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Abstract

This paper extends the balanced loss function to a more general set

up. The ordinary least squares and Stein-rule estimators are exposed to

this general loss function with quadratic loss structure in a linear regression

model. Their risks are derived when the disturbances in the linear regression

model are not necessarily normally distributed. The dominance of ordinary

least squares and Stein-rule estimators over each other and the effect of

departure from normality assumption of disturbances on the risk property

is studied.
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1 Introduction

The ordinary least squares estimator is the best linear unbiased estimator of re-

gression parameter in a linear regression model. If the criterion of linearity and

unbiasedness can be dropped, then it is possible to improve upon the the vari-

ability of an estimator of regression coefficient. The family of Stein-rule estimator

proposed by James and Stein (1961) has smaller variability than ordinary least

squares estimator under quadratic risk with a simple condition that the number

of explanatory variables are more than two. A vast literature is available on the

topic of Stein-rule estimation. Discussion of all the papers is out of purview of this

paper. Most of the literature judges the performance of Stein-rule and ordinary

least squares estimators on the basis of the concentration of estimates around the

true value of the parameter. The goodness of fitted model is another criterion to

judge the performance of these estimators which is generally ignored quite often.

Generally either of the criterion is employed to judge the performance. In

practice, both the criterion may often be desirable, see, for instance, Shalabh

(1995, 2000), Toutenburg and Shalabh (1996), and Zellner (1994) for some illus-

trative examples. Accordingly, Zellner (1994) has introduced the balanced loss

function which is a convex combination of sum of squares of the residuals and

weighted sum of squares of the estimation errors. Such loss function encompasses

both the criterion, viz., concentration of estimates around true parameter and

goodness of fitted of model. Further, Shalabh (1995) introduced the concept of

simultaneous prediction of actual and average values of study variable in a linear

regression model for within and outside sample prediction. Based on that, Sha-

labh (1995) has presented a predictive loss function which not only incorporate

the balanced loss function of Zellner (1994) as its particular case but also mea-

sures the correlation between the goodness of fit of model and concentration of

estimates around the true parameter.
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The balanced loss function has received considerable attention in the literature

under different set ups. For example, Rodrigues and Zellner (1994) have used the

balanced loss function in the estimation of mean time to failure; the aspects of

preliminary test estimation and Stein-rule estimation under the balanced loss

function are discussed by Giles, Giles and Ohtani (1996), Ohtani, Giles and Giles

(1997), Ohtani (1998, 1999) and Gruber (2004); estimation of normal mean is

considered by Chung, Kim and Song (1997), Chung, Chanso and Dey (1999) and

Sanjari and Asgharzadeh (2004); see also Chung, Kim and Song (1998), Shalabh

(2001), Wan (2002), Chaturvedi and Shalabh (2004), Fikri, Wan and Akdeniz

(2005) and Toutenburg and Shalabh (2005) for the application of balanced loss

function in some other areas of linear models. Appreciating the popularity of

balanced loss function, we have extended it further and present a general loss

function called as extended balanced loss function in this paper. The predictive

loss functions suggested by Zellner (1994) and Shalabh (1995) are its particular

cases.

Most of the literature dealing with Stein-rule estimation of regression coef-

ficients assume that the disturbances are normally distributed. In practice, this

assumption may not hold true. How the performance of Stein-rule estimator

changes under the non-normally distributed disturbances is another question. An

attempt is made to judge the performance of ordinary least squares and Stein-rule

estimators under the proposed extended balanced loss function when disturbances

in the linear regression model are not necessarily normally distributed.

In Section 2 we describe the linear regression model and present a general

loss function under quadratic loss structure. A comparison of the risk functions

associated with the ordinary least squares and Stein-rule estimators is presented in

Section 3 , and a condition on the characterizing scalar for the superiority of Stein-

rule estimators over ordinary least squares estimator is obtained. Several popular
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forms of loss functions which arise as particular cases of the extended balanced

loss function are also considered. The finite sample behaviour of ordinary least

squares and Stein-rule estimators is studied through a Monte-Carlo simulation

experiment and its findings are reported in Section 4. Some concluding remarks

are then placed in Section 5.

