ≤ n ≤ 300),

which makes standard statistical prediction methods inapplicable. This dimensional-

ity problem is also encountered in other fields such as proteomics or chemometrics.
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Hence, the issues discussed in the present article are not specific to microarray data.

The term response class refers to the categorical variable that has to be predicted based

on gene expression data. It can be, e.g., the presence or absence of disease, a tumor

subtype such as ALL/AML (Golub et al., 1999) or the responder status to a therapy

(Ghadimi et al., 2005). The number of classes may be higher than two, though binary

class prediction is by far the most frequent case in practice.

Note that gene expression data may also be used to predict survival times, ordinal

scores or continuous parameters. However, class prediction is the most relevant pre-

diction problem in practice. The interpretation of results is much more intuitive for

class prediction than for other prediction problems for several reasons. From a medi-

cal point of view, it is often sensible to summarize more complex prediction problems

such as, e.g. survival prediction or ordinal regression as binary class prediction. More-

over, we think that the model assumptions required by most survival analysis methods

and methods for the prediction of continuous outcomes are certainly as questionable

as the simplification into a classification problem. However, one has to be aware that

transforming a general prediction problem into class prediction may lead to a loss of

information, depending on the addressed medical question.

Beside some comparative studies briefly recalled in Section 2, several review ar-

ticles on particular aspects of classification have been published in the last five years.

For example, an extensive review on machine learning in bioinformatics including

class prediction can be found in Larranaga et al. (2006), whereas Chen (2007) reviews

both class comparison and class prediction with emphasis on univariate test statistics

and model choice from the point of view of pharmacogenomics. Asyali et al. (2006)

gives a wide overview of class prediction and related problems such as data preparation

and clustering. User-friendly guidelines for good practice in microarray data analysis

including class prediction can be found in Dupuy and Simon (2007), who also give a

critical synthesis of cancer research articles published in 2004.

In contrast to all these, the present article focuses specifically on the statistical

evaluation of microarray-based prediction methods. After a brief overview of exist-

ing classification methods in Section 2, measures of classification accuracy including

error rate, sensitivity and specificity as well as ROC-curve analysis are addressed in

Section 3. Section 4 reviews different evaluation strategies such as leaving-one-out

cross-validation or bootstrap methods from a technical point of view, whereas Section
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5 gives guidelines for practical studies. An overview of software for microarray-based

class prediction in the R system for statistical computing (R Development Core Team,

2006) is given in the appendix.

2 Overview of existing Classifiers

Coping with high-dimensional data

There exist a variety of classification methods addressing exactly the same statistical

problem. Several classifiers have been invented or adapted to address specifically pre-

diction problems based on high-dimensional microarray data. Class prediction can also

be addressed using machine learning approaches.

The aim of this section is to provide a concise overview of the most well-known

classification approaches rather than an exhaustive enumeration. In contrast to other

authors, we organize this overview with respect to the scheme used to handle high-

dimensionality and not to the classifier itself. From this perspective, methods for han-

dling high-dimensional data can basically be grouped into three categories: approaches

based on (explicit) variable selection, procedures based on dimension reduction and

methods performing intrinsic variable selection.

It should be noted that the three mentioned types of approaches for handling high

dimensional data can also be combined with each other. For instance, variable selection

may be performed prior to dimension reduction or before applying a method handling

n < p.

Variable selection

The most intuitive approach consists of first selecting a small subset of variables and

then applying a traditional classification method to the reduced data set. By traditional

methods, we mean well-known statistical methods handling a rather limited number

of variables, such as discriminant analysis methods reviewed and compared by Dudoit

et al. (2002) including linear and quadratic discriminant analysis or Fisher’s linear

discriminant analysis, classical logistic regression or k-nearest-neighbors (e.g. Dudoit

et al., 2002) which, in principle, could be applied to a high number of variables but

performs poorly on noisy data.
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Many variable selection approaches have been described in the bioinformatics liter-

ature. Overviews include the works by Stolovitzky (2003) and Jeffery et al. (2006). The

methods applied can be classified as univariate and multivariate approaches. Univari-

ate approaches consider each variable separately: they are based on the marginal utility

of each variable for the classification task. Variables are ranked according to some cri-

terion reflecting their association to the phenotype of interest. After ranking, the first

variables of the list are selected for further analysis. Many criteria are conceivable, for

instance usual test statistics like Student’s t-statistic or nonparametric statistics such as

Wilcoxon’s rank sum statistic. Further non-parametric univariate criteria include more

heuristic measures such as the TnoM score by Ben-Dor et al. (2000). Some of the

nonparametric univariate approaches are reviewed by Troyanskaya et al. (2002). The

t-statistic, the Mann-Whitney statistic and the heuristic signal-to-noise ratio suggested

by Golub et al. (1999) are the most widely-used criteria in practice (Dupuy and Simon,

2007).

In the context of differential expression detection, several regularized variants of

the standard t-statistic have been proposed in the last few years. They include, e.g., em-

pirical Bayes methods (Smyth, 2004). An overview can be found in Opgen-Rhein and

Strimmer (2007). Although these empirical Bayes methods are usually considered as

univariate approaches, such methods involve a multivariate component in the sense de-

scribed below, since the statistic of each variable is derived by borrowing information

from other variables.

Univariate methods are fast and conceptually simple. However, they do not take

correlations or interactions between variables into account, resulting in a subset of

variables that may not be optimal for the considered classification task. This is obvious

in the extreme case where, say, the 10 first variables correspond to the same transcript,

yielding a strong correlation structure. It is then suboptimal to select these 10 redundant

variables instead of variables with a worse univariate criterion value but giving non-

redundant information.

Multivariate variable selection approaches for microarray data have been the sub-

ject of a few tens of rather theoretical articles. They take the preceding argument se-

riously that the subset of the variables with best univariate discrimination power is

not necessarily the best subset of variables, due to interactions and correlations be-

tween variables. Therefore, multivariate variable selection methods do not score each
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variable individually but rather try to determine which combinations of variables yield

high prediction accuracy. A multivariate variable selection method is characterized by

i) the criterion used to score the considered subsets of variables and ii) the algorithm

employed to search the space of the possible subsets, an exhaustive enumeration of the

2p−1 possible subsets being computationally unfeasible. Scoring criteria can be cate-

gorized into wrapper criteria, i.e. criteria based on the classification accuracy or filter

criteria that measure the discrimination power of the considered subset of variables

without involving the classifier, for instance the Mahalanobis distance well-known

from cluster analysis (which can roughly be seen as multivariate t-statistic).

There have also been various proposals regarding the search algorithms. Some

methods, which could be denoted as “semi-multivariate” restrict the search to pairs

of variables (Bo and Jonassen, 2002) or subsets of low-correlated and thus presum-

ably non-redundant variables derived from the list of univariately best variables (Jäger

et al., 2003). In contrast, other authors seek for globally optimal subsets of variables

based on sophisticated search algorithms such as genetic algorithms (Goldberg, 1989)

applied to microarray data by, e.g., Ooi and Tan (2003).

Note that most multivariate variable selection methods take only correlations be-

tween variables but not interactions into account, depending on the considered criterion

used to score the variable subsets. The recent method suggested by Diaz-Uriarte and

de Andrés (2006) based on random forests (Breiman, 2001) is one of the very few

methods taking interactions into account explicitly. Potential pitfalls of multivariate

methods are the computational expense, the sensitivity to small changes in the learning

data and the tendency to overfitting. This is particularly true for methods looking glob-

ally for good performing subsets of variables, which makes semi-multivariate methods

preferable in our view. Note that univariate variable selection methods, which select the

top variables from a ranked list, may be seen as a special case of multivariate selection,

where the candidate subsets are defined as the subsets formed by top variables.

