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Preface 
This book has two predominant objectives. On the one hand, the funda­

mental concepts of the theory of modules and rings are presented, for 
which the presentation is set out in detail so that the book is suitable for 
private study. On the other hand, it is my intention to develop, in an easily 
comprehensible manner, certain themes which so far have not been presen­
ted conveniently in a text book, but which however occupy an important 
place in this area. In particular rings with perfect duality and quasi-
Frobenius rings (QF-rings) are considered. 

In summary the book aims to put the reader in the position of advancing 
f rom the most basic concepts up to the posing of questions and of consider-
ations which are of topical interest in the development of mathematics. 
For this purpose numerous exercises of varying degrees of difficulty are 
provided. Here the intention is not merely to give practice in the material 
of the text, but also to touch upon concepts and lines of development not 
otherwise considered in the book. 

The structure of the book is determined by the conviction that the 
concepts of projective and injective modules are among the most important 
fundamental concepts of the theory of rings and modules and consequently 
should be placed as far as possible at its very beginning. These concepts 
can then also be used in the treatment of the classical parts of the theory. 
For the same reason I have developed the fundamental concepts of gen-
erator and cogenerator as early as possible in order to have them always 
available. If diflferent finiteness conditions are added, then one has the 
main theme of the book. This culminates, accordingly, in the theory of 
rings which are injective cogenerators resp. injective cogenerators with 
finiteness conditions (QF-rings). 

In order to prevent the size of the book becoming excessive it was only 
possible to take up categorical concepts as far as absolutely necessary. 
Since there are numerous good books on categories the reader can easily 
broaden his knowledge in this respect. In other areas too a choice of the 
themes to be considered was obviously necessary. The basic principle in 
such a selection was first to cover the fundamental concepts which are 
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vi PREFACE 

absolutely necessary but beyond that to focus as directly as possible on the 
material of the last three chapters. 

This book has resulted from lectures and Seminars which I have given 
in different universities. The teaching experience which has been so gained 
is incorporated in the book. Thus the expert in the subject wi l l easily 
recognize that I have not always chosen the "shortest" version of a proof, 
occasionally calculating with elements where this might be avoidable. Also 
I have not been deterred in places from repetitions or from the presentation 
of a second proof. A l l of this is done to render the book more intelligible, 
and in so doing I am aware that from a teaching point of view there can 
be very different opinions. 

I t is my belief that in a textbook—as opposed to a scholarly monograph— 
one is not obliged to State the authorship of all results in detail. I have 
made extensive use of this freedom and have only provided a name in 
places of particular significance. In many developments which derive from 
several authors, precise assignment of responsibilities is often difficult. 
From experience with other books it therefore seemed better to me to 
make no Statement rather than to risk introducing false attributions. 

As well as a selection of textbooks on modules and rings some original 
literature is given as suggestions for further reading in connection with the 
last three chapters. This is very much a matter of individual choice which 
does not imply any evaluation of the authors. 

To numerous colleagues, collaborators and students I owe suggestions 
and critical remarks for this book. To all I express my profound thanks. 
I owe very particular thanks to W. Müller, W. Zimmermann and H . 
Zöschinger for their assistance. In particular, the later chapters have arisen 
from discussion with H . Zöschinger who has also contributed numerous 
exercises. Without the keen interest of those named in the ensuing 
mathematical and didactic questions, the book would almost certainly not 
have attained its present draft. 

To the editors and the publisher I have to express my thanks for their 
helpful and unbureaucratic co-operation. 

Munichy Autumn 1976 F . K A S C H 



Translator^ Preface 

The translator, in undertaking the task of translation, was initially moti-
vated by his belief that an edition in English would be very worthwhile 
and was subsequently encouraged to embark upon the task by two reviews 
of the German edition indicating that a translation would be of considerable 
value. This English edition is a direct translation of the German text which 
has been essentially unaltered with the exception of Lemma 5.2.4, Lemma 
5.2.5 and Corollary 11.1.4, for which more succinct proofs are now pro-
vided, and with the addition of Section 11.7, which is entirely new. 

In preparing this edition the translator is much indebted to Professor 
Kasch for a list of the (few) corrections and for a careful over-seeing of 
the translation. Thanks are also owing to various members of the Depart­
ment of German of the University of Stirling for their willingness to be 
consulted and to offer advice. A profound debt is owing to Mrs. M . 
Abrahamson, Secretary of the Department of Mathematics of the Univer­
sity of Stirling, for her unfailing cheerfulness and for the consummate skill 
with which she produced a beautifully typed manuscript with the many 
displayed formulae neatly inserted. Finally thanks are owing to Professor 
P. M . Cohn for many suggestions towards an improvement of the final draft. 

Stirling, Spring 1981 D . A . R. W A L L A C E 
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Symbols 

A and 
V or (in the inclusive sense) 

V quantifier ("for a l l " resp. "for every") 
3 quantifier ("there exists") 
^> implication 

equivalence 

» ö } definitions 

h contradiction 
<Z subset 
s proper subset 

not a subset 
sub-object in the sense of the relevant structure 
proper sub-object 
not a sub-object 
is small in 
is large (essential) in 

| divides (a\b means "a divides b") 
\ complementary set (A\B := {a\a e A A a & B} 
• end of a proof 
N set of natural numbers (M = { 1 , 2, 3 , . , .}) 
Q field of rational numbers 
ÖS field of real numbers 
Z ring of integers 
Le (M) composition length of module M 
Ord(G) order of group G 
[Note the difference between A , B, C,... and A, B, C,... (e.g. MeMu)] 





Chapter 1 

Fundamental Ideas of Categories 

The theory of categories has developed, since the year 1945, as a new 
branch of Mathematics. This theory is not only of interest in itself, as having 
produced essentially new ideas and methods, but it is also contributing to 
an overall understanding of mathematics. Its significance rests on the 
possibility that important concepts and considerations from different parts 
of mathematics may be brought together and be developed uniformly. In 
particular it furnishes the possibility of formulating and investigating com­
mon properties of different structures. 

In this way it has given rise to new points of view and to the posing of 
questions which are not only themselves of interest in the theory of 
categories, but which have revealed new avenues for investigation in various 
concrete categories. This analysis arises in the particular case of module 
categories which have given, in their turn, the motivation for the develop­
ment of categories. 

Finally it is evident that, increasingly, fundamental concepts from the 
theory of categories are being accepted into the everyday Jargon of mathe­
matics and are being employed in formulating concepts and in assembling 
the relevant facts in other areas of mathematics. Such categorical modes 
of expression are essential for module categories. 

In the following, knowledge of such categorical language wi l l be 
provided. However we shall confine ourselves as much as possible to 
developing the concepts only as far as it appears absolutely necessary 
for their understanding. 

1 



2 1 F U N D A M E N T A L IDEAS OF CATEGORIES 1.1 

1.1 D E F I N I T I O N O F C A T E G O R I E S 

We assume here the idea of set and class. To a first approximation a 
class is understood to be a "very big set", in which no Operations, capable 
of leading to an antinomy, may be performed. For example, and in contrast 
to the set of all subsets, it is not permissible to form the class of all subclasses. 
In an axiomatic theory of classes and sets, the sets are exactly the classes 
which appear as elements of some classes. A class can also be conceived 
intuitively as the "totality of all objects with a certain property". The 
relevant text books can be recommended for a more thorough treatment 
of classes. Here, the intuitive concept of a class is enough for the understand­
ing of what follows. 

1.1.1 Definition. A category K is given by means of: 
I . A class Obj(/C), which is called the class of objects of K, whose 

elements are to be called objects (of K) and to be denoted by 
A,B,Q 

I I . For every pair (A, B) of objects there is a set M o r ^ A , B) such that 
for different pairs of objects (A, B) ^ (C, D) 

Mor/c(A, B)nMor^C, D) = 0 . 

The elements of MorK(A, B) are called morphisms from A to B and 
are denoted by a, ß, y, 

I I I . To every triple (A, B, C) of objects there is a mapping 

Mor*CB, C) x M o r * ( A , B)3(ß, a)^>ßa e Mor*(A, C) 

which is called multiplication and for which we have: 
(1) Associative law. y(ßa) = (yß)a for all a e MorK(A, J5), ß e 

MoTK(By C) , yeMorK(QD). 
(2) Existence ofidentities: To every object A e Obj(/C) there exists 

a morphism 1A e M o r K ( A , A ) , called the identity of A so that for 
all a e M o r K ( A f B)9 a 1 A = l ß « = oc. 

We may now indicate some notations and simple properties. If no 
confusion is possible we write 

Mor(A, B) := Mor* (A , B). 

We write further 

Mor ( /Q:= ( J morK(A,B) 
A,ßeObj ( /C) 
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to denote the class of morphisms of K. We use also the abbreviated notation 

A e / f :OAsObj( /0 
aeK : ^ a e M o r ( / C ) . 

Now let a e Mor(A, B), then as in the case of a mapping we dehne 

Domain of a '= Dom(a) := A 

Codomain of a := Cod(a) := B 

Since the sets Mor (A, B) are disjoint for different pairs (A, B), Dom(a) 
and Cod(a:) are uniquely determined by a. 

Instead of writing a e Mor (A, B) we also write 
a 

a :A-*B or A -> B. 
The symbol 

A^B 

denotes an element from Mor(A, B) and an arrow an element from 
Mor(/C). 

The commutativity of the diagram 

A = >B 

y ß 

indicates that ßa = 8y. 
Ii a9ß e MOT(K) we write ßa for the product, thereby incorporating the 

assumption Cod(a) = Dom(a) which is required in Definition 1.1.1 for 
multiplication. 

1.1.2 PROPOSITION. The identity 1 A (by virtue of the property given by 
111(2)) is uniquely determined. 

Proof. Let eA be another identity of A. Then there follows 

eA = eAlA = 1A. • 

1.1.3 Definition. Let K be a category and let a :A^B be a morphism 
of K. Then the following nomenclature applies. 

( 1 ) a is a monomorphism :<$=> 
V C e K V y i , y 2 e M o r ( C , A) [ayx = a y 2

= > r i = 72]. 



4 1 F U N D A M E N T A L IDEAS OF CATEGORIES 1.1 

(2) a is an epimorphism :<=> 
V C € K Vßu ßi e Mor (£ , C) [ß,a = 0 2 a =>j8i = 0 2]. 

(3) a is a bimorphism :<=> 
a is a monomorphism A a is an epimorphism 

(4) a is an isomorphism 
3j8 e Mor(Ä, A) [ßa = lAAaß = lB] 

(5) a is an endomorphism : 0 
Dom(a) = Cod(a) 

(6) a is an automorphism 

a is an isomorphism A a is an endomorphism. 

1.1.4 PROPOSITION, a is an isomorphism =>a w a bimorphism. 

Proof. Let /3a = 1A and aß = 1B. I t follows then from a y i = ay2 that 

Ti = I A T I = ßocyi = ^ a y 2 = lAy2 = 7 2. 

It follows analogously from ßxa = ß2a that 

ßi = jSi l j , = /SiajS = /32a/3 = j8 2 l a = ß2. • 

We observe that the converse of 1.1.4 does not hold in general (examples 
in exercises). Of course the converse is valid in several important categories, 
e.g. in module categories, the proof of which we give later. 

1.2 E X A M P L E S F O R C A T E G O R I E S 

In each of these examples we understand by (I) the class of the objects, 
by (II) the sets Mor(A, B) and by ( I I I ) the multiplication ßa for a € 
Mor(A, B), ß G Mor(Z?, C). The axioms are easily verified in each case. 

1.2.1 S = C A T E G O R Y OF SETS 

(I) Obj(S) = class of all sets. 
(II) Mor(A, B) = set of all mappings of A into B. 

( I I I ) ßa = composition of the mappings a and ß , a being followed by ß. 

1.2.2 G = C A T E G O R Y OF GROUPS 

(I) Obj(G) = class of all groups. 
(II) Mor(A, B) = Hom(A, B) = set of all group homomorphisms of A 

into B. 
(III) Usual composition. 
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1.2.3 A = C A T E G O R Y O F A B E L I A N G R O U P S 

(I) Obj(A) = class of all abelian groups. 
(II) and (III) as for G. 
In this case Hom(A, B) can itself be made further into an abelian group. 

Definition. Let the group Operations in B be written additively and let 
au a2e Hom(A, B). Then we define ax + a2 by 

Dom(a?i + a2) := A , Cod(a:i + a 2 ) '•— B, 

V<2 e A [ ( a i + a 2 )(fl) := ax(a)-\-a2(a)]. 

From the definition we see immediately that Hom(A, B) is in fact an abelian 
group. In particular the zero mapping of A into B is the zero element of 
this group and for a e Hom(A, B), —a is defined by 

D o m ( - a ) := A , Cod( -a ) := B, Va e A[(-a)(a) := -a(a)l 

1.2.4 R = C A T E G O R Y O F R I N G S W I T H U N I T E L E M E N T 

(I) Obj(/?) = class of all rings with unit element. 
(II) Mor(i?, S) = set of all unitary ring homomorphisms of R into 5 

(Definition, see 3.2.1). 
( I I I ) Usual composition. 

1.2.5 MR = C A T E G O R Y O F U N I T A R Y R I G H T J R - M O D U L E S O V E R A 

R I N G R W I T H A U N I T E L E M E N T 

(I) Ob](MR) = class of unitary right Ä-modules. 
(II) Mor(A, B) '= HomR(Ay B) = set of module homomorphisms of A 

into B (Definition, see 3.1.1). 
(III) Usual composition. 

As in the case of the category of abelian groups HomR(A, B) by the same 
definition as in 1.2.3 turns into an abelian group, in general however not 
again into an -module! Relevant details follow later. 

I f 5 is also a ring with a unit element, we denote by SM and SMR the 
categories of unitary left S-modules and unitary S-R bimodules respectively 
(Definition, see 2.1.1, etc.). 

1.2.6 T = C A T E G O R Y O F T O P O L O G I C A L S P A C E S 

(I) Obj(7") = class of all topological spaces. 
(II) Mor (A, B) = set of continuous mappings of A into B. 

(III) Usual composition. 



6 1 F U N D A M E N T A L I D E A S OF C A T E G O R I E S 1.2 

In all of the categories so far considered the objects were sets with or 
without (in S) an additional structure, and the morphisms were structure-
preserving mappings. We exhibit now some examples in which other 
conditions are present. 

1.2.7 S = A G R O U P AS A C A T E G O R Y 

Let G b e a n a r b i t r a r y g r o u p a n d l e t * b e a n o b j e c t . Then w e o b t a i n a 

c a t e g o r y G b y 

(I) Obj(G) = {*}. 
(II) Mor(*, *) = G. 

(II I ) Group O p e r a t i o n s i n G. 
Obviously, 1* is t h e n t h e n e u t r a l e l e m e n t o f G. 

1.2.8 A N O R D E R E D SET AS A C A T E G O R Y 

Let (M, ^ ) b e a n o r d e r e d set . A c a t e g o r y M is t h e n d e f i n e d b y t h e 

f o l l o w i n g S t a t e m e n t s : 

(I) Ob j (M) = M . 
0 iorA^B 
{{A^B)} iorA^B. 

This m e a n s , i n t h e case A^B, that Mor(A, B) s i gn i f i e s t h e se t w h o s e 

S ing le e l e m e n t is t h e s y m b o l (A *s B). 

( I I I ) (B ^ C)(A^B) (A ^ C). 
The i d e n t i t y of A is n o w 1 A = (A =ss A ) . 

(II) M o r ( A , £ ) : = ( ! 

1.2.9 T H E D U A L C A T E G O R Y 

Let K be a given category. The category K° dual to the category K is 
defined by: 

(I) Obj(K°) = Obj(/0. 
(II) V A , B € Obj(/C°)[Mor^(A, B) = M o r * ( £ , A ) ] . 

( I I I ) UorAB, C)xMorKo(A, B)B(y, ß)^ßy eMorK°(A, C) , 
where ßy is to be formed in Mor(/C). 

1.3 F U N C T O R S 

Functors play the same role for categories as do structure-preserving 
mappings (= homomorphisms) for the usual algebraic structures or as do 
continuous mappings for topological structures. A functor is accordingly 
(in our definition) a pair of structure-preserving mappings of one category 
into another (possibly the same as the first). 
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1.3.1 Definition. A covariant, respectively contravariant, functor F of a 
category K into a category L is a pair F = ( F 0 , FM) of mappings satisfying: 

(I) F0 : O b j ( / 0 ^ O b j a ) , 
(II) F M :Mor ( / f )^Mor(Z . ) , 

with the following properties 
(1) Va GMor( /QI> e Mor(A, B)^>FM(a) e M o r ( F 0 ( A ) , F 0 ( £ ) ) ] 

resp. [a e Mor (A, B)^>FM(a) eMor(F0(B), F 0 ( A ) ) ] ; 
(2) V A 6 O b j ( / 0 [ F M ( l A ) = lFo(A)]; 
(3) \faißeMov(K)[Cod(a) = Dom(ß)^>FM(ßa)=FM(ß)FM(a)] resp. 

[Cod(a) = DomG8)=>FMG8a) =FM(a)FM(ß)]. 
In place of F 0 and F M we write also simply F, thus F ( A ) := F 0 ( A ) , 
F ( a ) *= F M ( a ) . Condition (1) can then also be formulated as follows: 

(1) a:A->B^F(a):F(A)-+F(B) 
resp. a:A~>Bd>F(a):F(B)-»F(A) 

or 
(1) Dom(F(a)) =F(Dom(a ) ) A Cod(F(a)) = F(Cod(a)) 

resp. Dom(F(a)) = F(Cod(a)) A Cod(F(a)) = F(Dom(a)) . 
In order to indicate that F is a functor from K to L we also write F:K-*L 

If G : L -> P is also a functor then the composition GF: K-* P is obviously 
also a functor. I f both functors F and G are covariant or both functors 
are contravariant then GF is covariant, if F and G are of different "vari-
ance" then GF is contravariant. We indicate now some examples of 
functors. 

1.3.2 F O R G E T F U L FUNCTORS 

The forgetful functor F from MR into the category A of abelian groups 
is defined by: 

F0 : Ob)(MR) B A^A e Obj(A) 

FM :Mor(MR)Ba>-*a € M o r ( A ) . 

This covariant functor "forgets" the Ä-module structure; it preserves only 
the additive structure of a module. I f the additive structure is also "forgot-
ten" then we obtain the forgetful functor F from MR into the category S 
of sets 

F 0 : Ob]{MR) BA^A 6Obj(S) 

FM: Mor(MR)Ba^a eMor(S) . 

The functorial rules are, in any given instance, trivially satisfied. Further 
examples of forgetful functors are easily indicated. 



8 1 F U N D A M E N T A L I D E A S OF C A T E G O R I E S 1.3 

1.3.3 R E P R E S E N T A B L E FUNCTORS 

Let now K be an arbitrary category and let AeK. Then we dehne 

Mor*(A, - ) : Obj(/C) BX*-*MOTk(A, X) e Obj(S) 

Mor*(A, - ) : Mor(/Q B^MOTK(A, ^ ) eMor (S) , 

in which for X := Dom(£), Y := Cod(£), Mor*(A, £) is given by 

Mor*(A, £): Mor* (A, X) B a »-> G Mor* (A, y ) . 

I t is easy to verify that MorK(A, - ) is a covariant functor of K into S. 
Analogously we dehne for a fixed object B eK: 

M o r * K B): Ob](K) sX++MorK(X9 £ ) G Obj(S) 

M o r * ( - , 5 ) : Mor(/0 9 f ^ M o r K ( & S) e Mor(S), 

in which with AT := Dom( | ) , y := Cod( |) we put 

M o r * ( £ B): MorK( Y, B) B y*~^y^ G MorK(X, B). 

I t is easy to verify that MorK(-, B) is a contravariant functor of K into S. 
So far we have considered functors of one argument, i.e. of one category 

into another. Often, however, functors of more arguments also occur. These 
can, indeed, with the use of product categories (and dual categories) be 
reduced to (covariant) functors of one argument; nevertheless it is con-
venient for our purpose if we indicate functors of two arguments. 

1.3.4 Definition. Let K, K', L be categories. A functor Fof two arguments, 
that is covariant, respectively contravariant, in the first and covariant in 
the second argument of KxK' into L is a pair of mappings F = (F0,FM) 
for which we have 

(I) F 0 : O b j ( / O x O b j ( K V O b j ( Z . ) 
(II) FM: Mor(/f) x Mor(K') •+ Mor(L) 

with the following properties 
(1) For aGMor(/OAa'GMor(/C') 

with a: A^B A « ' : A'->B' 
we have FM{a, a'): F0(A, A')^F0{B, B') 
resp. FM(a, a'): F0(B, A') + F0(A, B') 

(2) F M U A , I A O = I F O ( A . A ' ) 

(3) FM(ßa,ß'a') = FM(ß,ß')FM(a,a') 
resp. FM(ßa, ß'a')=FM(a, ß')FM(ß, a') 

Correspondingly we dehne functors which are contravariant in the first 
and second argument or which are covariant in the first and contravariant 
in the second argument. 
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1.3.5 T H E FUNCTOR Mor 
Associated with every category K there is the functor Mor = Mor* of 

KxK into S which is contravariant in the first argument and covariant in 
the second. I t is defined by: 

Mor: Obj(K) x Obj(K) 9 (A, B)^Mor(A, B) e Obj(S) 

M o r : M o r ( / 0 x M o r ( / 0 9 ( a , y ) ->Mor(a , y ) e M o r ( S ) , 

in which Mor(a, y) for a : A -+ BY y:C->D is defined as follows 

Mor(a, y ) : Mor(J5, C)3ß^> yßa € Mor (A, D ) . 

It is easy to establish the validity of the functorial rules. As a special 
case of the above we have the Hom-functor 

H o m R : MR x MR -> S. 

1.4 F U N C T O R I A L MORPHISMS A N D A D J O I N T F U N C T O R S 

Let F and G be two given functors of the category K into L In numerous 
important examples these functors are not "independent" of one another; 
there exists between them a functorial morphism which we now wish to 
define. 

