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Abstract

This paper applies the theory of relational contracts to a model in which a couple decides

whether to marry or cohabit, how many children to have and subsequently whether to stay

together or separate. We make precise the idea that cooperation in a household can be

supported by self interest. Since the costs of raising children are unequally distributed between

partners and children are a household public good, there is a conflict between individually

optimal and efficient, i.e. surplus maximising, decisions. Side-payments are used to support

cooperation but are not legally enforceable and thus have to be part of an equilibrium. This

requires a stable relationship and credible punishment threats. Within this framework, we

analyze the effects of policy variables such as the costs of divorce and post-divorce income

payments on the interrelationships among the decisions on marriage, fertility and divorce.
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1 Introduction

Over the past four to five decades, fundamental changes have taken place in the nature of the fam-

ily and the structure of family relationships.1 These reflect complex interactions among changes

in divorce laws, increasing female labor force participation, innovations in the technology of con-

traception and changes in social attitudes and norms. This paper is intended to contribute to

the economic analysis of these phenomena by constructing a model of a couple-based household

which chooses marriage vs cohabitation, its fertility, and whether to continue the relationship or

to separate, in the context of given labor market conditions and a set of legal rules regulating

post-separation outcomes.

Also over the past four to five decades, there has been substantial development in the economic

modelling of the household, and a large theoretical and empirical literature now exists dealing

with issues such as marriage, fertility and divorce. A large part of this literature is based on the

assumption that family members act cooperatively and necessarily achieve Pareto efficient alloca-

tions.2 For example, the Nash bargaining models of household behavior originating with Manser

and Brown (1980) and McElroy and Horney (1981), or collective choice models (cf. Chiappori

[1995] or Browning and Chiappori [1998]), assume that household allocations are Pareto efficient

and can somehow be enforced as binding agreements even in a one-shot game. Early challenges

to this assumption were made by Ulph (1988), Woolley (1988) and, within the Nash bargaining

framework, by Ott (1992), Konrad and Lommerud (1995), Lundberg and Pollak (2003), and Wick-

elgren (2009), among others. Applying non-cooperative game theory to household decision making

in a static environment, they identify sources of inefficient behavior of household members.

In this paper, instead of assuming either cooperative or non-cooperative behavior, we derive

conditions for cooperation in a dynamic setting where players are solely driven by their self-

interest and are not able to write exogenously enforceable agreements. Hence, we model the

informal agreements between spouses as a relational contract. Generally, relational contracts are

agreed arrangements in dynamic games based on actions or outcomes that are observable but not

verifiable, i.e., the associated contracts are not legally enforceable but require mutual trust. As

agreements in household relationships are to a large extent implicit and extend over quite long

periods of time, they present a good subject for an analysis with a relational contracting model.

Starting with Bull (1987), relational contracts were initially developed to analyze labor markets

and agency situations. MacLeod and Malcomson (1989) provide a complete analysis for perfect

information, while Levin (2003) explores the case of imperfect public monitoring. Baker, Gibbons,

and Murphy (1994) and Schmidt and Schnitzer (1995) study the interaction between relational and

formal contracts. This specifically relates to our model since after a divorce, implicit agreements

1For extensive documentation and discussion of these changes see in particular the two Symposia on, respectively,
Household Economics in the Journal of Economic Perspectives, 2007, 21(2), and Investment in Children in the
Journal of Economic Perspectives, 2008, 22(3).

2See Apps and Rees (2009), Chapters 3,4 for an extensive survey and list of references.
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between partners are typically replaced by formal legal arrangements.

Most closely related to the present paper is the analysis by Matouschek and Rasul (2008).

They develop a model where ongoing cooperation within the household creates given benefits and

is enforced by punishment threats following deviations. Divorce costs serve as a commitment device

and thus increase the ability to generate cooperation. Our model extends this approach and applies

it to an analysis of a richer set of phenomena, in particular the fertility decision, which is assumed

to be made at relatively early stages of a relationship. The underlying model consists of two risk-

neutral players, the primary and the second earner (referred to as he and she respectively3), who

form a – potentially – long-lasting relationship. They first decide whether to marry or cohabit and

then how many children they want to have. When children are present, the second earner reduces

her labor market supply. This causes current income losses as well as a reduced accumulation of

human capital, thus inducing lower future wages. At a later stage of the relationship, the couple

decides whether to remain together or to separate. Remaining together is efficient if the sum of

players’ payoff levels within the relationship is higher than outside. Reallocations of resources may

be needed to maintain an efficient marriage. One partner might prefer a separation while the other

wants to stay together. Then, the former has to be sufficiently compensated.

It is not however possible to make a formally binding commitment to a certain contingent al-

location of the utility surplus arising from the relationship ex ante. Therefore, all related promises

have to be self-enforcing and part of equilibrium strategies.4 Cooperative behavior is only indi-

vidually rational if reneging is followed by sufficient and credible punishment. A separation as

punishment must be credible in the sense that it has be optimal for a player to actually terminate

the relationship. In a first step therefore, we derive an enforceability constraint that determines

the maximum enforceable fertility level. If this constraint does not bind, fertility is at its efficient

level, i.e., maximizes the sum of players’ utilities; if it binds, fertility is inefficiently low. The en-

forceability constraint constitutes the main difference to approaches that simply assume efficiency,

as in Nash bargaining or collective models, where such a condition is absent.

After identifying the (constrained) Pareto efficient equilibrium, we analyze the situation follow-

ing a divorce in more detail. While agreements during a relationship are to a large extent implicit,

this changes after a divorce. When all goodwill is lost, issues like monetary transfers between for-

mer spouses are mainly governed by law. Thus, we take an institutional perspective and use our

setup to analyze the impact of some specific policy changes on fertility, marriage stability, and the

propensity to get married versus cohabiting. In doing so, we want to contribute to the discussion

concerning low birth rates in many countries. We argue that in addition to issues that deal with

the increased opportunity costs of children, a shift in the enforceability of transfers induced by

legal changes can also be an important factor determining fertility levels, in the short- as well as

3Reflecting the fact that 70-90% of second earners in North America and Europe are female. See Immervoll et
al., 2009, Table 1, for country-specific numbers.

4Although bargaining models might implicitly assume a dynamic setting to support efficient decisions, they do
not make precise the conditions necessary for cooperation.
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in the long-run.

Part of this analysis deals with divorce costs. Our model predicts that divorce costs may

in general have a positive impact on fertility, but only if it is inefficiently low due to a binding

enforceability constraint. Then, higher divorce costs increase enforceable transfers by fostering

relationship stability and decreasing players’ outside option utilities. Hence, a marriage can serve

as a commitment device to enforce cooperation within a relationship. This idea has previously

been discussed by Becker (1991) and Rowthorn (1999), was more formally derived by Matouschek

and Rasul (2008), and empirically tested by various authors (see Rasul [2003], Stevenson [2007],

Matouschek and Rasul [2008], and Bellido and Marcén [2011]).

Similarly to Matouschek and Rasul (2008), we show that the increased commitment induced by

high divorce costs does not necessarily make the couple better off nor increase their chosen fertility

level. Making a divorce more difficult induces couples to stay together when their match quality

has become relatively bad and they would prefer to break up in the absence of divorce costs. If the

gains from increased commitment are lower than this welfare loss, a couple might not get married

in the first place, but instead choose to cohabit (where separation costs are substantially lower). In

this way higher divorce costs might ultimately decrease fertility. Which effect dominates depends

on whether the enforceability constraint binds and if so, on how much it causes realizable fertility

to differ from its efficient level.