Dimension reduction

A major shortcoming of variable selection when applied in combination with classifi-

cation methods requiring the sample size n to be larger than the number p of variables

is that only a small part of the available information is used. For example, if one ap-

plies logistic regression to a data set of size n = 50, the model should include at most
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10 variables, which excludes possibly interesting candidates. Moreover, correlations

between variables are not taken into account and can even pose a problem in model

estimation, the more as gene expression data are known to be highly correlated. An

option to circumvent these problems is dimension reduction, which aims at ’summa-

rizing’ the numerous predictors in form of a small number of new components (often

linear combinations of the original predictors). Well-known examples are principal

component analysis (PCA) or Partial Least Squares (PLS, Nguyen and Rocke, 2002;

Boulesteix, 2004; Boulesteix and Strimmer, 2007) and its generalizations (Fort and

Lambert-Lacroix, 2005; Ding and Gentleman, 2005). A concise overview of dimen-

sion reduction methods that have been used for classification with microarray data is

given in Boulesteix (2006).

After dimension reduction, one can basically apply any classification method to

the constructed components, for instance logistic regression or discriminant analysis.

However, as opposed to the original genetic or clinical variables, the components con-

structed with dimension reduction techniques themselves may not be interpretable any

more.

Methods handling a high number of variables directly

Instead of reducing the data to a small number of (either constructed or selected) pre-

dictors, methods handling large numbers of variables may be used. Preliminary vari-

able selection or dimension reduction are then unnecessary in theory, although often

performing well in practice in the case of huge data sets including several tens of thou-

sands of variables. Methods handling a high number of variables (p � n) directly

can roughly be divided into two categories: statistical methods based on penalization

or shrinkage on the one hand, and computationally intensive approaches borrowed

from the machine learning community on the other hand. The first category includes,

e.g., penalized logistic regression (Zhu, 2004), the Prediction Analysis of Microarrays

(PAM) method based on shrunken centroids (Tibshirani et al., 2002) or the more recent

regularized linear discriminant analysis (Guo et al., 2007).

Support Vector Machines (SVM) (Vapnik, 1995) or ensemble methods based on

recursive partitioning belong to the second category. Ensemble methods include for

example bagging procedures (Breiman, 1996) applied to microarray data by Dudoit

et al. (2002), boosting (Freund and Schapire, 1997) used by Dettling and Bühlmann
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(2003), BagBoosting (Dettling, 2004) or Breiman’s (2001) random forests examined

by Diaz-Uriarte and de Andrés (2006) in the context of variable selection for classi-

fication. These methods may be easily applied in the n < p setting, especially SVM.

However, most of them become untractable when the number of features reaches a

few tens of thousands, as usual in recent data sets. They should then be employed in

combination with variable selection or dimension reduction.

Methods handling a high number of variables can be seen as performing intrin-

sic variable selection. Shrinkage and penalization methods allow to distinguish irrele-

vant from relevant variables through modifying their coefficients. Tree-based ensem-

ble methods also distinguish between irrelevant and relevant variables intrinsically,

through variable selection at each split.

Comparison studies

Prediction methods have been compared in a number of articles published in statistics

and bioinformatics journals. Some of the comparisons are so-to-say neutral, whereas

others aim at demonstrating the superiority of a particular method. Neutral compari-

son studies include Dudoit et al. (2002); Romualdi et al. (2003); Man et al. (2004); Lee

et al. (2005); Statnikov et al. (2005). Comparison of different classification methods

can also be found in biological articles with strong methodological background (e.g.,

Natsoulis et al., 2005). Most of these studies include common “benchmark” data sets

such as the well-known leukemia (Golub et al., 1999) and colon (Alon et al., 1999)

data sets.Table 2 (Appendix B) summarizes the characteristics and results of six pub-

lished comparison studies, which we took as neutral, because they satisfy the following

criteria:

• The title includes explicitly words such as “comparison” or “evaluation”, but no

specific method is mentioned in the title, thus excluding articles whose main aim

is to demonstrate the superiority of a particular (new) method.

• The article has a clear methodological orientation. In particular, the methods are

described precisely (including, e.g., the chosen variant or the choice of parame-

ters) and adequate statistical references are provided.

• The comparison is based on at least two data sets.
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• The comparison is based on at least one of the following evaluation strategies:

CV, MCCV, bootstrap methods (see Section 4).

However, even if those criteria are met, optimistically biased results are likely to be

obtained with the method(s) from the authors’ expertise area. For example, authors are

aware of all available implementations of that method and will quite naturally choose

the best one. They may also tend to choose the variable selection method (e.g., t-test

or Mann-Whitney test) according to their previous experience of classification, which

has been mostly gained with this particular method. Similarly, an unexperienced inves-

tigator might overestimate the achievable error rate of methods involving many tuning

parameters by setting them to values that are known to the experts as suboptimal.

The connection between classifiers and variable selection

When performed as a preliminary step, e.g. for computational reasons, variable selec-

tion should be seen as a part of classifier construction. In particular, when a classifier is

built using a learning data set and tested subsequently on an independent test data set,

variable selection must be performed based on the learning set only. Otherwise, one

should expect non-negligible positive bias in the estimation of prediction accuracy. In

the context of microarray data this problem was first pointed out by Ambroise and

McLachlan (2002). Although it is obvious that test observations should not be used

for variable selection, variable selection is often (wrongly) carried out as a “prelim-

inary” step, especially when classification accuracy is measured using leave-one-out

cross-validation. Even if performing t-tests or Wilcoxon tests n × p times becomes a

daunting task when p reaches several tens of thousands, preliminary variable selection

using all n arrays and leaving no separate test set for validation should definitively be

banished. Bad practice related to this aspect has probably contributed to much “noise

discovery” (Ioannidis, 2005).

A further important connection between classifiers and variable selection is the

use of classifiers to evaluate the influence of single variables on the response class

a posteriori. Parametric models, such as the logistic regression model, provide pa-

rameter estimates for main effects and interactions of predictor variables that can be

interpreted directly for this purpose. However, the modern nonparametric approaches

from machine learning, e.g., random forests, also provide variable importance mea-
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sures that can be used not only for the preselection of relevant variables (Diaz-Uriarte

and de Andrés, 2006) but are also a means of evaluating the influence of a variable

– both individually and in interactions – on the response. Random forest variable im-

portance measures have thus become a popular and widely used tool in genetics and

related fields. However, when the considered predictor variables vary in their scale of

measurement or their number of categories, as, e.g., when both genetic and clinical

covariates are considered, the computation of the variable importance can be biased

and must be performed differently (Strobl et al., 2007).

3 Measures of Classification Accuracy

We have seen in the previous section that in large-scale association studies classifi-

cation can either be conducted with previous variable selection, dimension reduction,

or with special classification methods that can deal with small n large p problems by

intrinsically performing variable selection. However, these methods are very diverse,

both in their methodological approach and their statistical features. In the following,

we review concepts that allow to evaluate and compare all these different strategies

and models, and is adaptable to special needs of investigators, e.g., if asymmetric mis-

classification costs are supposed to be modelled.