2 Linear regression model and the loss function

Let us consider the following linear model:

y = Xβ + ε (2.1)

where y is a n × 1 vector of n observations on the study variable, X is a n × p

full column rank matrix of n observations on each of the p explanatory variables,

and ε is a n × 1 vector of disturbances. It is assumed that the elements of ε are

independently and identically distributed following a distribution with mean 0,

variance σ2 and third moment γ1σ
3 measuring skewness where γ1 is the Pearson’s

coefficient of skewness of the distribution of ε .

Let β̃ denotes any estimator of β then the quadratic loss function which

reflects the goodness of fit of the model is

(Xβ̃ − y)′(Xβ̃ − y) (2.2)

where ŷ = Xβ̃ is the predictor for y. Similarly, the precision of estimation of β̃ is

measured by the weighted loss function

(β̃ − β)′X ′X(β̃ − β) . (2.3)

Generally, either of the criterion of (2.2) or (2.3) is used to judge the per-

formance of any estimator. Considering the goodness of fit and precision of esti-

mation together, Zellner (1994) has considered both the criterion (2.2) and (2.3)
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together and proposed the following balanced loss function:

BL(β̃) = θ(Xβ̃ − y)′(Xβ̃ − y) + (1− θ)(β̃ − β)′X ′X(β̃ − β) (2.4)

where θ is a scalar lying between 0 and 1 which provides the weight assigned to

the goodness of fit of model.

If we consider the set up of within sample prediction, then the predictor

Xβ̃ is used to predict the actual value y as well as the average value E(y). In

certain cases, it may be desirable to consider the simultaneous prediction of y and

E(y), see Shalabh (1995), Toutenburg and Shalabh (1996) and Rao, Toutenburg,

Shalabh and Heumann (2008) for more details and for some examples. From the

prediction view of point, the loss functions (2.2) and (2.3) can be regarded as

arising from the prediction of actual values y by Xβ̃ and the prediction of the

average values E(y) = Xβ by Xβ̃, respectively. Accordingly, Shalabh (1995) has

defined a target function

T = λy + (1− λ)E(y) (2.5)

where λ is a scalar between 0 and 1. Note that λ = 0 and λ = 1 in (2.5) provides

the predictions for average and actual values of y. Any other value 0 < λ < 1

provides the weight assigned to the actual value prediction and provides simulta-

neous prediction of actual and average values of y.

The following predictive loss function arises when we use the predictor Xβ̃

for simultaneous prediction of actual and average values of y through the target

function (2.5):

PL(β̃) = (Xβ̃ − T )′(Xβ̃ − T )

= λ2(Xβ̃ − y)′(Xβ̃ − y) + (1− λ)2(β̃ − β)′X ′X(β̃ − β)

+2λ(1− θ)(Xβ̃ − T )′X(Xβ̃ − T ). (2.6)
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Looking at the functional forms of the balanced loss function and the predic-

tive loss function, we propose the following weighted loss function:

WL(β̃) = λ1(Xβ̃ − y)′(Xβ̃ − y) + λ2(β̃ − β)′X ′X(β̃ − β)

+(1− λ1 − λ2)(Xβ̃ − y)′X(β̃ − β) (2.7)

where λ1 and λ2 are the scalars lying between 0 and 1 characterizing the loss

functions. The weighted loss function in (2.7) can be called as extended balanced

loss function. Clearly, the function (2.7) encompasses the loss functions (2.2),

(2.3), (2.4) and (2.6) as its particular cases. Thus it is fairly general and sufficiently

flexible.

3 Risk performance of ordinary least squares and

Stein-rule estimators

The ordinary least squares estimator of β is given by

b = (X ′X)−1X ′y (3.1)

which is well known for its optimality in the class of linear and unbiased estimators.

If we drop the linearity and unbiasedness, there exist estimators with better

performance than the ordinary least squares estimator under the risk criterion.

One such interesting family of nonlinear and biased estimators of β, popularly

known as Stein-rule estimators (see, James and Stein (1961)) is defined by

β̂ =

[
1−

(
k

n− p + 2

)
y′ (I −H) y

y′Hy

]
b (3.2)

where

H = X(X ′X)−1X ′ (3.3)
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and k is a positive nonstochastic characterizing scalar; see, e.g. Judge and Bock

(1978) and Saleh (2006).

