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Abstract

Within the last years several methods for the analysis of nonlinear autore-
gressive time series have been proposed. As in linear autoregressive models
main problems are model identification, estimation and prediction. A boost-
ing method is proposed that performs model identification and estimation
simultaneously within the framework of nonlinear autoregressive time series.
The method allows to select influential terms from a large numbers of po-
tential lags and exogenous variables. The influence of the selected terms is
modelled by an expansion in basis function allowing for a flexible additive
form of the predictor. The approach is very competitive in particular in high
dimensional settings where alternative fitting methods fail. This is demon-
strated by means of simulations and two applications to real world data.

Key words: Nonlinear time series, semi-parametric model, splines, lag
selection, variable selection, boosting

1 Introduction

There is a large variety of nonlinear time series, and even when one restricts con-
sideration to autoregressive models, there will remain many, such as threshold-,
functional coefficient- and additive models. Threshold processes can be understood
as a special case of functional coefficient (FCAR) models and functional coefficient
processes can be interpreted as a special case of additive models. In the following we
will consider the nonlinear additive autoregressive (NAARX) model with exogenous
variables, which is the most general among these.
In time series analysis with the focus on autoregressive models one faces in partic-
ular three problems: model identification, i.e. lag selection, model estimation and
prediction. Many methods have been proposed to cope with these problems. In
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the following an overview over methods that have been developed more recently
is given. A nonparametric method for conditional heteroscedastic autoregressive
time series was proposed by Tschernig & Yang (2000). Lag selection was done via
a nonparametric version of the final prediction error, whose asymptotic analog is
then penalized to reduce overfitting. They gave two alternative estimators for the
final prediction error: one is based on a local linear and the other on the Nadaraya-
Watson estimate. A problem with their approach is that it can suffer from the curse
of dimensionality. The method proposed here avoids that problem by fitting an
additive structure that is approximated by an expansion in basis functions.

Chen & Tsay (1993) used the backfitting procedures ACE and BRUTO to identify
the significant lags and the method of best subset regression to determine the final
model. BRUTO is based on a modified general cross validation (GCV) criterion (see
Hastie (1989)). Lewis & Stevens (1991) propose multivariate adaptive regression
splines (MARS) for fitting threshold autoregressive functions. MARS uses a basis
expansion with products of univariate splines (see Friedman (1991)). Model selection
in the forward step is done via the residual squared error, in the backward step a
modified GCV criterion is used. MARS has been extended to the multivariate case
(POLYMARS) and applied to general nonlinear time series by De Gooijer & Ray
(2003).

Polynomial splines were investigated by Huang & Shen (2004), where a B-spline
basis is used for the estimation of the regression function of a functional coefficient
model. The selection of the significant lags is done via a forward and a backward
selection step by adding and deleting that component that minimizes the mean
squared error. From these candidate sets they choose the one that minimizes a
criterion like Akaike’s information criterion (AIC; see Akaike (1974)), the corrected
version of the AIC, the AICcorr (see Hurvich & Tsai (1989)), or the Bayes information
criterion (BIC), also known as Schwarz’s information criterion (see Schwarz (1978)).
The same implementation was used by Huang & Yang (2004) for NAARX processes.
They used additive spline fitting and the BIC to estimate the conditional mean.

