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Abstract

In high dimensional regression problems penalization techniques are a use-
ful tool for estimation and variable selection. We propose a novel penalization
technique that aims at the grouping effect which encourages strongly correlated
predictors to be in or out of the model together. The proposed penalty uses
the correlation between predictors explicitly. We consider a simple version that
does not select variables and a boosted version which is able to reduce the num-
ber of variables in the model. Both methods are derived within the framework
of generalized linear models. The performance is evaluated by simulations and
by use of real world data sets.

Keywords: Correlation based estimator, Boosting, Variable selection, General-
ized linear models.

1 Introduction

Linear models have a long tradition in statistics as nicely summarized in Toutenburg
(1992). When the number of covariates is large the estimation of unknown parameters
frequently raises problems. Then the interest usually focusses on data driven subset
selection of relevant regressors. The sophisticated monitoring equipment which is
now routinely used in many data collection processes makes it possible to collect
data with a huge amount of regressors, even with considerably more explanatory
variables than observations. One example is the analysis of microarray data of gene
expressions. Here the typical tasks are to select variables and to classify samples into
two or more alternative categories. Binary responses of this type may be handled
within the framework of generalized linear models (Nelder and Wedderburn 1972)
and are also considered in Toutenburg (1992).

There are several approaches to attain subset selection in generalized linear mod-
els. Shrinkage methods with L1 norm penalties such as the lasso estimator are one
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class of methods. The lasso estimator was introduced by Tibshirani (1996) for the
linear model and extended to generalized linear models in Park and Hastie (2007).
An alternative approach is componentwise boosting (see Bühlmann and Yu 2003).
Boosting uses an ensemble of weak learners to improve the estimator. One obtains
subset selection if each learner is restricted to use a subset of covariates.

One aspect in subset selection, highlighted by Zou and Hastie (2005), is the treat-
ment of highly correlated covariates. Instead of choosing only one representative out
of a group of highly correlated variables one could encourage strongly correlated co-
variates to be in or out of the model together. Zou and Hastie (2005) refer to it as
the grouping effect.

In this paper we propose a new regularization method and a boosted version of
it, which explicitly focus on the selection of groups. To reach this target we consider
a correlation based penalty which uses correlation between variables as data driven
weights for penalization. See also Tutz and Ulbricht (2006) for a similar approach
to linear models. This new method and some of its main properties are described
in Section 2. A boosted version of it that will be presented in Section 3 allows for
variable selection. In Section 4 we use simulated and real data sets to compare our
new methods with existing ones.

2 Penalized Maximum Likelihood Estimation

Consider a set of n independent one-dimensional observations y1, . . . , yn with densities
from a simple exponential family type

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
, (1)

where θ is the natural scalar parameter of the family, φ > 0 is a nuisance or dispersion
parameter, b(·) and c(·) are measurable functions. For each observation, also values
of a set of p explanatory variables xi = (xi1, . . . , xip)

> are recorded. They form a
linear predictor ηi = β0 + x>i βββ∗, where β0 is a constant and βββ∗ = (β1, . . . , βp)

> is a
p dimensional parameter vector. It is assumed that the expectation of yi is given by
µi = h(ηi), where h(·) is a differentiable monotone response function and µi is the
expectation of yi.

Assuming that the dispersion parameter φ is known, we are interested in finding
the unknown parameter vector βββ = (β0,βββ

∗>)>, which maximizes the corresponding
log likelihood function

l(βββ) =
n∑

i=1

{
yiθ[h(β0 + x>i βββ∗)] + b(θ[h(β0 + x>i βββ∗)])

φi

+ c(yi, φi)

}
. (2)
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Simple derivation yields the score function

s(βββ) =
∂l(βββ)

∂βββ
=

n∑
i=1

yi − b′(θi)

V ar(yi)

∂h(ηi)

∂η
xi = X>DΣ−1(y − µµµ), (3)

where X> = (x1, . . . ,xn),

D = diag

{
∂h(η1)

∂η
, . . . ,

∂h(ηn)

∂η

}
, Σ = diag {V ar(y1), . . . , V ar(yn)} .

The Fisher matrix is given by

F (βββ) = −E

[
∂2l(βββ)

∂βββ∂βββ>

]
= E[s(βββ)s(βββ)>] = X>WX, (4)

where W = DΣ−1D>. The unknown parameter vector can be found iteratively by
applying numerical methods for solving nonlinear equation systems, such as Newton-
Raphson. Under weak assumptions the maximum likelihood estimator β̂ββ is con-
sistent and asymptotically normal with asymptotic covariance matrix Cov(β̂ββ) =
(X>WX)−1, see Fahrmeir and Kaufmann (1985).