1.4.1 Definition. Let F.K^L and G.K^L be two co-, respectively 
contravariant, functors. A functorial morphism 4>:F->G is a family of 
morphisms 

* = (4> a |< I>A€Mor L (F(A) , G(A))AAGK), 

so that for all morphisms a : A -+B from K we have: 

G(a)<bA^BF(a)9 

so that the diagram 

F(A) >G(A) 

F ( o G(a) 

F(B) G(B) 

is commutative, where the vertical complete arrows denote the covariant 
and the vertical dotted arrows the contravariant case. I t is important 
moreover that <J>A depends indeed on F, G and A , and not, however, on a. 
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A trivial example of a functorial morphism is the identity F - » F with 
= 1 F ( Ä ) for every AeK. Further it is clear that the composition of two 

functorial morphisms <£>:F-> G and ty\G-*H is again such a functorial 
morphism. I f V = ( ¥ A | A e AT), then we dehne := ( ^ A * A | A e /C). 

Except for set-theoretical difficulties we can now dehne for two categories 
K and L a new category Func(/C, L), the functor category of K into Z_, whose 
objects are the functors of K into L and whose morphisms are the functorial 
morphisms of functors of K into L According to our notation 
Mor F u n c ( K,L)(G, F) would be for instance the "set" of functorial morphisms 
of F into G. Certainly we must here exercise caution since, for an arbitrary 
category, this need not be a set. I f we assume, however, that the object 
class of K is a set (K is then called a small category) then for arbitrary 
functors F and G—as we realise easily—MorFunc(/cL)(F, G) is again a set 
and Func(/C, L) is in fact a category. Functor categories of this sort play an 
important role in category theory. They are not, however, of significance 
for us, so that we shall not consider them here any further. 

1.4.2 Definition (notation as in 1.4.1). The functorial morphism <t>: F -» G 
is called a functorial isomorphism when 3>A is an isomorphism for all AeK. 
I f a functorial isomorphism exists between the functors F:K-*L and 
G : then we write briefly F = G. 

A l l that we have so far established for functorial morphisms of functors 
of one argument holds also, with appropriate modifications, for functors 
of more arguments. For instance let F:KxK'->L and G:KxK'-+L be 
two functors in two arguments, being contravariant in the first and covariant 
in the second. A family of morphisms 

* = ( < * W ) I d W ) e M o r , ( F ( A , A ' ) , G (A , A ' ) ) A (A, A')eKxK') 

is then a functorial morphism of F into G if for all morphisms a.B^A 
from K and a' \ A'^B from K' the diagram 

F ( A , A ' ) 

F (a .er ' ) 

F(B, B') 

G(A,A') 

G(a,cr') 

G{B, B') 

is commutative. <I> is again called a functorial isomorphism between F and 
G, F = G, if all 4> ( A,A) are isomorphisms. 

We can now introduce the concept of adjoint functors which plays a 
fundamental role in category theory. I t is also convenient to have the 
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c o a c e p t a t o u r d i s p o s a l i n m o d u l e t h e o r y s ince o n l y w i t h i t s h e l p c a n t h e 

c o n n e c t i o n b e t w e e n t h e f u n c t o r Horn a n d t h e t e n s o r p r o d u c t b e p r o p e r l y 

u n d e r s t o o d , i n w h i c h c o n n e c t i o n i t is a q u e s t i o n o f a d j o i n t f u n c t o r s . 

Let F.K-* L a n d G : L ->K b e t w o g i v e n f u n c t o r s , f o r w h i c h t h e r e f o r e 

G has t h e o p p o s i t e d i r e c t i o n t o F. Let us c o n s i d e r n o w the "Compound" 
f u n c t o r 

M o r L ( F - , -):KxL + S. 

Here w e a r e d e a l i n g w i t h t h e case o f a f u n c t o r i n t w o a r g u m e n t s o f K x L 
i n t o t h e c a t e g o r y S o f sets, c o n t r a v a r i a n t i n t h e f i r s t a r g u m e n t a n d c o v a r i a n t 

i n t h e s e c o n d . This holds s i m i l a r l y f o r t h e f u n c t o r 

M o r * ( - G-):KxL^S. 

Under t h e s e a s s u m p t i o n s t h e f o l l o w i n g d e f i n i t i o n holds. 

1.4.3 Definition. The f u n c t o r s F a n d G a r e said t o b e a pair of adjoint 
functors, o f w h i c h G is said t o b e right adjoint to F and F left adjoint t o 

G, i f t h e r e ex i s t s a f u n c t o r i a l i s o m o r p h i s m b e t w e e n M o r L ( F - , - ) a n d 

M o r * ( - G-). 

1.4.4 E X A M P L E OF A F U N C T O R I A L M O R P H I S M 

Let MK b e t h e c a t e g o r y of v e c t o r Spaces o v e r t h e field K. 

As is w e l l k n o w n w i t h r e g a r d to a v e c t o r Space VK, t h e r e a r e a s s o c i a t e d 

t w o Spaces, t h e d u a l 

KV* := HomK{V,K) 

a n d t h e b i d u a l 

V * £ : = H o r n b y * , * ) . 

If 

a:V-*W 

is a l i n e a r m a p p i n g , a n d t h u s a m o r p h i s m f r o m MK, t h e n 

is t h e d u a l a n d 

is t h e b i d u a l l i n e a r m a p p i n g to a ( n o t i c e a b o v e t h e a p p l i c a t i o n o f t h e l i n e a r 

m a p p i n g is o n t h e o p p o s i t e side f r o m K). 
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PROPOSITION 

(1) By means of the definition 

A ( V ) : = V**, A ( a ) : = a * * 

a functor 

A: MK -» /W^ 

is obtained. 
(2) For D e V , t e Ü E V * * be defined by 

v : V* 3<p*-+(p(v)eK, 

likewise let <&v € HomK(V, V**) defined by 

<t>v:Vsv>->v€V**. 

$ := (<& v| V e MK) is then a functorial morphism between the identity functors 
of MK and A. 

(3) / / <t> is restricted to the category of finite-dimensional vector spaces 
over K then <t> is a functorial isomorphism. 

Proof. The simple proof may be left to the reader as an exercise. • 

1.5 P R O D U C T S A N D C O P R O D U C T S 

In the investigation of modules two distinct possibilities arise. On the 
one hand we can analyse a given module by means of its submodules and 
factor modules and from the knowledge of these we can make inferences 
upon the structure of the module itself. On the other hand we attempt to 
construct a new module out of given module in order to obtain information 
about the category of modules. In connection with this second possibility 
the formation of products and coproducts is of the greatest interest. In 
order to make their significance more intelligible, we formulate these 
concepts here for arbitrary categories. 

1.5.1 Definition. Let K be a category. 
(1) Let (Ai\iel) be a family of objects from K. A pair (F, (<p / | /e/)) is 

called a product of the family (A, | / e / ) :<£> 
(I) FeObj(AT). 

(II) (cpi\i G I) is a family of morphisms from K such that 

(Pi'.P^Ah iel. 
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(III) For every family (y^iel) of morphisms y , : C - > A , , iel from K, 
there exists exactly one morphism y : C -» P from K such that 

ji = <p(y9 i e /. 

(2) Let (Ai\iel) be a family of objects from K. A pair ( Q , ( T J / | / G / ) ) is 
called a coproduct of the family ( A , | / G / ) :<£> 

(I) OGObj(/C). 
(II) (rji\i G / ) is a family of morphisms from K such that 

rii'.Ai + Q, iel. 

(III) For every family (a,-|/eJ) of morphisms ctiiAc+B, iel from K, 
there exists exactly one morphism a.Q^B, from /C such that 

at = ar/,, i e I. 

I f (P, (<pi\i e I)) is a product of the family ( A , | / e/), then we put 

16/ 
and let \[ A , denote the product. This can lead to misunderstanding, since 

i e J 

the brief notation n At creates the impression that the product is uniquely 
iel 

determined and because, moreover, the reference to the family (<p,|i G / ) is 
omitted. Caution is therefore needed in the use of Yl At\ 

I f (O, (TJ/|/ G / ) ) is a coproduct of the family (At\i e/), then we put 

I I A, := Q 

and let this denote the coproduct. The warning, mentioned above for the 
product, is also applicable here. The requirement mentioned in (III) for 
the product can, in the case of / = { 1 , 2}, be characterized by means of the 
following commutative diagram: 

C 
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Correspondingly we obtain for the coproduct the commutative diagram: 

B 

In a given category K products and coproducts do not necessarily exist. If, 
in the event, they exist for an arbitrary family (At\i ei), then K is called a 
category with products, respectively coproducts. I f these exist at least for all 
finite index sets / , then K is called a category withfinite products, respectively 
finite coproducts. 

Products and coproducts—if they happen to exist—are uniquely deter­
mined up to isomorphism. More precisely the following theorem holds. 

1.5.2 T H E O R E M . Let Kbe an arbitrary category. 
(1) / / (P, (<pi\i e /)) and (P', (cpi\i e I)) are products ofthe family (A,-|/ e I), 

then there is an isomorphism a:P-*P' with 

(Pi = (p'iCr, iel. 

(2) / / (Q, (rii\iel)) and {Q', (ry/1/ ei)) are coproducts of the family 
(A(\i e I), then there is an isomorphism r.Q^Q' with 

r)\=Tr\i, iel. 

Proof. (1) If we replace (y,|/e J) of 1.5.1 (III) by the family (<p'i\iel) and 
replace C by P' then we obtain from the definition a 

a':P'-*P with 

Analogously there exists a er: P-> P' with cpt = <p\cr. From this it follows that 

<pi = (picr'o; <p\ = (p\acr'. 

I f in the definition of the product we put (<pt|/ e I) for (%[/ e I) then y = 1 P 

yields the desired result: <p, = <p,lP. Since y is uniquely determined, and on 
the other hand <p, = cpicr'cr holds, it follows that 1 F = cr'o- and analogously 
1P* = cr'cr, as was to be shown. 

(2) The proof for the coproduct results from dualizing (= reversal of the 
arrow) and is left to the reader as an exercise. • 

We shall meet examples of products and coproducts in the category MR. 
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EXERCISES 

(1) 
Let K be a category. Prove: 

ßa is a monomorphism =>a is a monomorphism. 
a,ß are monomorphisms A Cod(a) = D o m ( a ) = > ß a is a monomorphism. 
ßa is an epimorphism ß is an epimorphism. 
ß, a are epimorphisms A Cod(a) = D o m ( ß ) ^>ßa is an epimorphism. 

(2) 
(a) Show for the category S of sets and for the category T of topological 

Spaces: if a is a morphism, then we have 

a is a monomorphism<=>a is injective as a mapping of sets, 

a is an epimorphism is surjective as a mapping of sets. 

(b) Let T2 be the category of Hausdorff Spaces. Investigate whether (a) 
also holds for T 2 . 

(3) 
A n abelian group A is called divisible :<=> Vn e N[«A = A ] . Let A G be the 
category of divisible abelian groups. Give an example of a monomorphism 
in A0 which is not injective as a mapping of sets. 
(Hint: use Q and Q/Z) . 

<
4

> 

Let G b e a group with more than one element and let G be the associated 
category in the sense of 1.2.7. Determine exactly the sets / for which 
products and coproducts exist on the index set / . 

. <5> 
Let M be an ordered set and let M be the associated category in the sense 
of 1.2.8. 

(a) By use of the ordering on M give a necessary and sufficient condition 
so that finite, respectively arbitrary, products and coproducts exist. 

(b) Which morphisms from M are bimorphisms and which bimorphisms 
are isomorphisms? 

(6) 
Define a category K such that Obj(/C) = M = { 1 , 2, 3,. . . } and in which also 
the product of the family (A, | / = 1, 2 , . . . , n) with A , € K is the greatest 
common divisor of Au •.., An and the coproduct of (A(\i = 1, 2 , . . . , n) is 
the least common multiple of Au ..., An. 



Chapter 2 

Modules, Submodules and Factor Modules 

2.1 ASSUMPTIONS 

The reader is expected to have some familiarity with the simplest ideas 
of rings and modules. A t the least he should have already become familiär 
wi th two special cases of modules: linear vector Spaces and abelian groups. 
Although the definitions of most of the basic ideas are here presented once 
again—above a l l , in order to fix notation—yet in view of the expected 
prerequisites these ideas are not especially motivated. 

I n consequence we shall be very brief. Motivations and examples are 
then best exhibited whenever we pass beyond the basic ideas and whenever 
the issue is not immediately concerned with a direct generalization of the 
ideas of linear vector Spaces. 

I n the following all rings, which are mostly denoted by R, S or T, are 
to possess a unit element 1. 

2.1.1 Definition. Let R be a ring. A right R-module M is 
(I) an additive abelian group M together with 

(II) a mapping 

M 'xR-r M with (m, r) *-> mr, 

called module multiplication, for which we have 
(1) Associative law: [mr^)r2 = m(r\r2). 
(2) Distributive laws: (mj + m2)r = m\r + m2r, m(ri + r2) = mri + mr2. 
(3) Unitary law: m\-m. 

(In the above m, mu m2 are arbitrary elements from M and r, ru ?i are 
arbitrary elements from R). 

16 
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We point out explicitly that according to this definition all modules in 
the following are unitary. If M is a right R-module, then we write also MR 

or M = MR in order to indicate the ring which is involved. A n analogous 
definition holds for left modules. I f S and R are two rings then M is an 
S-R-bimodule if M is a left 5-module and a right R-module (with the same 
additive abelian group) and if, additionally, the following associative law 
holds: 

s {mr) = (sm )r for arbitrary s £ S, m e M , r eR. 

We write also SMR for the 5-Ä-bimodule. 
If we speak of a module, respectively of an R-module, then we mean a 

one-sided R-module, in which however the side is not fixed. Statements 
on R-modules hold correspondingly both for right Ä-modules and for left 
Ä-modules. 

I t is well known that an R-module is called a linear vector space over 
R if JR is a field (or skew field). Further the modules over the ring Z of 
natural numbers are the abelian groups (written additively). 

If M is a right R -module we denote the neutral element of the additive 
group of M by 0M and that of the additive group of R by 0 R , as with linear 
vector Spaces it then follows that 

( W = 0 M , mOR= 0 M , 

and also 

- ( m r ) = (-m)r = m(—r) for arbitrary meM,reR. 

In the following we write 0, as is usual, both for 0 M and for 0R. 

2.2 S U B M O D U L E S A N D I D E A L S 

In regard to mathematical structures, the substructures, subgroups, 
subfields and subspaces of topological Spaces, generally play an important 
role. 

In the investigation of modules, the submodules, which are about to be 
defined, are correspondingly important. 

2.2.1 Definition. Let M be a right R-module. A subset A of M is called 
a submodule of M , notationally A ^ M (or also AR «-> MR) if A is a right 
R -module with respect to the restriction of the addition and module 
multiplication of M to A. 
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We use the notation A ^> M for the submodule relationship, in order 
to have available A c M for set-theoretic inclusion. Further we denote 

A ^ M : <£> A is a proper submodule of M 

A M : A is not a submodule of M 

We remark that from A M it does not necessarily follow that A <£ M. 

2.2.2 L E M M A . Let M be a right R-module. If A is a subset of M and 
A^ 0 then the following are equivalent: 

(1) A^M. 
(2) A is a subgroup of the additive group of M and for all a eA and all 

r e R we have areA (where ar is the module multiplication in M). 
(3) For all au a2eA, ax + a2eA (with respect to addition in M) and for 

all aeA and all reR, we have ar e A. 

Proof. This follows exactly as for linear subspaces of linear vector Spaces. 

I t is left to the reader as an exercise. • 

Analogous assertions hold for submodules of left modules and bimodules. 
We observe that we can think of a ring R as a right i?-module RR, as 

a left -module RR and as an R-R bimodule RRR respectively. A right 
ideal, left ideal or two-sided ideal of R is then a submodule of RR, of RR 
or of RRR respectively. I f R is commutative then we need not distinguish 
between right, left and two-sided ideals and we speak then only of ideals. 

Examples and remarks 
(1) Every module M possesses the trivial submodules 0 and M , where 

0 is the submodule which contains only the zero element of M. 
(2) Let M be arbitrary and let m0eM. Then, as we see immediately 

from 2.2.2, 

m0R '= {m0r\reR} 

is a submodule of M which is called the cyclic submodule of M generated 
by ra0. 

(3) I f MK is a vector space over the field K then the submodules are 
called (linear) subspaces. 

(4) In the ring Z of natural numbers every ideal is cyclic. 
(5) Cyclic ideals of a ring are called principal ideals and a commutative 

ring is called a principal ideal ring if every ideal is a principal ideal. 
(6) A field K has only the trivial ideals 0 and K. 
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2.2 .3 Definition 
( 1 ) A module M MR is called cyclic : O 

3 m 0 G M[M = m0R\ 

(2) A module M MR is called simple : <=> 

M ^ O A V A ^ M [ A = 0 v A = M ] , 

i.e. M ^ O and 0 and M are the only submodules of M 
(3) A ring R is called simple : <=> 

¥=• 0 A V A <-+ RRR[A = 0 v A = R], 

i.e. # 0 and 0 and R are the only two-sided ideals of R. 
(4) A submodule A M is called a minimal, respectively a maximal, 

submodule of M : <=> 

In the same way we speak of simple, minimal and maximal ideals. As 
already mentioned, cyclic ideals are called principal ideals. 

We emphasize in addition that the minimal submodules are previously 
the simple submodules. The minimal (=simple), respectively maximal, 
submodules of a module are, if they exist, evidently minimal, respectively 
maximal, elements in the ordered set of non-zero, respectively proper, 
submodules under the ordering by inclusion. 

2.2.4 L E M M A . M is simple <=> 

Proof. "4>": Let m ^ 0, then m = mle mR, so mR ^ 0, and hence mR = M. 
"4=": Let O ^ A ^ M and O^aeA, then aR=M, but aR^A, so 

Examples 
(1) Z contains no minimal (=simple) ideal, for if nZ ^ 0 then, for example, 
2nZ is a non-zero ideal property contained within nZ. The maximal 
ideals of Z are exactly the prime ideals pZ, p =pr ime number. The proof 
of this follows from the fact that 

0 ^> A A MB M[B <*» A => i? = 0] 

resp. A % > M A V J 9 ^ M [ A 5 4 > B = M ] , 

M ^ 0 A Vra G M[m ^ 0 :=> rai? = M ] . 

A = M . • 

mZ nZ<=>n\m. 

( 2 ) Qz has no minimal and no maximal submodules. 
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Let 

and l e t 

aeA, a^O, 
then 

0 2aZ ^> aZ^ A^Q. 

Thus A cannot be minimal. Reference to 2.3.7 shows that there are no 
maximal submodules. 
(3) In a vector Space V = VK the minimal (=simple) subspaces are just the 
one-dimensional subspaces and these are given precisely in the form vK 
by the elements v e V, v 5* 0. If V is rt-dimensional, then the maximal sub­
spaces are exactly the (n - l)-dimensional subspaces. If V is not finite-
dimensional, then there are likewise maximal subspaces (a fact which is 
well known from linear algebra and which wil l here be shown later). 
(4) I f K is a skew field, then KK is simple as also is K as a ring (i.e. KKK 

is simple). 
This follows immediately from the fact that every element ^ 0 of 

possesses an inverse. 
(5) Let R := Kn be the ring of n x n Squa re matrices with coefficients in 
a skew field. Without proof we mention (proof follows later) that although 
R is simple (as a ring) nevertheless RR is not f o r n > 1. 

We take this opportunity to recall the definition of an algebra. 

2.2.5 Definition. A n algebra is a pair (R, K), where 
(I) R is a ring. 

(II) K is a commutative ring. 
( I I I ) R is a right üf-module for which we have 

V n , r2e RVk e K[{rxr2)k = rx{r2k) = (rik)r2l 

Our assumptions on rings and modules presuppose that R has a unit 
element and that K operates unitarily on R. The algebra (R, K) wil l also 
be called a üT-algebra R or an algebra over K. 

There is no significance in our defining R as a "right Ä'-algebra". Since 
K is commutative we can from the definition 

kr := rk9 reR,keK 

pass over immediately to a 4 'left Jf-algebra". 
If 1 is the unit element of R then 1K := {lk\keK} is a subring of the 

centre of R. Conversely every ring is an algebra over every subring of its 



2.2 SUBMODULES A N D I D E A L S 21 

centre. A t the same time the centre of a ring is, as we know, the set of 
those elements aeR, such that for every r e R we have: ar = ra. The centre 
of R is a commutative subring of R, which contains the unit element of R. 

2.3 I N T E R S E C T I O N A N D S U M O F S U B M O D U L E S 

2.3.1 L E M M A . Let T be a set of submodules of a module M , then 

PI A := {m e M | V A e T[m e A ] } 

is a submodule of M. 

Proof. This follows w i t h t h e h e l p of 2.2.2 as i n t h e case o f subspaces o f 

l i n e a r v e c t o r Spaces. • 

Remark. We n o t e t h a t w h e n T = 0 t h i s d e f i n i t i o n y i e l d s 

PI A := M . 

From 2.3.1 t h e r e f o l l o w s i m m e d i a t e l y t h e c o r o l l a r y . 

C O R O L L A R Y P l A is the biggest submodule of M which is contained in all 

AeT. 

Examples 
2 Z n 3 Z = 6Z, D pZ = 0. 

p =prime 

2.3.2 L E M M A . Let X be a subset of the module MR. Then 

1| Z xiri\xitX/\rjeRAnef^jj, if 

0 if 

if X*0 

X=0 

is a submodule of M. 

Proof. For X = 0 the assertion is clear. Let now X ^ 0 . The proof now 
follows with the help of 2.2.2: 

m n m n 

Z xfa Z x'/jeA^ I * , r , + Z x\r\eA, 
i=l 7=1 i = l / = 1 

Z Xj-rj-eA, reR^> X x^reA. • 
7=1 7 = 1 
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2.3.3 Definition. The module defined in 2.3.2 is called the submodule of 
M generated by X and is denoted by \X). 

It is important that this submodule, which, if X V 0 , is the set of all 
finite linear combinations IJC/ , with JC, e Xy can also be characterized by the 
following property. 

2.3.4 L E M M A . \X) = smallest submodule of M that contains X 

= n c. 
C ^ M A X C C 

Proof. \i X- 0 and consequently | X ) = 0 then the assertion is trivially 
satisfied. 

I f X # 0 and C is a submodule which contains X , then along with x, e X9 

XjTj and all finite sums of such elements lie in C, and it follows that \X)«-» C. 
Because X is also a subset of | X ) (since x =xle\X)), \X) is in fact the 
smallest submodule of M containing X. 

Let 

D := n C. 
C ^ M A X C C 

Since by definition X is a subset of D and D is a submodule it follows 
that \X) D. But on the other hand \X) occurs as a C in the intersection 
and it follows that D \X) thus \X) = D. • 

In the case of an S-R-bimodule M the submodule generated by a subset 
of M is given by 

(X):= 
| S SjXfjlxi e X A Sj e S A r;- E Ä A M € N j , if X 5̂  0 

0, if A T = 0 . 