In the present paper we propose boosting procedures for the fitting of NAARX
processes. Boosting was originally developed for classification purposes, but was
adapted to regression problems later (for the original boosting algorithm AdaBoost
see Freund & Schapire (1996); for AdaBoost and regression see Friedman, Hastie
& Tibshirani (2000)). An overview on boosting methods is given in Bühlmann
& Hothorn (2007). Boosting is an ensemble method that uses a combination of
”rule of thumbs”, i.e. weak learners, in order to minimize the expected loss (for an
overview see Freund & Schapire (1999)). Boosting algorithms differ mainly in their
choice of the loss function and the weak learner. Bühlmann & Yu (2003) proposed
a boosting procedure based on squared error loss (hence the name L2Boost), while
AdaBoost was minimizing exponential loss. Sometimes sparser solutions than the
ones resulting from L2Boost are needed. This implies a penalized loss function, for
example the well known model selection criteria AICcorr and BIC can be applied
(for SparseL2Boost see Bühlmann & Yu (2006)). An alternative to SparseL2Boost
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is TwinBoosting from Bühlmann (2007) where the boosting algorithm is done twice.
In the first run it selects some candidate variables, while the second one is only done
with the preselected variables from the first run. Besides computational inefficiency
TwinBoosting has the disadvantage of a more complicated hat matrix, which makes
it difficult to calculate the model selection criteria, where the trace of the hat matrix
is needed.
Boosting approaches to the fitting of time series have been given recently by Lutz &
Bühlmann (2006). The authors restricted consideration to ordinary linear (vector-)
autoregressive processes, which are fitted within a linear model framework. For the
NAARX processes considered here nonlinear fitting procedures are needed. There-
fore we propose to use a spline basis expansion in each smooth component within
an additive modeling approach.
The paper is organized as follows. In section 2 we introduce the model for the
NAARX process as used in this paper. estimation procedure via penalized least
squares and the boosting algorithm is given in section 3. Simulated data are exam-
ined in section 4, where the results are judged by mean squared model error (MSE),
one-step ahead prediction error (OSPE) and hit- versus false alarm rate. In section
5 two real data example are given. In the second example exogenous variables are
included.

2 The Model

Let a time series (Yt, Xt), be generated by a nonlinear additive autoregressive model
of order p with exogenous variables (NAARX(p)), i.e.

Yt = f1(Xt1) + · · ·+ fp(Xtp) + εt

=

p∑
i=1

fi(Xti) + εt, t ∈ N.

The variable Xt = (Xt1, . . . , Xtp)
> consists of exogenous and/or lagged values of the

time series, the error term εt is i.i.d. with E(|εt|) < ∞, and ε1 admits a positive and
continuous probability density function. The functions fi denote mappings from R
into R for all i = 1, . . . , p. Furthermore, we will assume that each of these functions
fi may be expanded in m basis functions φij. Hence fi can be written as

fi(x) =
m∑

j=1

αijφij(x) (1)

with coefficients αij. Then the time series Yt has the form

Yt =

p∑
i=1

m∑
j=1

αijφij(Xti) + εt.
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Estimating the conditional mean of Yt, µt = E(Yt|Xt = x), is equal to estimating∑p
i=1 fi(Xti) and therefore the coefficients αij. In the following it is assumed that

the time series is stationary. Conditions are found in Tong (1990).

3 Estimation

Let T points of the univariate time series Yt be observed. Since the nonlinear
functional terms are approximated by an expansion in basis functions, estimation
refers to the coefficients αij. In contrast to Huang & Yang (2004) estimation is based
on the penalized least squares method, i.e. the function to be minimized is given by

PRSS(f, λ) =
T∑

t=1

(
Yt −

p∑
i=1

fi(xti)

)2

+

p∑
i=1

J(fi, λi)

where (xt)t=1,...,T represents the data with xt = (xt1, . . . , xtp)
> and λ = (λ1, . . . , λp)

>

the vector of penalties. There are various ways to choose a penalty function J(fi, λi).
Hastie, Tibshirani & Friedman (2001) use different λi for each fi and the integral of
the second derivatives of the functions fi, i.e.

J(fi, λi) = λi

∫

R

(
∂2fi(ti)

∂t2i

)2

dti.

When using B-splines on a equally spaced grid (see e.g. Eilers & Marx (1996)) a
simple rescaled discrete approximation to the upper penalty term is given by

J(fi, λi) = λi

m∑

j=k+1

(∆kαij)
2,

where ∆ is the difference operator given by ∆1αij = αij − αij−1 and ∆kαij =
∆1∆k−1αij. In the following, we will choose k = 2, which results in J(fi, λi) =
λi

∑m
j=3(αij − 2αij−1 + αij−2)