Error rate

We consider the random vector X ∈ Rp and the random variable Y ∈ {0, . . . , K − 1}
giving the ’class membership’. Let F denote the joint distribution function of X and

Y . A classifier is a function from Rp to {0, . . . , K − 1} that assigns a predicted class

to a vector of gene expressions corresponding to a patient:

C : Rp → {0, . . . , K − 1}
X → Ŷ ,

(1)

where X denotes the p-vector giving the gene expression levels of the p considered

variables for one patient and Ŷ is his or her predicted class. If the joint distribution

F(X, Y ) of the gene expressions X and the class membership Y were known, one

could use it to construct the Bayes classifier

CBayes(X) = arg max
k
P (Y = k|X) (2)
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by deriving the posterior distribution P (Y |X) of the response class given the gene

expressions X. The Bayes classifier based on the true, but unfortunately unknown,

distributions minimizes the theoretical error rate, i.e. the probability of classifying into

the wrong class:

Err(C) = PF(C(X) 6= Y ) = EF(I(C(X) 6= Y )). (3)

Note that this and all following definitions of error rates are appropriate in the case

of unordered response classes only. For ordinal response classes it may be desirable

that misclassification in a more distant class affects the error term more severely than

misclassification in a neighboring class, which could be modelled via pseudo-distances

serving as weights in the computation of the error rate. For classifiers that return class

probabilities instead of predicted class membership, such as Bayesian methods but

also some versions of recursive partitioning, the difference between the predicted class

probability and the true class membership can be computed, e.g., by the Brier Score

(i.e. the quadratic distance, see, e.g., Spiegelhalter, 1986, for an introduction).

Since the theoretical joint distribution F is always unknown in real data analysis,

the classifier has to be estimated from an available data set. Moreover, once a classifier

is constructed, its error rate also has to be estimated from some available data. Hence,

the estimation of the error rate of a classification method involves two estimation com-

ponents. Suppose we have a data set including n patients whose class membership

has been determined independently of gene expression data, e.g., by clinical exami-

nation. The available data set D = (d1, . . . ,dn) consists of n identically distributed

independent observations di = (yi,xi), where yi ∈ {0, . . . , K − 1} denotes the class

membership and xi = (xi1, . . . , xip)
T the p-vector of gene expressions of the i-th pa-

tient.

The data set used to construct (i.e.’learn’) a classifier is usually denoted as ’train-

ing’ or ’learning’ data set. In this article, we use the term ’learning data’. Let

l = (l1, . . . , lL) denote the indices of patients included in the learning data set and

Dl = (dl1 , . . . ,dlL) the corresponding data set, where L is the number of observations

in l. In practice, there are several ways to define l and t, see Section 4. A classification

method takes the learning data set Dl as input and learns a classifier function C as de-

fined in Eq. 1. From now on,CM
Dl

denotes the classifier learnt from the data set Dl using

the classification method M . Examples of classification methods are, e.g., ’SVM with
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linear kernel without preliminary variable selection’ or ’linear discriminant analysis

with the 20 best variables according to the t-test’.

In practical studies, investigators are often interested in the true error rate of a

classifier built with all the available observations:

Err(CM
D ), (4)

where D is considered as fixed, hence the term conditional error rate. However, D

can also be considered as random. The unconditional (or expected) true error rate is

defined as

εMFn = EFn(Err(CM
D )), (5)

where Fn describes the multivariate distribution of D based on F(X, Y ). The uncon-

ditional error rate εMFn depends only on the classification method M , the size n of the

used data set and the joint distribution F of X and Y, but not on the specific data set

D. We use the notation ε instead of Err to outline the difference between conditional

and unconditional error rate. Few articles distinguish between both of them. However,

the relative performance of error estimation methods may depend on whether one con-

siders the conditional or unconditional error rate. For instance when using the uncon-

ditional error rate results are somewhat in favor of the bootstrap (Efron and Tibshirani,

1997).

Estimating the error rate

Suppose we use a learning set Dl to construct the classifier CM
Dl

. The joint distribution

function F being unknown, the true conditional error rate

Err(CM
Dl

) = EF(I(Y 6= CM
Dl

(X))|Dl) (6)

of this classifier is also unknown and has to be estimated based on available test data.

Similarly to l above, collecting the indices corresponding to the learning data set, we

consider the T -vector t = (t1, . . . , tT ) giving the indices of test observations and

Dt = (dt1 , . . . ,dtT ) the corresponding data set. The estimator of the error rate of C

based on Dt is then given as

Êrr(CM
Dl
,Dt) =

1

T

T∑
i=1

I(yti 6= CM
Dl

(xti)), (7)
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where xti = (xti1, . . . , xtip)
T is p-vector giving the gene expressions for the ti-th

observation. Note that, in simulations, the learning set Dl can be varied and the test

data set Dt may be virtually as large as computationally feasible, thus providing an

accurate estimation of Err(CM
Dl

).

Sensitivity and specificity

Using the error rate as defined in Eq. (6), one implicitly considers all misclassifications

as equally damaging. In practice, the proportion of misclassified observations might

not be the most important feature of a classification method. This is particularly true

if one wants to predict therapy response. If a non-responder is incorrectly classified as

responder, possible inconveniences are the potentially severe side-effects of a useless

therapy and - from an economic point of view - the cost of this therapy. On the other

hand a responder who is incorrectly classified as non-responder may be refused an

effective therapy, which might lead to impairment or even death.

In the medical literature, these two different aspects are often formulated in terms

of sensitivity and specificity. If Y = 1 denotes the condition that has to be detected

(for instance responder to a therapy), the sensitivity of the classifier is the probability

P (CM
Dl

(X) = 1|Y = 1) of correctly identifying a responder. It can be estimated by

the proportion of observations from the test data set with Y = 1 that are correctly

predicted:

Ŝe(CM
Dl
,Dt) =

∑T
i=1 I(yti = 1) · I(CM

Dl
(xti) = 1)∑T

i=1 I(yti = 1)
, (8)

whereas the specificity is the probability P (CM
Dl

(x) = 0|Y = 0) of correctly iden-

tifying a non-responder and can be estimated by the proportion of observations with

Y = 0 that are correctly predicted:

Ŝp(CM
Dl
,Dt) =

∑T
i=1 I(yti = 0) · I(CM

Dl
(xti1) = 0)∑T

i=1 I(yti = 0)
. (9)

Related useful concepts are the positive predictive value and the negative predictive

value, which depend on the prevalence of the condition Y = 1 in the population. It

does not make sense to calculate them if the class frequencies for the considered n

patients are not representative for the population of interest, as is often the case in

case-control studies.
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Decision theoretic aspects

When considering sensitivity and specificity it can be interesting to incorporate the

idea of cost or loss functions from decision theory to evaluate misclassification costs.

Instead of the error rate defined in Eq. (7), where a neutral cost function is used im-

plicitly, one could use other cost functions, where the costs, and thus the weights in

the computation of the error rate, are defined depending of the relative seriousness of

misclassifications.

More precisely, a neutral, often referred to as scientific cost function assigns unit

costs whenever an observation is misclassified (regardless of the true and predicted

class), and no costs when the observation is correctly classified. However, if, for in-

stance, classifying an observation with Y = 1 as Y = 0 is more serious than vice-

versa, such errors should have more weight, i.e. higher misclassification costs. Many

classifiers allow to assign such asymmetric misclassification costs, either directly or

via class priors. The following principle is obvious for Bayesian methods, where dif-

ferent prior weights may be assigned to the response classes, but also applies to, e.g.,

classification trees. Imagine that there are much more observations in class 0 than in

class 1. Then, in order to reduce the number of misclassifications predicting class 1

for all observations - regardless of the values of the predictor variables - would be a

pretty good strategy, because it would guarantee a high number of correctly classified

observations.