As before it then follows: (X) = smallest submodule of SMR which 
contains X 

= n c. 
C ^ M A X C C 

A corresponding notation is used for ideals. 

2.3.5 Definition. Let again M = MR. 
(1) A subset X of a module M is called a generating set of M \ <̂> | X ) = M 
(2) A module (or right ideal) is called finitely generated : there exists 

a finite generating set. 
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(3 ) A module (respectively right ideal) is called cyclic (respectively 
principal right ideal): O there exists a generating element (see 2 . 2 . 3 ) . 

( 4 ) A subset X of a module M is called free : <=> for every finite subset 
{ j t i , . . . , xm)<= X (with # xt for / 5*/ (/, / = 1, . . . , m)) it follows from 

m 

Z = 0 with r, e Ä 
1 = 1 

that r, = 0 (/ = 1 , . . . , m). 
(5) A subset X of a module Af is called a /3as/s of M : <=> X is a generating 

set of A f A X is free. 
If X 9^ 0 is a generating set of M then this means that every element 

m G M may be written as a finite linear combination 

n 

m = £ je//, JC/ € AT, ry G i?. 
; = 1 

It is here obvious that n G N is not fixed in general but depends on m. 
Further the coefficients r} and, in fact, also the x}- G X that occur are not 
uniquely determined by m. Of course if X = { * i , . . . , xt] is finite then every 
element meM can be written in the form 

t 

m = Z 
y - i 

since the missing summands xfi can be added as x,0. Furthermore the 
coefficients r ; may not be uniquely determined. The coefficients are 
however uniquely determined if a basis is being considered. 

2 . 3 . 6 L E M M A . Let X ^ 0 be a generating set of M = M R . Then we have: 
X is a basis <^> for every meM the representation 

n 

m = X */0 with Xj G AT, r7- G 
7 = 1 

w unique in the following sense: // 

w = Z * / / = Z V / A xt # for i 7*j, (/, 7 = 1,. . . , n\ 
7 = 1 7 = 1 

then necessarily 

/> = /•; (; = l , . . . , w ) . 

Prao/. If we have 

m = Z xir] = Z A Xi ^ X/ for 15* / (/, 7 = 1 , . - . , / i ) , 
7 = 1 7=1 
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then it follows that 

0 = 1 * / ( / > - r j ) 

and since X is free, it is immediate that r, — r\ = 0 , thus r, = rj (/' = 1 , . . . , n) . 
"<=": Let 

£ jc/y = 0 A xx ^Xj for / # / ( / , / = 1 , n ) . 
7 = 1 

n 
Since also we have 0 = £ * / 0 , it follows that r,r = 0 ( / = 1 , . . . , n) i.e. X is 

/=i 
free. 

Remark. I f X = • • • , * , } is a finite generating set (with xt ^ xf for / ^ / ) 
then we have: X is a basis <=> for every meM the coefficients r7 Gi? in the 
representation 

m = S 
7 = 1 

are uniquely determined. 
We point out that these Statements on uniqueness do not make sense in 

the case of an infinite basis X . For an infinite X we cannot replace the 
missing indices by means of summands of the form Jt,0 = 0 , since infinite 
sums—even of zero—are not defined! Statements of uniqueness must be 
formulated in the sense of 2 . 3 . 6 . 

Examples 
( 1 ) Every module M has trivially M itself as a generating set (for every 
m e M i s a finite linear combination of the form m = m l , 1 e R ) . 
( 2 ) If R is a ring, then { 1 } is a basis of RR (and of RR). 
( 3 ) We now consider properties of Q z . 

2 .3 .7 PROPOSITION. / / finitely many arbitrary elements are omitted from 
an arbitrary generating set X of Qz, then the set with these elements omitted 
is again a generating set of Q z . 

Proof. I t suffices to show that an arbitrary element x0 can be omitted from 
X , since the proposition then follows by induction for finitely many. 

Since X is a generating set x0/2 can be represented in the form 

y = *0*0+ I XiZi, XteX, 2 / G Z . 
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Then it follows that 

x0 = x02z0+ Z Xi2z(^>x0n= Z x{lzu 

where n = 1- 2z0 e Z A n ^ 0. Let now 

— XoZo •+" 2- */ z/> 
W X/*X0 

X / e X , Zy GZ, 

hence 

*0 = Xo«Z 0 + Z = Z X;2Z;Z0 + Z JC//lZy 

Z *fcZfc, Xk e X , z i c € Z . 

Thus xo lies in the submodule generated by X \ { J C 0 } , and since X is a 
generating set of Q z , then so also is X \ { x 0 } . 

From this result it further follows: There is no finite set of generators 
of Q z , since otherwise Q z would be generated by the empty set and it 
would follow that Q z = 0 ^ . 

There is no maximal submodule of Q z . Suppose that A were to be one 
such and that q e Q, q£ A, then from 2.2.2 

is a submodule of Q z . Since this contains A properly it follows that 

Thus Au{q}, and then also A by itself, would be a generating set of Q z 

from which it would follow that A = Q*%. 
I t has already been established previously that Q z does not also have a 

simple ( = minimal) submodule. Obviously Q z does not have a basis for if 
we omit an element from a basis then the remaining set of elements is no 
longer a generating set (since the omitted element is not linearly represent-
able by the remaining elements). 

(4) As the next example we prove the theorem that every vector space 
over a skew field has a basis. For this we make our first application of 
Zorn's lemma, which is needed again later in other proofs. We shall 
therefore formulate it here. 

ql + A : = {qz +a\z eZ A a € A } 

qZ + A =Q. 

Z O R N ' S L E M M A . Let A be an ordered set. If every totally ordered subset of 
A has an upper bound in A then A has a maximal element. 
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We take this opportunity to remark upon the known fact that Zorn's 
lemma is equivalent to each of the following assertions: 

1. Axiom of choice. 
2. Principle of Well-ordering. 
In this book we shall make use of Zorn's lemma and of the Axiom of 

Choice. 

2.3.8 A X I O M . Every vector space over a skew field has a basis 

Proof. Let K be a skew field and let VK be a vector space over K. Let <& 
denote the set of all free subsets of V. Since the empty set is free, $ is 
non-empty. <t> is an ordered set under inclusion of subsets as order relation. 
In order to apply Zorn's Lemma, we must show that every totally ordered 
subset T of 4> has an upper bound in <&. I f T = 0 then every element from 
3> is an Upper bound of T. Let now r = {Xi\j eJ}^ 0 , then we show that 

is free and hence represents an upper bound of T in <I>. Let JCI, ..., xn be 
distinct elements from X. Since T is totally ordered, there is an X}- £ T with 
JCI, ..., xn £ Xj. Since Xt is free, {JCI, ..., JC„} is free and consequently X is 
free. 

By Zorn's Lemma there exists then a maximal element Y in We 
show that Y is a basis of V over K. Since Y is free we only need 
to show that | Y) = V. I f V = 0 then it follows that Y = 0 and from 
the definition of |Y) it follows that \Y)=V. I f V*0 then it follows 
that Y 0 . Let now v£V with v£ Y, then by virtue of the maximality 
of Y Yu{v} cannot be free. Thus there exist distinct yi9..., yn£ Y 
together with k, ku . . . , kneK with 

in which not all k, ki,..., kn, are equal to 0. k = 0 is not possible since 
then (because Y is free) it would follow that fc, = 0 (/ = 1 , . . . , n). From 
k # 0 it follows that 

v = ü k k - i = £ yi(-kJk~1)£\Y\ 
7 = 1 

t h u s V = | y ) . • 

After examining these exampies we continue with our general 
considerations. 
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PROPOSITION. Let A = { A , | / e 7} be a set of submodules A{ MR. Then 

| I a^ditAi A I' c / A / ' i s finite j , ifA^0y 

U a ) = 
iel / 

T W / . In the case 7 ^ 0 , 

0, i / A = 0 , 

U A / l w tfie sef o/a///w/te swms X ̂ / w/fft <z,- £ A,-. 
16/ / 

U A f ) is by definition the set of all finite sums 
iel / 

X ß/y with a ; e U A f . 
/ = 1 ! € / 

I f we bring together all summands a/,- which lie in a fixed A , to form a 
sum a\ and if we treat with the remaining summands similarly then it 
follows that 

7 = 1 16 / ' 

thus we have 

UAi)*->' Z ai\aieAi A 7'<= 7 A 7'is finite | 
1 6 / / 1 / 6 / ' J 

The converse inclusion is clear. • 

2.3.9 Definition. Let A = {A,|z e7} be a set of submodules A , «-» M , then 

16/ / 

is called the sum of the submodules { A , | / € 7}. 
« 

I f A = { A i , . . . , An} then every element from X A}- can be written in the 
/= i 

form 

£ ay with a}eAh 

7 = 1 

the missing summands a, can be added as af = 0. Generally it should be 
emphasized that the representation £ tf« of the elements of the sum need 

16/ 
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not be unique. If it is unique then a particular case occurs with which we 
have to concern ourselves in the next section. 

We are now able to characterize the maximal submodules of a module. 

2 . 3 . 1 0 L E M M A . Let A M. Then the following are equivalent: 
( 1 ) A is a maximal submodule of M. 
( 2 ) V m e M [m £ A => M = mR -f A ] . 

Proof " ( 1 ) = > ( 2 ) " : Let m£A. Then A mR + A and hence ( 2 ) holds. 
" ( 2 ) 4 > ( 1 ) " : Let A^B^M and let meB, m£A. Then M = 

mR +A - > £ + A <-> B and thus B=M. Hence ( 1 ) holds. • 

As we have seen, Q z does not have a maximal submodule. In this 
connection the following theorem is of interest. 

2 . 3 . 1 1 T H E O R E M . If the module MR is finitely generated then every proper 
submodule of M is contained in a maximal submodule of M. 

Proof Let {mu . . . , m,} be a Sys t em of generators of M. Let A Af, then 
the set 

d>:= { £ | A ^ £ « ^ M } 

is non-empty since Ae<S>. Moreover it is also ordered under inclusion. In 
order to be able to apply Zorn's lemma, we must show that every totally 
ordered subset r c $ possesses an upper bound in <I>. To this end let 

C : = U ß , 

then it follows that A ^ C. Suppose C = M , then we should have 
{ m i , . . . , m J c C and it would follow that there must be a ß e T with 
{ m i , . . . , m,}<z J9, giving therefore B=M ^ . Thus we have established 
that C G $ . According to Zorn there exists then a maximal element D 
in 4>. In order to show that D is a maximal submodule of MR, let 
D <-+ L***MR. Then it follows that and since D is maximal in <t> it 
follows that D = L. • 

I f M 5* 0 and if M is finitely generated then it follows with A = 0 that 
M has a maximal submodule. 

2 . 3 . 1 2 C O R O L L A R Y . jEuery finitely generated module M # 0 /tas a 
maximal submodule. 
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In order to be able to "dualize" the notion of finite generation, we must 
first of all State an equivalent reformulation. 

2.3.13 T H E O R E M . The module MR is finitely generated if and only if there 
is in every set {A(\i e 1} of submodules At M with 

I A{=M 
iel 

a finite subset {At\i e J 0} (i.e. h^I and I0 is finite) such that 

1 Ai = M. 
iel0 

Proof Let M be finitely generated, i.e. M = m\R + . . . 4- mtR. 

Since £ A = M every m y is a finite sum of elements from the At. Clearly 
16/ 

there is a finite subset Io^I such that 

m i , . . . , m, e I At. 
t'6/o 

Then it follows that 

M = mxR+.. . + mtR~> I At ^M, 
i e / 0 

thus the assertion holds. 
To prove the converse we consider the set of submodules {mR\m eM}. 

Then there is a finite subset {m\R,. .., mtR) with 

mxR+.. . + mtR = M , 

thus M is finitely generated. 
We can now formulate the dual notion. 

2.3.14 Definition. The module MR is said to be finitely cogenerated : O for 
every set {At\i e 1} of submodules At ^ M with DA( = 0 there is a finite 

J 6 / 

subset {Ai\i e I0} (i.e. I0 c 7 and J 0 is finite) with P | A , = 0. 
J 6 / 0 

We shall return later to this concept. For the present we may point out 
two examples. 

(1) Z z is not finitely cogenerated since 

n P Z = O , 
prime p 
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b u t for finitely m a n y p r i m e s p u . . . , pn w e h a v e 

n 
n p i Z = p i . . . p „ z * o 
1=1 

( 2 ) A v e c t o r space V o v e r a field K is finitely c o g e n e r a t e d i f a n d o n l y 

i f i t has finite d i m e n s i o n . The p r o o f is l e f t t o t h e r e a d e r as a n e x e r c i s e . 

As i n t h e case of v e c t o r Spaces t h e modular law holds a l so f o r m o d u l e s 

o v e r a n a r b i t r a r y r i n g . 

2 . 3 . 1 5 L E M M A ( M O D U L A R L A W ) . From A , B, C ^ M and B C it 

follows that 

(A+B)nC = (AnC) + (BnC) = (AnC) + B. 

Proof Let a+b = ce(A + B)nC w h e r e a e A , b e B, c e C. I t t h e n f o l l o w s 

f r o m B C that a = c - / 3 e A n C , t h u s a + b = ce{Ac\C)+B a n d h e n c e 

{A+B)nC~>(AnC) + B. 
Let n o w deAnQ beB. Then s i n c e B ^ C i t f o l l o w s that d + be 

(A + B)nC a n d t h u s a l so that (AnC) + B ~> {A+B)nC. • 

We o b s e r v e t h a t f o r A , B, C M a n d w i t h o u t t h e a s s u m p t i o n B C 
w e a l r e a d y h a v e 

2 . 4 . 1 M is c a l l e d the internal direct sum of t h e set {B\iel\ o f 

s u b m o d u l e s Bx M , in S y m b o l s : 

M = 0 5 / is also said to be a direct decomposition of M into the sum of 

the submodules {B\i e / } . 
In the case of a finite index set, say / = { 1 , . . . , n) M is also written as 

Af = B i © . . ,@B„. 

(AnC) + (BnC)<-*(A+B)nC. 

However the reverse inclusion does not necessarily hold. 

2.4 I N T E R N A L D I R E C T SUMS 
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2.4.2 L E M M A . Let {Bt\i el}bea set of submodules B{ e Mand letM = £ 
i 

77ie« (2) of the previous definition is equivalent to: 

For every xeMthe representation x = £ h with bx eBh Vc:J, V finite, is 
iel' 

unique in the following sense: 
// 

x = Z bi = X c, w/Y/i c, G i?„ •e/' i«=r 
r/ze/i it follows that 

Vier[bi = ci]. 

Proof "=>": Let (2) hold and let JC = £ /3, = £ c, then it follows that 
iel' iel' 

V ; e / ' U - c y = I c,-b,eB,n I 

Since 

iel' iel 
i*i i*l 

it follows that bj — Cj for all j eV. 
" < ^ " : Let 

16/ 
»*/ 

then b = bjG Bj and there is a finite subset 7' c I with j£ V so that 

16/' 

I f we add to the left-hand side the summands QeBh iel' and to the 
right-hand side the summand 0 e B„ then the same finite index set V u {/} 
appears on both sides and from uniqueness it follows that b = bj = 0, i.e. 
(2) holds. • 

2.4.3 Definitions 
(1) A submodule B <-> M is called a direct summand of 

M :<5>3C~>M[M = B®C]. 
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(2) A module M ¥=• 0 is called directly indecomposable: <£> 0 and M are 
the only direct summands of M. 

Examples and Remarks 
(1) Let V = VK be a vector space and let {xi\iel} be a basis of V. Then 
clearly we have 

V = ®xtK. 
iel 

Further every subspace of V is a direct summand, as we show later in 
a more general context. 
(2) In Z z the ideal nZ with n # 0, n ^ ± 1 is not a direct summand. Suppose 
Z = nZ@mZ. Then nm enZnmZ. Hence m = 0 and so Z = nZ, i.e. « = 
±1H. From this it follows that Z 2 is directly indecomposable. 
(3) Every simple module M is directly indecomposable for it has only 0 
and M as submodules. 
(4) Every module M which has a largest proper submodule or, in the set 
of non-zero submodules, a smallest submodule, is directly indecomposable. 
The proof may be left to the reader. 

2.5 F A C T O R M O D U L E S A N D F A C T O R R I N G S 

The definition of factor modules holds as in the case of factor spaces of 
linear vector Spaces since only properties of linearity are employed in the 
definition. 

Let C ^ MR. Then, in particular, C is a subgroup of the additive group 
of M Clearly the factor group M/C = {m + C\meM} exists under the 
addition 

(ma + C H O n z + C) := ( m i + m 2 ) + C. 

A module multiplication can now be defined on M/C so that M/C 
becomes a right module termed a factor module or a residue class module 
of M modulo C or also of M by C. 

2.5.1 Definition 

(m + C)r := mr + C, meM, reR. 

In order to show that M / C is indeed a right i?-module, it is sufficient 
to show that 

M/CxR^M/C with (m + Qr)*-+mr + C 
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is a mapping, since the other module properties follow directly from those 
of M . 

Let m } 4- C = ra2 + C. Then m i = ra2 + c, ceC. Hence m\r + C = 
(m2 + c)r + C = m2r + cr + C = m2r + C. 

Factor modules of left modules and of bimodules are defined correspond­
ingly. Let now R be a ring and C a two-sided ideal of R. The factor group 
of the additive group of modulo C, R/Q can again be made into a ring 
which is then called the factor ring or residue class ring of R modulo C {or 
by C). 

2.5.2 Definition 

(ri + C)(r2 + C) := rxr2 + C, ru r2 e 

As before, we see easily that this multiplication is independent of the 
representatives of the residue classes, i.e. in fact it represents an Operation. 
The other ring properties of R/C again follow immediately from those of 
R. 

If R is a ring with a unit element 1—as is always assumed here—then 
14- C is the unit element of R/C. We have now to examine some relations 
between the properties of two-sided ideals and properties of the associated 
factor rings. For this we need some concepts and simple facts. 

2.5.3 Definition. Let A , B be two-sided ideals of R. We put 

AB := ({ab\aeAAbeB}\ 

i.e. AB is the additive group generated by all products ab with aeA, 
b eB; AB is easily seen to be an ideal and is called the product of the 
ideals A and B. 

We then deduce immediately the following. 

Remark. 

AB = | £ a>jbj\a>jeAAb}eBAneNj. 

2.5.4 Definitions. Let C be a two-sided ideal of R. 

(1) Let C be called a strongly prime ideal of R : <=> 

C * R A V r i , r2 e R[rxr2 e C (n e C v r2 e C)] . 

(2) Let C be called a prime /dea/ of R : O 
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i.e. if the product AB of two two-sided ideals A , B lies in C then at least 
one of these ideals lies in C. 

(3) r £ R is called a left zero divisor : O r ^ 0 and there exists s e R, s ^ 0 
and rs = 0; analogously for a right zero divisor. 

(4) is said to have no zero divisors <$=> there exists no right or left 
zero divisor in R. 

(5) Let reR \ r'eR is called a right inverse, respectively a left inverse, 
respectively an inverse element of r : <=> 

rr' — 1, resp. r'r — 1 resp. rr' = r'r = l. 

We remark that from the existence of a right zero divisor it follows that 
there is a left zero divisor (and conversely). I f r' is a right inverse and r" 
is a left inverse element of r, then it follows that 

r' = \r» = (r"r)r' = r"(rrf) = r " l = r". 

It is also immediate from this that an inverse element (if it exists) is 
uniquely determined. I t is denoted by r~l. 

2.5.5 L E M M A 

(1) C is a strongly prime ideal of R^C is a prime ideal ofR. 
(2) If R is commutative then the converse of (1) also holds. 

Proof. (1) Let A, B ~> RRR and let AB C. Suppose A v» C. Then 

3a0eA[a0£C]. 

Since a0b e C A a0£ C=> b e C for all b e B it follows that B ^ C. 
(2) Let r i , r 2 € C. Since R is commutative, r\R and r 2 i? are two-sided 

ideals. Since r^2 e C it follows that 

rxRr2R = rYr2R C. 

Since C is a prime ideal it follows that 

rxR ^ C v r2R ^ C and so rxeCvr2eC. • 

2.5.6 T H E O R E M . Le/1 Cbea two-sided ideal ofR. Then the following hold: 
( 1 ) C is a strongly prime ideal in R <$>R/C has no zero divisors. 
(2) C is a prime ideal in R O the zero ideal is a prime ideal in R/C. 
(3) C is a maximal two-sided ideal in R<£>R/C is simple. 
(4) C is a maximal right ideal in R <^>R/C is a skew field. 

Proof. (1) For brevity put R := R/C and r := r + C. Let ru r2£R 
and suppose fxr2 = 0. Then rxr2 + C = (rx 4- C)(r2 + C) = C and so ,»v 2 £ C. 
Hence rx e C or r2 e C, i.e. fi = Ö or r2 = Ö. 
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(1) Let r i , r2eR and suppose rxr2eC. Then rxr2 = (rx -f C)(r2 + 
C) - rxr2 4- C = C. Thus rx = Ö or f 2 = Ö, i.e. n G C or r 2 G C. 

(4) Let O^reR. Then r£ C and so = rR 4- C, since, from r£ C, 
ri? 4- C is a right ideal properly containing C and, from the maximality of 
C, must be equal to R. Consequently there is r' e R and c eC with 

l=rr' + c3>l = rr' + C = {r + C)(r, + C) = fr'9 

i.e. every_element ^0 of R has a right inverse. _ 
From 1 = r r V 0 it_ follows that r V O , thus there exists r"eR with 

rV" = I . Hence r = r" and so r' is an inverse of f and R is a skew 
field. 

(4) "<=": Let r G i ? and C. Then r ^ O and so 3r'eR[rf' = 
r ' r = l ] . Then r r ; 4-C = l 4 - C and so, for some c G C, rr'4-c = l . Hence 

= rR 4- C which implies that C is a maximal right ideal in R (from 2.3.10). 
(2) and (3) are proved similarly to (1) and (4). The proof is remitted to the 
reader as an exercise. Furthermore we shall later get to know of a precise 
relationship between the lattice of ideals of R and of R/Q from which all 
assertions of this theorem follow directly. 