A vast literature is available related to the performance of ordinary least

squares and Stein-rule estimators under either of the criterion, viz., goodness of

fit of model or concentration of estimates around the true parameter. We propose

to judge the performance of these two estimators under the fairly general extended

balanced loss function using the criterion as risk, i.e., the expected value of the

weighted loss function (2.7).

From (2.1) and (2.7), we observe that

WL(β̃) = λ1ε
′ε− σ(1 + λ1 − λ2)ε

′X(β̃ − β) + (β̃ − β)′X ′X(β̃ − β). (3.4)

Setting β̃ = b, we get the risk of OLSE as

R(b) = E[WL(b)] = σ2λ1n− σ2p(λ1 − λ2). (3.5)

The exact expressions for the risk function of SRE can be derived bur their

nature would be sufficiently intricate. We therefore employ the large sample as-

ymptotic approximation theory to derive the risk function. We assume that the

explanatory variables are asymptotically cooperative, i.e., the limiting form of

the matrix n−1X ′X is finite and nonsingular, as n tends to infinity. Such an as-

sumption is needed for the application of large sample asymptotic approximation

theory.

Now, if we write

ξ = n
1
2 X ′ε

and

δ = n
1
2

(
ε′ε
n
− 1

)
,

we have

b− β =
1

n
1
2

S−1ξ. (3.6)
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and

y′(I −H)y = n + n
1
2 δ − ξ′S−1ξ .

Next, consider the quantity

y′(I −H)y

(n− p + 2)y′Hy
=

1

nβ′Sβ

(
1 +

δ

n
1
2

− 1

n
ξ′S−1ξ

)(
1− p− 2

n

)−1

×
(

1 +
2β′ξ

n
1
2 β′Sβ

+
ξ′S−1ξ

nβ′Sβ

)−1

.

=
1

nβ′Sβ
+

1

n
3
2 β′Sβ

(
δ − 2β′ξ

β′Sβ

)
+ Op(n−2). (3.7)

Substituting (3.6) and (3.7) in (3.2), we find

(β̂ − β) =
1

n
1
2

S−1ξ − k

nβ′Sβ
β

− k

n
3
2 β′Sβ

[
δβ +

(
S−1 − 2

β′Sβ
ββ′

)
ξ

]
+ Op(n−2). (3.8)

Making use of the distributional properties of ε, these results and neglecting terms

of higher order of smallness than O(n−1), we see from (3.8) that

E[ε′X(β̂ − β)] = σp− σ2k

nβ′Sβ

[γ1

n
e′Xβ + σ(p− 2)

]
(3.9)

E[(β̂ − β)′X ′X(β̂ − β)] = σ2p− σ3k

nβ′Sβ

[
2γ1

n
e′Xβ + 2σ(p− 2)− σk

]
.

(3.10)

Setting β̃ = β̂ in (3.4), utilizing the above results and retaining the terms to order

O(n−1), we find

R(β̂) = E[WL(β̂)]

= σ2λ1n− σ2p(λ1 − λ2)

− σ4k

nβ′Sβ

[
(1− λ1 + λ2)

(γ1

σ
X̄ ′β + p− 2

)
− k

]
. (3.11)

where S = 1
n
X ′X and X̄ is a p × 1 vector of means of observations on the p

explanatory variables.
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It is clear from (3.5) and (3.11) that both the criteria, viz, goodness of fit

and precision of estimation affect the risk performance of ordinary least squares

as well as Stein-rule estimators. Using the criteria of goodness of fit and precision

of estimation together has more appeal than using either of them.

Comparing (3.5) and (3.11), it is observed that the Stein-rule estimator has

smaller risk to the order of our approximations, in comparison to the ordinary

least squares estimator when

k < (1− λ1 + λ2)
(γ1

σ
X̄ ′β + p− 2

)
(3.12)

provided that

(λ1 − λ2) < 1 and
(γ1

σ
X̄ ′β + p− 2

)
> 0 (3.13)

or

(λ1 − λ2) > 1 and
(γ1

σ
X̄ ′β + p− 2

)
< 0. (3.14)

When the distribution of disturbances is symmetric and/or X̄ is a null vector,

i.e., the observations on the explanatory variables are taken as deviations from

their corresponding means, then the condition (3.12) becomes free from unknown

parameters β and is satisfied when either of the following two conditions holds

true:

k < (1− λ1 + λ2)(p− 2) and (λ1 − λ2) < 1 if p > 2 (3.15)

k < (λ1 − λ2 − 1)(2− p) and (λ1 − λ2) > 1 if p = 1, 2. (3.16)

Now we examine the performance of estimators under some interesting loss func-

tions.