In addition, the result that the impact of divorce costs on welfare, i.e. the couple’s propensity

to marry, is ambigous is in line with empirical results presented by Alesina and Giuliano (2007)

who, in contrast to Rasul (2003) and Matouschek and Rasul (2008), find that the introduction of

unilateral divorce, which is associated with a reduction of divorce costs, does not imply a decrease

but rather an increase in the number of marriages. Concerning the impact on fertility, Alesina and

Guiliano (2007) also find that in-wedlock fertility basically remains unaffected by the adoption of

unilateral divorce laws, while out-of-wedlock fertility decreases significantly and fertility rates for

newly married couples go up. This further supports our view that the impact of divorce costs on

marriage and fertility overall is not as obvious as it might seem, and our model is rich enough to

capture more aspects of this interaction than just an increased degree of commitment.

Extending Matouschek and Rasul (2008), we show that post-divorce wealth division rules might

actually be a more effective instrument to increase fertility than divorce costs. Since, in order to

keep the model relatively simple, we do not have saving and therefore wealth creation by a couple,

we model these in the form of a simple rule providing for post-separation income transfers from the

primary to the second earner. Since they are purely redistributive, such payments have no impact

on relationship stability and hence do not have the potentially negative consequences of divorce

costs. Fertility can be increased, however, because the payments serve as a partial insurance

against the human capital loss the spouse responsible for child care suffers. Both effects together –

no direct impact on relationship stability in equilibrium combined with an increased slackness of the

enforceability constraint – increase the relative benefits of being married compared to cohabiting

4



for higher post-separation payments.

Finally, we show that if the second earner’s marginal opportunity costs of having children

are high, the couple should be more inclined to marry if they want to have children. Indeed,

McLanahan (2004) and Lundberg and Pollak (2007) find that mothers with college education -

where human capital accumulation at early stages of a career has a relatively large impact on

future earning prospects - still mostly have their children within a marriage, whereas nonmarital

childbearing has substantially increased for mothers with lower levels of education.

Note that we do not impose any assumption related to social norms, except that the secondary

earnier is made wholly responsible for child-rearing. Though not literally true - primary earners

frequently share some of the task - it still captures the important implication of the actual relative

degree of specialization in many households, that this creates the need for implicit intra-household

exchanges to which spouses cannot formally commit. All other, especially marriage related, norms

are excluded. Thus, our model mostly reflects households in societies where the importance of social

norms related to marriage has declined. As Lundberg and Pollak (2007) state, many - especially

Western - societies have changed in the past decades, and in particular the stigma associated with

cohabitation or nonmarital childbearing has almost disappeared. If norms become less important,

a couple will only marry if the institutional setting associated with marriage gives them sufficiently

large benefits relative to the costs. That is the starting point of our analysis.

2 The Model

Two individuals decide whether to form a household and, if so, whether to marry or cohabit. In

each case a household consists of a primary and a second earner, denoted i = 1, 2. There are

two periods, t = 1, 2, and players discount the future with the factor δ > 0.5 The periods t = 1

and t = 2 differ with respect to the players’ action sets. In t = 1, the couple decides about the

institutional setting of their relationship - whether they marry or cohabit - and the number of

children they want to have. In t = 2, the couple decides whether to remain together or separate.

Transfers to redistribute income are possible in both periods.

Formally, at the beginning of t = 1, the couple selects m ∈ {0, 1}, where m = 1 describes a mar-

riage and m = 0 cohabitation. Obviously, a marriage must be a unanimous decision. Afterwards,

the couple chooses to have n children, with 0 ≤ n ≤ n, where we assume n is a real number. This

requires the second earner to devote c(n) of her total time allocation (normalized to 1) to raising

children in t = 1, with c(0) = 0, c′ > 0, c′′ ≥ 06 and c(n) ≤ 1. In this period therefore she earns

(1− c(n))w21, where w21 is her first-period wage. In the second period, the second earner supplies

5We do not restrict δ to be smaller than 1, since it does not only reflect time preferences, but can also relate to
the relative weight players attach to consumption in the second period.

6Note that the assumption that c′′ is positive is not necessary for our results, as long as - if negative - it would
still be sufficiently large to keep second order conditions satisfied.
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her total time allocation of 1 to the labor market, earning w22(n) ≥ 0. Because of work-related

human capital acquisition, the wage is an increasing concave function of her period 0 labor supply

and therefore a decreasing concave function of fertility, i.e. w′

22 < 0 and w′′

22 ≤ 0.

The primary earner works full time in every period. As his human capital accumulation is

of no interest to our analysis, his wage w1 is constant over time. Furthermore, we assume that

w1 ≥ w22(0) > w21. At the end of period t = 1, a payment p1 T 0 can be made from one partner

to the other. If p1 > 0, the primary earner makes the payment.

The timing in period t = 1 is summarized in the following graph:

t = 1 Couple selects

m ∈ {0, 1}
n is

chosen

Spouses

work, earn

income

Transfer

p1 is made

t = 2

The spouses’ utilities in period t = 1 are

ui1(n) = xi1 + ϕi(n),

with ϕi(0) = 0, ϕ′

i > 0 and ϕ′′

i < 0 for i = 1, 2,7 where x is a private consumption good. Individual

consumption is defined by

x11 = w1 − p1

x21 = w21 [1− c(n)] + p1.

In period t = 2, both partners work and receive their wages, w1 or w2(n), respectively. In addi-

tion, they decide whether to separate or stay together and can make transfers. Then, equilibrium

utilities in the second period given the couple is still together are

u∗

i2(n) = xi2 + ϕi(n) +R.

R is the couple’s relationship capital which each of the partners enjoys within the relationship

as long as no one of them has taken out-of-equilibrium actions (what exactly is meant by this is

described in section 3 below). R reflects the common assumption that the couple receives utility

just by being together and is identical for marriage and cohabitation. The assumption that R is

zero in period t = 1 is solely made for simplicity and without loss of generality.

7In addition, we impose the purely technical assumption (making sure the second order conditions in the respec-
tive maximization problems are satisfied) that −w20c

′′ + ϕ′′
2 ≤ 0 for all n. Since ϕ′′

2 < 0 this allows both increasing

and decreasing returns, c′′ T 0.
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The xi2 are again defined by x12 = w1− p2 and x22 = w22(n)+ p2, where p2 T 0 is the total net

transfer made in period 2. Note that the payment pt need not be explicit, its value is implied by

any choice of n and the xit, given w1, w21 and w22(n). For analytical purposes however it is useful

to treat this as if it were an explicit payment. However, no explicit contract on the pt is feasible,

it has to be part of an equilibrium supported by the household relational contract (HRC), defined

below.

A separation, on the other hand, has the following consequences:

• Each receives an exogenously given outside utility ṽi, a random variable which reflects pos-

sibilities outside the current relationship, such as a potential new relationship. Hence, the

difference between R and vi determines the current "match quality" of the couple in a given

period. The values ṽi are drawn independently at the beginning of the second period from a

distribution F (ṽi) with continuous density f(ṽi), strictly positive everywhere on the support

[0, v1i ], where F (ṽi) is the same for marriage and cohabitation. Furthermore, we denote the

unconditional expectation for each partner E[ṽi] ≡ vi. We also assume that both v1 and v2,

are observed by each partner immediately after realization.8

If the couple had chosen to marry, as opposed to cohabiting, a separation is a divorce and has two

further effects.