In their seminal paper, Hoerl and Kennard (1970) show that the least squares
estimate in the linear regression model tends to overestimate the length of the true
parameter vector if the prediction vectors are not mutually orthogonal. Segerstedt
(1992) shows similar effects when estimating generalized linear models. Early at-
tempts of a generalizing ridge estimation were limited to logistic regression, see e.g.
Anderson and Blair (1982), Schaefer, Roi, and Wolfe (1984) and Duffy and Santner
(1989). Nyquist (1991) introduces ridge estimation of generalized linear models in
the context of restricted estimation.

Since the maximum likelihood estimator of the unknown parameter vector has
the tendency to overestimate length, it is advisable to fix its squared length. This
restriction is formulated as constraint, so that we can use the Lagrangian approach.
Formally, we solve the optimization problem

β̂̂β̂β = arg max
βββ
{l(βββ)− P (βββ)} , (5)

where

P (βββ) = λ‖βββ‖2
2 = λ

p∑
j=1

β2
j (6)

with ‖βββ‖2
2 denoting the the squared L2 norm of β and λ > 0 is a tuning parameter.

Let β̂̂β̂βridge(λ) denote the resulting GLM ridge estimator for given λ. Hence, β̂̂β̂βridge(λ)
is based on an L2 penalty term.
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Typically there exists a tuning parameter λ, so that the asymptotic mean squared
error of the GLM ridge estimator is smaller than the asymptotic variance of the
maximum likelihood estimator, for the proof see Segerstedt (1992). Nevertheless, the

major drawback of β̂̂β̂βridge(λ) is its lack in producing sparse solutions.
In the linear model setting the most important penalized regression approach

that automatically includes subset selection is the lasso, as introduced by Tibshirani
(1996). The L1 based lasso penalty

P (βββ) = λ‖βββ‖1 = λ

p∑
j=1

|βj| (7)

leads to regression fits that are sparse and interpretable, in the sense that many vari-
ables are ”pruned” from the model. Shevade and Keerthi (2003) propose an L1 penal-
ization for logistic regression. Park and Hastie (2007) introduce a corrector-predictor
algorithm for generalized linear models with lasso penalty. The main problem in us-
ing L1 penalties within the GLM framework is the instability of coefficient estimates
when some explanatory variables are strongly correlated. Furthermore, the solution
might not be unique if some regressors are multicollinear. Therefore Park and Hastie
(2007) modify the lasso penalty term to

P (βββ) = λ1‖βββ‖1 +
λ2

2
‖βββ‖2

2, (8)

where λ1 > 0 is an arbitrary tuning parameter and λ2 is a fixed small positive con-
stant. The elastic net penalty as introduced in Zou and Hastie (2005) is algebraically
identical to (8), up to a rescaled tuning parameter of the L2 penalty term. Using
(8) in the way of Zou and Hastie (2005) requires simultaneous tuning parameter se-
lection, e.g. by cross-validation, in two dimensions. This can be computationally
cumbersome. One motivation Zou and Hastie (2005) give for the elastic net is its
property to include groups of variables which are highly correlated. If variables are
highly correlated, as for example gene expression in microarray data, the lasso selects
only one out of the group whereas the elastic net catches ”all the big fish”, meaning
that it selects the whole group.

In this paper we propose an alternative regularization procedure which aims at
the selection of groups of correlated variables. In the simpler version it is based on a
penalty that explicitly uses correlation between variables as weights. In the extended
version boosting techniques are used for groups of variables. The correlation based
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penalty is introduced as

Pc(βββ) = λ

p−1∑
i=1

∑
j>i

{
(βi − βj)

2

1− %ij

+
(βi + βj)

2

1 + %ij

}

= 2λ

p−1∑
i=1

∑
j>i

β2
i − 2%ijβiβj + β2

j

1− %2
ij

(9)

where %ij denotes the (empirical) correlation between the ith and the jth predictor.
It is designed to focus on the grouping effect, that is highly correlated effects show
comparable values of estimates (|β̂i| ≈ |β̂j|) with the sign being determined by positive
or negative correlation. For strong positive correlation (%ij → 1) the first term

becomes dominant having the effect that estimates for βi, βj are similar (β̂i ≈ β̂j).
For strong negative correlation (%ij → −1) the second term becomes dominant and

β̂i will be close to −β̂j. Consequently, for weakly correlated data the performance is
quite close to the ridge penalty. The correlation based penalty (9) can be written as
a quadratic form

Pc(βββ) = λβββ>Mβββ, (10)

where M = (mij) is given by

mij =

{
2
∑

s6=i
1

1−%2
is
, i = j,

−2
%ij

1−%2
ij
, i 6= j.