First we consider the criterion of goodness of fit of model which is a particu-

lar case of (2.7) with λ1 = 1 and λ2 = 0. We observe from (3.5) and (3.11) that
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the ordinary least squares estimator remains unbeaten by all Stein-rule estima-

tors irrespective of the nature of observations on explanatory variables and the

distribution of disturbances. This matches with the result obtained by Srivastava

and Shalabh (1996, p.143) on the basis of exact risk expressions.

Considering the criterion of precision of estimation which can be obtained by

setting λ1 = 0 and λ2 = 1 in (2.7), the Stein-rule estimators are better than the

ordinary least squares estimator when

k < 2
(γ1

σ
X̄ ′β + p− 2

)
(3.17)

with the rider that the quantity on the right hand side is positive; see also Vinod

and Srivastava (1995).

This condition reduces to

k < 2(p− 2); p > 2 (3.18)

when the distribution of disturbances is symmetric irrespective of the nature of

data on the explanatory variables or X̄ is a null vector whether the distributions

of disturbances is symmetric or asymmetric.

Similarly, the condition (3.17) is satisfied as long as (3.18) holds true provided

that γ1 and X̄ ′β have the same sign, i.e., X̄ ′β is positive for positively skewed

distributions of disturbances and is negative for negatively skewed distributions

of disturbances. In fact, it is possible to find Stein-rule estimators with better

performance than the ordinary least squares estimator even for p = 1 and p = 2

when

γ1X̄
′β > 2σ. (3.19)

It may be noticed (3.18) is a well-known condition for the superiority of Stein-rule

estimators on the basis of exact risk under the normality of disturbances; see, e.g.,

Judge and Bock (1978) and Saleh (2006).
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If we put λ1 = θ and λ2 = (1− θ) in (2.7), we get the balanced loss function

proposed by Zellner (1994). For 0 ≤ θ < 1, a sufficient condition that the Stein-

rule estimators perform better than the ordinary least squares estimator is when

k < 2(1− θ)
(γ1

σ
X̄ ′β + p− 2

)
. (3.20)

When γ1 is zero and/or X̄ is a null vector, the condition (3.20) assumes a simple

form:

k < 2(1− θ)(p− 2); p > 2. (3.21)

This serves as a sufficient condition for the superiority of Stein-rule estimators

over ordinary least squares estimator in case of asymmetric distributions of dis-

turbances provided that skewness coefficient γ1 has same sign as X̄ ′β. Further, if

(3.20) holds true, one can find Stein-rule estimators that are better than ordinary

least squares estimator even when there is simply one or two explanatory variables

in the model.

It may be observed that the condition (3.20) has been derived by Giles, Giles

and Ohtani (1996) by considering the exact risk under the normality of distur-

bances; see also Ohtani (1998).

Now we consider a case when λ1 = λ2 and λ2 = (1− λ)2 in (2.7). We obtain

the loss function

λ2(Xβ̃−y)′(Xβ̃−y)+(1−λ)2(β̃−β)′X ′X(β̃−β)+2λ(1−λ)(Xβ̃−y)′X(β̃−β).

It is a combination of sum of squares of the residuals, weighted sum of squares of

estimation errors and weighted sum of cross products of residuals and estimation

errors. This is also equal to the sum of squares of prediction errors when Xβ̃ is

employed for the prediction of a convex combination of the actual and average

values of study variable which was proposed by Shalabh (1995).
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From (3.5) and (3.11), it is seen that the Stein-rule estimators have smaller

risk in comparison to ordinary least squares estimator when

k < 2(1− λ)
(γ1

σ
X̄ ′β + p− 2

)
(3.22)

which is precisely the same as (3.20) obtained from risk comparison under the

balanced loss function. The condition of (3.22) with γ1 = 0 matches with the

condition of Shalabh (1995) on the basis of exact risk; see also Shalabh (1999).