• The partners bear (possibly unequal) divorce costs ki > 0, which can have monetary as well

as non-monetary components.

• The second earner receives a monetary transfer φ · (w1 − w22(n)), from 1, with φ ≤ 0.5.

Although the transfer does not directly depend on the number of children, n enters via its

impact on 2’s wage. The factor φ is assumed to be known ex ante and determined by law.

Note that φ implicitly redistributes wealth as measured by future income streams.9

Furthermore, no voluntary transfer p2 is made if the couple separates. Given the couple separates

at the beginning of period t = 2, the payoffs are

ud
12(n, v1) = w1 + ϕ1(n) + v1 − 1m=1 {φ · (w1 − w22(n)) + k1} (1)

and

ud
22(n, v2) = w22(n) + ϕ2(n) + 1m=1 {φ · (w1 − w22(n))− k2}+ v2, (2)

8The assumption that spouses know their partners’ outside option fairly well is supported by Peters (1986)
9Child custody rules are excluded from the analysis in this paper. In an earlier version, Fahn and Rees, 2011,

we assumed that custody is granted to the secondary earner and that the primary’s earner’s access to his children
is lower if the relationship ends. Since it is not always clear to what extent custody arrangements differ for married
or cohabiting couples, we restrict our focus here to divorce costs and monetary payments as the consequences of a
divorce.
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where 1m=1 is an indicator function including divorce costs and alimony payments if the couple

has been married. Thus we model cohabitation as essentially the decision to avoid divorce costs

and regulation of monetary payments. Possible costs or payoffs generated by the act of getting

married itself (as opposed to cohabiting) are ignored.10 Expected values of separation utilities

E[ud
i2(n, ṽi)] = ud

i2(n, vi) are denoted ud
i2(n).

3 Household Relational Contracts

3.1 Basic Assumptions

The couple has to decide on the legal form of their relationship, the number of children they want to

have, transfers pt, and - in the second period - whether they separate or stay together. We assume

that at the beginning of period t = 1 they formulate a household relational contract (HRC), which

is a subgame perfect equilibrium of the game and specifies all actions players will take conditional

on all possible histories. Thus, players choose strategies that maximize their discounted utility

streams in each subgame given their partner’s strategy. Note that the HRC cannot be a legally

binding contract contingent on actions or outcomes, because of the non-verifiability of the payments

pt.
11

For the first period of the game, the HRC specifies m∗, equilibrium fertility n∗ and the transfer

p1. Given equilibrium actions have actually been selected in the first period, we make the following

assumption concerning period 2 activities:

Assumption 1: Assume the game is in equilibrium at the beginning of period t = 2. Then,

• a separation occurs if and only if that is efficient, i.e. if

ud
12(n

∗, v1) + ud
22(n

∗, v2) > u∗

12(n
∗) + u∗

22(n
∗)

• given the couple stays together, the resulting net surplus

s2(n
∗, v1, v2) = u∗

12 + u∗

22 −
[

ud
12(n

∗, v1) + ud
22(n

∗, v2)
]

is shared in the following way: The primary earner receives α ∈ [0, 1, ], the secondary

earner (1 − α), where α can be chosen arbitrarily as part of the HRC. Hence, u∗

12(n
∗) =

10Note that we abstract from consumption costs of children. If we included such costs and assumed a given
allocation among partners, our results would not be affected qualitatively. Neither do we consider child support
laws. These are beyond the scope of our analysis, especially as one problem associated with them is that fathers
often do not pay despite the existence of a legal obligation (see Allen and Brinig, 2010).

11This is supported by the argument that individual consumptions within a household cannot be verifiably
measured. In reality of course there is a far richer set of reasons for the impossibility of complete marital contracts
than this.
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αs2(n
∗, v1, v2) + ud

12(n
∗, v1) and u∗

22 = (1− α)s2(n
∗, v1, v2) + ud

22(n
∗, v2).

Assumption 1 seems quite strong, given the proclaimed non-verifiability of actions and transfers.

However, having the game end after the second period in combination with assumption 1 can be

regarded as a reduced version of a fully dynamic game. Consider the following, slightly different,

structure of the game: The couple interacts repeatedly in an infinitely repeated game and in all

periods t ≥ 2, a new realization of ṽi is drawn. Transfers to maintain the relationship have to be

self-enforcing, i.e. part of a subgame perfect equilibrium. In addition, transfers and separation

decision are not restricted to be made at a specific date within period t, but can be made at

any time.12 In an earlier version of this paper (Fahn and Rees, 2011), we show that this game is

analytically equivalent to the one described here.

Finally, we have to specify what happens out of equilibrium, i.e. if the partners fail to reach

an agreement at the beginning of t = 1, or if at any later stage within period 1, they deviate from

the behavior specified by the HRC. This is necessary because if cooperative behavior is against

the short-run interest of one player, it can only be sustained if the partner is trusted to also act

cooperatively in the future. We model this by assuming that after any deviation in period 1, there

is a complete loss of trust, and so no voluntary transfer will be made in the second period. In

addition, the relationship capital of the other partner - the one who was “betrayed” - drops to

R < 0. Concerning the size of R, we impose

Assumption 2: Given one player breaches the relational contracts, the other player’s relation-

ship capital drops to R < 0, where R is so small that the relationship cannot be sustained anymore,

independent of the realization of outside utilities ṽi.

Assumption 2 implies that a deviating player is punished by a separation,13 and that the re-

lating punishment threat is always credible. This assumption substantially simplifies the following

analysis since reservation utilities are identical to separation utilities.14 It can be justified by ar-

guments similar to those presented by Hart and Moore (2008), where deviations from the terms of

12Wickelgren (2007), among others, also makes the argument that these kinds of decisions should be possible at
any point in time.

13Abreu (1986) shows that in a repeated game with symmetric information, a deviation should optimally be
followed by a reversion to the equilibrium with the lowest payoff for the reneging player. However, in the household
Nash bargaining literature discussed in the Introduction, considerable discussion has taken place over whether
separation is too drastic a punishment for failure to disagree, and this has led to models which take as threat points
non-cooperative Nash equilibria within an ongoing household (or a combination of both - see the “separate spheres”
model by Lundberg and Pollak [1993]). It is said, for example, that one would not threaten divorce over a failure to
agree on the colour of a sofa. While we agree with that viewpoint, the class of household decisions being analyzed
in this paper is we believe sufficiently fundamental that threats based on separation are the appropriate ones to
assume.

14The possibility that a deviation does not necessarily imply an immediate separation (i.e. the partners tem-
porarily continue in an uncooperative relationship) is analyzed in an earlier version of this paper (Fahn and Rees,
2011).
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a (there: explicit) contract can trigger aggrievement costs which are imposed on one’s contracting

partner.

Finally, if one partner does not agree on equilibrium fertility n∗ - the fertility level specified

by the HRC and supposedly followed by future transfers - the couple gets separated at the end of

period t = 1, without any voluntary transfer being made. In this case, they have n = min {n1, n2}

children, with ni ∈ argmaxu0
i1 + δud

i2, where u0
i1 is player i’s period-0 utility given p1 = 0.15

Generally, we will have n1 6= n2 (since children are a public good and only the second earner

engages in childcare), and a Pareto improvement is possible in the sense that the partner with a

lower ni would be willing to agree on a higher fertility level in exchange for wealth transfers.