2. For λ = 0 one obtains the ordinary least squares
method, for k = 0 the method is equivalent to ridge regression. When B-splines are
used as basis functions the method is referred to as P-splines for penalized B-Splines.
It should be noted that the selection of smoothing parameters λi raises severe prob-
lems. Since the number of autoregressive terms is unknown one has to investigate
varying number of autoregressive terms. That, however, makes several optimiza-
tion procedures necessary. While optimization with respect to λi is easily done for
one dimension it is highly problematic for three or more influential terms. The
high computational burden usually makes selection impossible. Therefore one often
assumes one common smoothing parameter λ with the consequence that varying
curvature of the underlying functions fi is simply ignored. As outlined in the next
section, boosting techniques avoids the problem of differing smoothing parameters
by updating selected influential terms.
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3.1 Simultaneous Fitting and Selection by Boosting Tech-
niques

For given number of autoregressive terms and given smoothing parameters mini-
mization of PRSS(f, λ) is straightforward (see Eilers & Marx (1996)). However,
the big disadvantage is that no components are selected. The procedure proposed
here is componentwise boosting, which means that in an iterative procedure only
one component of the additive term is updated within one step. For the fit of one
component within the procedure a ”weak” learner is used. A weak learner is a fitting
procedure, that uses a small number of degrees of freedom. When fitting is steered
by the smoothing parameter λ, a weak learner is obtained by choosing λ very large.
A nice feature of the iterative boosting procedure is that one global (and large) tun-
ing parameter λ may be used for all of the components. If a component has stronger
curvature, then it is chosen more often in the componentwise updating procedure.
Moreover, componentwise boosting has a built-in selection device, it automatically
selects relevant covariates (see also Tutz & Binder (2006)).
In the following the fitting procedure is described in detail. The initial value of the
αijs is set to zero, which leads to a fitting of the original time series Yt in the first

step, while in the following ones only the residuals Yt− f̂ (k−1)(xt) are of interest. In
each iteration we will start with the fitting of the nonlinear part, which is, due to
the basis expansion, equal to adjusting the coefficients αij. Since in each iteration
only one fi∗ is fitted, only (αi∗j)j change, while all the other (αi′j)j for i′ 6= i∗ remain
unchanged. The component to be updated, fi∗ , is chosen via the minimization of
the BIC. The number of the refitting steps for components is denoted by K. The
choice of K is considered separately in the next section.
Since the steps within the boosting procedure are based on the updating of one
simple component, we consider briefly the fitting for that case. For given smoothing
parameter the m-dimensional vector of coefficients for the ith component α(i)=
(αi1, . . . , αim)> is obtained by solving

(
Φ(i)

)>
Ỹt =

((
Φ(i)

)>
Φ(i) + λD>

2 D2

)
α̂(i)

with Φ(i) being the T ×m-matrix of basis functions of each xti, i.e.

Φ(i) =




φi1(x1i) . . . φim(x1i)
...

...
...

φi1(xTi) . . . φim(xT i)


 ,

Ỹt = (Y1, . . . , YT )> and D2 being the matrix representation of the difference operator
∆2, given by

D2 =




1 −2 1 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1 −2 1


 .
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Hence the estimate is given by

α̂(i) =
[(

Φ(i)
)>

Φ(i) + λD>
2 D2

]−1 (
Φ(i)

)>
Ỹi.

and the corresponding hat matrix has the form

H(i)(λ, α̂(i)) = Φ(i)
[(

Φ(i)
)>

Φ(i) + λD>
2 D2

]−1 (
Φ(i)

)>
.

The boosting procedure for fitting and selection of components has the following
form.

Initialization:
Set α

(0)
ij = 0 for i = 1, . . . , p, j = 1, . . . , m, hence f̂ (0) = 0. Choose K large.

Iteration:
For k = 1, 2, . . . , K

Computation of the current residuals
For t = 1, . . . , T compute the residuals

r
(k)
t = Yt − f̂ (k−1)(xt).