This principle can be used to train a classifier to concentrate on one class, even

if the proportions of class 0 and 1 observations in the actual population and data set

are equal: one either has to “make the classifier believe” that there were more obser-

vations of class 0 by means of setting a high artificial prior probability for this class,

or one has to “tell” the classifier directly that misclassifications of class 0 are more

severe by means of specifying higher misclassification costs (cf, e.g., Ripley, 1996).

Obviously, such changes in the prior probabilities and costs, that are internally han-

dled as different weights for class 0 and 1 observations, affect sensitivity and speci-

ficity. For example, when misclassification of a responder as a non responder is pun-

ished more severely than vice-versa, the sensitivity (for correctly detecting a respon-

der) will increase, while at the same time the specificity (for correctly identifying a

non-responder) will decrease, because the classifier will categorize more observations
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as responders than under a neutral cost scheme.

From a decision theoretic point of view, what we considered as costs so far were

really “regrets” in the sense that the overall costs, e.g., for diagnosing a subject, were

not included in our reasoning: only the particular costs induced by a wrong decision

were considered, while the costs of correct decisions were considered to be zero. This

approach is valid for the comparison of classifiers because the additional costs, e.g.,

for diagnosing a subject are equal for all classifiers.

ROC curves

To account for the fact that the sensitivity and specificity of a classifier are not fixed

characteristics, but are influenced by the misclassification cost scheme, the receiver

operating characteristic (ROC) approach (cf., e.g., Swets, 1988, for an introduction

and application examples) could be borrowed from signal detection, and could be used

for comparing classifier performance, incorporating the performance under different

cost schemes. Then, for each classifier a complete ROC curve describes the sensitivity

and specificity under different cost schemes. The curves of two classifiers are directly

comparable when they do not intersect. In this case the curve that is further from the

diagonal, which would correspond to random class assignment, represents the better

classifier. Confidence bounds for ROC curves can be computed (e.g., Schäfer, 1994).

The distance from the diagonal, the so called area under curve (AUC), is another useful

diagnostic (Hanley and McNeil, 1982) and can be estimated via several approaches

(e.g., DeLong et al., 1988). The AUC can also be used to compare intersecting ROC

curves.

After this overview on accuracy measures for the comparison of classifiers, the next

section describes possible sampling strategies for the evaluation of accuracy measures.

Suggestions on the use of these sampling strategies, as well as a discussion of possible

abuses, are given in Section 5.

Credal classification

So far we have considered only the case that the classifier gives a clear class prediction

for each observation, say 0 or 1. In addition to this we noted that some classifiers

may also return predicted class probabilities instead. Obviously, when the probability
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for class 1 is, say, 99% we would predict that class without hesitation. However, tree

classifiers or ensemble methods that perform majority voting would also predict class

1 when its predicted probability is only, say, 51% - as long as the probability for class

1 is higher than that for class 0, no matter how little the difference. In such a situation

one might argue that there should be a third option, namely refusing to predict a class

whenever the predicted probability is within a certain threshold or returning the extra

value “in doubt” (cf. Ripley, 1996, p. 5; 17 f.), if further information would be needed

to classify an observation.

Several authors have argued along a similar line, for instance the fuzzy set approach

by Chianga and Hsub (2002), whose classifier returns the predicted degree of possibil-

ity for every class rather than a single predicted class, and Zaffalon (2002), who argues

in favor of so called “credal classification”, where a subset of possible classes for each

configuration of predictor variables is returned when there is not enough information

to predict one single class (see also Zaffalon et al., 2003, for an application to dementia

diagnosis).

4 Evaluation Strategies

For simplicity, we assume in the following that the error rate is used as an accuracy

measure, but the same principles hold for other measures such as the sensitivity or the

specificity. The goal of classifier evaluation is the estimation of the conditional error

rate Err(CM
D ) from Eq. 4 or of the unconditional error rate εMFn (cf. Eq. 5), where the

focus on Err(CM
D ) or εMFn depends on the concrete context. For example, a study that

aims at designing a classifier based on a particular data set for concrete use in medi-

cal practice will focus on Err(CM
D ) rather than εMFn , whereas a statistical comparison

study of classification methods should be as general as possible, and thus focus on the

unconditional error rate εMFn . Readers interested in the difference between conditional

and unconditional error rate may refer to Molinaro et al. (2005); Efron and Tibshi-

rani (1997). In general, the question whether unconditional or conditional inference

should be preferred is one of the central foundational issues in statistics, where in the

frequentist-Bayesian debate the former usually advocate in favor of the unconditional

point of view while Bayesian inference is eo ipso conditional (cf., e.g., Berger, 1980,

Section 1.6). Also a view at the corresponding discussion in sampling theory on evalu-
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ating post stratification is illuminating in this context (see, e.g., Hold and Smith, 1979,

for a classical paper).

In this article, we arbitrarily use the notation ε̂ for all the estimators, which refers

to the unconditional error rate. However, the reviewed estimators can also be seen as

estimators ofErr(CM
D ). For each method, we denote the estimator in a way that all the

quantities influencing it are visible. These expressions, and the corresponding formu-

las, should be understood as pseudo-code to be used for implementing the procedure.

In addition, all the methods reviewed in the present section are summarized in Table 1.

Resubstitution

The easiest – and from a statistical point of view by far the worst– evaluation strategy

consists of building and evaluating a classifier based on the same data set Dl. Usually,

the data set Dl includes all the available data, i.e. Dl = D, yielding the estimator

ε̂MRESUB(D) =
1

n

n∑
i=1

I(yi 6= CM
D (xi)) (10)

= Êrr(CM
D ,D). (11)

ε̂MRESUB is a downwardly biased estimator of εMFn and Err(CM
D ), i.e. accuracy is over-

estimated. Since the constructed classifier CM
D was especially designed to fit D, it

usually performs well on it. The problem of overfitting, i.e., that the classifier is too

closely adapted to the learning sample, is not specific to microarray data, but it can be

enhanced by their high dimensionality: with a huge number of predictor variables, a

very subtle partition of the feature space can be achieved, yielding distinct predictions

for very small groups of observations. In such a situation it is possible to find a pre-

diction rule such that almost all observations from the learning data set are predicted

correctly. However, this does not imply that the prediction rule that is highly adapted

to the learning data set will also predict independent new observations correctly.

Test data set

To evaluate the performance of a classification method on independent observations,

one should consider non-overlapping learning and test data sets. A classifier is built

based on the learning data set only and subsequently applied to the test observations.
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If, as above, l and t contain the indices of the observations included in the learning and

test data sets, respectively, the error rate is estimated as

ε̂MTEST (D, (l, t)) =
1

T

T∑
i=1

I(yti 6= CM
Dl

(xti
)) (12)

= Êrr(CM
Dl
,Dt), (13)

where T denotes the size of t. In practice, l and t most often form a partition of

{1, . . . , n}, i.e. t = {1, . . . , n} \ l, and εMTEST can be seen as a function of D

and l only. However, we keep the notation as general as possible by including t in

εMTEST (D, (l, t)), in order to allow the specification of learning and test sets that do not

form a partition of {1, . . . , n} (for instance, when there are two different test data sets).