4 Simulation study

The large sample asymptotic approximation theory is employed to study the risk

of estimators in Section 3. The large sample theory gives an idea about the

behaviour of risk of estimators in large samples. In order to study the behaviour

of risk of estimators in finite samples, we conducted a Monte-Carlo simulation

experiment. The main objective of the Monte-Carlo simulation experiment is

to study the superiority of Stein-rule and ordinary least squares estimators over

each other, effect of departure from the normal distribution and performance of

estimators under the proposed loss functions in finite samples. The following

set up is considered for the simulation study. The sample size was n = 40 and

number of variables in X (number of columns of X) is p = 6. The matrix X

is generated from a multivariate normal distribution with mean 1 for the first

3 components and mean −1 for the last 3 components. The covariance matrix

of X was directly chosen as a correlation matrix with correlation 0 among the

6 columns (independence). The true (6 × 1) parameter vector β was set to β =

(−5.0,−4.9, . . . , 0.0, . . . , 4.9, 5.0)′ (101 different values). All components of β were

accordingly set to the same parameter value. The true response (without any

error ε) was calculated according to the linear relationship ytrue = Xβ under this

set up. A new response vector is generated according to the model (2.1), i.e.,
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y = ytrue + ε in each run. The error distribution is chosen to be an unsymmetrical

beta distribution with parameters 1
2

and 1
10

; and a symmetrical t-distribution with

5 degrees of freedom. The parameter k of the Stein-rule estimator is chosen as

k = p− 2 = 4. The empirical risk is then calculated based on 1000 runs.

The random variables from beta and t- distributions were suitably scaled to

have same mean and same variance. The 1000 runs were repeated for each of

the combinations under the settings λ1 = 0.0, 0.1, . . . , 1.0 (11 different values),

λ2 = 0.0, 0.1, . . . , 1.0 (11 different values) and λ3 = 1− λ1 − λ2.

Each setting was repeated 1000 times including a new generation of the design

matrix X for each setting of β, λ1 and λ2. Therefore we simulated the results from

12221 (101×112) different β-λ1-λ2-combinations. Each of these combinations was

tested with 1000 different design matrices X and risks of regression coefficients

were estimated. Within each of these 1000 simulations, another loop was em-

bedded for the generation of new error vectors to estimate the empirical risk of

ordinary least squares and Stein-rule estimators.

We have plotted the three dimension surface plots to visualize the performance

of ordinary least squares and Stein-rule estimators with respect to λ1, λ2 and β.

Only some representative surfaces are presented here keeping in mind the length

of paper.

Figure 1 and 2 show the risks of ordinary least squares and Stein-rule estima-

tors, respectively under beta distributed errors for every β-λ2 combination for a

given specific value of λ1 and a randomly chosen design matrix X. In figure 3, we

counted how many times the Stein-rule estimator was better than the ordinary

least squares estimator in all 1000 simulations with different X design matrices

(since the risk of both estimators depends on the design matrix). Figures 4, 5

and 6 use another visualization showing the risk for all λ1-λ2 combinations for a

given specific value β. Figures 7-12 show the similar results as in figures 1-6 for
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t-distributed errors.

We recall that the values of λ1 and λ2 indicate the weights assigned to good-

ness of fit and precision of estimation, respectively in the following discussion.

First we analyze the performance of ordinary least squares and Stein-rule

estimators under beta distributed errors from figures 1-6. Different graphs in

figure 1 give an idea about the performance of ordinary least squares estimator

when λ2 and β vary whereas λ1 stays fixed. In such a case of given λ1, the

perturbations in the surfaces are smaller for lower values of λ1 and higher for

larger value of λ1. The perturbations increase as both λ1 and λ2 simultaneously

increase. The slopes of the surfaces remain almost unchanged with respect to β

which indicates the independence of results from the values of true parameters.