Fitting of the base learner
For i = 1, . . . , p fit the model

r
(k)
t =

m∑
j=1

αijφij(xti) + εt, t = 1, . . . , T,

by penalized least squares yielding the penalized estimate

α̂(i) =

([(
Φ(i)

)>
Φ(i) + λD>

2 D2

]−1 (
Φ(i)

)>
(r

(k)
1 , . . . , r

(k)
T )>

)
,

where
[(

Φ(i)
)>

Φ(i) + λD>
2 D2

]−1 (
Φ(i)

)>
is the hat matrix from above.

Selection step
Take that component i∗ that minimizes the BIC (see section 3.2 for a
formula of the BIC).

Update of the estimator
The estimator can be written in two different ways. The first one is
f̂ (k)(xt) = f̂ (k−1)(xt) +

∑m
j=1 α̂i∗jφi∗j(xti∗) and the second one is via the

coefficients, i.e.

α
(k)
ij =

{
α

(k−1)
ij + α̂ij for i = i∗

α
(k−1)
ij otherwise,

for j = 1, . . . , m, yielding f̂ (k) =
∑p

i=1

∑m
j=1 α

(k)
ij φij(xti).
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3.2 Stopping Criterion for the Iterations

Finding a good number of iterations K can be done via many different criteria, e.g.
AIC, corrected AICcorr and BIC or via GCV. The last one is not recommended, since
it is computational very expensive. We will use the BIC unlike Lutz & Bühlmann
(2006), who used AICcorr. Therefore, we need the hat matrix of the smoother, which
uses the hat-matrices for one step of the procedure given in section 3.1. Bühlmann
& Yu (2003) showed that the L2Boost hat matrix in the kth boosting iteration is

Hk = I −
k∏

l=1

(I −H(i∗,l)(λ, αi∗))(I −H(0))

where H(i∗,l)(λ, αi∗) denotes the hat matrix H(i∗)(λ, αi∗) in the lth iteration, where
the (αi∗j)js are updated, and H(0) is 1

T
1>1.

The degrees of freedom are given by the trace of the L2Boost hat matrix tr(Hk).
Hence the BIC that is used for stopping is given by

BIC(k) =
Dev(k)

σ̂2
+ log(T )(1 + tr(Hk)),

where σ̂2 = Dev(K)/(T − tr(HK)) is the estimator of the largest model, Ỹ =
(Y1, . . . , YT )> as before and Dev(k) denotes the deviance after the kth iteration.
The estimate for the numbers of iterations is that k that minimizes the BIC. Within
the selection step the BIC is computed for the components with the hat matrices
given by H(i)(λ, αi). One selects that component that has minimal BIC.

4 Simulation Study

4.1 Setup and Implementation

In the following we will consider eight different processes, AR1-AR4 and NLAR1-
NLAR4 (see Table 1). The models AR1-AR3 and NLAR1-NLAR3 were also used by
Tschernig & Yang (2000) and Huang & Yang (2004) and are stationary processes.
AR4 and NLAR4 were added in order to investigate the estimation procedures when
more than two significant lags are in the data generating model. To start in the
stationarity distribution we generated 400+T observations and discarded the first
400, with T being 100, 200 and 500. Since displaying all results would go beyond the
scope of this paper, we restrict presentation to sample size of 100 (or even less), where
the methods differed the most. The processes AR1-AR4 are linear autoregressive
processes of order two, three or ten and hence are mainly differing in their lag
vector. The other processes, NLAR1-NLAR4, are general nonlinear autoregressive
processes of order two and seven, as well as functional coefficient processes of order
ten (FCAR(10)).
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Model Function
AR1 Yt = 0.5Yt−1 + 0.4Yt−2 + 0.1εt

AR2 Yt = −0.5Yt−1 + 0.4Yt−2 + 0.1εt

AR3 Yt = −0.5Yt−6 + 0.5Yt−10 + 0.1εt

AR4 Yt = −0.8Yt−1 − 0.4Yt−2 + 0.25Yt−3 + 0.1εt

NLAR1 Yt = −0.4(3− Y 2
t−1)/(1 + Y 2

t−1)+
0.6 (3− (Yt−2 − 0.5)3) / (1 + (Yt−2 − 0.5)4) + 0.1εt

NLAR2 Yt =
(
0.4− 2 exp(−50Y 2

t−6)
)
Yt−6 +

(
0.5− 0.5 exp(−50Y 2

t−10)
)
Yt−10+

0.1εt

NLAR3 Yt =
(
0.4− 2 cos(40Yt−6) exp(−30Y 2

t−6)
)
Yt−6+(

0.55− 0.55 sin(40Yt−10) exp(−10Y 2
t−10)