This assumption might seem a bit bizarre - why should the couple have kids at all if they are

going to split up anyway? However, we merely impose it to keep the formal analysis consistent

(recall that subgame perfection requires players to maximize their utilities in each subgame on and

off the equilibrium path). Our results would remain qualitatively unaffected if, for example, the

couple had no kids at all (i.e. n = 0) after a partner is not willing to accept n∗ anymore.

Our objective is to derive a subgame perfect equilibrium that maximizes the sum of players’

expected payoff streams at the beginning of period 1. Compared to a setting where each player

receives a fixed share of the resulting surplus, our approach leads to an identical outcome with

respect to equilibrium fertility. The marriage decision might be affected by the allocation of the

surplus only if no transfers were possible at the beginning of the game.

Using backward induction, we start with the analysis of period 2.

3.2 Period t = 2

In period t = 2, the partners decide whether to separate or stay together. Given Assumption 1, the

couple breaks up if and only if this is efficient, i.e. if s2(n
∗, v1, v2) < 0. This implies that for given

parameter values, the occurrence of a separation in equilibrium only depends on the realization of

outside utilities v1 and v2, or more precisely on its sum, independent of the respective individual

values. Hence, define

ṽ ≡ ṽ1 + ṽ2,

where ṽ has distribution G(ṽ) and continous density g(ṽ) ≡ (f ∗ f)(ṽ) and is strictly positive

everywhere on the support [0, 2v1]. Now, we can establish

Lemma 1: A separation takes place if and only if ṽ > v̂, with

v̂ = 2R + 1m=1 {k1 + k2} . (3)

15Note that the second order condition is satisfied, since
d
2(u0

11
+δu

d

12)
dn2 = ϕ′′

1 + δ [θϕ′′
1 + φ · w′′

2 ] < 0 and
d
2(u0

21
+δu

d

22)
dn2 = −w20c

′′ + ϕ′′
2 + δ [w′′

2 (1− φ) + ϕ′′
2 ] < 0.
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Proof : Since the utility of having children, as well as the sum of incomes in the second period

is the same within as well as out of the relationship, we have s2(n
∗, v) = 2R+ 1m=1 {k1 + k2}− v.

Setting s2(n
∗, v) = 0 gives (3). Since s2(n

∗, v) is decreasing in v, a separation is observed for all

values of v above v̂. Q.E.D.

The probability of a separation is (1−G(v̂)). Furthermore, note that v̂ > 2v1, i.e. a separation

is never observed in equilibrium, is possible as well.

Relationship Stability for given n∗

The stability of the relationship is an important determinant of the enforceability of cooperation;

Lemma 2 captures the impact of divorce laws on this stability, taking n∗ as given:

Lemma 2: Assume m = 1. Then, a separation in period 2 is less likely the higher are divorce

costs, while it is independent of φ.

Proof : The probability of divorce equals (1 − G(v̂)) and is decreasing in v̂. The proposition

thus follows straightforwardly from differentiating v̂ = 2R + k1 + k2, which gives

dv̂

dk1
=

dv̂

dk2
= 1;

dv̂

dφ
= 0.

Q.E.D.

These results are perfectly intuitive. Divorce costs are a form of deadweight loss to the couple,

while the post-divorce payments represent a pure redistribution, hence do not affect the efficiency

of remaining together.

Furthermore, the results for ki are valid for couples married at the time when there is a change

in the law. They do not imply that divorce rates have to go up in the long run if costs are reduced.

Instead, a new institutional setting also changes incentives to actually get married, thus affecting

subsequent divorce propensities. We further explore this issue in section 5 below. For now, just

note that short-run effects in reality do indeed appear to differ from long-run effects: For example,

the change to unilateral divorce laws in many US states some decades ago could be regarded as a

reduction of divorce costs.16 Afterwards, divorce rates went up (see Friedberg [1998]) in the short

16Then, Becker’s (1991) claim that which of these kinds of divorce regimes is in place should have no impact on
the likelihood of divorce is violated by construction. Clark (1999) or Wickelgren (2009) derive further mechanisms
for how the allocation of property rights can have an impact on divorce probabilities, for example by affecting
ex-ante investments.
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run. However, they returned essentially to their initial levels after some time (see Wolfers [2006]

and Matouschek and Rasul [2008]).

3.3 Period t = 1

We now derive the constraints that specify to what extent a transfer p1 is enforceable, taking

second-period utility allocations (represented by α) into account. It turns out that the different

conditions can be merged into one constraint, which determines the maximum enforceable fertility

level. Denote by ni the fertility level that i would most prefer. To focus on the case we think is

the most relevant one, we impose

Assumption 3: n1 > n2, hence n = n2 in the case of no agreement.

Given that the secondary earner effectively has to bear the costs of having children, this as-

sumption will be satisfied in our model as long as ϕ1(n) is not too much smaller than ϕ2(n).

In the first period, suppose that the spouses agree on equilibrium fertility n∗ and an associated

transfer p1. It his helpful to define the players’ second period payoffs, as expected in period 1. De-

note the expected net surplus of remaining together - as opposed to separating - as s2(n
∗). Since

the ex-ante probability of staying together is G(v̂), we have s2(n
∗) = G(v̂)E [s2(n

∗, v | v ≤ v̂)] =

G(v̂)
[

u∗

12(n
∗) + u∗

22(n
∗)−

(

ud
12 (n

∗ | v ≤ v̂) + ud
22 (n

∗ | v ≤ v̂)
)]

, where ud
i2 (n

∗ | v > v̂) is player i’s

expected separation payoff conditional on v > v̂. Hence, in equilibrium players expect to get

u∗

12(n
∗) = αs2(n

∗) + ud
12(n

∗) and u∗

22(n
∗) = (1− α)s2(n

∗) + ud
22(n

∗), respectively.

Now, two kinds of conditions have to be satisfied so that n∗ can actually be part of an equilib-

rium. First of all, given players believe that the transfer p1 is made, it has to be optimal for both to

choose n∗ rather than any other level, i.e. insist on n. This is captured by incentive compatibility

(IC) constraints, which are

(IC1)

w1 + ϕ1(n
∗)− p0 + δ

(

αs2(n
∗) + ud

12(n
∗)
)

≥ w1 + ϕ1(n) + δud
12(n)

for player 1, and

(IC2)

w21 [1− c(n∗)] + ϕ2(n
∗) + p0 + δ

(

(1− α)s2(n
∗) + ud

22(n
∗)
)

≥ w21 [1− c(n)] + ϕ2(n) + δud
22(n)

for the second player.

Furthermore, it has to be in the interest of the players to make a promised transfer after

equilibrium fertility n∗ has been realized. This is only the case if reneging triggers a sufficient

punishment. As discussed above, this punishment takes the form of forcing a player down to their

reservation utility and induces a separation (Assumption 2). The following dynamic enforcement

12



(DE) constraints make these arguments precise. If a transfer is positive, the primary earner has

to decide whether to make it or renege. He will only keep his promise, if

(DE1)

p1 ≤ δαs2(n
∗)

is satisfied. If the payment is supposed to be negative, the second earner makes the relevant

decision. For her, we have

(DE2)

−p1 ≤ δ(1− α)s2(n
∗).

However, since the choice of α is part of the HRC, we can focus on arrangements where p1 is

positive.

In the following, we derive a number of Corollaries that substantially simplify the analysis. The

proofs of all of them can be found in the Appendix.