Examples 
(1) Factor Spaces of vector Spaces are well-known. 
(2) 

Z / n Z = 

field of p elements, 
ring with zero divisors, 

0 
. Z (up to isomorphism), 

if n - p prime 
xiHl^p Art 5* 0 

Art ^ ± 1 
if rt = ± 1 
if rt = 0. 

(3) Let K[x] be the polynomial ring in the indeterminate x with coefficients 
in a field K. Let f(x) G K[X] and let f(x) be irreducible, then K[x]/f(x)K[x] 
is a finite dimensional extension field of K (more precisely, an extension 
field of an isomorphic copy of K). 

EXERCISES 

(1) 
Show that in the definition of a module the commutativity of the addition 
follows from the other assumptions. 
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(2) 
Exhibit a module A f without a finite set of generators in which every proper 
submodule is contained in a maximal submodule. 

(3) 
(a) Let A , B, C «-* Af = MR. Show that from AczBuC it follows that 

(b) Give an example of a module Af and submodules A , B, C, D Af/? 
such that 

A C J B U C U D A A ^ Ö A A ^ C A A ^ D . 

(4) 

Let A be a two sided ideal of a ring R. Prove: A is a maximal right 
ideal <=> A is a maximal left ideal. 

(5) 
Let 

M = MR A x eM A x * 0 A A := {A\A ~> M A x£ A}. 

Prove: 
(a) A is non-empty and A has a maximal element (with respect to 

inclusion as ordering). 
(b) U R=K is o. field, then every maximal element from A is a maximal 

submodule of M. 

(6) 
Exhibit in the set A := { A | A <-> Q z A 1 £ A) a maximal element B and a 
submodule C ^ Q z with 

B C ^ Q 2 . 

(7) 

Let = 1, 2, 3, . . .} be a set of submodules of M = MR with 

Af = I Bt. 

Prove that the following are equivalent. 

(1) V / = l , 2 , . . . f s y n Z Ä- = o l . 
L i=;+l J 

(2) Af = 0 B,. 
i = l 
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(8) 
(a) Give an example of a module M with a maximal free subset which 

is not a set of generators. 
(b) Give an example of a module T^O which is not a vector space and in 

which every maximal free subset is a basis. (Hint: use a suitable Z-module.) 

(9) 
Let V = VK be a vector space, let X be a free subset of V and let Y be 
a set of generators of V with X^Y. Show: there exists a basis Z of V 
with X c Z c F . 

(10) 
(a) Exhibit a module M and a submodule A <-» M such that there exist 

different submodules Bx ^> M , B2 M with 

(b) Obtain an example of a module M which is not simple and in 
which for every submodule A^> M there exists exactly one B <-> M with 
M = A 0 R 

(11) 
Let X be a finite set, X = {xx, . . . , and let := (R x be the set of all 
mappings f:X^U (where U is the field of real numbers). Prove the 
following. 

(a) R is a commutative ring under the following definitions: 

(b) is a principal ideal ring. 
(c) Every ideal is an intersection of maximal ideals and the intersection 

of all maximal ideals is 0. 
(d) Every ideal is a direct summand. 
(e) R is a direct sum of simple ideals. 

(12) 
Let {Aj\i G / } be a set of submodules of a module M and let B ^ M. 

(a) Prove £ (A, n B) ( I A) n Ä 

(b) Prove (n^+fl^n(Aj + B). 
V i s / / i e / 
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(c) Give an example for which there holds: 

iel \iel / 

(d) Give an example for which there holds: 

( n A , ) + Ä * n ( A , + B ) . 
\iel / iel 

(13) 

Definition. A ring R is called regulär (in the sense of von Neumann): 

: » V r e Ä 3 r ' € Ä | > ' r = r ] . 

Prove: the following conditions are equivalent. 
(1) R is regulär. 
(2) Every cyclic right ideal of R is a direct summand of RR. 
(3) Every cyclic left ideal of R is a direct summand of RR. 
(4) Every finitely generated right ideal of R is a direct summand of RR. 
(5) Every finitely generated left ideal of R is a direct summand of RR. 



Chapter 3 

Homomorphisms of Modules and Rings 

3.1 D E F I N I T I O N S A N D S I M P L E P R O P E R T I E S 

The structure-preserving mappings of modules are called homomorph­
isms. These are defined in the same way as are linear mappings of linear 
vector Spaces. 

3.1.1 Definition. Let A and B be both right Ä-modules or left 5-modules 
or 5-i?-bimodules respectively. A homomorphism a of A into B is a mapping 

a.A^B 
which satisfies 

(1) V a i , a2e A V r i , r 2 eR[a{a x rx + a2r2) = a(a1)ri + a(a2)r2] or 
(2) V # i , CL2 G A V s i , 5 2 G S[a(sidi + s2a2) = Sia(ai) + s2a(a2)] or 
(3) V a i , a2G A V $ i , s2G SVr i , r2e R[a(siairx + s2a2r2) = sxa(ai)ri 

±s2a{a2)r2}. 
respectively. 

The notation 
OL '. AR -> BR 

indicates that A and B are right -modules and that a is a homomorphism. 
Analogously for the other cases. To emphasize the ring and also the side 
involved in a homomorphism a:AR-*BR we shall also speak of a as an 
R-module homomorphism or a right module homomorphism. Instead of the 
notation a(a) for the image of a G A by a we shall also write merely aa. 
In the case of a\sA-*sB let aa denote the image of a by a; then the 
equation in (2) assumes the following form: 

+ s2a2)a = S\(a\a) + s2{a2a). 

39 
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A homomorphism is thus written on the side opposite to the Operation 
of the ring. If there is to be any deviation from this notational rule we shall 
especially indicate it. Generally for a mapping a: A -> B we use the symbol 
a^a(a) for the elements in correspondence; we combine OL.A^B and 
a^a(a) in the following notation: 

a: A 3a*-*a(a)eB9 

which we have already used in Chapter 1. The following notions, which 
are customary, are also used for homomorphisms: 

Domain of a = Dom(a) := A . 
Codomain of a = Cod(a) := B. 

Image of a = Im(a) := {a(a) |a e A } . 

a is an injection : <=> V # i , a2e A[a(a\) = a(a2)^ax = a2] 

(i.e. a. is one-one). 

a is a surjection : <=> Im a = Cod(a) 

(i.e. a is a mapping "onto"). 

a is a bijection : O a is an injection A a is a surjection 

In the following, if we speak of homomorphisms of modules without 
indicating the side then the concepts and considerations are to be regarded 
as holding for a one-sided module. A l l is exemplified only for right modules, 
where it is clear that everything holding for right modules holds, as appropri-
ate, for left modules. In the main everything remains valid for bimodules, 
but there is no need to pursue this in detail. 

Examples of homomorphisms 
(1) The 0-homomorphism of A into B: 

0:A3a^0eB. 

(2) The identity injection = inclusion of a submodule A «-> B 

L: Asa^aeB. 

(3) The natural (canonical) homomorphism of a module A onto the factor 
module A / C , where C A : 

v\A3a>->a + CeA/C. 

I t is immediately clear in cases L a n d 2 that we are in fact considering 
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homomorphisms; for v it follows directly from the definition of the module 

A / C : 

v(axrx + a2r2) = (axrx 4- a2r2) 4- C = (axrx + C) 4- (a 2 r 2 + C) 

= (ai + C ) r i 4- ( a 2 + C)r2 = v{ax)rx 4- ^(a 2 )r 2 . 
The homomorphisms 0, i , v are used always in the following with the same 
meaning but with changing notations for domain and codomain. For the 
identity mapping of a module A, which is a special case of inclusion, we 
write 1 A . 

Let a and ß be homomorphisms with Cod(a) = D o m ( ß ) . Suppose 

a\A-*B, ß:B-»C, 

then the composition of the mappings a, ß, denoted by ßa, is obviously 
again a homomorphism in fact of A into C. For a e A we then have 
(ßa)a =ß{aa). 

As is easily seen, a mapping a.A^B is a bijection precisely if there 
exists a (uniquely determined) inverse mapping a _1: B -> A with a _ 1 a = 1 A , 
a a _ 1 = l ß . If a is a bijective homomorphism then a _ 1 is also a homomorph­
ism: let bx = a{ax), b2 = a(a2) be arbitrary elements from B and let rx, 
r2 e R, then we have 

a~\bxrx+ b2r2) = a~\a(ax)rx + a(a2)r2) 

= a _ 1 ( a (axrx 4- fl2r2)) = fliri 4- a2r2 

= a~~\b1)rx + a~\b2)r2. 

In the following let a: A -> JE? always denote a homomorphism. 
For £/<= A , there is defined: 

«(£/)'•= {a(w)|we t/} 

a ~ l ( V ) : = { a | a e A Aa ( a ) e V } . 

We remark that a - 1 is itself in general not defined, if it is, then a is 
bijective. 

3.1.2 L E M M A 

(1) U*+A^a(U)<+B. 
(2) V~>B^>a~\V)~> A . 

Proö/. (1) Let «i , W 2 G [/, thus 

a(ux), a(u2)ea(U)Arx,r2<= R^$>a(ux)rx+ a{u2)r2 = a(uxrx 4- w 2 r 2 ) e a ( U ) , 

since Wi^i 4- u2r2 e U. 
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( 2 ) Let au a2sa~\V), thus 

a(a2) e V A r i , r 2 e i ? =>a(a i r i 4-02/2) 

=^>fliri + a 2 r 2 G « 

3.1.3 Definition 

Kernel oia= Ker(a) := a - 1 ( 0 ) . 

Image of a = Im(a) *= a ( A ) . 

Cokernel of a =Coker(a) := Cod(a) / Im(a) = £ / a ( A ) . 

Coimage of a = Coim(a) := Dom(a) /Ker (a ) = A / a _ 1 ( 0 ) . 

We had previously introduced Im(a) . By virtue of 3 .1 .2 we know that 
Ker(a) and Im(a) are submodules so that the definitions of Cokernel and 
Coimage are meaningful. 

For the category MR of right R-modules, which was introduced in 1.2.5 
(recall, that all modules are now unitary), we make use of all of the notation 
from Chapter 1 . In particular, by employing the concepts from 1.1.3, we 
now wish to characterize injective, surjective and bijective homomorphisms. 
First of all we repeat these concepts for the category MR. 

3 . 1 . 4 Definition. A homomorphism a: AR -+ BR is called 
a monomorphism O 

VC e MR V y i , y2 e Horn*(C, A)[ayx = ay2 => yx = y2]; 

an epimorphism 

VC e Af Ä VjSi, j8 2 e Horn*(5, C ) [ 0 i a = j8 2a => fr = 0 2 ] ; 

a bimorphism 

a is an epimorphism A a is a monomorphism; 

an isomorphism <=> 

3 a ' e H o m Ä ( B , A ) [ a ' a = l A A a a ' = l ß ] . 

3 .1 .5 T H E O R E M . Let a:A-*B be a homomorphism, then we have: 
( 1 ) a is an injection <=> a is a monomorphism. 
( 2 ) a is a surjection <=> a is an epimorphism. 
(3 ) a is a bijection a is a bimorphism 

<=> a is an isomorphism. 

= a {a\)r\ 4- a (a2)r2 e V 
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Proof. (1) "=>": Let ayx = ay2 with y i , y2eHomR(C, A). Suppose yx ¥^y2 

Then 

3ceC[yi(c)*y2(c)l 

Hence 

a(y\{c))*a(y2{c)) 

and so 

ay\ ^ ay2 % 

Thus r i = y2 must hold. 
(1) Let a ( a i ) = a ( a

2
) . Then a ( a i ) - a : ( a

2
) = a ( a i - a

2
) = = ( ) . 

Let 

yx = i: ( a i - a 2 ) i ? 9 ( a i - a
2
) r > - > ( a i - a 2 ) r G A 

y
2
 = 0: (ai — a2)R 3(ai — a2)r^0eA, 

Then 

y i , r 2 G H o m
Ä
( ( a

1
- a

2
) Ä , A) 

and we have 

«(yi((fli - 0
2
)r)) = - a

2
)r) = - a 2)r = 0 

a(y
2
((ßi - f l2)r)) = a(0) = 0 

i.e. ayx = ay 2
. By assumption it follows that 

y i = y2=> yi(ax - a2) = ax~a2 = y2(ax - a2) = 0=> ax = a 2 . 

(2) Let ßxa = ß2a with £ 1 , ß2eHorn*(B, C) . Suppose 

ßi*ß2^>3beB[ß1(b)*ß2(b)l 

Since a is surjective, there exists asA such that a(a) = b. Hence 

ßxa(a) = ßx(b) * ß2(b) = ß2a(a)^>ßxa * ß2a ^. 

Thus ßi = ß2 must hold. 

(2) Let 

ßx = v:B->B/\m{a) 

ß2 = 0:B^B/lm(a). 
Then ßu ß2eHomR(B, B/lm(a)) and ßxa = ß2a =0. By assumption it 
follows then that ßx = ß2 i.e. 5 = I m(a) and consequently a is surjective. 

(3) " b i j e c t i o n » b i m o r p h i s m " follows from (1) and (2). Further it is clear 
that every bijection is an isomorphism since, as we have previously shown, 
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if a is a bijection then a~l is a homomorphism. Conversely let a be an 
isomorphism. Then it follows from aa = 1A that a is injective and from 
aa = 1B that a is surjective. (Obviously, then, a~l = a'.) • 

3.1.6 L E M M A . Let a:A-+ B and ß:B-+C be homomorphisms. Then we 
have: 

a, ß are monomorphisms ßa is a monomorphism. 
a, ß are epimorphisms ßa is an epimorphism. 
ßa is a monomorphism a is a monomorphism. 
ßa is an epimorphism ß is an epimorphism. 

Proof. (1) Let yx, y2eHomR(M9 A). Since ß and a are monomorphisms, 
then we have: ßayx = ßay2^ayx = ay2^yx = y2\ thus ßa is a 
monomorphism. Analogously for epimorphisms. 

(2) Let again y i , y 2 € H o m Ä ( M , A ) . Since ßa is a monomorphism, then 
we have: ayx - ay2^ßayx = ßay2^>yx = y 2 ; thus a is a monomorphism. 
Analogously for epimorphisms. • 

3.1.7 Definition. Two modules A , B are called isomorphic, notationally 
A = B : <3> there exists an isomorphism a:A-*B. 

R E M A R K . = is an equivalence relation of the class of all right Ä-modules. 

Proof 
(1) A = A , since 1 A is an isomorphism. 
(2) Let a: A -> B be an isomorphism. Then a _ 1 : B -> A is an isomorphism, 

i.e., from A=B it follows that B=A. 
(3) Let a:A^Bt ß:B->C be isomorphisms. Then so is ßa since 

a~lß~lßa = 1 A and ßaa~lß~x = l c , i.e. from A =J9 and £ = C it follows 
that A = C. • 

3.1.8. L E M M A . Lef a: A -> 5 6e a homomorphism. Then we have: 
(1) a is a monomorphism <=>Ker(a) = 0. 
(2) U A^>a~\a(U))= U + Ker(a). 
(3) V^B^a(a'l(V))=VnIm(a). 
(4) Lef also ß:B -> Cbe a homomorphism. Then 

Ker(ßa) = a~1(Ker(ß)) A Im(/3a) = /3(Im(a)). 

Proo/. (1) "=>": a is a monomorphism a is an injection (from 3.1.5)4> 
Kei(af) = 0 (for a(0) = 0). 

(1) "<p": Let a(ax) = a(a2). 
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Then a (ai - a2) = 0 4> ai - a2 G Ker(a) = 0 ax = a2. Hence a is an injec­
tion a is a monomorphism (from 3 . 1 . 5 ) . 

(2) " a - 1 ( a ( L 0 W t / + Ker (a )" : Let a e a~\a(U)). Then 

a ( a ) e a ( [ / ) andso 3ueU[a(a) = a(u)]. 

Then 

a(a - u) = 0=><2 - w eKer(a)=><z € (7 + Ker(a) . 

(2) " £ / + Ker(a) a _ 1 ( a ( L 0 ) " : Let w G £/ and fc 6 Ker(a) . Then 

a(w + /c) = a(w) + a(fc) = a ( « ) + 0 = a ( w ) 6 a ( [ / ) . 

Hence w + fc G a~\a(U)). 
( 3 ) Exercise for the reader. 
( 4 ) a G Ker(/3a)<=>/3a(a) = 0 » a ( a ) G Ker( /3)Oa G a _ 1 (Ker( /3)) . 

ImOSa) = j8a(A) = ß(a(A)) = ß(lm(a)). • 

From the lemma there follows directly: 
Let U <-» A and let a be a monomorphism a: A -> B. Thus U = 

a - 1 ( a ( L 0 ) , i.e. we obtain every submodule U of A in the form a~ 1 (V r ) 
with V <-> B (Substitute V = a(U)); let V «-> JB and let a be an epimorphism 
a: Thus V = a(a~l( V)), i.e. we obtain every submodule V of B in 
the form a(U) with U *-* A (Substitute f/ = a~x{ V)). 

In the following use is made as need arises of both of these facts without 
specific mention. 

3 . 1 . 9 C O R O L L A R Y . / / 

A - > B 

y ß 

is commutative, i.e. ßa = 8y, and if y is an epimorphism and ß is a 
monomorphism, then we have 

lm(a) = ß'~1(lm(ö)), Ker(S) = y(Ker(a)) . 

Proof. From 3 . 1 . 8 , since ß is a monomorphism, 

lm(a) = ß ~103 (Im(a)) => Im(a) = ß " 1 (lm(ßa)) 

= ß-l(lm(Sy)) = ß-\lm(S)) 
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since y is an epimorphism. Further from 3.1.8, since y is an epimorphism 
Ker(<5) = y(y _ 1(Ker(<5))). Thus from 3.1.8 Ker(<5) = y(Ker(<5y)) and so 
Ker(5) = y ( K e r ( ß a ) ) = y(Ker(a)) , since ß is a monomorphism. • 

We apply ourselves now to the question of the behaviour of sums and 
intersections of submodules with respect to homomorphisms and inverse 
mappings (for this see also Exercise 1). 

3.1.10 L E M M A . Let a homomorphism a.A^B be given together with a 
set {Ai\i e 1} of At A and a set {Bi\i e 1} of B{ B. Then we have 

(a) a( I A) = I a(A,)9 a" l(n ß) = fl a'\B{). 
\iel / iel \ i e / / iel 

(b) « - ' ( i B , ) - I a-\Bt), a(f)A) - » P | « ( A , ) . 
\ieJ / iel V i e l / / e / 

(c) Lef now Bt Im(a) for all i e I, then we have 

\iel / i e J 

Lef nöiv Ker(a) ^ A,-/or a// / G /, then we have 

a(r)A)=r)a(Ai). 
\iel / J G / 

Pröo/. The assertions in (a) and (b) are easy to verify and are left to the 
reader as an exercise. I t remains to prove (c). From consideration of (a) 
and 3.1.8 it follows that: 

\iel / \ i e / / V i e / / 

= a _ 1 a ( Z a "* (£ , ) ) = ( I a " ' ( B , ) ) + Ker(a) 

= I a~\Bt) 
iel 

and also 
ä f f ! A) = a(C] (At + Ker(a))) = a ( p | « ~ « ( A ) ) 

\ / e / / M e / / \ i e / / 

= aa~l(f~]a{Ai)] = ( f l a(A,)) n Im(«)=n«(A). 
V / 6 / / \iel ' iel 

• 
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3.1.11 C O R O L L A R Y . Let UR MRi then we have: M/U is finitely 
cogenerated (2.3.14) every set {A/|z ei} of submodules A , M with 

HAt = U 
iel 

there is a finite subset { A , | / e I 0 } (i.e. I 0 finite) with 

n At = U. 
iel0 

Proof Let v:M-*M/U denote the natural epimorphism. OAt= U 
iel 

implies that U = Ker(^) ^ A , so that 3.1.10(c) can be applied. Therefore 
it follows that 

iel \iel / 

By assumption there is then a finite subset I Q ^ I with 

n HAd=o. 
iel0 

Then it follows from 3.1.10(a) that 

v-\o)=u=v~x( n v(Ai)) = n v~\(Ad = n <A,+L/> = n 
M G / O ' i'e/o ielo ielo 

Let now {A/ | / e / } be a set of submodules A, ^ M/U with 

H A / = o. 
iel 

Then it follows from 3.1.10(a) that 

\ i e / / /Gl 

By assumption there is a finite subset I 0 <=• I with 

n *>-\Ai)=u. 
iel0 

From £/ = Ker(i/) ^ ( A , - ) it follows from 3.1.10(c) that 

J n v~l(Ai)) = n W _ I ( A , ) = n ( A I n i m M ) = n A , = * ( C / ) = O . 

• 

A lattice, respectively a complete lattice, is an ordered set, in which every 
two-element subset, respectively subset, has an infimum and a supremum. 
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The set of all submodules of a module is, under as order-relation, a 
complete lattice, in which the infimum is the intersection and the supremum 
is the sum of the submodules. Let now AR be given, then denote the lattice 
of submodules of A by Lat(A) . Let a: A -*L be a homomorphism, and let 
C denote Ker(a), N denote Im(a) . Then we consider the sublattice 

Lat(A, C) := {U\C U ^ A } 

of Lat(A) and the sublattice 

La t (L , N) := {V\ V N}(=Lat(JV)) 

of L a t ( L ) . With these notations the following relationship holds. 

3.1.12 L E M M A . A bijection a is defined by 

a: Lat(A, C)s U*->a(U)eLat(L, N) 

with respect to which there holds: 
(1) ä(ul + u2) = ä(ul)+ä(u2) 
(2) ä(UlnU2) = a(U1)nSt(U2)9 

which means that ä is a lattice isomorphism between 

Lat(Dom(a), Ker(a)) and Lat(Cod(a), Im(a)) = Lat(Im(a)). 

Proof. For this proof we use 3.1.8. 

"a Injective": Let a(U\) = a(U2) hold for 

Uu £ / 2 e L a t ( A , C). 

Then 

a ~1 (a (C/i)) = Ui + Ker (a) = a " 1 (a (U 2)) = U2 + Ker (a). 

From 

Ker(a) = C - » t/, (7 = 1,2) 

it follows that Ui = U2. 
"a Surjective": Let V «-> AT = Im(a) . 