)
Yt−10 + 0.1εt

NLAR4 Yt = 0.9 sin((π/8)Yt−4)− 0.75 sin((π/8)Yt−5) + 0.52 sin((π/8)Yt−6)+
0.38 sin((π/8)Yt−7) + 0.1εt

Table 1: Specification of processes

We will compare our boosting procedure to MARS, BRUTO and the algorithm
of Huang & Yang (2004). The latter used a stepwise procedure based on spline
estimation. Hence they had a basis expansion equivalent to (1) but estimated the
coefficients via OLS. For variable selection they proposed a procedure consisting of
three stages (one forward, one backward and one final selection) where in the first
two stages they added or deleted in each step the variable with the smallest mean
squared error. In the final selection step they chose from all the candidate models
of the forward and backward stage the model with the smallest BIC.
Identification of lags is evaluated by hit- and false alarm rate, which are plotted in a
way similar to the ROC curve with hits being the proportion of correctly identified
lags and false alarms being the proportion of falsely selected lags over 100 simulation
runs. The goodness-of-fit is judged by the MSE

MSE =
1

T

T∑
t=1

(µt − f̂(xt))
2

where µt is the conditional mean of Yt. The performance concerning prediction is
quantified by the OSPE

OSPE = (Yt+1 − f̂(xt+1))
2.

The implementation is done in R (available on http://www.r-project.org/). For all
algorithms and processes we allowed to choose from lags one to ten and ran each
setting 100 times.

Boosting: For the boosting algorithm we used the R (R Development Core
Team,2007) implementation GAMBoost which is based on Tutz & Binder (2006),
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added the selection via the BIC and the pruning step, used cubic P-Splines
whose knots are equally spaced and set the penalty λ equal to 4000.

MARS and BRUTO: MARS and BRUTO are provided in the mda package
of R. Both procedures have a tuning parameter for the cost per degree of
freedom (in the first case it is cost and in the second penalty). We examined
the default two, which is similar to AIC, and log(T ), which corresponds to
BIC. Since log(T ) performs ways better we will present only the results of
this setting. The parameter nk of MARS specifying the maximum number of
model terms allowed was erased from the default 21 to 131, hence allowing
terms, i.e. products, of length two.

Algorithm of Huang & Yang (2004): For the algorithm of Huang & Yang
(2004) we equated S max (the maximal number of variables that are allowed in
the model) with d (the total number of candidate variables to be selected from),
hence just needed the backward stage. Moreover, we chose cubic regression
splines and used the mgcv package of R for the GAM fitting.

4.2 Results on Lag Selection

For the evaluation of the performance concerning the selection of lags we examine
the hit and false alarm rate of each process and each sample size. We added an
alternative procedure, referred to as SparseBoost(cut), which uses a pruning step
at the end of the algorithm. More specific, the pruning step that has been applied
computes the final estimate by

αij =

{
αij if

Pm
j=1 |αij |Pp

i=1

Pm
j=1 |αij | ≥ 1

d
0 otherwise.

Figure 1 shows the hit and false alarm rates for sample size 100 and processes AR3,
AR4, NLAR3 and NLAR4, since they are the most complex ones. The more the
dots are in the upper left corner (this means having a high hit and a low false
alarm rate) the better the performance of the selection procedure. The procedures
are denoted by SparseBoost for the boosting procedure and SparseBoost(cut) for
the the boosting procedure with a pruning step. It is seen that the pruning step
reduces the false alarm rate slightly. Comparison to the competitors shows that the
boosting procedure is never dominated by one of the alternative procedures, where
dominance means that performance is better in both dimensions, hit and false alarm
rate. MARS does very poor in all settings, having a low hit and a high false alarm
rate.