Note that, in contrast to resubstitution, this procedure may have a random component:

it depends on the learning and test sets defined by (l, t). When l and t are not defined

randomly but are chosen by the user (e.g., chronologically where the first recruited pa-

tients are assigned to l and the following patients to t), ε̂TEST depends on the number

of patients in l, which is fixed by the user.

Note that, due to the fact that some of the observations from the learning data

set are held back for the test set and thus the learning data set contains only L < n

observations, the estimation of the prediction rule from the learning data set is worse

and the resulting prediction error increases. Therefore ε̂MTEST has positive bias as an

estimator of εMFn and Err(CM
D ), i.e. the obtained prediction accuracy is worse than if

all n observations were used. This effect does not only occur here, where the original

learning data set is split into one learning and test set, but also in the following sections

whenever the number of observations in the learning data set is decreased. The .632

estimator introduced below addresses this problem.

For a discussion of potential changes in the data generating process over time see

Section 5.

Cross-validation

Another option to evaluate prediction accuracy consists of considering all the avail-

able observations as test observations successively in a procedure denoted as cross-

validation (see, e.g. Hastie et al., 2001). The available observations {1, . . . , n} are
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divided into m non-overlapping subsets whose indices are given by t(1), . . . , t(m). The

cross-validation procedure consists of a succession of m iterations, hence the name

m-fold cross-validation. In the j-th iteration, the observations defined by t(j) are con-

sidered as test data and the remaining observations form the learning data set defined

by l(j) = {1, . . . , n}\ t(j). The test observations from Dt(j) are then predicted with the

classifier CM
D

l(j)
constructed using Dl(j) .

A prediction is thus obtained for each of the n observations. The error rate is es-

timated as the mean proportion of misclassified observations over all cross-validation

iterations:

ε̂CV (D, (t(j))j=1,...,m) =
m∑

j=1

ntj

n
ε̂MTEST (D, (l(j), t(j))). (14)

This formula simplifies to

ε̂CV (D, (t(j))j=1,...,m) =
1

m

m∑
j=1

ε̂MTEST (D, (l(j), t(j))). (15)

if t(1), . . . , t(m) are equally sized. Note that l(j) does not appear as an argument of εMCV ,

since l(j) is derived deterministically from t(j) as l(j) = {1, . . . , n} \ t(j).

In this setting again decision theoretic considerations could be very helpful, leading

to criteria going beyond the mere averaging of misclassified observations. For instance,

a more conservative approach inspired by the minimax-decision criterion would be to

consider for each classifier the maximum, instead of the average, proportion of mis-

classified observations over all cross-validation samples, and finally choose the clas-

sifier with the minimal maximum proportion of misclassified observations over all

classifiers. This approach could be called for in situations where not the average or

expected performance is of interest but rather it is necessary to guarantee that a certain

performance standard is held even in the worst case.

An important special case of cross-validation is m = n, where t(j) = j, i.e. the n

observations are considered successively as singleton test data sets. This special case

is usually denoted as leave-one-out cross-validation (LOOCV), since at each itera-

tion one observation is left out of the learning data set. The corresponding error rate

estimator can be expressed as

ε̂MLOOCV (D) =
1

n

n∑
i=1

ε̂MTEST (D, i). (16)
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LOOCV is deterministic, in contrast to cross-validation with m < n which possibly

yields different results depending on the (randomly) chosen partition t(1), . . . , t(m). As

an estimator of εMFn andErr(CM
D ), ε̂MLOOCV (D) is almost unbiased, since classifiers are

built based on n − 1 observations. However, as an estimator of εMFn , it can have high

variance because the learning sets are very similar to each other (Hastie et al., 2001).

In order to reduce the variability of cross-validation results due to the choice of the

partition t(1), . . . , t(m), it has been proposed to average the results of cross-validation

obtained for several different partitions. As an example, Braga-Neto and Dougherty

(2004) examine what they denote as CV 10:

ε̂MCV 10(D, (t
(j)k)k=1,...,10, j=1,...,m) =

1

10

10∑
k=1

ε̂CV (D, (t(j)k)j=1,...,m), (17)

where (t(1)k, . . . , t(m)k) is the partition corresponding to the k-th cross-validation. Note

that, like ε̂MCV , the estimator ε̂MCV 10 has a random component. However, its variance is

reduced by averaging over several partitions.

In stratified cross-validation, each subset t(j) contains the same proportion of ob-

servations of each class as the whole data set. It is well-established that stratified cross-

validation improves the estimation of the error rate.

Monte-Carlo cross-validation (or subsampling)

Like cross-validation, Monte-Carlo cross-validation (MCCV) strategies consist of a

succession of iterations and evaluate classification based on test data sets that are

not used for classifier construction. It may be seen as an averaging of the test set

procedure over several splits into learning and test data sets. In contrast to cross-

validation, the test sets are not chosen to form a partition of {1, . . . , n}. In Monte-

Carlo cross-validation (also called random splitting or subsampling), the learning sets

l(b) (b = 1, . . . , B) are drawn out of {1, . . . , n} randomly and without replacement.

The test sets consist of the remaining observations t(b) = {1, . . . , n} \ l(b). The com-

mon size ratio nl(b) : nt(b) is fixed by the user. Usual choices are, e.g., 2 : 1, 4 : 1 or

9 : 1. Each test set contains the observations that are not in the corresponding learning

set. The MCCV error rate is given as

ε̂MMCCV (D, (l(b))b=1,...,B) =
1

B

B∑
b=1

ε̂MTEST (D, (l(b), t(b))). (18)
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This formula is identical to the formula of ε̂MCV for regular cross-validation, except that

the summation is done with respect to the B random subsamples and that ε̂MMCCV is

considered as a function of the learning sets instead of the test sets here for consistency

with the bootstrap sampling procedure reviewed in the next section. As an estimator

of εMFn , ε̂MMCCV has a smaller variance than, e.g., ε̂MLOOCV , since it is based on learning

sets that are not as highly correlated as those of LOOCV. However, ε̂MMCCV is again

upwardly biased as an estimator of both εMFn and Err(CM
D ), i.e., accuracy is underesti-

mated, since the prediction rules are constructed based on less than n observations.

Bootstrap sampling

In bootstrap sampling, the learning sets l∗(b) are drawn out of {1, . . . , n} randomly and

with replacement. The ∗ symbol indicates that each observation may be represented

several times in l∗(b). The (common) size of the learning sets is set to n. Each l∗(b)

includes an average of 1 − (1 − 1/n)n ≈n→∞ 63.2% of the n observations at least

once. The test sets t(b) are again formed by the observations which are not in the

corresponding learning set l∗(b). Note that each test may have a different number of

observations. In each of the B bootstrap iterations, the learning data set is used to

construct a classifier CM
D

l∗(b)
that is subsequently applied to the test set Dt(b) . There are

several variants for estimating the error rate based on these results. The first variant

consists of considering all the predictions simultaneously and computing the global

error as

ε̂MBOOT1(D, (l
∗(b))b=1,...,B) =

∑n
i=1

∑B
b=1 I

(b)
i · I(yi 6= CM

D
l∗(b)

(xi))∑n
i=1

∑B
b=1 I

(b)
i

, (19)

with

I
(b)
i = 0 if observation i is included in the test set l∗(b) at least once,

= 1 else.

Note that the MCCV error estimator presented in the previous section may also be

expressed in this way. In contrast, the second bootstrap variant considers each obser-

vation individually and estimates the error rate as

ε̂MBOOT2(D, (l
∗(b))b=1,...,B) =

1

n

n∑
i=1

Êi, (20)
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where Êi is the averaged individual error rate of observation i over the iterations:

Êi =

∑B
b=1 I

(b)
i · I(yi 6= CM

D
l∗(b)

(xi))∑B
b=1 I

(b)
i

.