We denote the resulting penalized maximum likelihood estimator of the unknown
coefficient vector as β̂̂β̂βc and refer to it in the following as GLM PenalReg estimator.

Due to the additive structure between log likelihood function and the penalty
term the computation of the correlation based penalized estimator, abbreviated by
GLM PenalReg, is easily done by using the score function and Fisher matrix of the
log likelihood function. For the penalized log likelihood with Pc(βββ) = λβββ>Mβββ one
obtains

lp(βββ) = l(βββ)− λ

2
βββ>Mβββ, (11)

where we use a rescaling of λ for computational simplicity. Hence, the penalized score
is

sp(βββ) =
∂lp(βββ)

∂βββ
= s(βββ)− λMβββ = X>DΣ−1(y − µµµ)− λMβββ, (12)

and the penalized Fisher matrix is given by

Fp(βββ) = −E

[
∂sp(βββ)

∂βββ>

]
= X>WX + λM, (13)
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As in non-penalized maximum likelihood estimation we need to solve a nonlinear
system of equations. In the same way as the GLM ridge estimator the GLM PenalReg
estimator can be written as an iteratively re-weighted least squares estimator, given
by

β̂ĉβĉβc
(k+1) = (X>WX + λM)−1X>Wỹ(k), (14)

where ỹ(k) = Xβ̂ĉβĉβc
(k) + D−1(y − µµµ).

Based on a first order Taylor approximation one obtains the asymptotic covariance
matrix

Cov[β̂ĉβĉβc(λ)] = (X>WX + λM)−1X>WX(X>WX + λM)−1. (15)

Note that we get similar results for the generalized ridge estimator βββridge(λ) when
we substitute the identity matrix for the penalty matrix M, see Segerstedt (1992)
for details. A systematic report on mean squared error comparisons of competing
biased estimators for the linear model is given in Trenkler and Toutenburg (1990).
For performance comparisons in several simulation and practical data situations we
refer to section 4.

3 Generalized Blockwise Boosting

The main drawback of the correlation based penalized estimator is its lack of sparsity.
In particular when high dimensional data such as microarray data are considered one
wants to select an appropriate subset of regressors. One method that is able to
overcome this disadvantage is componentwise boosting as introduced by Bühlmann
and Yu (2003). They propose to update in one boosting step only the component
that maximally improves the fit.

Boosting methods are multiple prediction schemes that average estimated predic-
tions from re-weighted data. With its origins in the machine learning community the
first major field of applications was binary classification. The link between boost-
ing and a gradient descent optimization technique in function space as outlined in
Breiman (1998) provided the application of boosting methods in other contexts than
classification. Friedman (2001) developed the L2Boost algorithm for a linear base
learner, an optimization algorithm with squared error loss function for application in
regression, which provides the foundations of componentwise boosting. For a detailed
overview on boosting see e.g. Meir and Rätsch (2003). Componentwise likelihood
based boosting applied to the generalized ridge estimator is described in Tutz and
Binder (2007). The base learner of this boosting algorithm is the first step of the
Fisher scoring algorithm.

Let S(m) ⊂ {0, 1, . . . , p} denote the index set of the variables considered in the m-
th step, where the index 0 refers to the intercept term of the predictor. The input data
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to the base learner are {(x1, r1), . . . , (xn, rn)}, where ri = yi − µ̂
(m−1)
i (i = 1, . . . , n)

denotes the residual between the origin response yi and the estimated response from
the previous boosting step.

The basic concept is to choose within the m-th step of the iterative procedure the
subset of variables which provides the best improvement to the fit. In componentwise
maximum likelihood based boosting it is common to use the deviance as a measure
of goodness-of-fit. We choose the Akaike information criterion (AIC) rather than the
deviance, because it includes an automatic penalization of large subsets.

The following algorithm GenBlockBoost is a boosted version of the correlation
based penalized estimate.

Algorithm GenBlockBoost

Step 1: (Initialization)

Fit the model µi = h(β0) by iterative Fisher scoring yielding β̂̂β̂β(0) = (β̂0, 0, . . . , 0)>.