Then 
a~\0) = C^a~l(V)^Ar\a(a~\V))= VnN=V, 

i.e. 6t{a~\V))= V. 
(1) a ( t / 1 + (72) = a ( t / 1 + t / 2 ) = a ( t / 1 ) + a(L/ 2 ) = a ( t / 1 ) + a((7 2 ) . 
(2) Trivially we have 

a(UxnU2)^a(Ui)na(U2). 
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Let now x eä(Ui)nä(U2), i.e. x = a ( w i ) = a ( w 2 ) with 

U\ e Ui, u2e U2. 
Then 

a(u\ — u2) = 0=̂ > U\ — u2 — c e K e r(a) = C^> u\ = u2 + c. 

From C ^> U2 it follows that 

U\ = u2 + c G t / in £/2 

and so 

x = a ( w 1 ) € a ( ^ i n ^ 2 ) ^ a ( ^ 1 ) n a ( L / 2 ) ^ a ( ^ 1 n [ / 2 ) . • 

3 . 1 . 1 3 C O R O L L A R Y . Let C ~> A and let v.A^AjC. Then 

v:Lat(A, C) B U*+v(U)eLat(A/C) 

is a lattice isomorphism. 

3 . 1 . 1 4 C O R O L L A R Y . Maximal C A<$A/C is simple. 

As an exercise the reader may give a new and complete proof of 2 . 5 . 6 . 

3.2 R I N G H O M O M O R P H I S M S 

We now make some remarks on ring homomorphisms. 

3 . 2 . 1 Definition. Let R and 5 be rings. Then a ring homomorphism 

p.R^S 

is a mapping, for which for all ru r2eR we have: 

p(ri + r2) = p(rt) + p(r2), 

p(r1r2) = p(r1)p(r2). 

p is called unitary, if—as is here always assumed—R and S are rings with 
unit elements and p maps the unit element of R onto that of 5. 

For the category of rings we also use the concepts introduced in 1 .1 .3 . 

3 . 2 . 2 L E M M A . Let p:R-*S be a ring homomorphism. Then there holds: 
( 1 ) p is an injection p is a monomorphism. 
( 2 ) p is a surjection => P is an epimorphism. 
( 3 ) p is a bijection p is an isomorphism. 

p is a bimorphism. 
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Proof. As in the proof of 3.1.5. I t should be stressed that the converse of 
(1) does indeed hold but not the converse of (2) and (3) (see exercises). 
In this respect the category of rings differs from that of modules. 

We call two rings R and S isomorphic, notationally R = 5, if there exists 
an isomorphism of R with S. Obviously = is an equivalence relation in 
the class of all rings. A n isomorphism of R with R is called an automorphism. 

As for modules there exist ring homomorphisms i and v as well as 0, 
in the case that the zero ring is admitted. Let C be a two-sided ideal in a 
ring R, then v is defined by 

v\R 3r^>r + CeR/C 

where R/C is the residue class ring (2.5.2). Further it is clear that the 
image of a (unitary) subring with respect to a (unitary) ring homomorphism 
p is again a (unitary) subring of Cod(p). In particular lm(p) is a (unitary) 
subring of Cod(p). 

For the most part the ideals of a ring are more important than the 
subrings. Consequently we establish 

3.2.3 L E M M A . Let p.R-^S be a ring homomorphism and let V be a 
two-sided ideal in 5, then p~l(V) is a two-sided ideal in R. 

Proof. Let uu u2ep~l(V) and reR, then we have 

p(ui + u2) = p(Ui) + p(u2)e V^>Ui + u2ep~l(V), 

p(ulr) = p(ui)p(r)e V^>uir£p~\V) 

and analogously 

ruxzp-\V)^p-\V) 

is a two-sided ideal in R. • 

I t follows from the lemma that Ker(p) is a two-sided ideal in R for which 
the residue class ring R/Ker(p) exists. As a special case Ker(^) = C for 
v\ R R/C. I t is now to be shown that to every unitary ring homomorphism 

p:R->S 

there exists a functor (see 1.3) 

FP:MS-*MR. 

For this purpose to every module Ms there is associated a module MR 
in the following manner: Let the additive group M+ of MR be equal to 



3.2 R I N G H O M O M O R P H I S M S 51 

that of M s , the structure of an Ä-module is defined by 

mr '.= mp(r), m e M+, reR. 

Direct verification establishes that MR is a unitary R-module. Let now 

<p:Ms-*Ns 

be given. Then evidently we have 

ip{mr) = ?{mp(r)) = (p(m)p(r) = <p(m)r. 

Thus every 5-homomorphism is also an R-homomorphism. In order to 
show that Fp with FP(MS) = MR, Fp(<p) = cp is a functor it remains only to 
observe that 

F p ( l M s ) = 1M R , F p ( < M = <fop = Fp^)Fp{<p). 

Such a functor F p is usually known as a "change of rings". 
Since every 5-homomorphism is an -homomorphism it follows, as a 

consequence, that H o m 5 ( M , N) ^ H o m Ä ( M , N). If p is surjective then we 
have, in fact, H o m s ( M , N) = H o m Ä ( M , N). The 5-submodules of Ms are 
evidently also R-submodules and in the case of a surjective p the 5-
submodules coincide with the R-submodules. 

Examples of ring homomorphisms 
(1) Let R be a unitary subring of 5 and let p = i be the inclusion mapping. 
(2) To every ring 5 with unit element 1 there is a ring homomorphism 

p : Z 9 z t - * z l e S , 

and the corresponding functor Fp is the forgetful functor of Ms in the 
category of abelian groups. 
(3) Let C be a two-sided ideal of R and let 

p\R-*R/C 

be the natural epimorphism. Then every i?/C-module is also an Ä-module 
and for MR/C, NR/C we have 

UomR/c(My N) = H o m * ( M , N). 

3.3 G E N E R A T O R S A N D C O G E N E R A T O R S 

Generators and cogenerators are categorical concepts, which play an 
important role in the modern development of the theory of modules and 
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also in other categories. We present here the definitions and some simple 
consequences. We shall later return to these concepts several times. 

3 . 3 . 1 Definition 
(a) The module BR is called a generator (of MR) : <=> 

\/M£MR\M= I Im((p)1. 
L <peHomR(BM) J 

(b) The module CR is called a cogenerator (of MR) : <=> 

\/MeMR\o= H Ker(<o)l. 
L < p e H o m R ( M , C ) J 

For arbitrary modules B, M 

I m ( £ , M ) : = £ lm(cp) 
<p<=HomR(B,M) 

is itself, as a sum of submodules of M , a submodule of M The property 
that B is a generator means that lm(B9 M) is as large as possible for every 
M and so equals M. 

For arbitrary modules C, M 

Ker(M, C) := p | Ker(^>) 
< p e H o m R ( M , C ) 

is itself, as an intersection of submodules of M , a submodule of M . The 
property that C is a generator means that Ker (M, C) is as small as possible 
for every M and so equals 0 . 

A n example of a generator of MR is immediately available: RR is a 
generator. Namely let meM, then the homomorphism 

(pm:R 3r^>mreM 

exists with <pm(l) = ml = m. From this it follows that 

M = I Im(<pm) ImOR, M ) ^ M , 
m e M 

thus we have Im(i?, M) = M. 
Cogenerators of MR also exist; however, examples can best be presented 

later when we have injective modules at our disposal. 

3 .3 .2 C O R O L L A R Y 

(a) If B is a generator and if A is a module with Im(A, B) = B then A is 
also a generator. 
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(b) Every module which can be mapped epimorphically onto RR is a 
generator. 

(c) / / C is a cogenerator and if D is a module with Ker(C, D) = 0 then 
D is also a cogenerator. 

Proof. (a) Evidently we have: 

I I m M O = Z <p(Im(<A)) = Z <p(l ImW)) 
l A e H o m R ( A . S ) «p.iA <f> * & ' 
tf>eHomR(ß,M) 

= J > ( B ) = I I m ( ? ) = M 

(b) I t follows from (a) that RR is a generator. 
(c) Evidently we have: 

P I K e r ( < M = n <P~l Kem) = f l ^ ( f l Ker((A)) 
i ^ G H o m R ( C , D ) 

= n<P~1(0) = nKer(<p) = 0. • 

Generators and cogenerators can be characterized in the following manner 
by properties of homomorphisms. 

3 .3 .3 T H E O R E M 

(a) B is a generator <=> 

V M e Horn* (Af, AO, PL * 0 3<p e Horn*(J3, Af )|><p * 0]. 

(b) C is a cogenerator C O 

VA e Horn«(L, M ) , A ^ O 3<p GHorn*(Af, C)[<pA # 0]. 

Proo/. (a) "=>": Since p, 7*0 there is an meM with / z (m)#0 . As B is a 
generator, there is a representation 

™ = Z <Pi(bi), q>i e Horn« (B , Af), G £ , 

hence we have 

k 
0^/x(m)= X fJL<pi(bi)9 

i=i 

and consequently there is a <p, with papi 0. 
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(a) " < ^ " : Suppose Im(£ , Af) Af, then let 

v.M-*Mlm{B, Af) 

be the natural epimorphism. Since v ^ 0 there is a <p e Horn* (B, AT) with 
^ 7 * 0 , consequently we have Im(<p) lm(B, Af) in contradiction to the 
definition of Im(J9, Af) . 

(b) Since A 5* 0 there is an / e L with A (/) 0. As C is a cogenerator, 
there is a <p€HomR(M9 C) with A(/)£Ker((p). Hence we have <pA(/)#0, 
thus <pA 0. 

(b) "<=": Suppose Ker(Af, C) 7* 0, then let 

t :Ker (Af ,C) -»Af 

be the inclusion mapping. Since t^O there is a <peHom Ä(Af, C) with 
(pt 0. Consequently we have Ker(Af, C) v> Ker(<p) in contradiction to the 
definition of Ker(Af, C) . • 

3.4 F A C T O R I Z A T I O N O F HOMOMORPHISMS 

I t is often expedient to factorize a given homomorphism into a product 
of two homomorphisms where at least one, or even both, factors are to 
possess certain "pleasant" properties. The homomorphism theorem is the 
first and particularly important example of such a factorization. 

3.4.1 H O M O M O R P H I S M T H E O R E M 

(a) Every module homomorphism 

a: A - > B 

has a factorization a—av where 
v\ A - » A / K e r ( a ) 

is the natural epimorphism {see 3.1) and a is the monomorphism defined by 

a\ A / K e r ( a ) Ker(a)>-*a(a) e B, 

a( is an isomorphism if and only if a is an epimorphism. 

(b) Every ring homomorphism 

p.R^S 

has a factorization p-p'v where 

v:R^>R/Ker(p) 
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is the natural epimorphism and p' is the monomorphism defined by 

p\ R/Ker(p) 3 r + Ker(p)*+p(r) E 5, 

p' is an isomorphism if and only if p is surjective. 

Remark. The equation a = a 'v is exactly equivalent to the commutativity 
of the diagram 

A - >B 

A / K e r ( a ) 

(analogously for the equation p = p'v). 

Proof. I t suffices to go through the proof of (a) since that of (b) proceeds 
entirely analogously. 

I t is first of all to be established that a' is a mapping: Let a +Ker (a ) = 
a i + K e r(a). Then <Zi = a + w, w e K e r(a). Hence 

a'(a\ +Ker(a ) ) = a(ai) = a(a + u) = a(a) + a(u) = a(a) = a'{a +Ker(a) ) , 

then a' is obviously a homomorphism. In order to see that a' is a 
monomorphism, fet (as in 3 . 1 . 8 ) 

a ' ( ä i + Ker(a)) = a(a i ) = 0. 

Thus a\ € Ker(a) and so 

a i + Ker(a) = 0 + Ker(a). 

Hence Ker(a') = 0. 

Let now a e A be arbitrary, then we have: 

ct'(p(a)) = a'(a +Ker(a)) = a(a). 

Thus 
a — a v. 

Since a is a monomorphism and, as Im(a') = Im(a) , a is then precisely 
an isomorphism if a is an epimorphism. • 

3 . 4 . 2 C O R O L L A R Y 

(a) If a.A-*B is a module homomorphism then 

a: A / K e r ( a ) 3 a 4- Ker(a) >-» a (a) E Im(a) 
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is an isomorphism, thus we have 

A / K e r ( a ) = Im(a) . 

(b) If p.R^S is a ring homomorphism then 

p: Ä /Ker (p ) B r + Ke r (p )^p ( r ) e Im(p) 

is an isomorphism, thus we have 
R/Ker{p) = Im(p) (as rings). 

Proof (a) We obtain a from a' by means of the restriction of Cod(a') = 
Cod(a) to Im(a) . 

(b) Analogously. • 

Since the results on ring homomorphisms, which have so far appeared, 
suffice for later considerations, we confine ourselves from now on to module 
homomorphisms. Thus let A , B, C, as well as all homomorphisms, be from 
a module category, in which right, left or bi-modules may be considered. 

3.4.3 F IRST I S O M O R P H I S M T H E O R E M . Let B A A C <-> A, then we have 

(B + C)/C=B/(BnC). 

Proof For the proof we consider the homomorphisms 

v:B + C^(B + C)/Q 
with Ker(^) = C and 

a := v\B\B->{B + C)/C 

with Ker(a) = B n C. We now apply 3.4.2: 

(B + C)/C = Im(v) = v{B + C) = v{B) + P{C) = v{B), 

B/(B nC) = Im(a) = a(B) = v{B) 

^ (B + C)/C = B/{BnC). • 

We can also prove this theorem without invoking 3.4.2 by verifying that 

B/(BnC)Bb + (BnC)>->b + Ce(B + C)/C 

is an isomorphism. This may be left to the reader as an exercise. 

3.4.4 C O R O L L A R Y . A=B®C^>A/C = B. 

Proof 
A/C = {B + C)/C = B/(B n C ) = B/0 = B. D 
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As a further deduction we give Zassenhaus's Lemma which is used in an 
essential way in the next chapter. I t indicates that perhaps a modification 
must first be achieved in order to be able to apply the first Isomorphism 
Theorem. 

3.4.5 L E M M A . Let U ' ^ U ^ A A V ^>V^>A then we have 

{Ut + (UnV))/(Ut + (UnV'))^(V, + (UnV))/(Vl^(UtnV)). 

Proof. We show that the left-hand side is isomorphic to 

(UnV)/((U'n V) + {V'nU)). 

Since this expression is S y m m e t r i e in U and V, the right-hand side is then 
also isomorphic to it , from which the assertion follows. 

As U n V *-> U n V we have 

l / ' + ( I / n V ) = ( [ / n V O + ( [ / ' + ( t / n V ' ) ) , 

and further aecording to the modular law (2.3.15) 

( t / n V)n(U' + (Un V')) = (Un VnU') + (Un V) 

= ( [ / ' n V ) + ( [ / n n 

From the First Isomorphism Theorem it follows therefore that 

(U' + (Un V))/(U' + (Un V')) 

= ( ( [ / n V ) + ( I / ' + ( l / n V ' ) ) ) / ( [ / ' + ( [ / n V ' ) ) 

= (Un V)/((Un V)n(U' + (Un V'))) 

= (UnV)/((U'nV) + (Un V')). • 

3.4.6 S E C O N D ISOMORPHISM T H E O R E M . Let C <-> B ^> A , then we have 

A/B = (A/C)/(B/C). 

Proof. Let 

vr.A-*A/C 

v2:A/C-+(A/C)/(B/C), 

where v2 is well-defined, since, from C ̂  B <-» A , B/C is also a submodule 
of A / C . 

Since v\ and v2 are epimorphisms, v2vx is an epimorphism (3.1.6) and 
consequently 3.4.2 implies that 

A / K e r ( ^ 2 ^ ) ^ ( A / C ) / ( 5 / C ) . 
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But according to 3.1.8 we have 

K e r d ^ i ) = v\x (Ker(r 2 )) = v\x (BJC) = v\x (MB)) 

= B+ KerOi ) = B + C = B, 

from which the assertion follows. • 

Example. Z /3Z = (Z/6Z) / (3Z/6Z) . 

Finally a result is to be presented which can be considered as the generaliz-
ation of the Homomorphism Theorem 3.4.1. 

3.4.7 T H E O R E M . Let a:A-*B be a homomorphism and let <p:A-> C be 
an epimorphism with Ker(<p) ^ Ker(a). Then there exists a homomorphism 
A: C -» £ with 

(1) a=\<p. 
(2) Im(A) = Im(a) . 

(3) A is a monomorphism<=>Ker(<p) = Ker(a) 

Remark. (1) means that the diagram 
A *B 

' / 
/ 

\ • / 
/ 

c 
is commutative. 
Proof. Since <p is an epimorphism, for an arbitrary ceC there is an a e A 
with <p(a) = c. To every c e C let there be chosen a fixed ac e A with <p(ac) = c 
(Axiom of Choice). Then a mapping is defined by 

\:C^B with A(c)a(ac). 

In order to show that A is indeed a homomorphism it must first of all be 
established that A is independent of the choice of the ac with <p(ac) = c. 

Let c - <p(a) = (p(ac) with a, ac € A . 
Then 

<p(a -ac) = 0 

and so 

a-ace Ker(<p) ^ Ker(a) (by assumption). 
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Hence 

a(a -ac) = O^a(a) = a(ac) = A(c). 

It now follows immediately that A is a homomorphism: Let Ci = <p(ai), 
c2 = <p(a2) with alf a2eA and let ru r2eR. Then 

<p(airx + a 2 r 2 ) = ^ ( a i ) r i + <p(a2)r2 = + c2r2 

A (ci r i 4- c2r2) = a ( a i r i 4- a 2 r 2 ) = a (a i ) r i 4- a (a 2 ) r 2 

= A ( d ) r i + A(c 2 ) r 2 . 

(1) and (2) follow directly from the definition of A. For the proof of (3) 
first let A be a monomorphism. By assumption we have Ker(<p) Ker(a). 

To prove that Ker(a) ^ Ker(<p) let a eKer(a) , since 0 = a(a) = \((p(a)) 
it then follows that <p(a) = 0, thus aeKer(<p) holds. Suppose now that 
Ker(<p) = Ker(a), then it follows from A(c) = 0 and c = <p(a) that a(a) = 0 
holds, thus a e Ker(a) = Ker(<p) and hence c = <p(a) = 0. • 

We draw attention to two special cases of 3.4.7: 
(1) Let a:A-*B, A ' ^ K e r ( a ) , C = A/A\ <p = v:A->A/A' then the 

diagram 

A *B 
/ 

/ 
'X 

/ 
/ 

A/A' 

is commutative where \(a+A') = a(a). For A' = Ker(a) this is the 
Homomorphism Theorem 3.4.1. 
(2) Let A" -* A' A, a = v'\ A •* A/A', C = A/A", <p = v": A A /A" then 
the diagram 

A "—*A/A" 
7? 

/ 

/ 

v / A 
/ 

/ 

A/A' 

is commutative, where A(a +A") = a+A'. 
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Let now A = ßa be a given factorization of a given homomorphism A. 

A - >B 

ß 

M. 

We inquire into the relationship between the properties of A and the 
"decomposition properties" of B. Before we begin with this, we recall the 
definition of the (internal) direct sum (2.4), which is now needed for two 
summands only. In this case we have: 

B = B0®B1<Z>B = £
0
 + £ i A B 0 O 5 I = 0. 

3.4.8 Definition 
(1) The submodule B0 ^ B is called a direct summand of B : O there 

exists a submodule B\^> B with B = B0®Bi. 
(2) A monomorphism a.A-^B is said to split: <=> Im(a) is a direct 

summand in B. 
(3) A n epimorphism ß\B^>C is said to split: <=>Ker(ß) is a direct 

summand in B. 

3.4.9 L E M M A . Let the diagram 

a 

A >B 

0 

M 

be commutative, i.e. A = ßa. Then 
(1) Im(a) + Ker(|8) = ^ _ 1 ( I m ( A ) ) , 
(2) Im(a)nKer( /?) = «(Ker(A)). 

Proof. (1) A =/3a^>Im(A) = Im(/3a) = /3(Im(a))4>^- , (Im(A)) = 
ß~\ß(Im(a))) = Im(a) + Ker(/3) by 3.1.8. 

(2) Ker(A) = Ker03a) = a - , (KerQ3)) by 3.1.8 

4>a(Ker(A)) = a ( a _ 1 (Ke r ( / ß ) ) ) = Im(a) n Ker(/8) 

by 3.1.8. • 
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3.4.10 C O R O L L A R Y 
(a) A is an epimorphism =>Im(a) + Ker(ß) = ß~l(M) = B. 
(b) A is a monomorphism ^>Im(a) n Ker(ß) = a(0) = 0. 
(c) A is an isomorphism Im(a)@Ker iß) - B. 

Proof. Direct consequence from 3.4.9. • 

3.4.11 C O R O L L A R Y 
(1) For a:A-*B the following are equivalent: 

(a) a is a split monomorphism. 
(b) There exists a homomorphism ß:B->A with ßa = 1 A . 

(2) For ß:B-*C the following are equivalent: 
(a) ß is a split epimorphism. 
(b) There exists a homomorphism y:C-+B with ß y - l c . 

Proof. (1) "(a)=>(b)": Let B=lm(a)@B1 and let 7r:B^lm(a) be the 
projection of B onto Im(a) defined by 

tr(a(a) + bi) a(a), a(a)elm(a)9 b\eB\. 

Further call a0:ABa^a(a)e Im(a) , i.e. let a 0 b e the isomorphism defined 
by the restriction of the domain B of a to Im(a) . 

For ß aöl7r we then have 

ßa(a) = aö1/7ra(a) = aö1(a(a)) = a, aeA, 

thus ßa = 1A. 
(1) "(a)<=(b)": Since ßa = 1 A oc is a monomorphism which splits by 

3.4.10 (c). 
(2) "(a)=>(b)": Let B = Ker(ß)®Bu and let c.B^b^beB be the 

inclusion mapping of B\ into B. Further let ßx denote the restriction of ß 
onto Bx, then ßx is an isomorphism (since ß is an epimorphism and 
Ker(ß)nBi = 0). For y := ißx

l we then have 

ßy{c) = ßiß\x (c) = ß(ßil(c)) = c, ceC, 

thus ßy = l c . 
(2) " ( a ) 4 r ( i ) " : Since ßy = l c ß is an epimorphism, which splits by 

3.4.10(c). • 

We point out, in particular, the special case, in which a is the inclusion 
mapping of a submodule A B and ß:B^B/A is the natural epi­
morphism. 
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3.5 T H E T H E O R E M O F J O R D A N - H Ö L D E R - S C H R E I E R 

We n o w c o n s i d e r finite c h a i n s o f s u b m o d u l e s of a m o d u l e A . Let 

0 = B0 <-» Bi«-» B2 ~>. . . ̂  Bk-i ~> Bk = A , 

0 = C 0 Ci C 2 . . . ~> C/_! ̂  C/ = A . 