These two variants agree when B → 0 and usually produce nearly identical results

(Efron and Tibshirani, 1997).

Note that the principle of bootstrap learning samples that determine their own test

samples (the observations not included in the current bootstrap sample, also called

“out-of-bag” observations) is also incorporated in the recent ensemble methods bag-

ging (Breiman, 1996) and random forests (Breiman, 2001). Here the prediction accu-

racy of ensembles of classifiers learned on bootstrap samples is evaluated internally on

the out-of-bag observations. Therefore these methods have a built-in control against

overoptimistic estimations of the error rate.

The .632 and .632+ estimators

Bootstrap estimators of the error rate are upwardly biased, since classifiers are built

using in average only 63.2% of the available observations. That is why Efron and

Gong (1983) suggest an estimation procedure that combines the bootstrap sampling

error rate and the resubstitution error rate. They define the .632 estimator as

ε̂M.632(D, (l
∗(b))b=1,...,B) = 0.368ε̂MRESUB(D) + .632ε̂BOOT1(D, (l

∗(b))b=1,...,B) (21)

which is designed to correct the upward bias in ε̂BOOT1 by averaging it with the down-

wardly biased resubstitution error rate ε̂MRESUB. The .632+ estimator is suggested by

Efron and Tibshirani (1997) as a less biased compromise between resubstitution and

bootstrap errors designed for the case of strongly overfitting classifiers. These esti-

mates have lower bias than MCCV or simple bootstrap sampling estimates. Their prin-

ciple is generalized to survival prediction by Gerds and Schumacher (2007).

Bootstrap cross-validation

Fu et al. (2005) suggest an approach denoted as bootstrap cross-validation combin-

ing bootstrap estimation and LOOCV. The resulting error rate estimator can be seen

as a bagging predictor, in the sense that the final error rate estimate results from the
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Iterations Bias Principle

Resubstitution 1 ↓ l = t = {1, . . . , n}
Test 1 ↑ {l, t} form a partition of {1, . . . , n}
LOOCV n − t(j) = {j}, l(j) = {1, . . . , n} \ {j}, for j = 1, . . . , n

m-fold-CV m ↑
t(1), . . . , t(m) form a partition of {1, . . . , n}
l(j) = {1, . . . , n} \ t(j), for j = 1, . . . ,m

MCCV B (u.d.) ↑ {l(b), t(b) } form a partition of {1, . . . , n}, for b = 1, . . . , B

Bootstrap B (u.d.) ↑
l∗(b) is a bootstrap sample drawn out of {1, . . . , n}
t∗(b) = {1, . . . , n} \ l∗(b), for b = 1, . . . , B

0.632,0.632+ B (u.d.) − Weighted sum of resubstitution and bootstrap error rates.

Bootstrap-CV nB (u.d.) − LOOCV within B bootstrap samples.

Table 1: Summary of the reviewed evaluation strategies. Iterations: number of itera-

tions, i.e. number of times a classifier is constructed and applied to data; u.d.= user-

defined. Bias: Bias of the error estimation; ↑ means positive bias, i.e. underestimation

of prediction accuracy and vice-versa. Principle: Gives the definition of the learning

and test sets or the used combination of methods.

combination of several (LOOCV) estimates based on bootstrap samples. For each of

the B bootstrap samples, LOOCV is carried out. Error estimation is then obtained by

averaging the LOOCV result over the B bootstrap iterations.

Since bootstrap samples have duplicates, learning and test sets may overlap for the

corresponding CV iterations. Fu et al. (2005) claim that such an overlapping should

be seen as an advantage rather than a disadvantage for small samples, since correcting

the upward bias of bootstrap error estimation. Bootstrap cross-validation is reported to

perform better than bootstrap and the .632 and .632+ estimators (Fu et al., 2005).

5 Which evaluation scheme in which situation?

The evaluation of classification methods may have various goals. One goal may be

to compare several classification methods from a methodological point of view and

explain observed differences (for instance, Dudoit et al., 2002; Romualdi et al., 2003;
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Statnikov et al., 2005). Medical or biological articles on the other hand are concerned

with the performance on future independent data of the best classifier, which should

be selected following a strict procedure (typically one of those used in the comparison

studies mentioned above).

For that selection procedure, resubstitution should never be employed, since yield-

ing far too optimistic estimates of accuracy. Even if the goal is to compare different

methods rather than to estimate the absolute prediction accuracy, resubstitution turns

out to be inappropriate, since artificially favoring those methods that overfit the learn-

ing data. Hence, an inescapable rule is that classifiers should not be evaluated only on

the same data set they were trained on.

In this context, the above warning should be repeated: A classical flaw encountered

in the literature consists of selecting variables based on the whole data set and building

classifiers based on this reduced set of variables. This approach should be banned,

see Ambroise and McLachlan (2002) for a study on this topic. Even (and especially)

when the number of variables reaches several tens of thousands, variable selection

must carried out for each splitting into learning and test data sets successively.

Cross-validation, Monte-Carlo cross-validation and bootstrap for
classifiers comparison

In a purely statistical study with focus on the comparison of classification methods

in high dimensional settings, it is not recommended to estimate prediction accuracy

based on a single learning data set and test data set, because for limited sample sizes

the results depend highly on the chosen partition (cf., e.g., Hothorn et al., 2005). From

a statistical point of view, when the original learning data set is split into one learning

and one test set, increasing the size of the test set decreases the variance of the predic-

tion accuracy estimation. However, it also decreases the size of the leftover learning

data set and thus increases the bias, since using less observations than available for

learning the prediction rule yields an artificially high and variable error rate. In the

case of a very small n, this might even lead to the too pessimistic conclusion that gene

expression does not contribute to prediction. Procedures like cross-validation, Monte-

Carlo cross-validation or bootstrap sampling may be seen as an attempt to decrease

the estimation bias by considering larger learning sets, while limiting the variability
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through averaging over several partitions into learning and test data sets.

Contradicting studies have been published on the comparison of CV, MCCV and

bootstrap strategies for error rate estimation. The use of CV (Eq. 14) in small sample

settings is controversial (Braga-Neto and Dougherty, 2004) because of its high vari-

ability compared to MCCV (Eq. 18) or bootstrap sampling (Eq. 19,20). For instance,

in the case of n = 30, each observation accounts for more than 3% in the error rate es-

timation. For a data set in which, say, at most three patients are difficult to classify, CV

does not allow a fair comparison of classification methods. Braga-Neto and Dougherty

(2004) discourage from using LOOCV for estimation purposes in small sample set-

tings and recommend bootstrap strategies or repeated CV (denoted as CV10 in the

present article, see Eq. 17) as more robust alternatives. In contrast, another study by

Molinaro et al. (2005) taking small sample size and high-dimensionality into account

reports low mean square error for LOOCV estimation, as well as for 5- and 10-fold CV

and the .632+ estimator. The low bias of LOOCV, its conceptual simplicity as well as

the fact that it does not have any random component make it popular in the context

of microarray data. Meanwhile, it has become a standard measure of accuracy used

for comparing results from different studies. However, if one wants to use CV, a more

recommendable approach consists of repeating cross-validation several times, i.e. with

different partitions t(1), . . . , t(m), when m can take the values, e.g. m = 5 or m = 10.

Averaging over several partitions reduces the variance associated with cross-validation

(Braga-Neto and Dougherty, 2004).