Set η̂̂η̂η(0) = Xβ̂̂β̂β(0), µ̂̂µ̂µ(0) = h(η̂̂η̂η(0)).

Step 2: (Iteration)

For m = 1, 2, . . .

(a) Find an appropriate order of regressors according to their improvements of fit

For j ∈ {0, . . . , p} compute the estimates based on one step Fisher scoring

b̂{j} = (x>{j}W (η̂̂η̂η(m−1))x{j} + λ)−1x>{j}W (η̂̂η̂η(m−1))D(η̂̂η̂η(m−1))−1(y − µ̂̂µ̂µ(m−1)),

yielding b̂j0 , . . . , b̂jp such that Dev(b̂j0) ≤ . . . ≤ Dev(b̂jp), where

Dev(b̂jk
) = 2

n∑
i=1

{
li(yi)− li

[
h(η̂

(m−1)
i + xijk

b̂jk
)
]}

, k = 0, 1, . . . , p.

(b) Find a suitable number of regressors to update

For r = 0, . . . , p

With Sr = {j0, . . . , jr} we compute the estimates based on one step Fisher
scoring

b̂Sr = (X>
Sr

W (η̂̂η̂η(m−1))XSr + λ|Sr|MSr)
−1X>

Sr
W (η̂̂η̂η(m−1))

×D(η̂̂η̂η(m−1))−1(y − µ̂̂µ̂µ(m−1)),

yielding estimates b̂Sr and AIC criterion AIC(b̂Sr).
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(c) Selection

Select the subset of variables which has the best fit, yielding

S(m) = arg min
Sr

AIC(b̂Sr).

(d) Refit

The parameter vector is updated by

β̂
(m)
j =

{
β̂

(m−1)
j + b̂j, if j ∈ S(m),

β̂
(m−1)
j , otherwise,

yielding β̂̂β̂β(m) = (β̂
(m)
1 , . . . , β̂

(m)
p )>, η̂̂η̂η(m) = Xβ̂̂β̂β(m), µ̂̂µ̂µ(m) = h(η̂̂η̂η(m)).

The number of possible combinations of regressors is 2p. Due to computational
limitation we cannot apply a full search for the best subset. Therefore in a first
step of each boosting iteration we order the regressors according to their individual
potential improvement to the fit. This improvement is measured by the (potential)
deviance

Dev(b̂j) = 2
n∑

i=1

{
li(yi)− li

[
h(η̂

(m−1)
i + xij b̂j)

]}
, j = 0, . . . , p,

where xi0 = 1 for all i = 1, . . . , n.
For making the base learner a weak learner, so that only a small change in pa-

rameter estimates occurs within one boosting iteration, the tuning parameter λ is
chosen very large. This also leads to more stable estimates. The price to pay for this
choice is an increase in computation time when the value of the tuning parameter
becomes larger.

For subsets S that contain only one variable the correlation based penalty (10)
cannot be used directly. In those cases we define the penalty by the ridge type penalty
Pc,{j} = λβ2

j .
Within the algorithm the correlation based estimator is used for subsets of varying

size. The tuning parameter λ that is used has to be adapted to the number of refitted
regressors. If one considers the case of uncorrelated variables the penalty for all
variables reduces to Pc(βββ) = 2λ(p − 1)

∑p
i=1 β2

i which equals the ridge penalty with
tuning parameter 2λ(p − 1). Thus λ|Sr| in step 2b of the GenBlockBoost algortihm
is chosen by λ|Sr| = λ(|Sr| − 1), where |Sr| denotes the number of refitted regressors.

In order to avoid overfitting, a stopping criterion is needed for estimating the
optimal number of boosting iterations. We use the AIC criterion

AIC(β̂̂β̂β(m)) = Devm + 2tr(Hm), (16)
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with

Devm = 2
n∑

i=1

[
li(yi)− li(µ̂

(m)
i )

]
.

An approximation of the hat matrix is given by

Hm =
m∑

j=0

Mj

j−1∏
i=0

(I −Mi),

so that µ̂(m) ≈ Hmy, where

Ml = Σ1/2
m W1/2

m XS(m)(X>
S(m)WmXS(m) + λMS(m))−1X>

S(m)W
1/2
(m)Σ

−1/2
m

and M0 = 1
n
1n1>n . See Tutz and Leitenstorfer (2007) for the derivation of this ap-

proximation. An estimate of the sufficient number of boosting iterations is

m∗ = arg min
m

AIC(β̂̂β̂β(m)).

In the next section we investigate the performance of the correlation based pe-
nalized estimator for GLMs and the GenBlockBoost algorithm in several simulation
and data settings.