We d e n o t e t h e first o f t he se t w o c h a i n s b y B a n d t h e s e c o n d b y C. Then 
w e h a v e t h e f o l l o w i n g . 

3.5.1 Definitions 
(1) Length of the chain B := 
(2) The factors of the chain B a r e t h e f a c t o r m o d u l e s Bi/B(-i, 

i = 1 , . . . , k. The iih f a c t o r o f fi is BjBi-i. 
(3) The c h a i n s B a n d C a r e s a i d to b e isomorphic, B = C : O t h e r e ex i s t s 

a b i j e c t i o n 5 b e t w e e n t h e i n d e x set I ol B a n d t h e i n d e x set / of C s u c h 

t h a t w e h a v e : 

Bt/Bj-i = Cs(/)/Cö(i)_i, / = 1 , . . . , k. 

(4) C is c a l l e d a refinement of ß a n d ß a subchain of C : e i t h e r B = C 
( t r i v i a l r e f i n e m e n t ) o r £ is o b t a i n e d f r o m C b y o m i t t i n g c e r t a i n of t h e C ; 

f r o m C 

(5) The c h a i n B o f A is c a l l e d a composition series : <£> V/ = 1 , . . . , k 
[Bt-i m a x i m a l i n B(] (<=> V/ = 1 , . . . , k [Bi/Bt-i s i m p l e ] b y 3.1.14). 

(6) The m o d u l e A is s a i d t o b e o f finite length : O A = 0 v A has a 
c o m p o s i t i o n ser ies . 

Remark. If B^~C holds and if Bt = 2?/_i for a fixed i, then there is a j so 
that, if Bi in B and C, in C are omitted, the chains, resulting in this way, are 
again isomorphic. 

Proof The p r o o f f o l l o w s d i r e c t l y f r o m t h e f a c t t h a t B(=Bi-i has t h e 

c o n s e q u e n c e t h a t first o f a l l BjBi-i = 0 a n d t h e r e b y C8u)/Csii)-i = 0 thus 
CS(i) = From t h e O m i s s i o n o f B{ r e sp . B8u) p r e c i s e l y t h e f a c t o r 

BjBi-i = 0 = CS(i)/CS(i)-i is t h u s o m i t t e d w h e r e a s t h e o t h e r f a c t o r s a r e 

u n c h a n g e d . • 

We s h a l l m a k e use of t h i s r e m a r k i n t h e f o l l o w i n g w i t h o u t e s p e c i a l 

m e n t i o n . It is f u r t h e r c l e a r that t h e i s o m o r p h i s m d e f i n e d i n (3) is a n 

e q u i v a l e n c e r e l a t i o n i n t h e set o f a l l c h a i n s of A of t h e f o r m B. 
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Examples 
(1) Let V = VK be a vector space and let { x i , . . . , * „ } be a basis of V. Then 

0<+ xiK xiK + X2K ^* .. "l x<K~> t xtK=V 

is a composition series of V. 
(2) Every chain of Z 2 can be properly refined. I f 

0 -> B i . . . ^ Z 

is such a chain with Bi^O (which does not entail a restriction) then, since 
Z does not contain a simple ideal, Bi cannot be simple. Thus between 0 
and Bi an ideal different from both can be inserted. Consequently Z z does 
not have a composition series. 
(3) I n Q z every chain 

0 Bx B2 <->... Bk = Q 2 

with 0 7* B\ and Bk-i 5* Q can be properly refined both between 0 and Bi 
and also between Bk-i and Q, since Q z contains neither a minimal (=simple) 
nor a maximal submodule. Accordingly Q z does not have a composition 
series. 

We prove now the Jordan-Hölder-Schre ier Theorem, from which we 
then obtain as a most important corollary that, if a module has a composition 
series, the series is uniquely determined up to isomorphism. 

3.5.2 J O R D A N - H Ö L D E R - S C H R E I E R T H E O R E M 

Any two (finite!) chains of a module have isomorphic refinements. 

Proof Let B and C be given finite chains of the module A. The modules 

Bu = Bt + (Bi+lnq)9 y = 0 , . . . , / 

are inserted between B{ and Bi+i (i = 0 , . . . , k -1), and so we obviously 
have 

Bi = Bu0 BiA Bu = Bi+1. 

Analogously the modules 

Cij = Ci + (Q+lnBi\ / = 0 , . . . , f c 

are inserted between C} and Q+i (/ = 0 , . . . , / — 1) and we have 

Q = C 0 J ^ C U <•+ 
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The refined chains are then denoted by ß * and C*; they both have the 
same length kl. From 3.4 .5 it follows that 

Since in these kl isomorphisms precisely all of the kl factors of ß * and 
precisely all of the kl factors of C* appear, it follows that ß * = C*. • 

3 .5 .3 C O R O L L A R Y . Let A be a module of finite length. Then we have: 

( 1 ) Every chain B of the form 

0 = B0^Bi ... ^Bk = A 

can be refined to a composition series. 
( 2 ) Any two composition series of A are isomorphic. 

Proof. ( 1 ) By assumption there is a composition series C of A. According 
to the Jordan-Hölder-Schre ier Theorem B and C have isomorphic 
refinements ß * and C*. Since C, as a composition series, can only be 
trivially refined, there is (from the remark following 3 . 5 . 1 ) a refinement 
B° of B with B° = C. Since all the factors in C are simple, so also are the 
factors of ß ° , consequently B° is a composition series. 

( 2 ) Let now B and C be composition series and let in the terminology 
of ( 1 ) : ß ° = C Since B° is a refinement of B and both are composition 
series, it follows that B = B° and therefore B = C. • 

3 .5 .4 Definition. Let A be a module of finite length. Then let the length 
of A = Le(A) := length of one (and therefore of any) composition series 
of A. 

3.5 .5 C O R O L L A R Y . Let A^ M. Then we have: M is a module of finite 
length if and only if A and M/A are modules of finite length. If the length 
is finite then we have 

Proof I f 0 = A or A = M then the assertion is clear. Let now 0 ^> A M 
and let M be of finite length. Then the chain 

( W A ~>M 

can be refined to a composition series: 

Le(M) = Le(A) + L e ( M / A ) . 

O c - » A i t ~ » . . . t * A k = A c - » .~> An =M. 
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The initial part of the chain up to Ak = A is a composition series of A. We 
claim that 

0 = A/A Ak+1/A AJA = M/A 

is a composition series of M/A. This holds, since according to the Second 
Isomorphism Theorem 

(Ak+i+l/A)/(Ak+i/A)=Ak+i+1/Ak+i 

is simple. From the preceding it follows that Le(Af) = Le(A) + Le(Af/A) . 
Let now A and M/A be of finite length and let 

( W A i - > . . . - > A k = A , 0*+Bi<-> Bt = M/A 

be composition series of A and M/A respectively. Let v\M^MjA and 
Bi := v~\Bi). Then we have A ~> Bt and vißi) = BJA = Bt. Since Bi+l/Bi is 
simple and as 

(Bi+i/A)/ {BJ A) = Bi+i/ Bh 

Bi+i/Bi is also simple. Consequently 

Q^Ai^...^Ak=A^B\^...^Bi=M 

is a composition series of Af, i.e. Af is of finite length. • 

In particular the proof has shown how from composition series for A 
and M/A such a series for Af can be manufactured. 

Example. The Z-module Z /6Z has two composition series 

0 2Z/6Z ~> Z/6Z, 0 3Z/6Z ^ Z /6Z . 

The factors of the first are 

2Z/6Z = Z/3Z, (Z/6Z) / (2Z/6Z) = Z /2Z , 

those of the second are 

3Z/6Z = Z/2Z, (Z/6Z)/(3Z/6Z) = Z /3Z, 

from which the isomorphism of the two chains follows immediately. The 
significance of the Jordan-Hölder-Schre ier Theorem for modules of finite 
length becomes clear from the following consideration. Let A be a module 
of finite length, let B be an arbitrary submodule of A, let C be a maximal 
submodule of B, then B/C is a composition-factor (=factor of a composi­
tion series) of A. Thus let us consider the chain 



66 3 H O M O M O R P H I S M S Oh M O D U L E S A N D R I N G S 3.5 

(correspondingly the shorter chain in case that C = 0 or B = A resp.). This 
can be refined to a composition series, in which no module is inserted 
between C and B since C is maximal in B. Consequently BJC is in fact 
a composition factor of A , i.e. up to isomorphism one of the uniquely 
determined finitely many composition factors of A. 

3.6 F U N C T O R I A L P R O P E R T I E S O F Horn 

As we have already observed in Chapter 1, H o m R is a functor of the 
category MR (or SM or $MR)9 contravariant in the first argument and 
covariant in the second, into the category S of sets: 

Horn*: Ob](MR) x Obj(Af Ä ) 3 (A, B)^HomR(A, B) e Obj(S) 

Horn/?: MOT(Mr)XMOT(MR) 3(a, y ) ^ H o m Ä ( a , y ) eMor (S ) , 

where H o m « ( A , B) is the set of homomorphisms of A into B and 
H o m R ( a , y) is defined in the following manner: For 

a.A^B, y.C^D 
let 

H o m R ( a , y): H o m Ä ( ß , C)3ß^yßa eHomR(A,D). 

If Ä=ÜT is a field, i.e. MK is the category of üC-vector Spaces, then 
H o m ^ A , B) becomes again a vector Space over K in a well known manner 
by means of the definition 

(ai +a2)(a) := al{a) + a2{a) 

(ak)(a) := a(ak), 

(with au a2eHomK(A, B), a € A , k eK) a vector space over K, and Horrig 
can now be considered as a functor in the category MK itself (and not only 
in S). This property is now to be generalized. Let now R be once more 
an arbitrary ring with a unit element. By the following definition 
Horn* (A, B) becomes an abelian group. For a u ct2 e Horn* (A, B)> ai + a2 e 
H o m R ( A , B) is defined by 

(ax + a2){a) = ax{a) + a2{a), aeA. 

The group-theoretic properties of Hom j R (A , B), which follow from those 
of B, are then easy to verify: in particular the zero mapping of A into B 
is the zero element of Hom*(A, B) and the mapping -a with 

(-a)(a) := -a(a) 

is the homomorphism inverse to a e HomR(A, B). 
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With this interpretation of Hom*(A, B), Horn* becomes a functor in 
the category A of abelian groups. For this purpose we further establish 
that H o m R ( a , y) is now a group homomorphism of H o m R ( ß , C) into 
Hom*(A,£>) : 

H o m R ( a , y)(ßi + ß2) = y(ßi+ßi)a 

= yßla + yß2a 

= H o m R ( a , y)(j8i) + H o m Ä ( a , y)(ß2), 

since 

(y(ßi + ß2)a)(a) = y((ß1 + ß2)(a(a))) 

= y(ß1(a(a)) + ß2(a(a))) = y(ß1(a(a))) + y(ß2(a(a))) 

= (yßia)(a) + (yß2a){a) = (yßta + yß2a)(a). 

Let now 5 be also a ring with a unit element, let A = SAR and as before 
let B = BR. Then HomR(A, B) becomes by the definition 

(as)(a) := a(sa), a e H o m R ( A , B), aeA,seS, 

a right 5-module, as is immediately verifiable. 
Further let T be a ring with a unit element and let A = AR and also 

B = TBR. Then by the definition 

(ta)(a) := ta(a), a e H o m R ( A , B), aeA9teT, 

Horn* (A, B) becomes a left T-module. If we have simultaneously A = SAR, 
B = TBR then it follows that 

H o m ^ A , B) = r H o m R ( A , B)s, 

i.e. H o m R ( A , B) becomes a T-5-bimodule. 

3.6.1 Definition. The centre of the ring R is 

Z(R) := {s\seR AVreR[sr = rs]}. 

Remark. Z{R) is a commutative subring of R, which contains the unit 
element of R. 

I f we put 5 := Z(R) and let A = AR, then, by the following definition, 
A becomes an S-Ä-bimodule, 

sa := as, S G S = Z ( J R ) , aeA, 

as is easily verified. 
Since this holds for every R-module, it follows that H o m Ä ( A , B) can be 

considered as an 5 -Z(R)-module, right, left or two-sided. As we realize 
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easily, Horn* can then also be understood to be a functor in the category 
Ms, sM, SMS respectively. I f R is commutative, i.e. S = Z(R) = R, then 
Horn« is a functor in MR, as in the case of a vector Space over a field. 

In order to avoid confusion in complicated cases, we write, for example, 
in the S i t u a t i o n SAR, TBR also 

H o m Ä ( s A R , TBR), 

where the index R of the Horn« indicates that an R-homomorphism is 
involved, and the indices 5 and T imply that HomR(sAR, TBR) is to be 
considered in the previoiisly employed sense as a TS bimodule. In the 
S i t u a t i o n RAS, RBT then Horn* (i?A s, RBT) is an 5-T bimodule, and from 
our Convention at the beginning of 3.1 

a(sat) = (as)(at) = (asa)t = asat, 

indicates that a e A is first of all multiplied by s G 5; then a e H o m R ( A , B) 
is applied to as and the image multiplies t e T 

If we consider Horn* with respect to a fixed second argument MR as a 
functor of the first argument, then the following notational Conventions 
are used: 

H o m * ( - , Af) : Obj{M R ) 9 A»-*• Horn*(A, Af) e Obj(S) 

H o m ß ( - , Af) : Mor(MR) 3a *->HomR(a, AT) 9Mor(S) , 

in which we are to have 

H o m R ( a , Af) := H o m R ( a , 1 M ) . 

Analogously for the second argument. 

3.7 T H E E N D O M O R P H I S M R I N G O F A M O D U L E 

As mentioned in the previous section, for every module A H o m R ( A , A ) 
is an additive abelian group. In addition we know that the composition ßa 
of two homomorphisms 

a:A^B9 ß:B-*C 

is again a homomorphism. Consequently in Horn« ( A , A ) the product of 
any two elements is defined by composition and this product is associative 
(being the composition of mappings). 
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3 .7 .1 T H E O R E M . Horn* ( A , A ) is a ring with a unit element if addition 
and multiplication are defined as: 

(ax + a2)(a) = ax(a) + a2(a) 

(axa2) = ax(a2(a)). 

Proof. By v i r t u e of t h e p r e c e d i n g e x p l a n a t i o n i t r e m a i n s t o s h o w that t h e 

d i s t r i b u t i v e l a w h o l d s : 

((ax + a2)a3)(a) = (ax^ a2)(a3(a)) = ax(a3(a))^ a2(a3(a)) 

= (axa3)(a) + (a2a3)(a) = (axa3 + a2a3){a) 

(tti + a
2
) a

3
 = axa3 + a2a3. 

(a3(ai + a2))(a) = a3((ax + a2)(a)) = a3(ax(a) + a2{a)) 

= a3(ax(a)) + a3(a2(a)) = (a3ai)(a) + (a3a2)(a) 

= (a3ax+a3a2)(a) 

a3(ax + a2) = a3ax + a3a2. 

The u n i t e l e m e n t o f H o m R ( A , A) is t h e i d e n t i t y m a p p i n g o n A. • 

3 . 7 . 2 Definition. The r i n g g i v e n i n 3 . 7 . 1 is c a l l e d t h e endomorphism ring 
o f A (also c a l l e d t h e R-endomorphism r i n g o f A ) , a n d is d e n o t e d b y 

E n d ( A R ) . 

Example. If V= VK is a v e c t o r space t h e n End(VK) is t h e r i n g o f l i n e a r 

m a p p i n g s o f V i n t o i t s e l f . 

Remark. I f is a v e c t o r Space o f d i m e n s i o n n w i t h 0 < n < oo t h e n End( V^) 
is i s o m o r p h i c as a r i n g t o t h e r i n g o f all nxn Square m a t r i c e s w i t h 
c o e f f i c i e n t s i n K. The p r o o f o f t h i s f a c t is g i v e n l a t e r i n a m o r e g e n e r a l 
c o n t e x t . 

We w i s h n o w t o d e t e r m i n e End(i? Ä ) f o r a n a r b i t r a r y r i n g R. To t h i s e n d 

w e c o n s i d e r f o r a fixed r0 e R t h e m a p p i n g 

rio):RBxt-+r0xeR. 

From t h e d i s t r i b u t i v e a n d a s s o c i a t i v e l a w s w e h a v e r 0 ° e HomT(RR, RR); 
r{d] is s a i d to b e t h e left multiplication i n d u c e d b y r0. Let n o w <p e EndCR*), 
t h e n f o r a n a r b i t r a r y x e R a n d t h e u n i t e l e m e n t 1 e R w e h a v § : 

<p(x) = <p(lx) = <p(\)x = (p(lf\x)9 
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i.e. <p = ( p ( l ) " ) . Evidently E n d ( Ä R ) consists precisely of all left multiplica-
tions, as a result of which we then write 

R(l) = End(i? R ) . 

3 .7 .3 L E M M A . The mapping 

p:R3r~r

a)zRl,) 

is a ring isomorphism. 

Proof. For riy r2, x e R we have 

(n + r2f\x) = (r, + r2)x = r,x + r2x 

= r (

1'>U) + r (

2 ' , (*) = ( rV > +r (

2 ' ) )U) 

=> (n + r 2 r = r ,

1 " + r 2 ' ) . 

( r , r 2 ) ( , ) (* ) = ( ^ r 2 ) ^ = r 1 ( r 2 x ) = r ( / ) ( r 2 ' ) (x) ) 

=> ( r x r 2 ) ( n = / /V 2 ' \ 

Thus p is a ring homomorphism. 
L 

r 2 ° and so r\ = r 2 , i.e. p is injective. I t is clear that p is surjective. • 
Let now r\x = r2x. Then for JC = 1 : r\ = n 1 = r 2 l = r2. Thus we have ri° 

Analogously we can consider the ring R{r) of right multiplications of R, 
and we have analogously 

R=R{r) = End(RR). 

There follows now an important result on the endomorphism ring of a 
simple module. First of all we prove something more general. 

3 . 7 . 4 L E M M A . Let A and B be two simple R-modules. Then every 
homomorphism of A into B is either 0 or an isomorphism. 

Proof. Let a : A ^ 5 b e a homomorphism. From Ker(a) <-» A we have either 
K e r ( a ) = A , thus a = 0 or Ker(a) = 0, i.e. a is a monomorphism. From 
Im(a) B we have either Im(a) = 0 , thus a = 0 or Im(a) = B, i.e. a is an 
epimorphism. From both assertions: a # 0=>a is an isomorphism. • 

3.7 .5 L E M M A (SCHUR) . The endomorphism ring of a simple module is a 
skew field. 
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Proof. From 3.7.4 every non-zero endomorphism is an automorphism and 
t h u s has an inverse element in the endomorphism ring. Consequently the 
endomorphism ring is a skew field. • 

We return once more to the general S i t u a t i o n in which an arbitrary 
module AR is given, and let 5 := End(AR). In our notation the endomorph-
isms operate on the left of A. I f we write for a e S, a e A instead of a(a) 
merely aa, we may verify easily that A is a left 5-module. From 

a(ar) =*a(a)r = (aa)r, aeS,aeA,rsR 

A is in fact an S-R-bimodule. We shall come back later many times to this 
bimodule structure, the relationship between the structure of AR, SA and 
SAR will indeed play a role in certain considerations. 

3.8 D U A L M O D U L E S 

As in the special case of vector Spaces the concept of the dual module 
and the consequential relationships play an important role in the theory 
of modules. The main result of the following considerations consists of 
showing that (as with vector Spaces, see 1.4.4) the passage to the bidual is 
a functor A, and that a functorial morphism exists between the identity 
functor and A. 

We prove at once the following more general theorem: 

3.8.1 T H E O R E M . Let TLR be given. Then 

(1) H O H I R K TLr): Mr -* TM 

with 

HomR(-, TLR): Obj(MR) B A*->HomR(A, TLR)eOb)(TM) 

HomR(-, tLR): MOT(MR) Ba *-*HomR(a, lL)eMor(TM) 

is a contravariant functor. 
(2) Let 

A L : = H o m T ( r H o m R ( - , TLR), TLR), 
then 

&L.MR-+MR 

is a covariant functor. 
(3) ForAeMR let 

< D A : A ^ A L ( A ) 



72 3 H O M O M O R P H I S M S OF M O D U L E S A N D RINGS 3.8 

with 

<S>A(tf): HomR(A, L)3<p>-+<p(a)eL, 

then 

<S> = (<$>A\AeMR) 

is a functorial morphism between the identity functor 1Mr and A L . 

Proof. (1) Asalready establishedearlier, HomR(AR, T L R ) isaleft T-module, 
and for a G HomR(A, B) we have 

HomR(a, 1 L ): HomR(B, L) 3 i//*-*i//a G H o m R ( A , L). 

I t remains to be established that Hom i ? (a , 1 L) is a left T-homomorphism; 
this follows immediately from 

ti// • a =t • (^a, r G T. 

Finally we have 

H o m R ( l A , 1L) = 1 

Horn* (0a, l L ) = H o m R ( a , l J H o m Ä ( 0 , 1 L), 

and so everything is proved. 

(2) The functor A L is the composition of the functors 

Horn* ( - , TLR): MR -> TM 

and (of the analogously defined functor) 

H o m r ( - , TLR):TM-*MR. 

(3) <£A is an Ä-homomorphism. Let 

a i , a 2 G A , rur2eE, <p6Homi?(A, L ) , 

then we have 

<p4>(fliri + a2r2) = <p(a l̂ i + a2r2) 

= <p(ai)ri + <p(a2)r2 

= 0><I>(ai)ri 4- <p<I>(a2)r2 

= <p(<I>(<21)r1 + *(ö! 2 )r 2 ) , 

which was to be shown. 
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It remains to be proved that the diagram 

is commutative. For <2 e A , </> e H o m Ä ( £ , L) we have on the one hand 

and on the other hand 

<̂ Ajr (a)* A(a) = ^<x^A(a) = ipa(a) = «AM), 

which was to be shown. • 

Of particular interest is the special case T = R and TLR = RRR. We assume 
this in the following definition. 

3.8.2 Definition 
(1) For AR 

A * : = H o m Ä ( A , Ä ) 

is called the dual and 

A * * := A(A) := A* (A) = Horn* ( Ä Horn« (A*, RR), RR) 

the bidual module to AR. 