Corollary 1: Without loss of generality, the transfer p1 can be positive.

The intuition is that players’ risk neutrality makes them indifferent between receiving a transfer

today or the same amount (in expectation and discounted) tomorrow. Corollary 1 allows us to

omit (DE2). A further simplification is implied by Assumption 3. Because of n1 > n2, (IC2) is the

only incentive compatibility constraint that actually has to be considered.

Corollary 2: (IC1) can be omitted.

Hence, the only relevant constraints are (IC2) and (DE1). Combining these two conditions

gives one constraint that is both necessary and sufficient for an equilibrium fertility level n∗ to be

enforceable.

Corollary 3: A fertility level n∗ can be enforced if and only if it satisfies the (IC-DE) constraint

ϕ2(n
∗)− ϕ2(n)− w21 (c(n

∗)− c(n)) + δs2(n
∗) + δ

(

ud
22(n

∗)− ud
22(n)

)

≥ 0.

The (IC-DE) constraint states that gains from deviating today must not exceed the future

surplus, i.e. equilibrium payoffs net of reservation utilities. Then, the surplus of remaining together

is used to incentivize the secondary earner to agree on a higher fertility level. Corollary 3 also

implies that the enforceability of n∗ is independent of α, i.e. the distribution of the future surplus.
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Equivalently to corollary 1, this is driven by the players’ indifference towards receiving current

or future payments. Furthermore, an exogenous bound on p1 (for example induced by borrowing

restrictions) would not affect the maximum enforceable fertility level n∗: Any bound on p1 could

simply be offset by a lower α.

3.4 The Maximization Problem

As stated above, we are interested in the HRC that maximizes the sum of players discounted

payoffs, as expected at the beginning of period t = 1. Formally, this is equivalent to selecting

equilibrium fertility n∗ as well as m ∈ {0, 1} to solve

maxU1 + U2 = u1(n) + u2(n) + δ
(

s2(n) + ud
12(n) + ud

22(n)
)

, (4)

subject to the (IC-DE) constraint,

ϕ2(n
∗)− ϕ2(n)− w21 (c(n

∗)− c(n)) + δ
(

s2(n
∗) + ud

22(n
∗)− ud

22(n)
)

≥ 0, (5)

where the (IC-DE) constraint for the case m = 0 involves setting k1 = k2 = φ = 0. In addition,

the technical assumption n∗ ≤ n must hold.

4 Equilibrium Fertility for a Given Choice of m

We now characterize equilibrium fertility and derive comparative statics results with respect to

changes in ki and φ. In doing so, we want to contribute to the public discussion on why fertility

in (especially) Western countries has been falling. This discussion usually restricts attention to a

simple benefit-cost analysis and discusses the effectiveness of several policies to reduce the (direct

and indirect) costs of having children. All these issues could also be incorporated into our model,

yielding predictable results.17 Here, we take a different approach and show that legislation that is

not directly aimed at influencing the propensity to have children might have a substantial impact

as well.

Divorce laws influence relationship stability and/or the absolute and relative welfare levels of

spouses after a separation. Hence, these rules will directly affect each partner’s utility as well as

the enforceability of transfers, by having an impact on the credibility of punishment threats as

well as the risk of being left alone. However, one has to be careful that all this is only true in the

short run, i.e. for a given choice of m. If a legislative change for example increases fertility but

decreases a couple’s welfare, incentives to marry go down. Then, the long-run effect of this policy

change might ultimately decrease fertility. This issue is further discussed in section 5 below.

17For example, providing subsidized child-care facilities would reduce c(n) for each n and thus increase fertility.
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Now, n∗ maximizes (4), subject to (IC-DE). If the (IC-DE) constraint does not bind, fertility

is at its efficient level.

Lemma 3: If (IC-DE) does not bind, either n∗ = n, or the optimal fertility n∗ satisfies

(1 + δ) [ϕ′

1(n
∗) + ϕ′

2(n
∗)] = w21c

′(n∗)− δw′

22(n
∗) (6)

Proof: Follows from setting d[u11(n) + u12(n) + δ
(

s2(n) + ud
12(n) + ud

22(n)
)

]/dn = 0. Q.E.D.

This condition equates the household’s marginal benefit of the public good fertility to its

marginal costs, which consist of child care costs plus loss of human capital to the second earner.

Note that Lemma 3 implies that efficient fertility is the same for cohabiting and married couples.

The reason is that in our setting, the only difference between marriage and cohabition is the

existence of divorce costs and (post-divorce) alimony payments in the former case. This point is

further explored in Lemma 4.

To restrict the number of cases that must be analyzed, we assume that first-best fertility is

below n:

Assumption 4: The efficient fertility level is characterized by 6, i.e. n∗ < n.

Furthermore, we can show that first-best fertility is independent of post-divorce regulation.

Lemma 4: If (IC-DE) does not bind, neither divorce costs nor alimony payments affect fertility.

Proof: Follows from implicitly differentiating (6). Q.E.D.

Although higher costs ki reduce the likelihood of a divorce, this does not make the couple

willing to have more children, simply because the associated utility is the same within and outside

the relationship. If the (IC-DE) constraint binds, however, equilibrium fertility n∗ is determined

by the binding (IC-DE) constraint, and the situation changes. Therefore, we first derive conditions

under which the constraint actually binds, and then explore comparative statics.

Proposition 1: For m = 0, there exists a threshold value of the relationship capital, R
0
≥ 0,

such that (IC-DE) binds for R < R
0

and does not bind - for first-best fertility as described by (6) -

otherwise. For m = 1 and k1+k2 sufficiently small, there exists a value R
1
≥ 0 such that (IC-DE)

binds for R < R
1

and does not bind otherwise. Furthermore, R
1

is decreasing in k1 + k2 and φ.

If k1 + k2 is sufficiently large, (IC-DE) does not bind even for R = 0. In any case, R
1
≤ R

0
.
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The proof can be found in the Appendix.

Hence, it is possible that (IC-DE) binds and restricts enforceable fertility below its first-best

level, an issue absent in any collective model. There, conditions regarding the (dynamic) enforce-

ment of transfers within a household are not considered. Furthermore, the (IC-DE) constraint is

less likely to bind if the relationship capital R is higher. The reason is that this capital would be

lost if an out-equilibrium separation occured. Note that the value R - the “betrayed” partner’s

relationship capital after a defection - does not enter here, because this partner rather induces a

separation than “consuming” R (see Assumption 2).

A further aspect of Proposition 1 is that higher divorce costs generally relax the (IC-DE) con-

straint and help to enforce transfers within the household. The reason is the increased relationship

stability induced by divorce costs - this stability however comes at the cost of potentially prevent-

ing a separation that would actually be optimal, an aspect further analyzed in section 5 below.

Alimony payments also help to enforce transfers and hence increase the likelihood that (IC-DE)

does not bind. This result is driven by alimony payments triggering an after-divorce redistribution,

which (partially) compensates the second earner for her human capital loss.

Finally, because of the monotonicity of R
1

in costs and alimony payments, the (IC-DE) con-

straint is less likely to bind if the couple is married. A similar mechanism drives the results

presented in Lemma 5, where we derive comparative statics for the number of kids if the (IC-DE)

constraint (5) binds:

Lemma 5: Assume m = 1 and R < R
1
, i.e. (IC-DE) binds. Then, equilibrium fertility n∗ is

increasing in ki and φ.