4 Simulations and real data example

In the simulations, we consider predictors which are given in 10 blocks, each block
contains q variables, resulting in p = 10q variables. All variables have unit variances.
The correlations between xi and xj are %|i−j| if xi and xj belong to the same block,
otherwise they are given by a truncated N(0, 0.12) distribution. For the true predictor
η we choose the set V of all covariates that belong to three randomly chosen blocks
so that

η = x>β,

where x = (x1, . . . , xp)
> and β = c · (β1, . . . , βp)

> is determined by

βj ∼ N(1, 1) for j ∈ V, βj = 0 otherwise.

That means each variable included in one of the chosen blocks is considered as rel-
evant. Note that β0 = 0 in all simulations, but all methods are allowed to include
a nonzero intercept in their vector of estimated coefficients. The final response y
corresponding to the expected value of the response µ = E(y|x) = h(η), where
h(η) = exp(η)/(1 + exp(η)) is drawn from a binomial distribution B(µ, 1). The
constant c is chosen so that the signal-to-noise ratio

signal-to-noise ratio =

∑n
i=1(µi − µ̄)2

∑n
i=1 V ar(yi)

,
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with µ̄ = 1
n

∑n
i=1 µi, is (approximately) equal to one. We use the Newton algorithm

to find c in this case. The estimation of unknown parameters is based on 100 training
data observations. The evaluation uses 1000 test data observations. We use an
additional independent validation data set consisting of 100 observation to determine
the tuning parameters.

We compare the GLM PenalReg estimator and the GenBlockBoost algorithm
with the maximum likelihood estimator (ML), L2 penalized maximum likelihood
estimation (ridge), L1 penalized maximum likelihood estimation (lasso) and a boosted
version of the L2 penalized maximum likelihood estimator (GenRidgeBoost). For
further details on the GenRidgeBoost algorithm see Tutz and Binder (2007). The
computation of the L1 penalized maximum likelihood estimator is done with the R
package glmpath by Mee Young Park and Trevor Hastie.

The performance of data fitting is measured by the deviance and the deviation
between estimated and true parameter vector. The latter is defined as

MSEβ = |β̂̂β̂β − βββ|2. (17)

Besides the prediction performance as an important criterion for comparison of meth-
ods the variables included into the final model are of special interest to practitioners.
The final model should be as parsimonious as possible but all relevant variables should
be included. We use the criteria hits and false positives to evaluate the identifica-
tion of relevant variables. Hits refers to the number of correctly identified influential
variables, false positives is the number of non-influential variables dubbed influential.

The simulation results are given in Table 1, 2, 3 and Figures 1 and 2. GenBlock-
Boost has the best prediction performance almost all the time. Considering the fit
of true parameters PenalReg performs very good, but GenBlockBoost shows good
results among the variable selecting procedures for small and medium sized blocks.
GlmPath performs better for huge blocks. In the hits and false positives analysis Gen-
BlockBoost clearly outperforms GlmPath and also chooses more relevant covariates
than GenRidgeBoost. GenRidgeBoost generally tends to more parsimonious models,
hence its median number of false positives is smaller in comparison to GenBlockBoost.

For an application to real data we use the leukemia cancer gene expression data
set as described in Golub et al. (1999). In cancer treatment it is important to target
specific therapies to pathogenetically distinct tumor types, to gain a maximum of
efficacy and a minimum of toxicity. Hence, distinguishing different tumor types is
critical for successful treatment. The challenge of the leukemia data set is to classify
acute leukemia into those arising from lymphoid precursors (acute lymphoblastic
leukemia, ALL) and those arising from myeloid precursors (acute myeloid leukemia,
AML), based on the simultaneous expression monitoring of 7129 genes using DNA
microarrays. The data set consists of 72 samples, out of which 47 observations are
ALL and 25 are AML. We use 20 random splits into a training and an independent
test sample of sizes 38 and 34, respectively.
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ML Ridge PenalReg GenRidgeBoost GenBlockBoost GlmPath (Lasso)
q = 3 % = 0.95 17983.21 875.22 866.16 965.81 901.05 904.78

% = 0.8 16791.35 928.75 923.54 916.89 907.23 940.89
% = 0.5 15497.62 965.58 966.91 890.67 881.59 936.87

q = 5 % = 0.95 20035.41 894.60 892.68 891.95 851.78 908.84
% = 0.8 21152.08 939.29 934.00 906.33 897.05 949.74
% = 0.5 19842.48 1005.99 1011.70 993.47 958.38 1007.23

q = 10 % = 0.95 - 871.39 854.36 868.69 859.35 907.84
% = 0.8 - 970.10 947.54 937.15 915.58 982.49
% = 0.5 - 1099.91 1085.18 1119.54 1110.80 1083.11

Table 1: Median deviances for simulated data based on 20 replications.