4.3 Results on Estimation and Prediction

Besides identifying the relevant lags, the accuracy of estimation and prediction plays
an important role in modeling time series. Therefore, we compare the MSE and the
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Figure 1: Hit versus false alarm rate for processes AR3, AR4, NLAR3 and NLAR4

OSPE of the proposed estimators. Table 2 shows the mean MSE for all procedures
with sample size 100. The best performer is given in boldface. It is seen that
SparseBoost is the best performer in five of the eight considered time series, although
it should be noted that the differences between methods are small.

In the box plots of the prediction error given in Figure 2 the algorithm of Huang &
Yang (2004) is denoted by HaY. Here we again display only the results of the pro-
cesses AR3, AR4, NLAR3 and NLAR4 and sample size 100. Given the variability of
the performance the difference in median is rather weak. In particular MARS shows
large variability for linear processes but small variability for nonlinear processes.
The number of outliers for the procedures does not vary strongly across procedures.
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Model BRUTO MARS Huang and Yang SparseBoost data
AR1 2.69 2.69 2.69 2.64 0.87
AR2 2.94 2.94 2.95 2.86 0.01
AR3 2.61 2.63 2.65 2.59 0.01
AR4 4.90 4.91 4.90 4.72 0.00

NLAR1 42.05 43.55 42.75 42.47 24.64
NLAR2 0.91 0.98 0.97 0.96 0.68
NLAR3 6.69 6.80 6.78 6.68 4.14
NLAR4 0.39 0.46 0.44 0.46 0.02

Table 2: Mean MSE for all processes (in percent)

5 Applications

In the following two univariate real data time series are modeled as nonlinear autore-
gressive processes. Both are concerned with modeling unemployment data. The first
application does not use exogenous variables, while the second includes exogenous
variables. The data sets were also used by Stoffer & Shumway (2006), the second
was further examined by Young & Pedregal (1999). Stoffer & Shumway (2006) used
the latter data set for analysis in the frequency domain, while Young & Pedregal
(1999) treated it in the time domain. Both data sets may be downloaded from the
homepage of the book by Stoffer & Shumway (2006)(unemp.dat, econ5.dat). The
first consists of 372 monthly measures of the Federal Reserve Board unemployment
index, while the second consists of 161 quarterly measures of the unemployment
rate, along with observations of US GNP, consumption, governmental spending and
private investment. The seasonal component has been removed from both data sets.
To compare the fitting of the different algorithms we will consider GCV

GCV =
1

T

T∑
t=1

(
Yt − f̂(xt)

1− 1
T
df

)2

where df are the degrees of freedom. The prediction power is evaluated by the
iterated mean squared prediction error (MSPE)

MSPE =
1

20

T+20∑
t=T+1

(
Yt − f̂(xt)

)2

.

Besides BRUTO, MARS, the algorithm of Huang & Yang (2004) and SparseBoost,
we will examine the boosting procedure with a pruning step, i.e. SparseBoost(cut).

5.1 Unemployment Index

In the univariate case without exogenous variables only the Federal Reserve Board
unemployment index (and ten lags thereof) is modelled. As the time series is more
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Figure 2: Boxplot of the OSPE for processes AR3, AR4, NLAR3 and NLAR4

wiggly in the first past, we will examine only the last part of it. To get a sample size
between 100 and 200, we will consider 131 observations, from the 200th to the 330th
observation. Additional 20 observations are used for prediction. Table 3 shows the
lags that were selected as well as GCV and MSPE of each procedure. In terms of
GCV and MSPE the boosting methods do best. MARS selected almost all of the
possible ten lags, but omitted lag seven, which was selected by all the others and
seems not to be neglectable (see also Figure 4).
In Figure 3 the 32 last observations which are used for fitting, i.e. from 100th to the
131th of the chosen observations, are given together with the fitted values. When
comparing the approximations of Huang & Yang (2004) and SparseBoost one sees
that in particular in the last observations the method of Huang & Yang tends to
predict a rather flat curve while SparseBoost varies in accordance with the data.