The proof to this Lemma can be found in the Appendix.

As higher divorce costs reduce the likelihood of a divorce without decreasing the severity of

punishment, the range of states where surplus can be redistributed and used to provide incentives

becomes larger. Divorce costs thus serve as a commitment device when (IC-DE) binds - given

the couple has chosen m = 1. This outcome has been supported empirically by Rasul (2005),

Stevenson (2007), Matouschek and Rasul (2008), and Bellido and Marcén (2011).

Higher monetary payments partially compensate the second earner for her human capital loss

and thus reduce her marginal costs of having children. For a given fertility level the difference

between her on- and off-equilibrium fertility increases as w22(n) > w22(n
∗). Thus, more redistri-

bution between the spouses can be enforced, allowing them to increase n∗. This positive effect

of alimony payments on fertility would not appear within a collective model where decisions are

efficient by assumption.
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5 Marriage Versus Cohabitation

Finally, we analyze the couple’s initial decision - whether they want to marry or cohabit - and how

it is affected by ki and φ. The partners will opt for a marriage if their utilities then are higher

than those they expect from cohabiting. There, recall our assumption that a couple marries if and

only if the sum of expected utility streams is higher under marriage.18

Since the difference between marriage and cohabitation is entirely driven by institutional dif-

ferences, a marriage can only be beneficial if divorce costs and alimony payments help to overcome

problems associated with too low fertility. Hence, he choice of m ∈ {0, 1} crucially depends on

whether the (IC-DE) constraint binds for m = 0. If it does not bind, a marriage will never be

optimal:

Proposition 2: Assume R ≥ R
0
, i.e. the (IC-DE) constraint does not bind for m = 0. Then,

a marriage cannot be optimal if ki > 0 and G(v̂) < 1. If ki = 0 or G(v̂) = 1, the couple is

indifferent between m = 0 and m = 1.

The proof of Proposition 2 can be found in the Appendix.

If fertility is already at its efficient level given m = 0, the increased commitment induced by

divorce costs is not necessary. In addition, these costs reduce the partners’ expected utility, since

surplus is destroyed when players cannot consume outside utilities vi where it would otherwise be

optimal (note that marriage stability has no value per se).

Our analysis would end here if we used a collective model and simply assumed efficient fertility.

However, if the (IC-DE) constraint binds, the institutional setting provided by a marriage can help

the couple to relax commitment problems that endogenously restrict fertility.

Proposition 3: Assume that R < R
0
, i.e. the (IC-DE) constraint binds for m = 0. Then,

a marriage with strictly positive divorce costs is optimal if the relationship per se is sufficiently

stable. Moreover, a higher value of φ always increases the relative benefits of a marriage.

The proof of Proposition 3 can be found in the Appendix.

Whereas post-divorce monetary transfers always increase the couple’s tendency to marry if (IC-

DE) binds, the same is not true for divorce costs, where the couple has to trade off the benefits

of an increased commitment with the associated costs of a “too stable” relationship. Interestingly,

this implies that couples that are very likely to stay together anyway should be more inclined

to also get married - simply because a separation and the associated divorce costs merely are

18This is equivalent to allowing for transfers when the relationship is formed and its status set.
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off-equilibrium phenomena.

The impact of divorce costs on marriage rates has received substantial attention in the empirical

literature, mainly due to the replacement of consent with unilateral divorce laws in many US states

some decades ago, which is usually regarded as a reduction in divorce costs.19 Generally, empirical

results are ambiguous. Whereas Rasul (2003) and Matouschek and Rasul (2008) observe a decline,

Alesina and Giuliano (2007) on the contrary find an increase of marriage rates. This supports our

result that the greater degree of commitment induced by higher divorce costs is not automatically

preferred by couples, since post-divorce utilities are reduced as well as the option to utilize high

realizations of outside utilities. Only if the utility loss induced by the binding (IC-DE) constraint

is sufficiently high can the existence of divorce costs make marriage optimal. If divorce costs are

relatively high, their reduction might make more couples willing to use them as a commitment

device to increase fertility. Alesina and Guiliano’s (2007) results are in line with this interpretation.

There, in-wedlock fertility basically remained unaffected by the adoption of unilateral divorce laws,

while out-of-wedlock fertility decreased significantly and fertility rates for newly married couples

went up. However, to fully understand long-run effects of legal changes on fertility, more empirical

evidence is needed.

Finally, we explore the relationship between the couple’s tendency to marry and changes in the

opportunity costs of having children.

Proposition 4: Assume R < R
1
, i.e. (IC-DE) binds for both values of m. Furthermore,

assume the functional forms c(n) = C + γnj, j ≥ 1, and w22(n) = W22 − ωnk, k ≥ 1. Then, the

relative benefits of a marriage relative to a cohabitation increase in γ and ω.

The proof of Proposition 4 can be found in the Appendix.

This result is driven by the negative impact of higher marginal opportunity costs on enforceable

fertility. Given n∗ is below its first-best level anyway, lower fertility implies a higher marginal

utility of children - and consequently larger gains from the additional commitment provided by

a marriage. However, note that this result is not as strong as our previous ones. We cannot say

whether larger values of γ and ω (as used here) have a positive or negative impact on R
m

- hence

on the question whether (IC-DE) binds. The reason is that there are two conflicting forces - on the

one hand, higher marginal opportunity costs reduce enforceable fertility, on the other hand they

also reduce first-best fertility. Since we do not know which of these dominates, the total effects

remains unclear. However, if (IC-DE) binds, higher marginal opportunity costs work in favor of a

marriage.

The predictions of Proposition 4 are particularly interesting when it comes to the second earner’s

19This is supported by the fact that divorce rates immediately went up after the introduction of unilateral divorce,
see Friedberg (1998) or Matouschek and Rasul (2008).
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human capital loss. Generally, we would expect higher educational levels associated with greater

human capital losses. A university graduate’s future income are very likely to be stronger affected

by a timeout than the income of, for example, cleaning personnel or salesclerks. Thus, couples

with a better-educated second earner should have a higher propensity to marry given they want to

have children. This prediction is well supported by empirical evidence. According to McLanahan

(2004) or Lundberg and Pollak (2007), mothers with college education still mostly have their

children within a marriage, whereas nonmarital childbearing has substantially gone up for mothers

with lower levels of education. There, the latter’s reduced propensity to marry might reflect a

declining importance of cultural norms fostering marriage. Generally, we have left out such norms

in our analysis and hence only capture a limited part of the potential benefits of marriage. For

some couples, marriage might have a value per se,20 and young adults may still face more or less

pressure - arising from social norms and attitudes - to get married rather than cohabit in some

societies. However, it seems that a stigma coming from cohabitation or nonmarital childbearing

has almost disappeared in most (Western) societies (see Lundberg and Pollak, 2007).

To conclude, recall our assumption that the second earner alone is responsible for raising the

couple’s children. It seems unlikely that the fact that women still assume major parts of the

responsibilities associated with having children is purely driven by an optimal (in an economic

sense) allocation of tasks, but could also be influenced by factors outside our model, for example

cultural norms and values. If men were willing to participate substantially in child-rearing and

if jobs were sufficiently flexible, i.e. if the couple were able to commit to any allocation of child-

rearing costs c(n), a more efficient time allocation to childcare could be achieved. Then, the

(IC-DE) would be less likely to bind and fertility could increase. Therefore, couples with more

traditional views on specialization within the household should also be more likely to get married,

a claim that is supported by empirical evidence21.