(2) For a:AR^BR 

a* := H o m R ( a , i ? ) = Hom i ? (a , 1 R ) 

is called the dual and 

a** := Horn« (Horn« (a, Ä) , R) 

is called the bidual homomorphism to a. 
(3) For aeA a** := <I>A(fl) is called the bidual element to a. 
For many considerations it is of interest to know which properties are 

possessed by the homomorphism 

<I>A: A 9ö>->fl**6 A * * . 

I f A Ä is a finite-dimensional vector space then it is well known that 3>A is 



74 3 H O M O M O R P H I S M S OF M O D U L E S A N D RINGS 3.8 

an isomorphism. In general this is tföt the case. Different possibilities are 
characterized by particular denotations: 

3 .8 .3 Definition. Let <$>A: A3a^->a*£eA**. 
( 1 ) AR is called torsionless : <£>3>A is a monomorphism. 
( 2 ) AR is called reflexive : <=> O a is an isomorphism. 

Since later we have to consider numerous applications of these ideas, we here 
omit examples. 

3.9 E X A C T SEQUENCES 

In homological algebra, complexes and exact sequences play an important 
role. They are a part of the fundamental concepts and are used, in particular, 
in the definition of the functors Ext and Tor. Although in this book we do 
not go further into homological concepts, nevertheless at least complexes 
and exact sequences are to be presented. Their usefulness appears sub-
sequently in an application in Chapter 1 2 of this book. 

Let R be a ring and let 
a i - 2 a i — 1 a i a i + 1 

A := . . . • At-i > At • Ai+r * ... 

be a sequence of homomorphisms of right Ä-modules A , —> A,-+i, finite or 
infinite on one or other or both sides. For example A can have the form 

« 1 « 2 a 3 

A = 0 - > A i - » A 2 ^ A 3 ^ . . . 
or 

« _ 4 « _ 3 « _ 2 

A = . . . > A _ 3 >A-2 > A _ ! ^ 0 
or 

A = 0^A^M-^ W^O 
where 

0->A resp. V ^ ^ O 
is, as appropriate to the case, an unambiguously determined R-
homomorphism. Finally the enumeration can also be inverted as for 
example in 

o 3 a 2 a , 
A = . . . > A 3 > A2 > A ] 0. 

3 . 9 . 1 Definition (a) A sequence A is called a complex : <=> for every 
subsequence of the form 

a i - 1 a i 

Ai-i >A( >Ai+u 

Im(a/_i) Ker(a {) 
holds. 
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(b) A sequence (or complex) A is called exact : <=> for every subsequence 
of the form 

a i - \ a i 

A | _ i > Ai > A,+i, 

Im(a
I
-_i) = Ker(aI-) 

holds. 
(c) A n exact sequence A is called a split exact sequence : <=> for every 

subsequence of the form 
a i - l a i 

Ai-i >Ai >Ai+u 

Im(a/_i) = Ker(a!l-) 

is a direct summand of At. 
(d) If A is a complex then the sequence 

. . . , Ker (a / ) / Im(a
/
_i), Ker (a,+i ) / Im(a t ) , . . . 

is called the homology of A and Ker(a,)/Im(a/_i) is called the ith homology 
module of A. 

(e) A n exact sequence of the form 

O ^ A - ^ M - i W^O 

is called a short exact sequence. 
We point out that a sequence A is a complex if and only if (for all 

occurring index pairs /, i — 1) 

= 0 

holds (for = 0<=>lm(a,-_i) <-* Ker(a t )). 
A l l of these concepts are mentioned for the sake of completeness; in 

this book (in Chapter 12) we shall however only have short exact sequences 
to consider. We confine ourselves now to what we need there. 

We begin first of all by making clear what it means for the short sequence 

0 - > A - ^ M A W^O 

to be exact. Since the first mapping 0 -»A has image 0, the exactness of 

0 -> A M indicates that / is a monomorphism. Since the last mapping 
g 

W -»0 is the zero mapping with Kernel = W, the exactness of M —> W -> 0 
indicates that g is an epimorphism. From I m ( / ) = Ker(g) it then follows 
t h a t M / I m ( / ) = W 
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If A «-> M then we obtain in particular the short exact sequence 

O ^ A ^ M ^ M / A ^ O , 

where i is the inclusion mapping and v is the natural epimorphism. 
The following lemma is needed later. 

3 .9 .2 L E M M A . Let all modules be right R-modules and let all homomorph -
isms be R-module homomorphisms. Let 

0 — > A - ^ M - ^ W — > 0 

be a commutative diagram {i.e. p,f = ha and cog = kp are to hold) with exact 
rows and let a, p,, a> be monomorphisms. Then p, is an isomorphism if and 
only if a and co are both isomorphisms. 

Proof First let p, be an isomorphism. Let b eB. Then h(b)eN and so there 
is meM with p,{m) = h{b), thus (og{m) = kp{m) = kh{b) = 0. Since co is a 
monomorphism it follows that g{m) = 0, thus m e Ker(g) = Im( / ) there 
is an aeA with f{a) = m. Hence ha{a) = p,f{a) = p{m) = h{b) and so 
h{a{a)-b) = 0, and since h is a monomorphism, it follows that a{a) = b, 
i.e. a is also surjective and, in consequence, an isomorphism. 

Let now x e X be given. Then there is n e N with k{n) = x and so there 
is meM with p{m) = n, thus cog{m) = kp,{m) = k{n) = x^>co is likewise 
surjective, thus an isomorphism. 

Conversely let now a and OJ be two isomorphisms and let n e N be given. 
Then there is w e W with OJ{W) = k{n). Consequently an meM exists with 
g{m) = w^>kp,{m) = (og{m) = co{w) = k{n)^>k{n -p{m)) = 0 

=> there is b eB with h{b) = n-p,{m); 
4> there exists an a e A with a (a) = &; 
=> = Aor(a) = h(b) = n -/x(m); 
4> p{f{a) + m) = thus /u, is surjective and consequently is an isomorph­

ism. • 

This proof is a typical example of so-called diagram-chasing. I t is clear 
that, without the notation of diagrams, this proof would be very obscure. 

We direct our attention now to split short exact sequences. Let 
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be an exact sequence. Obviously the S p l i t t i n g of the subsequences 

0 - » A ^ > M and MW-+0 

is already given, so that the Splitting of the given short exact sequence 
depends only on the S p l i t t i n g of 

A-^M-^ W 

i.e., on whether I m ( / ) = Ker(g) is a direct summand in M . 

3.9.3 L E M M A . Let A = 0 A — » M —> W->0 be a short exact sequence. 

(a) The following are equivalent'. 
(1) A splits. 
(2) There exists a homomorphism / 0 : M -» A with f0f = 1 A . 
(3) There exists a homomorphism g0:W-*M with gg 0 = W . 

(b) If A splits, then f0 and g 0 exist as in (2), (3) resp. so that 

O * - A J ? - M ^ - W ^ O 

is exact and splits. 

Proof (a) " (D*>(2)" : 3.4.11 (1). 
< 4 (1)<»(3)": 3.4.11 (2). 

(b) L e t / 0 : M - » A with fof= 1 A chosen arbitrarily. From 3.4.10 it follows 
that 

M = I m ( / ) © K e r ( / 0 ) = K e r ( g ) © K e r ( / 0 ) . 

From this g |Ker( / 0 ) is an isomorphism. 
Let now h: W -» Ker ( / 0 ) be the inverse isomorphism and let t : Ker ( / 0 ) -> M 

be the inclusion mapping, then let g0 •= th. As M = Ker(g)@Ker(/ 0 ) and 
since g is an epimorphism every element from W may be written in the 
form g(x) with x e Ker ( / 0 ) . I t then follows that 

ggo(gU)) = gt(hg(x)) = g(x), 

thus gg 0 = lw and also g0g(x) = x, thus Im(g 0 ) = Ker ( / 0 ) . Consequently 

O ^ A J ^ - M ^ - W ^ O 

is exact and, from gg 0 = 1 w, / o / = 1A, splits by (a). • 
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EXERCISES 

(1) 
Let A, L G Mr, a:A-*L,B~>A,C~>A,M~>L9N~>L. 

(a) Prove: The following S t a t e m e n t s are equivalent: 
(1) a(BnC) = a(B)na(C). 
(2) (B 4 Ker(a)) n (C + Ker(a)) = B n C 4 Ker(a). 
(3) (BnKer(a)) + ( C n K e r ( a ) ) = (B + C ) n K e r (a). 

(b) Prove: The following S t a t e m e n t s are equivalent: 
(1) a~l(M + N) = a-1(M) + a~1(N). 
(2) ( M n Im(a)) + (AT n Im(a)) = (Af 4- N) n Im(a). 
(3) ( M 4- Im(<*)) n (JV + Im(a)) = (Af nAO + Im(a) . 

(2) 
Construct an example in which the conditions in l(a), l (b) resp. are not 
satisfied. 

(3) 

(a) Let a module homomorphism <p:M-*N be given and also A ^ M , 

Show: <p~\cp(A) + V r ) = A + (p" 1 (V) . 

(b) Let a module homomorphism <p:M^N be given and also B ^ N, 

Show: (p(<p~l(B)nU) = B ncp(U). 
(4) 

(a) Prove: In the category of unitary rings every monomorphism is 
injective. (Hint: Use Z[; t] = polynomial ring in x with coefficients in Z). 

(b) Prove: L:Z-*Q is an epimorphism in the category of unitary rings. 

(5) 
Determine all composition series of Z/30Z and exhibit all isomorphisms 
between them. 

(6) 
(a) Determine the following groups: 

Hom 2 (Q, Z), H o m 2 ( Q / Z , Z) 
for n EN. 

Hom z (Q , Q), H o m z ( Z / t t Z , Q) 

(b) Show for M e MR: Horn* CR, M) = M. 
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(7) 
Let A be an additive abelian group and let End(A) be the endomorphism 
ring of A , where for a eEnd(A) and aeA aa is the image of a by a. 
Further let R be a ring and let 

p : i ? - » E n d ( A ) 

be a ring homomorphism, unitary ring homomorphism resp. 
(a) Show: By the definition 

ra := p(r)a, aeA,reR, 

A becomes a left R-module, unitary left R-module resp. 
(b) Show: Every left R-module, unitary left R-module resp., RA with 

A as additive group is obtained in the manner outlined above. 
(c) Construct an example of an additive abelian group A and a ring R 

so that A is a unitary left R-module in two different ways. 
(d) Formulate the corresponding relations for right R-modules without 

altering the multiplication in End(A). 

(8) 
Prove: For every vector space VK the endomorphism ring End(V^) is 
regulär (for the definition see Chapter 2, Exercise 13). 



Chapter 4 

Direct Products, Direct Sums, Free Modules 

In the structure theory of modules we attempt, on the one hand, to 
reduce a given module to simpler modules by means of additive decomposi-
tion or residue class decomposition. On the other hand we endeavour to 
construct new modules from given modules. Obviously this construction is 
not arbitrarily undertaken; a guiding principle is the question of modules 
with known universal properties. We have already become acquainted with 
such universal properties in respect of products and coproducts in categories 
(1.5). Products and coproducts are now to be investigated in the category 
of modules. 

4.1 C O N S T R U C T I O N O F P R O D U C T S A N D C O P R O D U C T S 

We begin by recalling some known set-theoretic concepts. Let (A,-|/ e I) 
be a family of sets A , with index set / ^ 0 . Then the product FI A( of the 
family (A, | / e / ) is the set of the mappings , e / 

O - J - ^ U A ; 
iel 

with a(i)e A , for all / e I . 

Notation 
(1) a( := a(i) is called the ith component of a. 
(2) (af) :=(*(/)) :=a. 

Thus we obviously have for (a,), (<zj) e f ] A • : 

iel 

(a,) = ( a ; ) « V / e / [ a , = a ; ] . 

80 
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We observe that / need not be countable. If however / is countable, say 
/ = { 1 , 2, 3, . . . } , then the notation 

(aia2a3 . . .) := (ai) = a 

is also used. I f / is finite, say I = { 1 , 2 , . . . , n}, then let 

(axa2.. . an) '= (at) = a. 

If now Ai e MR holds for all / e I then, by a componentwise definition, \\ At 

iel 
becomes a unitary right i?-module. 

4.1.1 Definition. Let (af), (bi) e U Ah reR. 
iel 

Addition: + := 
Module multiplication: (a()r := (af). 

If again we write a = (a{)9 ß = (bi) then instead of the above we have 

(a+ß)(i):=a(i) + ß(i), i 'eJ 

(ar)(/) '= a(i)r9 iel. 

The proof, that with respect to this definition FI A is an object from MR9 

iel 

is trivial. In particular the zero mapping 

where 0, is the zero of Ai9 is the zero element of Y[Ai and —a '= (~a,) is 
the element inverse to a = (a,-) with respect to addition. 

4.1.2 Definition. A n element n ^ / i s s a i d t o b e °f / * m ^ 

port: <=>the set of the iel with ^ 0 is finite (where the empty set is 
considered also as finite). 

We see then from the criterion for submodules that the set of all elements 
from n Ai of finite support is a submodule of H A{. 

4.1.3 Definition 

(1) I f (Ai\i e I) is a family of objects from MR then FI A £ is called 

the direct product of the family (At\i e I). 
(2) The submodule of all elements of finite support of \[ Ai is called 

the external direct sum of the family (A,-|/ e I) and is denoted by [J A,-. 
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4.1.4 Remark. If / is finite then we have 

n A,= i i A, 
iel iel 

In 1.5 we had defined in an arbitrary category the product and coproduct 
of a family of objects. We now have to show that the direct product, direct 
sum resp., is, together with a certain family of homomorphisms, the product 
in MR, coproduct in MR resp. 

For je I we consider the following mappings: 

7ry: n AiB(ai)^>aj£Aj 

er: I I A i 3 ( f l , ) ^ ( f l , ) 6 l l Ai 
iel iel 

M ( 0 f o r / V / 
r]j: Aj 3 af e j j Ai, with «/(/) = { . . 

iei Ißy f o r / = / 

We then easily verify the following properties. 

4.1.5 L E M M A 

(1) 77; and iTjcr are epimorphisms. 
(2) T?/ and crr\j are monomorphisms. 

_ f l A / fork=j 
(3) 7rfcor77/ = | ^ 

(4) (CT77/7T/)2 = CT77/7T/, (77/77/Or)2 = TjjTTjCT. ry, (77/7r/or) 
(5) If I = {1,2,..., n} then 

n 

(r?/7T/)2 = 77/77/ A l n A , = X ¥ / • 
/ = 1 

4.1.6 T H E O R E M 

(1) ( n Ai, (7r/|/ 6 / ) ) is a product of the family (A{\i e I) in the category 
\iel / 

MR, i.e. for every object C from MR and every family ( y , | / e / ) of 
homomorphisms 

yr.C^Ai, iel 

there exists exactly one homomorphism 

y:C-*\[Ai 
iel 
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satisfying 

(2) ( U A> € I)) *s a coproduct ofthe family (At\i e I) in the category 
\i<=i / 

MR, i.e. for every object B from MR and every family (ßi\iel) of 
homomorphisms 

ßi'.Ai-*B, iel 

there exists exactly one homomorphism 

ß:]\Ai-+B 

iel 

satisfying 

ßt = ßr)i, i e I. 

Proof. (1) We exhibit the desired y : C-> f l At: Let 
iel 

y{c) := (r,-(c))€ Fl A i iorceC. 
iel 

Then y is a homomorphism and we have 

(7ryy)(c) = 7ry(y(c)) = r/(c), C G C , 

thus y y = TT/% ; e I. 
Uniqueness of y: Let also y ' : C-» ü ^ / w i t h = (̂ /VX )̂ = ^j(y\c)), 

iel 
then it follows that 

y'(c) = (yi(c)) = y(c), 

thus y ' = y. 
(2) We can again give the desired ß: ]} At - » £ explicitly: Let 

iel 
ß{{ai)):=Y.ßi(ai)eB, 

where the sum runs over only the iel with ax ^0; from the definition of 
I I Ai the sum is thereby meaningful (the sum over the empty index set is, 
as always, put equal to 0). 

The ß is a homomorphism, and we have 

(ßriJ)(aj) = ß(ai) = ßi(ai), 
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thus 

ßi = ßVh 7'e/. 

Uniqueness of ß: Let also ß': I ] A,- -> B with ßf = ß'^, then it follows that 
iel 

/3(fly) = A-(a / ) = ^'r ? / ( f l / ) = j8'(ii /) 

and since every element from U A,- is a sum of finitely many ah we deduce 
that 0=0'. • 

The following notational device is common and we also employ it. 

4.1.7 Notation. Let / be a non-empty set and let A eMR. Then let 

Al '= FI A Af- = A for every / e / . 

A ( / ) := U At with A , = A for every iel. 
iei 

We call A 7 , AU) resp., the direct product, the direct sum resp., of / copies 
of A. 

4.2 C O N N E C T I O N B E T W E E N T H E I N T E R N A L 
A N D E X T E R N A L D I R E C T SUMS 

In 2.4 the internal direct sum was introduced and in the preceding chapter 
we have defined the (external) direct sum. We are about to show that these 
concepts are not essentially different from one another so that in what 
follows they can mostly be identified without leading to misunderstanding. 

Thus we have the monomorphism 

17/: Aj 3aj^üj G [J A/, 
iel 

where 

0 for / * j 
a} for / = / 

following on from 4.1. Let A] := T7y-(A/), then A] is a module isomorphic 
to Aj. 

In the case that / is the set { 1 , 2, 3 , . . . , n} it follows that 

a} = (0 . . . Oa/0 . . . 0), 
t /th place 
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and also 

A ; = { ( 0 . . . 0 a / 0 . . . 0 ) | t f , e A / } . 

4 . 2 . 1 T H E O R E M . Let (A/ | ze i ) be a family of R-modules. Then we have: 

LI A , = © A ! and Ai=A'h 

ie/ iel 

in other words, the external direct sum of the Ai is equal to the internal 
direct sum of the submodules A\ of U A,- isomorphic to the At. 

iel 

Proof From the definition of the A\ we have £ AJ ^ U A, . Let now 
iel /€/ 

0 5* (a,-) G I i Ai and let a„ 5* 0 , . . . , a,-n 5* 0, whereas a{ = 0 for all other / e / , 
iel 

then it follows that 

( a , ) e A 5 I + . . . + A5 f l, thus I A I = II A, . 
1 6 / 1 6 / 

Let 

(ö,) G AJ- n X ^/ ^<*i = 0 for / 5*/ 

1 6 / 

and 
fl/ = 0=>(a,) = 0. 

As asserted above, we have finally A , = A j , where ax ^77,(a,). • 

Warning. In the following the isomorphic modules A,- and A j are usually 
identified and so A , is written in place of A j . Moreover on account of 
Theorem 4 . 2 . 1 , the distinction between internal and external direct sums 
is often dropped and in both cases 0 A , is written and called the direct 
sum. In the absence of any indication it is to be determined from the 
context which particular direct sum is being considered. 

4.3 H O M O M O R P H I S M S O F D I R E C T P R O D U C T S A N D SUMS 

Let (Ai\i G / ) , (Bi\i G I) be two families of A,-, Bi e MR. Further let (a,|/ G / ) 
be a family of homomorphisms 

at: Ai-+Bi9 
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Under these assumptions we have 

4 . 3 . 1 L E M M A . T h e mappings defined by, 

iel / e i / e i 

© a,: © A, 9(a,)-».(a,(a,)) 6 © £ , 
/ e i / e i / e i 

are homomorphisms with 

(1) [ ] <*/ w mono<=>© a, w m o n o » V / G / [a, /s mono]; 
(2) [1 &i epi<=>© at is epi<=>V/ G / [a,- /s epi]; 
( 3 ) II <*/ w iso<=>© oti is i s o ö V / G / [at is iso]. 

Proo/. Exercise for the reader. 

4 . 3 . 2 L E M M A . Assumptions as above. Let further 

^: Ker (et,) 3 ai a{ G Ah . 
t'i\ Im(a,) 9 b i^b i G Bh 

then the following are isomorphisms: 

(1) n Ker(a , )9(f l , )^( t , ( f l , ) )eKer(n 
/ e i V/eJ / 

(2) © Ker(a,) 9 (a,)^U,-(ad) G K e r f © a,). 
/ e i M e / / 

( 3 ) n I m ( a / ) 9 ( W ^ ( t ! ( W ) 6 l m ( n «\ . 
iel M ' e i / 

(4) © Im(a,) 9 (/>,)) € I m ( © a,). 

FI Ker(a,) s K e r ( ü « , ) , © Ker(a,) s K e r f © a) 
iel \iel / / e i \ / e i / 

FI Im(a,) = I m ( n a,Y © I m ( a , ) s I m ( © a , Y 
iel \ / e i / / e i \ / e i / 

Proö/. Exercise for the reader. 

4 . 3 . 3 L E M M A . Let the families (A\i G / ) , (Bj\j eJ) be given, then 

H o m Ä ( 0 i 4 l - , n BA 9<p^(7rj(pr)i)e U HomR(Ah Bj) 
\ / e i jeJ / (»,/)€ i x j 

is a group isomorphism. 
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Proof. I t is clear that a group homomorphism is involved. I t remains to 
prove: 

l 'Mono": Let 0 # <p G H o m Ä ( © Ah \\ Bj). Then there exists 

( ß / ) e © A , with ^((a.-))^0. 

Since (a,-)= Z a«we have <p((a,)) = <p(L «/) = Z ^ 0 

there exists / with <p(a,) = (prji(ai) = 0; 
^ there exists / with 7̂ 17; # 0=^ 7̂ 17/ # 0. 
"Ep i " : Let ( a y / ) G Ü Hom Ä (A / , Ä y ) . To a fixed / e J and to the family 

( « / / [ / G / ) , where aj(: Ai -> Bj there is then associated by 4.1.6 a homomorph­
ism ßi: A , -» n Bj so that 

A,-

0. 

nJ5y > Bj 
1 TT- I 

is commutative. 
To the family (ßi\iel) there then corresponds by 4.1.6 a < p : © A f 

so that 

A ; 

0, 

© A f — ^ r m , 

is commutative. Then follows aj( = 7T//3, = 7̂ 17/ from which the assertion 
follows. • 

Special cases 

Horn« © A t , 5 = FI Horn*(A„ B), where 
\ / e J J iel 

H o m J A , n #/) = I I H o m Ä ( A , where <p *-+(TTJ<P). 
\ jeJ / / eJ 
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4.4 F R E E M O D U L E S 

In 2 .3 .5 a basis of a module was defined as a free generating set. Modules 
that possess a basis can be characterized in the following manner. 