ML Ridge PenalReg GenRidgeBoost GenBlockBoost GlmPath (Lasso)
q = 3 % = 0.95 423640.00 2.19 1.80 2.69 2.56 3.55

% = 0.8 106086.80 1.98 1.68 1.89 1.62 1.92
% = 0.5 47861.17 2.00 2.04 1.30 1.43 1.63

q = 5 % = 0.95 345348.10 1.60 1.51 3.62 2.07 3.71
% = 0.8 77118.91 2.35 1.97 2.27 1.95 2.80
% = 0.5 33738.83 2.15 2.19 2.12 1.78 2.18

q = 10 % = 0.95 - 1.43 1.08 2.87 2.40 2.22
% = 0.8 - 2.02 1.55 2.72 2.49 2.46
% = 0.5 - 2.51 2.38 2.67 2.79 2.58

Table 2: Median MSEβ for simulated data based on 20 replications.

ML Ridge PenalReg GenRidgeBoost GenBlockBoost GlmPath (Lasso)
q = 3 % = 0.95 9/22 9/22 9/22 4/1 6/3 5/7

% = 0.8 9/22 9/22 9/22 5/1 5/2 6/8
% = 0.5 9/22 9/22 9/22 6/2 6/3 7/10

q = 5 % = 0.95 15/36 15/36 15/36 6/3 12/4 6/9
% = 0.8 15/36 15/36 15/36 7/3 11/6 8/9
% = 0.5 15/36 15/36 15/36 8/3 9/5 9/9

q = 10 % = 0.95 - 30/71 30/71 9/2 17/8 8/5
% = 0.8 - 30/71 30/71 10/2 16/5 12/10
% = 0.5 - 30/71 30/71 12/2 17/9 14/12

Table 3: Median hits/false positives for simulated data based on 20 replications.

Besides the test deviance

Devtest = 2
ntest∑
i=1

[li(yi,test)− li(µ̂i,test)] , (18)
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Figure 1: Deviances for various estimators for the simulations.

which is based on the test sample, we consider the number of genes identified as
relevant variables. Since the main focus is on classification we focus on the numbers
of correctly classified respective misclassified observations in the test data set as
performance measures for discrimination.

Due to the 20 random splits we consider the median performance results which are
given in Table 4. All three considered algorithms show quite similar performances.
At the median number of correctly classified types of leukemia, GenRidgeBoost is
slightly better for the ALL class, GenBlockBoost is slightly better for the AML class.
When considering the overall misclassification GlmPath has the best discrimination
power. Due to the test deviance, the test data fits best to the model estimated
by GenBlockBoost. Here, the GenRidgeBoost estimator is only poor. When we
consider the number of selected genes GenRidgeBoost is slightly more sparse than
the competitors.
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Figure 2: MSEβ for various estimators for the simulations.

Performance measure GenBlockBoost GlmPath GenRidgeBoost
ALL correctly classified 9 10 11
AML correctly classified 21 20 20
misclassification 5 3 5
Devtest 17.75 19.11 84.98
No. of genes used 11 10 9

Table 4: Median performance results for the leukemia cancer gene expression data

for 20 random splits into 38 learning data and 34 test data.

5 Concluding Remarks

We presented two approaches for parameter estimation in generalized linear models
with many covariates. The GLM PenalReg estimator gives special attention to the
grouping effect, the GenBlockBoost algorithm moreover put additional attention on
subset selection. The simulations demonstrate the competitive data fitting perfor-
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mance and the small deviation between estimated and true parameter vectors. The
GenBlockBoost algorithm is slightly less sparse than the GenRidgeBoost algorithm
but this is a consequence of the more tightly focused grouping effect. Nevertheless the
correct identification of relevant variables is quite good. As a result, the GenBlock-
Boost estimator can be seen as a strong competitor in the field of subset selection in
generalized linear models.

Both methods may be extended to the case of multivariate generalized linear
models, such as with multinomial response. Furthermore, some further theoretical
aspects on MSE comparisons with the GLM ridge estimator might by interesting.
Here, Trenkler and Toutenburg (1990) provides an initial point for the challenging
application to generalized linear models.
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