Similar results and trends are also observed in the surfaces of risk of Stein-rule

estimator in figure 2 but the perturbations in the surfaces are higher in comparison

to the perturbations in the surface of ordinary least squares estimator as in figure

1. This clearly indicates an increase in the risks of ordinary least squares and Stein-

rule estimators with an increase in the value of λ2. This confirms the dependence

of risks on the criteria of goodness of fit, precision of estimation as well as their

joint effect. There is a sudden downward cusp in the surfaces of risk of Stein-rule

estimator at β = 0. The depth of such cusp heavily depends on the values of λ1

and λ2. It increases as λ2 increases for a fixed λ1 and decreases as λ1 increases

for a fixed λ2. The depth of cusp decreases when both λ1 and λ2 simultaneously

increase. This suggests that an attention is needed while dealing with the Stein-

rule estimator when true regression slope is expected to be around zero. Now we

observe the number of cases under which the Stein-rule estimator is better than

the ordinary least squares estimator from figure 3. The superiority of Stein-rule

estimator over ordinary least squares estimator heavily depends on the values of

λ1 and λ2. When λ1 is low, then the number of cases of superiority of Stein-rule
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estimator over ordinary least squares estimator increases as λ2 increases. When λ1

also increases together with λ2, then the number of cases of superiority of Stein-

rule estimator over ordinary least squares estimator also decreases. An important

conclusion appears that the shapes of surfaces under the cases when λ1 = 0 and

when λ2 = 0 are opposite in nature. This clearly indicates that the roles of

goodness of fit and precision of estimation are very different and a decision about

the superiority of Stein-rule and ordinary least squares estimators over each other

significantly depends on the choice of decision criterion. A continuously changing

performance of Stein-rule estimator over ordinary least squares estimator can be

clearly observed from figure 3. We observe the dependence of risks of ordinary

least squares and Stein-rule estimators on the true values of regression coefficients

from the figures 4 and 5. There are 5 graphs in each of the figures 4 and 5 for

different values of β. All graphs are almost same under respective estimators. This

indicates that our conclusions about the effect of λ1 and λ2 on the risk performance

of ordinary least squares and Stein-rule estimators are independent of true β. It

appears that in the case of Stein-rule estimator, there are minor variations when

β = 0 in comparison to the other cases when β 6= 0. The figures 4 and 5 also

show the joint dependence of λ1 and λ2 on the risks of ordinary least squares and

Stein-rule estimators. It is clearly seen that the risks of ordinary least squares and

Stein-rule estimators increase as λ1 and λ2 simultaneously increase irrespective of

the value of β. We observe the superiority of Stein-rule estimator over ordinary

least squares estimator with respect to λ1 and λ2 jointly for a given β from figures

4 and 5. It is clear from the slopes of surfaces that Stein-rule estimator is better

than ordinary least squares estimator when λ2 is high and λ1 is low. When λ1

increases and λ2 decreases simultaneously, then the number of cases of superiority

of Stein-rule estimator over ordinary least squares estimator decreases. The rate

of decrement does not depends on the value of β except for the case when β = 0.

There is a sharp change in the number of cases of superiority when β is near to
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zero.

Now we observe the figures 7-12 which shows the performance of ordinary

least squares and Stein-rule estimators under t-distributed errors. The pattern of

behaviour of ordinary least squares and Stein-rule estimators under t-distributed

errors is nearly same as under beta distributed errors. So all the conclusions

which are drawn from the figures 1-6 about the performance of ordinary least

squares and Stein-rule estimators as well as the roles of λ1 and λ2 also follow from

figures 7-12 and are valid for the case of t-distributed errors. The main difference

in the respective figures is that the surfaces of plots under t-distributed errors

have more perturbations than the surfaces of plots under beta distributed errors.

For instance, comparing the respective plots in figures 1 and 7, we observe that

the corresponding surfaces have more perturbations in figure 7 than in figure 1.

Same is true for the figures 2 and 8. This clearly indicates the effect of departure

from normality in terms of the departure from symmetry and peakedness of the

distributions of errors on the performance of ordinary least squares and Stein-rule

estimators. The degree of perturbations depends on the degree of departure from

symmetry and peakedness. This also confirm the analytical findings about the

effect of departure from normality.