In addition the autocorrelation function (ACF) of the time series and the estimated
functions are given in Figure 4. The values of the autocorrelation functions are given
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criterion BRUTO MARS Huang and Yang
selected variables 5, 7, 10 1, 2, 3, 4, 5, 6, 9, 10 5, 7, 8, 9, 10

GCV*100 70.06 81.66 66.89
MSPE 362,550.38 362,222.63 369,364.75

criterion SparseBoost(cut) SparseBoost
selected variables 2, 5, 7, 8, 10 2, 5, 7, 8, 10

GCV*100 0.03 0.02
MSPE 344,264.75 354,846.54

Table 3: Selected variables, GCV and MSPE for all methods

in pairs. The first one is the estimate based on the time series, the second one is
the autocorrelation function of the fitted model. One can see that SparseBoost and
SparseBoost(cut) are the only ones that show the same sign as the time series for
every lag.

5.2 Unemployment Rate with Exogenous Variables

To get a stationary time series Young & Pedregal (1999) advice to analyze relatively
measured time series, for example governmental spending/US GNP. The unemploy-
ment rate as considered here is already a relative measure. We consider the same
model as Young & Pedregal (1999) who built a model for the unemployment rate
depending on the unemployment rate, governmental spending/US GNP and private
investment/US GNP. In their data-based mechanistic modelling approach they use
a special form of the recursive least squares method and fixed interval smoothing
for parameter estimation.
We allow ten lags for the unemployment rate as well as for governmental spend-
ing/US GNP and private investment/US GNP. For this setting the algorithm of
Huang & Yang (2004) would have to deal with 1,073,741,824 different possible mod-
els and for every one of them a GAM has to be fitted and the mean squared error
calculated! Therefore the algorithm of Huang & Yang (2004) fails and is omitted in
the comparison.
We will examine the last 150 observations, 20 of these are used for prediction.
Variables one to ten characterize the lags of the unemployment rate, eleven to 21
characterize governmental spending/US GNP and its ten lags, and 22 to 32 char-
acterize private investment/US GNP and its ten lags. Table 4 shows the selected
variables, GCV and MSPE. BRUTO failed completely. SparseBoost methods show
the smallest GCV and both boosting methods perform best in terms of MSPE.
As far as the numbers of selected lags are concerned SparseBoost and Sparse-
Boost(cut) differ strongly. While SparseBoost selected six variables, SparseBoost(cut)
just chose two of them. Figure 5 shows the estimates of the six smooth components
selected by SparseBoost. It is seen that the lags one and 23 are indeed far away
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Figure 3: Plot of the end of the unemployment data time series together with the
estimates of Huang and Yang and SparseBoost

from zero. The influence of lag one seems to be nearly linear, a conclusion that has
also been found by Young & Pedregal (1999).

6 Conclusion

Due to the penalized estimation procedure boosting performs better than the algo-
rithm of Huang & Yang (2004) at the boundary of the data. Generally speaking,
boosting is especially made for complex settings. This can be seen from Figure 1
where the hit- and false alarm rates are displayed and boosting is ways better than
the other methods in the more complex settings, i.e. the processes with more than
two significant variables (AR4 and NLAR4). Here in particular MARS did a very
poor job. Also in the application to data sets boosting performs better in the high
dimensional setting with exogenous variables, where BRUTO and the algorithm of
Huang & Yang (2004) failed completely.
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criterion BRUTO MARS
selected variables 5, 9, 16, 22, 28 1, 2, 4, 5, 6, 9, 10

GCV*100 9.15*1040 18.20
MSPE 6.49*1078 4.12

criterion SparseBoost(cut) SparseBoost
selected variables 1, 23 1, 15, 22, 23, 24, 25

GCV*100 1.87 0.00
MSPE 155.38 3.96

Table 4: Selected variables, GCV and MSPE for BRUTO, MARS and the boosting
algorithms
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Figure 4: Plot of the autocorrelation functions of the unemployment data time series
together with the estimates
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Figure 5: Plot of the smooth components of SparseBoost
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