Stable estimates of prediction accuracy can also be obtained via MCCV or boot-

strap sampling. In MCCV, the choice of the ratio nl : nt might depend on the goal of

the study. If the goal is comparison only, a ratio like 2 : 1 may be appropriate. If one is

not only interested in the relative performance of the methods but also in the value of

the prediction accuracy itself, larger learning sets are conceivable. However, for both

CV and MCCV/bootstrap, it must be recalled that the estimate of prediction accuracy

always tends to be pessimistic compared to the prediction accuracy that would be ob-

tained based on the n observations, since less than n observations are used for classifier

construction. Less biased estimators such as .632+ are recommended if the absolute

value of the error rate is of importance.

When on the other hand the aim of a benchmark study is a complete ranking of

all considered classifiers with respect to any performance measure the Bradley-Terry(-
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Luce) model for paired comparisons (Bradley and Terry, 1952) or the recent approach

of Hornik and Meyer (2007) for consensus rankings are attractive. In addition to the

purely descriptive ranking of these approaches statistical inference on the performance

differences between classifiers can be conducted when the test samples are drawn ap-

propriately, e.g., when several CV- or bootstrap-samples are available (Hothorn et al.,

2005).

Validation in medical studies

In medical studies, the problem is different. Investigators are not interested in the meth-

ods themselves but in their practical relevance and validity for future independent pa-

tient data. The addressed questions are

1. Can reliable prediction be performed for new patients?

2. Which classification method should be used on these new data?

Whereas the second question is basically the same as in statistical studies, the first

question is most often ignored in statistical papers, whose goal is rather to compare

methods from a theoretical point of view than to produce ’ready-to-use’ classifiers to

be used in medical practice.

Question 1 can be answered reliably only based on several, or one large, validation

data set that has been made available to the statistician after construction and selection

of an appropriate classifier. A validation set that remains unopened until the end of

the analysis is necessary, in the vein of the validation policy developed by the Sylvia

Lawry Centre for Multiple Sclerosis Research (Daumer et al., 2007).

Choice of the validation data set

The impact of the reported classifier accuracy in the medical community increases

with the differences between validation data set and open data set. For example, it is

much more difficult to find similar results (and thus much more impressing when such

results are found) on a validation data set collected in a different lab at a different time

and for patients with different ethnical, social or geographical background than in a

validation set drawn at random from an homogenous data set at the beginning of the

analysis. An important special case is when the learning and validation sets are defined
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chronologically. In this scheme, the first recruited patients are considered as learning

data and used for classifier construction and selection before the validation data set

is collected, hence warranting that the validation data remain unopened until the end

of the learning phase. Obviously, evaluating a classifier on a validation data set does

not provide an estimate of the error rate which would be obtained if both learning and

validation data set were used for learning the classifier. However, having an untouched

validation data set is the only way to simulate prediction of new data.

Furthermore, if the learning and test sets are essentially different (e.g., from an

ethnical or technical point of view), bad performance may be obtained even with a

classifier that is optimal with respect to the learning data. The error rate on the valida-

tion set increases with i) the level of independence between Y and X, ii) the difference

between the joint distribution F of Y and X in the learning and validation sets, iii)

the discrepancy between the optimal Bayes classifier and the constructed classifier.

Whereas the components i) and iii) are common to all methods of accuracy estima-

tion, component ii) is specific to validation schemes in which “validation patients” are

different from “learning patients”.

In this setting, however, it does make a difference here, if the learning and test set(s)

are (random) samples from the same original data set, or if the test set is sampled, e.g.,

in a different center in a multi-center clinical trial or at a different point in time in a

long-term study. The first case – ideally with random sampling of the learning and test

set(s) – corresponds to the most general assumption for all kinds of statistical models,

namely the “i.i.d.” assumption that all data in the learning and test set(s) are randomly

drawn independent samples from the same distribution, and that the samples only vary

randomly from this distribution due to their limited sample size. This common distri-

bution is often called the data generating process (DGP). A classifier that was trained

on a learning sample is supposed to perform well on a test sample from the same DGP,

as long as it does not overfit.

A different story is the performance of a classifier learned on one data set and

tested on another one from a different place or time. If the classifier performs bad on

this kind of test sample this can have different reasons: Either important confounder

variables were not accounted for in the original classifier, e.g. an effect of climate when

the classifier is supposed to be generalized over different continents (cf. Altman and

Royston, 2000, who state that models may not be “transportable”), or – even more
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severe for the scientist – the DGP has actually changed, e.g., over time, which is an

issue discussed as “data drift”, “concept drift” or “structural change” in the literature.

In this latter case, rather than discarding the classifier, the change in the data stream

should be detected (Kifer et al., 2004) and modelled accordingly – or in restricted

situations it is even possible to formalize conditions under which some performance

guarantees can be proven for the test set (Ben-David et al., 2007).

When on the other hand the ultimate goal is to find a classifier that is generalizable

to all kinds of test sets, including those from different places or points in time, as a

consequence we would have to follow the reasoning of “Occam’s razor” for our statis-

tical models: the most sparse model is always the best choice other things being equal.

Such arguments can be found in Altman and Royston (2000) and, more drastically,

Hand (2006), who uses this argument not only with respect to avoiding overfitting and

the inclusion of too many covariates, but also, e.g., in favor of linear models as opposed

to recursive partitioning, where it is, however, at least questionable from our point of

view, if the strictly linear, parametric and additive approach of linear models is really

more “sparse” than, e.g., simple binary partitioning.

Recommendations

With respect to the first question posed at the beginning of this subsection we therefore

have to conclude that there are at least one clinical and one – if not a dozen – statistical

answers, while for the second question we have a clear recommendation. Question

2 should be addressed based on the open learning data set only via cross-validation,

repeated cross-validation, Monte-Carlo cross-validation or bootstrap approaches. The

procedure is as follows:

1. Define Niter pairs of learning and test sets (l(j), t(j)), j = 1, . . . , Niter, following

one of the evaluation strategies described in Section 4 (LOOCV, CV, repeated

CV, MCCV, bootstrap, etc). For example, in LOOCV, we have Niter = n.

2. For each iteration (j = 1, . . . , Niter), repeat the following steps:

• Construct classifiers based on l(j) using different methods M1,M2,...,Mq

successively, where Mr (r = 1, . . . , q) is defined as the combination of

the variable selection method (e.g., univariate Wilcoxon-based variable se-
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lection), the number of selected variables (e.g., p̃ = 50, 100, 500) and the

classification method itself (e.g., linear discriminant analysis).

• Predict the observations from the test set t(j) using the constructed classi-

fiers CM1
D

l(j)
, . . . , C

Mq

D
l(j)

successively.

3. Estimate the error rate based on the chosen procedure for all methods

M1, . . . ,Mq successively.

4. Select the method yielding the smallest error rate.

5. Apply it to predict the observations from the independent validation set.

A critical aspect of this procedure is the choice of the “candidate” methods

M1, . . . ,Mq. On the one side, trying many methods increases the probability to find

a method performing better than the other methods “by chance”. On the other side,

obviously, increasing the number of methods also increases the chance of finding the

right method, i.e. the method that best reflects to the true data structure and is thus

expected to show good performance on independent new data as well.

CV, MCCV or bootstrap procedures might also be useful in medical studies for ac-

curacy estimation, but their results should not be over-interpreted. They give a valuable

preview of classifier accuracy when the collected data set is still not large enough for

putting aside a large enough validation set. In this case a systematic and comprehen-

sive optimization of the method parameters is not feasible. Then statisticians should

not rely on suboptimal choices based on local optima found by trial and error but rather

adopt one the following approaches:

• Using the default parameters.