5 Some remarks

Appreciating the simultaneous use of the two performance criteria, viz, the good-

ness of fitted model and the concentration of estimates around the true parameter

values, for judging the efficiency of any estimation procedure for the coefficients

in a linear regression model, we have presented a general loss function using the

quadratic loss structure. Several popular loss functions are found to be the par-

ticular cases of it, and thus the properties of loss function are fairly general and
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sufficiently flexible.

For the regression coefficient vector, we have considered the unbiased ordi-

nary least squares and biased Stein-rule estimators. We have compared their

performance according to the risk criterion under the proposed loss function and

have obtained a condition on the characterizing scalar for the superiority of Stein-

rule estimators over ordinary least squares estimator. It is a well known result

that Stein-rule estimator is better than ordinary least squares estimator when the

number of explanatory variables are more than two. We find that under such an

extended balanced loss function, it is possible to find Stein-rule estimator which

has a better performance than ordinary least squares estimator even when the

number of explanatory variables are one or two only.

The finite sample properties from simulation results confirm the analytical

findings. The performance of ordinary least squares and Stein-rule estimators

very much depends on the choice of performance criterion. The effect of departure

from normality is also confirmed by the simulation results.
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Figure 1: Risk of ordinary least squares estimator when errors are beta distributed
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Figure 2: Risk of Stein-rule estimator when errors are beta distributed
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Figure 3: Number of times where Stein-rule estimator (STR) is better than ordi-

nary least squares estimator (Beta distribution, 1000 runs)

Stein rule estimator better than OLS (1000 simulations)

λ1=0

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

500

600

700

800

900

1000

λ2

β

STR better

Stein rule estimator better than OLS (1000 simulations)

λ1=0.2

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

0

200

400

600

800

1000

λ2

β

STR better

Stein rule estimator better than OLS (1000 simulations)

λ1=0.4

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

0

200

400

600

800

1000

λ2

β

STR better

Stein rule estimator better than OLS (1000 simulations)

λ1=0.6

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

0

200

400

600

800

1000

λ2

β

STR better

Stein rule estimator better than OLS (1000 simulations)

λ1=0.8

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

0

200

400

600

800

1000

λ2

β

STR better

Stein rule estimator better than OLS (1000 simulations)

λ1=1

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

0

100

200

300

400

500

λ2

β

STR better

23



Figure 4: Risk of ordinary least squares estimator when errors are beta distributed
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Figure 5: Risk of Stein-rule estimator when errors are beta distributed
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Figure 6: Number of times where Stein-rule estimator (STR) is better than ordi-

nary least squares estimator (Beta distribution, 1000 runs)

Stein rule estimator better than OLS (1000 simulations)

β=−4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

200

400

600

800

λ1

λ2

STR better

Stein rule estimator better than OLS (1000 simulations)

β=−2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

200

400

600

800

λ1

λ2

STR better

Stein rule estimator better than OLS (1000 simulations)

β=0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

200

400

600

800

1000

λ1

λ2

STR better

Stein rule estimator better than OLS (1000 simulations)

β=2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

200

400

600

800

λ1

λ2

STR better

Stein rule estimator better than OLS (1000 simulations)

β=4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

200

400

600

800

λ1

λ2

STR better

26



Figure 7: Risk of ordinary least squares estimator when errors are t-distributed
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Figure 8: Risk of Stein-rule estimator when errors are t-distributed
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Figure 9: Number of times where Stein-rule estimator (STR) is better than ordi-

nary least squares estimator (t-distribution, 1000 runs)
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Figure 10: Risk of ordinary least squares estimator when errors are t-distributed
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Figure 11: Risk of Stein-rule estimator when errors are t-distributed

Risk of Stein rule estimator

β=−4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

10

20

30

40

λ1

λ2

risk

Risk of Stein rule estimator

β=−2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

10

20

30

40

λ1

λ2

risk

Risk of Stein rule estimator

β=0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

10

20

30

λ1

λ2

risk

Risk of Stein rule estimator

β=2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

10

20

30

λ1

λ2

risk

Risk of Stein rule estimator

β=4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

10

20

30

40

λ1

λ2

risk

31



Figure 12: Number of times where Stein-rule estimator (STR) is better than

ordinary least squares estimator (t-distribution, 1000 runs)
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