6 Conclusion

Making precise the conditions under which cooperation within a relationship can be enforced, this

paper has shown how the institutional setting following a separation can make it easier or more

difficult to allocate resources within a household and thus compensate a partner for the human

capital loss associated with having children. However, our approach is only a first step in the

analysis of the (often unintended) consequences of legislative choices.

Our model is general enough to incorporate further laws that are important for a marriage.

The impact of different forms of income taxation - for example joint versus individual taxation

20Which could be captured in our model by assuming different values of R for spouses that are cohabiting and
those that are married.

21Kaufmann (2004) for example finds that men with egalitarian counterparts are more likely to cohabit than
those with more traditional views
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- could be analyzed. The model is also precise enough to look at the question of consent versus

unilateral divorce in more depth. Of course, a unilateral divorce is very likely to be associated with

lower divorce costs, as shown by the large empirical literature that found an immediate increase in

divorce rates following its introduction. However, noting that under a consent regime one partner

alone cannot easily bring about a divorce might allow us to explain some empirical results that

cannot be explained by a change in commitment power alone. For example, Alesina and Giuliano

(2007) find that after the introduction of unilateral divorce laws, fertility rates for newly married

couples increased, while out-of-wedlock fertility decreased. They claim that lower divorce costs

induce couples to enter marriage more readily. A model such as ours can provide an explanation:

A consent divorce regime taken literally makes it much more difficult to enforce payments between

spouses. The reason is that transfers are no longer needed to keep the partner within a marriage,

and allocations on and off the equilibrium path do not differ.22

The model setting itself could be extended by taking children’s welfare into account and adding

a thorough analysis of custody arrangements. Halla (2013) provides interesting empirical results

showing that the introduction of joint custody in US states increased marriage rates as well as

overall fertility. It should be interesting to derive the impact of children’s welfare and custody laws

on aspects of commitment as analyzed here.

In conclusion, we hope to have shown that an approach to the issues surrounding marriage,

fertility and divorce based on the theory of relational contracts can make a new and useful contri-

bution to our understanding of the complex interrelationships among these important institutional

features of a modern society.

22This is even the case if transfers to prevent the inefficient continuation of a marriage are feasible, since such
transfers go hand in hand with the ending of the relationship.
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Appendix

Corollary 1: Without loss of generality, the transfer p1 can be positive.

Proof : Assume the HRC involves a negative p1 and the share α. Replacing p1 by p̃1 = 0 and

α by α̃ = −p1+δαs2(n∗)
δs2(n∗)

leaves all constraints and profits as expected at the end of period t = 1

unaffected. Since −p1 ≤ δ(1− α)s2(n
∗), we still haveα̃ ∈ [0, 1]. Q.E.D.

Corollary 2: (IC1) can be omitted.

Proof : This follows from n1 > n2, n = min {n1, n2}, n
∗ ≥ n and the concavity of u0

10 + δud
12.

Q.E.D.

Corollary 3: A fertility level n∗ can be enforced if and only if it satisfies the (IC-DE) constraint

ϕ2(n
∗)− ϕ2(n)− w21 (c(n

∗)− c(n)) + δs2(n
∗) + δ

(

ud
22(n

∗)− ud
22(n)

)

≥ 0. (7)

Proof: Necessity follows from adding (IC2) and (DE1). For sufficiency, assume that 7is satisfied.

Set p+1 ≡ αδs2(n
∗) and plug it into (IC-DE), which becomes ϕ2(n

∗)−ϕ2(n)−w21 (c(n
∗)− c(n)) +

p+1 + δ(1−α)s2(n
∗)+ δ

(

ud
22(n

∗)− ud
22(n)

)

≥ 0. Thus, (IC2) is satisfied. Furthermore, (DE1) holds

by by construction of p+1 . Q.E.D.

Proposition 1: For m = 0, there exists a threshold value of the relationship capital, R
0
≥ 0,

such that (IC-DE) binds for R < R
0

and does not bind - for first-best fertility as described by (6) -

otherwise. For m = 1 and k1+k2 sufficiently small, there exists a value R
1
≥ 0 such that (IC-DE)

binds for R < R
1

and does not bind otherwise. Furthermore, R
1

is decreasing in k1 + k2 and φ.

If k1 + k2 is sufficiently large, (IC-DE) does not bind even for R = 0. In any case, R
1
≤ R

0
.

Proof :

The (IC-DE) constraint equals

ϕ2(n
∗)− ϕ2(n)− w21 (c(n

∗)− c(n)) + δs2(n
∗) + δ

(

ud
22(n

∗)− ud
22(n)

)

≥ 0, where

s2(n
∗) = G(v̂)

[

u∗

12(n
∗) + u∗

22(n
∗)−

(

ud
12 (n

∗ | v ≤ v̂) + ud
22 (n

∗ | v ≤ v̂)
)]

.

Hence, we can rewrite the constraint as

ϕ2(n
∗)− ϕ2(n)− w21 (c(n

∗)− c(n)) + δG(v̂)

[

(2R + 1m=1 {k1 + k2})−
1

G(v̂)

v́̂

0

ṽg(ṽ)dṽ

]

+δ [w22(n
∗) + ϕ2(n

∗) + 1m=1 {φ · (w1 − w22(n
∗))}]

−δ [w22(n) + ϕ2(n)1m=1 {φ · (w1 − w22(n))}] ≥ 0,

where 1m=1 is the indicator function that includes divorce costs and alimony payments if the

couple is married.
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Note that 2R + 1m=1 {k1 + k2} = v̂ and G(v̂) =
v́̂

0

g(ṽ)dṽ.

Hence, G(v̂)

[

(2R + 1m=1 {k1 + k2})−
1

G(v̂)

v́̂

0

ṽg(ṽ)dṽ

]

= v̂
v́̂

0

g(ṽ)dṽ −
v́̂

0

ṽg(ṽ)dṽ =
v́̂

0

(v̂ − ṽ) g(ṽ)dṽ.

Then, (IC-DE) equals

w21 (c(n)− c(n∗)) + ϕ2(n
∗)− ϕ2(n)

+δ (w22(n
∗) + ϕ2(n

∗)− w22(n)− ϕ2(n))

+δ

v̂̂

0

g(ṽ)(v̂ − ṽ)dṽ + 1m=1 {δφ (w22(n)− w22(n
∗))} ≥ 0, (8)

Note that ϕ2(n)− w21c(n) + δ (w22(n) + ϕ2(n) + 1m=1φw22(n))

− [ϕ2(n
∗)− w21c(n

∗) + δ (w22(n
∗) + ϕ2(n

∗) + 1m=1φw22(n
∗))] ≥ 0 because of n = n2 ≤ n∗ (if

this expression were negative, n2 would not be the second earner’s preferred fertility level absent

transfers). Hence, the left hand side of (8) without the term δ
v́̂

0

g(ṽ)(v̂ − ṽ)dṽ(≥ 0) is negative.