• Selecting parameter values by cross-validation (or a related approach) within

each iteration. The computational complexity of the last option is in n2, which

makes it prohibitive if the chosen classification method is not very fast, espe-

cially when it involves variable selection.

• Selecting parameter values based on solid previous publications analyzing other

data sets.

In all cases, it should be mentioned that such an analysis does not replace an indepen-

dent validation data set.
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6 Summary and outlook

For fair evaluation of classifiers, the following rules should be taken into account.

• The constructed classifier should ideally be tested on a independent validation

data set. If impossible (e.g., because the sample is too small), the error rate

should be estimated with a procedure which tests the classifier based on data

that were not used for its construction, such as cross-validation, Monte-Carlo

cross-validation or bootstrap sampling.

• Variable selection should be considered as a step of classifier construction. As

such, it should be carried out using the learning data only.

• Whenever appropriate, sensitivity and specificity of classifiers should be esti-

mated. If the goal of the study is, e.g., to reach high sensitivity, it is important to

design the classifier correspondingly.

Note that both the construction and the evaluation of prediction rules have to be mod-

ified if the outcome is not, as assumed in this paper, nominal, but ordinal, continuous

or censored. While ordinal variables are very difficult to handle in the small sample

setting and thus often dichotomized, censored survival variables can be handled using

specific methods coping with the n � p setting, see van Wieringen et al. (2007) for a

neutral comparison study. Since censoring makes the use of usual criteria like the mean

square error impossible, sophisticated evaluation procedures have to be used, such as

the Brier score (see van Wieringen et al. (2007) for a review of several criteria).

Another aspect that has not been treated in the present paper because it would

have gone beyond its scope is the stability of classifiers and classifier assessment. For

instance, would the same classifier be obtained if an observation were removed from

the data set? How does an incorrect response specification affect the classification rule

and the estimation of its error rate? Further research is needed to answer these most

relevant questions, which affect all microarray studies.

Further research should also consider the fact that due to the many steps involved

in the experimental process, from hybridization to image analysis, even in high qual-

ity experimental data severe measurement error may be present (see, e.g., Rocke and

Durbin, 2001; Tadesse et al., 2005; Purdom and Holmes, 2005). As a consequence,
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prediction and diagnosis do not longer coincide, since prediction is usually still based

on the mismeasured variables, while diagnosis tries to understand the material relations

between the true variables. While several powerful procedures to correct for measure-

ment error are available for regression models (see, e.g., Wansbeek and Meijer, 2000;

Cheng and Ness, 1999; Carroll et al., 2006; Schneeweiß and Augustin, 2006, for sur-

veys considering linear and nonlinear models, respectively), in the classification con-

text well-founded treatment of measurement error is still in its infancy.

A further problem which is largely ignored by many statistical articles is the in-

corporation of clinical parameters into the classifier and the underlying question of

the additional predictive value of gene expression data compared to clinical parame-

ters alone. Although “adjustment for other classic predictors of the disease outcome

[is] essential” (Ntzani and Ioannidis, 2003), this problem is largely ignored by most

methodological articles. Specific evaluation and comparison strategies have to be de-

veloped to answer this question.
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Appendix A: Overview of software implementing classi-

fication methods in R

Most methods for microarray-based classification are implemented in R (www.

R-project.org) which has become the standard statistical tool for handling high-

dimensional genomic data. Simple univariate variable selection might be performed,

e.g., based on the t-test (t.test) or the Mann-Whitney test (wilcox.test). Usual

classifiers like logistic regression (R function glm), linear discriminant analysis (R

function lda), quadratic discriminant analysis (R function qda) are also accessible in

R without loading any particular package. The same holds for PCA dimension reduc-

tion (R function prcomp). Here is a list of specific R packages that are of particular

interest for microarray-based classification and freely available without registration.

• pamr package for PAM (Tibshirani et al., 2002)

• rda package for shrunken centroids regularized discriminant analysis (Guo

et al., 2007)

• plsgenomics package for PLS-based classification (Boulesteix, 2004; Fort

and Lambert-Lacroix, 2005)

• gpls package for generalized partial least squares classification (Ding and Gen-

tleman, 2005)

• e1071 package for SVM (Furey et al., 2000)

• randomForest for random forests classification (Diaz-Uriarte and de Andrés,

2006)

• logitBoost package for logitBoost (Dettling and Bühlmann, 2003)

• BagBoosting package for bagboosting (Dettling, 2004)

• MADE4 package for classification by the ’between-group analysis’ (BGA) di-

mension reduction method (Culhane et al., 2005)

• pdmclass package for classification using penalized discriminant methods

(Ghosh, 2003)
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• MLInterfaces package including unifying functions for cross-validation and

validation on test data in combination with various classifiers

Packages including functions for gene selection are

• genefilter package including a function that computes t-tests quickly

• WilcoxCV package for fast Wilcoxon based variable selection in cross-

validation (Boulesteix, 2007)

• varSelRF R package for variable selections with random forests (Diaz-

Uriarte and de Andrés, 2006)

• GALGO R package for variable selection with genetic algorithms (Trevino

and Falciani, 2006) (http://www.bip.bham.ac.uk/vivo/galgo/

AppNotesPaper.htm).

• MiPP package to find optimal sets of variables that separate samples into two or

more classes (Soukup and Lee, 2004; Soukup et al., 2005)

Other software tools not based on R are reviewed in Statnikov et al. (2005).

Appendix B: Summary of six comparison studies of clas-

sification methods
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Dudoit et al. (2002)
3 data sets

MCCV 2:1

• Included: LDA, DLDA, DQDA, Fisher,

kNN, trees,tree-based ensembles

• Variable selection: F-statistic

Conclusion: DLDA and kNN perform best

Romualdi et al. (2003)
2 data sets

CV

• Included: DLDA, trees, neural networks SVM,

kNN, PAM combined with:

• Variable selection/dimension reduction:

PLS, PCA, soft thresholding, GA/kNN

Conclusion: PLS transformation is recommendable,

No classifier uniformly better than the other

Man et al. (2004)
6 data sets

LOOCV, bootstrap

• Included: kNN, PCA+LDA, PLS-DA,

neural networks, random forests, SVM

• Variable selection: F-statistic

Conclusion: PLS-DA and SVM perform best

Lee et al. (2005)
7 data sets

LOOCV, MCCV 2:1

• Included: 21 methods (e.g., tree ensembles, SVM,

LDA, DLDA, QDA, Fisher, PAM)

• Variable selection: F-statistic, rank-based score, soft thresholding

Conclusion: No classifier uniformly better than the other,

Rank-based variable selection performs best

Statnikov et al. (2005)
11 data sets

LOOCV, 10-fold CV

• Included: SVM, kNN, probabilistic neural networks,

backpropagation neural networks

• Variable selection: BSS/WSS, Golub et al. (1999),

Kruskal-Wallis test

Conclusion: SVM performs best

Huang et al. (2005)
2 data sets

LOOCV

• Included: PLS, penalized PLS, LASSO, PAM, random forests

• Variable selection: F-statistic

• Random forests perform slightly better

Conclusion: No classifier uniformly better than the other

Table 2: Summary of six comparison studies of classification methods. This summary

should be considered with caution, since not detailing the used variants of the consid-

ered methods.
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