Furthermore, since v̂ = 2R + 1m=1 {k1 + k2}, the term
v́̂

0

g(ṽ)(v̂ − ṽ)dṽ - and thereby the left

hand side of (IC-DE) - increases in R. Hence, if m = 0, there exists a value of R(n#) ≥ 0 for any

given fertility level n# ≥ n such that (IC-DE) is satisfied for n#. This proves the existence of R
0

(for efficient fertility), as well as the claim that (IC-DE) binds for values of R below R
0

and does

not bind for values above. If m = 1, (IC-DE) might already be satisfied for first-best fertility even

if R = 0, namely when k1 + k2 is sufficiently large. The reason is that v̂ and hence
v́̂

0

g(ṽ)(v̂− ṽ)dṽ

increases in ki. Now assume that k1+k2 is small enough that (IC-DE) is not satisfied for first-best

fertility given R = 0. The existence of R
1
≥ 0 then follows from the same arguments as above, as

well as dR
1

dki
≤ 0.

Now, assume that R
1
≥ 0 exists. Then, dR

1

dφ
= −

[(1+δ)ϕ′

2(n)−w21c
′(n)+δ(w′

22(n)+φw′

22(n))]
dn

dφ
+δ(w22(n)−w22(n∗))

2δG(v̂)
,

where however [(1 + δ)ϕ′

2(n)− w21c
′(n) + δ (w′

22(n) + φw′

22(n))] = 0 is the first-order condition de-

termining n. Because of w22(n)− w22(n
∗) ≥ 0, dR

1

dφ
≤ 0 follows. Q.E.D.

Lemma 5: Assume m = 1 and R < R
1
, i.e. (IC-DE) binds. Then, equilibrium fertility n∗ is

increasing in ki and φ.

Proof : The binding (IC-DE) equals
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w21 (c(n)− c(n∗)) + ϕ2(n
∗)− ϕ2(n)

+δ (w22(n
∗) + ϕ2(n

∗)− w22(n)− ϕ2(n))

+δ

v̂̂

0

g(ṽ)(v̂ − ṽ)dṽ + δφ (w22(n)− w22(n
∗)) = 0. (9)

First of all, note that the first partial derivative of the left hand side of (IC-DE) with respect to n∗,

denoted ∂(IC −DE)/∂n, is −w21c
′(n∗)+ δw′

22(n
∗) (1− φ)+ϕ′

2(n
∗) and has to be negative for the

(IC-DE) constraint to bind. Otherwise, higher fertility would relax the constraint, contradicting

that it binds and fertility is too low at the same time. Since
d
v́̂

0

g(ṽ)(v̂−ṽ)dṽ

dv̂
= G(v̂) and v̂ = 2R+k1+k2,

we have - as n ≤ n∗:

dn∗

dki
= −

δG(v̂)

∂(IC −DE)/∂n
> 0 (10)

dn∗

dφ
= −δ

w2(n)− w2(n
∗)

∂(IC −DE)/∂n
> 0 (11)

Q.E.D.

Proposition 2: Assume R ≥ R
0
, i.e. the (IC-DE) constraint does not bind for m = 0. Then,

a marriage cannot be optimal if ki > 0 and G(v̂) < 1. If ki = 0 or G(v̂) = 1, the couple is

indifferent between m = 0 and m = 1.

Proof: The couple is getting married if and only if U1(m = 1) + U2(m = 1)

≥ U1(m = 0) + U2(m = 0). Since n∗ is at its efficient level, applying the Envelope Theorem

gives

d
(

U1 + U2

)

dki
=

∂
(

U1 + U2

)

∂ki
= −δ [1−G(v̂)] ≤ 0 (12)

d
(

U1 + U2

)

dφ
=

∂
(

U1 + U2

)

∂φ
= 0. (13)

The monotonicity of U1+U2 implies that a positive value of ki is always worse than having ki = 0,

which is the case for m = 0. Q.E.D.

Proposition 3: Assume that R < R
0
, i.e. the (IC-DE) constraint binds for m = 0. Then,
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a marriage with strictly positive divorce costs is optimal if the relationship per se is sufficiently

stable. Moreover, a higher value of φ always increases the relative benefits of a marriage.

Proof : Assume divorce costs are k∗

i , and the alimony parameter is φ∗.

Then, U1(m = 1) + U2(m = 1)−
[

U1(m = 0) + U2(m = 0)
]

=
k∗1́

0

d(U1+U2)
dk1

dk1 +
k∗2́

0

d(U1+U2)
dk2

dk2 +
φ∗

´

0

d(U1+U2)
dφ

dφ, with

d
(

U1 + U2

)

dki
=

∂
(

U1 + U2

)

∂n

∂n∗

∂ki
+

∂
(

U1 + U2

)

∂ki
=

∂
(

U1 + U2

)

∂n

∂n∗

∂ki
− δ(1−G(v̂)) (14)

d
(

U1 + U2

)

dφ
=

∂
(

U1 + U2

)

∂n

∂n∗

∂φ
+

∂
(

U1 + U2

)

∂φ
=

∂
(

U1 + U2

)

∂n

∂n∗

∂φ
> 0 (15)

Since fertility is inefficiently low, ∂U(n∗)/∂n > 0. Therefore, it is already proven that a higher

value of φ always increases the relative benefits of a marriage as long as (IC-DE) binds. Further-

more, as long as G(v̂) is sufficiently close to 1, i.e. the relationship is sufficiently stable anyway

(absent divorce costs), we will have
∂(U1+U2)

∂n
∂n∗

∂ki
> δ(1−G(v̂)). Hence, there is a range of divorce

costs where a marriage is optimal. Q.E.D.

Proposition 4: Assume R < R
1
, i.e. (IC-DE) binds for both values of m. Furthermore,

assume the functional forms c(n) = C + γnj, j ≥ 1, and w22(n) = W22 − ωnk, k ≥ 1. Then, the

relative benefits of a marriage relative to a cohabitation increase in γ and ω.

Proof: Note that for a given fertility level n∗, neither γ nor ω have an impact on the couple’s

optimal choice of m. The reason is that none of them affects the likelihood of a separation. Hence,

γ or ω might only affect the couple’s choice of m via its impact on enforceable fertility. Therefore,

we first show that - if (IC-DE) binds - ∂n∗

∂γ
, ∂n

∗

∂ω
< 0.

There, recall that the first derivation of the left hand side of the (IC-DE) constraint with respect

to n is identical to the first-order condition characterising n. Hence, we do not have to consider

the impact of γ and ω on n.

Then, implicitly differentiating the binding (IC-DE) constraint (8) gives

∂n∗

∂γ
= −

[

w21

(

(n)j

2
−

(n∗)j

2

)]

−w21c′(n∗)+ϕ′

2(n
∗)+δ(w′

22(n
∗)+ϕ′

2(n
∗))−1m=1{δφw′

22(n
∗)}

and

∂n∗

∂ω
= −

[

δ

(

−
(n∗)k

2
+

(n)k

2

)

+1m=1

{

δφ

(

−
(n)k

2
+

(n∗)k

2

)}]

−w21c′(n∗)+ϕ′

2(n
∗)+δ(w′

22(n
∗)+ϕ′

2(n
∗))−1m=1{δφw′

22(n
∗)}

. Note that the denominator in both

expressions must be negative - if it were not negative, n(< n∗) would not be the second earner’s

preferred off-equilibrium fertility level. ∂n∗

∂γ
< 0 as well as ∂n∗

∂ω
< 0 then follows from n∗ > n,

φ ≤ 0.5 and j, k ≥ 1.
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The negative impact of γ and ω on n∗ implies that the marginal utility of children goes up;

there, note that first-best fertility - which is negatively affected by an increase in γ or ω - is

not relevant as long as fertility is too low anyway. Hence, the positive impact of a marriage on

enforceable fertility is worth more if γ and ω are higher. Q.E.D.
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