4 . 4 . 1 L E M M A . Let F = F r . Then the following conditions are equivalent: 
( 1 ) Fhas a basis. 
( 2 ) F = © A / A V / 6 / [ Ä Ä S A / ] . 

i e / 

Proof. We remark first of all that ( 1 ) and ( 2 ) are satisfied for F = 0 , in fact 
with 0 as basis and 1 = 0. This follows by Convention that the sum 
over the empty set is equal to 0 . We can therefore assume that F ^ 0 . 

" ( 1 ) = > ( 2 ) " : Let X be a basis of F and let aeX. Then 

<pa:RR 3r^areRR 

is evidently an epimorphism. Further, from the property of a basis, it follows 
from ar = 0 = aO that r = 0 and so we obtain an isomorphism. We claim that 

F= © aR. 
aeX 

Since X is a basis, X is also a generating set and so we have F = Z 
a e X 

For a0eX let 

c e <z0i? ^ Z 
a e X 

then there exist distinct a\,. .., an eX, at ^ a0 and r0, r T , . . . ,rneR with 

c = a 0 r 0 = Z Wh =>Äo/,o + Ißi ( - r / ) = 0 . 
i = l 

Thus from the property of a basis 2 .3 .5 ( 4 ) : 

r 0 = ri = . . . = r„ = 0 => a()R n Z < 2 # = 0 , 
a e X 

hence 

F= © « Ä . 
a e X 

" ( 2 ) = ^ ( 1 ) " : Let <p: RR = A , be the isomorphism which we are supposing 
to exist. We claim that {<p,Q )|/ e / } is a basis of F. From 

Ai = <Pi(R) = <pi(l-R) = <pi(l)R 
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we have 

F = © A , = © ^ ( 1 ) Ä , 
iel iel 

thus {(Pi(l)\i G / } is a generating set of F. Let V <= /, V be finite and 

I ^(l)r.- = 0 . 
iel' 

Then it follows from 2 . 4 . 2 for all / e V 

<Pi(l)n = (pi(n) = 0 

and, since <pi is an isomorphism, r, = 0 , thus {<p,(l)|/ e 1} is in fact a basis of 
F. • 

4 . 4 . 2 Definition. A module F, which satisfies the conditions of 4 . 4 . 1 , is 
called a free module. 

4 . 4 . 3 L E M M A . Let I be a set. Then R(I) is a free R-module with a basis 
having the cardinality of I. 

Proof. We consider the family (A,-|/ei) with A , = RR for all iel. Then it 
follows from 4 . 2 . 1 that 

R(I) = UA,=©A; with Ä Ä = A , - £ A ; . 

As shown previously it follows that RU) is free and has {<p/(l)|/e/} as a 
basis. • 

I t is pertinent to recall (see 4 . 2 ) that in the case / = { 1 , 2 , . . . , n} we have 

^ ( 1 ) = ( 0 . . . 0 1 0 . . . 0 ) 

i.e. {cp/(l)|/ = 1 , . . . , n} is then the l tcanonical basis of Rn". 

4 . 4 . 4 C O R O L L A R Y . Every module MR is the epimorphic image of a free 
right R-module. If MR is finitely generated, then MR is an epimorphic image 
of a free right R-module with a finite basis. 

Proof. Let Y be a generating System of M. Then we consider the free module 

R(Y)= © <pb(l)R. 
be Y 

From 

R{Y)3l<pb{l)rb^brbeM 

and by virtue of the uniqueness of the representation by the basis in R(Y) 

an epimorphism is then defined. • 
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4.4.5 Notation. We have denoted the basis of R{1) by {<p,( l ) | /ei} but in 
the following we are not to be confined to this notation. Obviously it can 
also be denoted by any other set, which has the cardinality of /, e.g. by / 
itself. 

Af = 0 / Ä . 
iel 

We point out another important property of free modules which later 
(in the case of projective modules) plays a fundamental role. 

4.4.6 T H E O R E M . / / 

(p\AR^FR 

is an epimorphism and if FR is free then <p splits. {Definition see 3.4.8). 

Proof. Let Y be a basis of FR and to every b e Y let ab e A be chosen with 
<p(ab) = b. Then the mapping 

(p':F3Y.brb^Y.abrbeA 

is an R-homomorphism (since Y is a basis). 
Thus we have 

<P<p'(T brb) = <p(£ abrb) = £ <p(ab)rb = £ brb, 

thus <p<p* = I F and consequently 

A = Im(^ , )©Ker(<p). • 

4.5 F R E E A N D D I V I S I B L E A B E L I A N G R O U P S 

Every abelian group can be considered in a natural sense as a /-module, 
so that all module-theoretic concepts are applicable to abelian groups. 
Accordingly an abelian group is called free if it is free as a Z-module, i.e. 
if it is a direct sum of copies of Z z . 

If, in the following, the discourse concerns groups, then it is always to 
be additive abelian groups that are involved. 

4.5.1 Definition. A group A is called divisible : <£> 

V z e Z | > * 0 r > A z = A ] . 

4.5.2 L E M M A . Every epimorphic image of a divisible group is divisible and 
consequently every factor group of a divisible group is divisible. 
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Proof. Let A be divisible and let 

<$>.A->B 

be an epimorphism. Then we have for 0 ̂  z e Z , 

Bz = <&(A)z = O(Az) = d>(A) = B, 

thus B is divisible. • 

4.5.3 L E M M A . The direct product and the direct sum of divisible groups 
are divisible. 

Proof. Let (A/ | / e J ) be a family of divisible groups. Then we have for 
O ^ Z E Z 

as we immediately deduce from the definition of the direct product and 

Examples: Q and Q / Z are divisible groups. Z is not divisible. 

4.5.4 T H E O R E M . Every abelian group can be mapped monomorphically 
into a divisible group. 

Proof. Let A be an abelian group. From 4.4.4 there is a free abelian group 
F and an epimorphism. 

4 > : F ^ A . 

If we put x := x + Ker(<I>) then 

<f>: F/Ker(<£) 3x*-> <l>(jt) € A 

is an isomorphism (3.4.1). Let Y be a basis of F = F Z , then we consider 

D = Q(Y)= © * Q . 

Since Q z = bQz, bQz is divisible and then from 4.5.3 so also is D. Since F = 
© i Z F is a subgroup of D. Then Ker(O) is also a subgroup of D and 
from 4.5.2 D := D/Ker(4>) is also divisible. 

the direct sum. • 

Let now 
L: F/Ker{®)3x^>xeD 
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be the inclusion mapping, then t4>' Ms the desired monomorphism of A 
into the divisible group D. • 

We now prove the theorem dual to 4.4.6 which shows that divisible 
groups are injective Z-modules (definition in next chapter). 

4.5.5 T H E O R E M . / / 

<p: Dz -> Bz 

is a monomorphism and if Dz is divisible, then <p splits (i.e. Im(<p) is a direct 
summand in B). 

Proof. By 4.5.2 Im(<p) is divisible, so that without loss we can consider Dz 

to be a submodule of Bz and <p = t to be the inclusion mapping. Let then 

r:={U\U~>BADnU = 0}. 

Since we have U = 0eT , T # 0 ; since further the union of every totally 
ordered subset of T (under inclusion) is again an element of T, there is by 
reason of Zorn's Lemma a maximal element in T, which is again to be 
denoted by U. As a result we then have 

D + U = D®U~>B, 

and it is to be shown that B =D®U. 
For an arbitrary b eB we consider the ideal z 0 Z consisting of the z eZ 

with bz eD + U. Let bz0 = d + u. Since D is divisible there is a d0 with 
doZ0 = d^>(b -d0)z0 = u. Evidently z 0 Z is then also the ideal of the z eZ 
with (b-d0)z eD + U. 
We claim that 

£ > n ( [ / + ( i - < / o ) Z ) = 0. 

Assume 

di = u 14- (b - do)* i eDn(U + (b- d{))Z). 

Then 

(b-do)zx =di-uieD + U 

and so 

zx=z0t,teZ. 

Then 

(b — d0)zot = ut = d\ — U\. 
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Then 
0 = dl-(ul + ut)=>dl=0. 

From the maximality of U it follows that (b - d0)Z <-> U^> b - d0£ U^> b e 
D+U. Thus we have in fact, B =D®U, which was to be shown. • 

4.6 MONOID R I N G S 

As a further example of the application of free modules we introduce 
here the monoid ring. Let G be an arbitrary, multiplicatively written, 
monoid, i.e. G is a set with an Operation G x G B(CL, b)-* ab e G, which is 
associative and in which there exists a neutral element e. Further let R be 
an arbitrary ring. 

In the sense of 4.4.5 let 

GR := © gÄ, 

where G is itself thus taken as a basis. We observe that then g l = g for 
g€ G, leR holds (g Stands in the place of <pR(l) in the sense of 4.4.5). 

By means of a definition of a multiplication GR is now to be made into 
a ring (with unit element). 

4.6.1 Definition. Let T, V be finite subsets of G. For 

g e T g'eT' 

let then 

This definition means: In GR for a product of elements from G the product 
is taken in G and for such a product of elements from R the product in 
R is taken; in other respects we calculate distributively and the elements 
from R and G are permutable. 

Remark. On the right side the same monoid element in £gg'rgrg can occur 
many times in the form gg'; in general this is therefore not a representation 
by a basis. A representation by a basis ensues if by distributivity we collect 
together basic elements: 

Jf'eT' 

£ bsb with 56 
fce T T ' 

geT,g 'eT' 
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For a finite monoid G = { g i , . . . , gn} the definition can be written in the 
following form: 

( I gfM I g/i) = t gigf/j = t gkSk with sk = I rfrj. 
V = l / \ / = l / = l fc = l g,g, = gfc 

/,/ = l,. . . ,n 

I t is easy to verify that, under the given definitions, GR is a ring. The 
associativity follows from that in G and in R and the distributivity follows 
from that in R. Let e be the identity (=neutral element) of G, then e = e l 
is the unit element of Gi?, as follows immediately from 4.6.1. 

4.6.2 Definition. GR is called the monoid ring of G with coefficients in 
R. If G is a group then GR is called the group ring of G with coefficients 
in R. 

If we consider the subring eR of GR then the mapping 
ei? ser^reR 

is a ring isomorphism, and eR is usually identified with R; for the 1-element 
of the group ring e\ (with 1 ei?) we then write 1. 

Finally we point out that by putting 

rlgrg '= erZgrg=Y,grrg, reR 

GR becomes a left Ä-module , for which G is again a basis. Since GR is 
an eR-GR-bimodule, GR is also an Ä-GÄ-bimodule . If R is commutative 
GR is then an Ä-algebra (see 2.2.5). 

Ring-theoretic, module-theoretic, group theoretic and—for deeper con­
siderations—also arithmetic concepts are involved in the investigation of 
group rings. This many-sidedness makes this area particularly interesting 
and stimulating. 

4.7 P U S H O U T A N D P U L L B A C K 

Let: 

be two given homomorphisms with the same domain. 
With respect to many problems, which we shall later encounter, the 

question arises as to whether we can incorporate these homomorphisms 
in a commutative square: 

A : >B 

M *- >N. 
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We wish to show that this is possible in a non-trivial way and indeed with 
a ''universal" pair tp> ß i.e. with a pair such that over the pair every other 
commutative "completion of the S q u a r e " of a, <p can be factorized. 

Obviously the dual question also arises as to whether for a given i//, ß 
with the same codomain there exists a "universal" commutative "comple­
tion of the square". Here, too, the answer is positive. 

In the f i r s t case the S o l u t i o n is called a pushout, in the second case a 
pullback. 

4.7.1 Definition. Let the commutative diagram (*) be given. 
(1) The pair (i//, ß) is called the pushout of the pair (<p, a): <£> for every 

pair (ij/', ß') with ip'\M-*X, ß'\B^X and ip'cp = ß'a there is precisely one 
cr:N^X with tA' = <riA, ß' = crß. 

(2) The pair (<p, a) is called the pullback of the pair (ip,ß): <=>for every 
p a i r (<p\ a) with <p': Y-+M, a': Y-+B and ip<p' = ßa' there is precisely one 
T.Y A w i t h <p' = <pr, a' = ar. 

We clarify the S i t u a t i o n in the corresponding diagrams: 

Before we prove the existence of pushouts and pullbacks, we establish 
their uniqueness. 

4.7.2 Remark. Pushouts and pullbacks are for given {<p,a), ß) resp., 
uniquely determined up to isomorphism. 

Proof. Let (fa ß) and ß') be two pushouts for (cp, a). Then in addition 
to a: N-+ X there also exists p\X^N with tp = pif/', ß = pß'. For pcr:N-*N 
we have <A = pi//' = pcn/r, ß=pß' = pcrß. Accordingly from the prescribed 
uniqueness it follows that per = \N, correspondingly we obtain ap = lx, thus 
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er and p are isomorphisms inverse to one another. The Statement for the 
pullback follows dually. • 

In the following we denote elements from M®B by (b, m) and elements 
from (M®B)/U by (mj>). 

4.7.3 T H E O R E M 

(1) Let the pair (<p, a) be given with 

<p:A^>M, a.A^B. 

Let 

N := (M®B)/U with U := {(<p(a), -a(a))\a eA} 

and let 

ip: M3m^>(mTÖ)eN, ß: B 3b^(Ö7b)eiV, 

then {ip, ß) is a pushout of (<p,a). 
(2) Let the pair (ip, ß) be given with 

4f:M-*N, ß:B-+N. 

Let 

A := {(m, b)\m eM/\beBA ip(m) = ß(b)} 

and let 

<p: A3(m,b)>-+meM, a\ A3{m,b)^b eB, 

then (<p, a) is a pullback of (((/, ß). 

Proof (1) First of all it is clear that U is a submodule, that N is a factor 
module of M®B and that ip and ß are homomorphisms with ipcp = ßa. 
Let now ip', ß' be given as in 4.7.1. We define er :7V-»AT by 
cr((m, b)) := ip'(m) + ß'(b). In order to prove that er is a mapping it sufhees 
to show that for (m, b)e U we have cr((m, b)) = 0: 

cr((<p(a), -a{a)) = iP'cp{a)-ß'a(a) = 0 

since tp'<p = ß'a. I t is again immediately clear that the mapping er is a 
homomorphism and that aip = ip', aß = ß'. I t remains to show the unique­
ness of er. Suppose we also have ip' = cr\ip, ß' = cr\ß for o"i:N-*X. Then it 
follows that 

(cr-al)iP = 0, (<r-cri)ß=0, 
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thus 

0 = (er - criMm) = (or - <n)(tf^0)), 

0 = (cr-a,)ß(b) = (a-crl)((0,b)). 

Since {(m, 0), (0, b)\m eM A 6 e B } is a generating set of N, for which 
c r -c r i is the zero mapping, it follows that CT-CT\ = 0 . This completes the 
proof for the pushout. 

(2) The proof for the pullback proeeeds dually. We merely put T:Y->A: 

r ( y ) : = ( < ^ y ) , «'(>')), 

and establish the uniqueness of r. Let (r —ri)(y) = (m, b), then it follows 
that 

0 = <P(T- n)(y) = <p(m,b) = m 

0 = a(r-Ti)(y) = a(m, b) = 6, 

thus (T - n ) ( y ) = 0, i.e. T - n = 0. • 

In the following we use the pushout and the pullback as they are already 
given explicitly in the theorem. The following theorem is of use for the 
definition of injective modules in the next chapter. 

4.7.4 T H E O R E M . Let (</r, ß) be a pushout of (cp, a). Then we have: 
(1) a is mono^>^ is mono, a is epi^t/^ is epi; 

cp is m o n o ^ ß is mono, cp is epi^ß is epi. 
(2) Let a be a monomorphism, then we have: lm(if/) is a direct summand 

in N <=> there exists a K \ B - * M SO that (p = KCX: 

(4.7.5) 

Proof (1) Let a be a monomorphism and let i//(m) = (m, 0) = 0. Then 
there is a e A with (m, 0) = (<p(a), —a(a)). Hence - a ( a ) = 0=>a = 0=>m = 
<p(a) = 0. 
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Let a be an epimorphism and let (m, b) e N, then there is a eA with 
b = -a(a) and so 

ip(m-(p(a)) = (m-(p(a)90) 

= (m-(p(a),0) + (<p(a), -a{a)) = (m, 6), 

thus t/f is also an epimorphism. 
Correspondingly for the second line in (1). 
(2) Let Im((/0 be a direct summand in TV: 

N = Im(i//)®N0. 

Since a is a monomorphism, from (1) ip is also a monomorphism and 
consequently ip induces an isomorphism ip0:M -+Im(ip). Let TT\N ->Im(</0 
be the projection arising from TV = Im ip®N0, then K := ipo^irß fulfils what 
we require: 

= tpöl7rßa(a) = ipöl7rip<p(a) = ipölir{<p(a), 0) = <p(a). 

Conversely let K be given with <p = KOL. Then we consider 

£: Ns(m, b)^m +K(b)eM. 

As £(<p(fl), -o?(fl)) = <p(a)-/<a(a) = 0 this is a mapping and then also a 
homomorphism. As £ip(m) = £((ra, 0)) = m we have |<A = 1M, thus we 
deduce as asserted: N = Im(</0©Ker(£). • 

We come now to the dual theorem which leads on to the definition of 
projective modules. 

4.7.6 T H E O R E M . Let (<p, a) be pullback of (ip, ß). Then we have: 
(1) 

ß is mono <p is mono, ß is epi <p is epi, 

ipis mono=>a is mono, ipis epi^xx is epi. 

(2) Let ip be an epimorphism, then we have: Ker(a) is a direct summand 
in Athere exists a K:M^>B so thatß = ipK: 
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Proof. Since the proof proceeds dually to that of 4.7.4, we shall be brief. 
(1) Let ip be an epimorphism. Let b eB, then there is an m e M with 

ijj{m) = ß(b). Thus it follows that (m,b)eA and a((m, b)) = b, i.e. a is an 
epimorphism. Correspondingly in the other cases. 

(2) Let Ker(a) be a direct summand in A : 

A = K e r ( a ) © A 0 . 

Since, like ip, a is also an epimorphism, a0 •= a\A0 is an epimorphism. Let 
i: A 0 - > A be the inclusion, then K := (ptaö1 fulfils what we require: 

<M6) = <M«*öa (b)) = ßauxö1 (b) = ß(b). 

Conversely let K with I//K = ß be given. Then we have for 

r)'.B3b^>(K(b),b)eA 

ar] = l ß from which A = Ker(a)©Im(?7) follows. • 

4.8 A C H A R A C T E R I Z A T I O N O F G E N E R A T O R S 
A N D C O G E N E R A T O R S 

In 3.3 we became acquainted with generators and cogenerators. For 
these a further characterization follows. 

We preface these considerations by a lemma which is also itself of interest. 

4.8.1 L E M M A . Notations as in 4.1 

(a) For every homomorphism i//: U A , M we have: 

I m M = I I m ( < K - ) . 
iel 

(b) For every homomorphism il/:M->Y\ A , we have 
iel 

Ker((A) = nKer(7r I iA). 
iel 

Proof. (a) As a consequence of the finiteness of the values of the 
elements of the coproduct every element from U A , may be written as a 

iel 
finite sum 

YI Vi(ai) with ateAi 
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Then it follows that 

<HT Vi(at)) = T < M * / ) , 

thus we have 

Im(</0 ^ X Im(t/o7,). 
iel 

Conversely if m e X Im(</n7/) then m may be represented as a finite sum 
1 6 / 

m = r (/o7/(a,) = <A(X' 77/(0,-)), a, e A,, 

From this it follows that m e Im((/0, thus we also have 

£ Im(t/o7,) Im(<A). 
/ £ / 

(b) If meKer(</0, then it follows immediately that meKer(7r,t/0 for 
every / e I, thus we have 

Ker((A)^nKer(7r,(A). 
iel 

Conversely let m e Pl Ker(7r,(A). Then this implies that all components of 
i//(m) are equal to 0, thus we have ^ (m) = 0 and it follows that 

n K e r ( w , ^ W K e i # ) . • 
iel 

We come now to the characterization of generators and cogenerators. 

4 . 8 . 2 T H E O R E M 

(a) The following conditions are equivalent: 
( 1 ) BR is a generator. 
( 2 ) Every direct sum ofcopies of B is a generator. 
(3) A direct sum ofcopies of B is a generator. 
( 4 ) Every 'nodule MR is an epimorphic image of a direct sum ofcopies 

ofB. 
(b) The following conditions are equivalent: 

( 1 ) CR is a cogenerator. 
( 2 ) Every direct product of copies of C is a cogenerator. 
(3) A direct product of copies of C is a cogenerator. 
(4 ) Every module MR can be mapped monomorphically into a direct 

product of copies of C. 
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Proof 
(a) ( l ) ö ( 2 ) , (1)<*(3) follow from 3.3.2. 
" (D=>(4)" :Le t 

II with BV=B for all <p e H o m Ä ( B , Af) , 
( p e H o n i R l ß . M ) 

then we consider the homomorphism 

<A: LI B^^M, 
< p e H o m R ( ß , M ) 

which is defined by 

</K(M) - I <P(M-
b^ c o m p o n e n t in (b^) 

b^^O 

Since in (bv) only finitely many b^ 0, the sum appearing on the right is 
meaningful. There then follows from 4.8.1 

T m M = I ImGp) = Af, 
< p 6 H o m R ( ß , M ) 

thus t/> is an epimorphism. 
"(4)=>(1)": Conversely if there is an epimorphism 

ilf.UBi + M, with Bf = B for all /eJ . 
iel 

and if 77/ is the ith inclusion of B in II Bh then we have 1/07, e Horn* (J5, M) 
as well as, from 4.8.1, 

M = Im((A) = X Im(</o7/) ^ X Im((p) M , 
/ G / < p e H o m R ( ß . M ) 

thus 
I Im(<p)=M, 

(peHom R{B,M) 

i.e. # is a generator. 
(b) ( 1 ) 0 ( 2 ) , ( 1 ) 0 ( 3 ) follow from 3.3.2. 
"(1)=M4)": Let now 

FI Q w i t h Q = C for all <p e H o m Ä ( M , C), 
<peHomR(M,C) 

then we consider the homomorphism 

ip:M-> n 
< p e H o m R ( M , C ) 

which is defined by 

ip(m) := (c«p) with := (p(m) for all <p e H o m R ( M , C). 
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For m e Ker(i/0 it follows that 

m e p| Ker(<p) = 0, 
<peHom R (M,C) 

thus ip is also a monomorphism. 
" ( 4 ) ^ ( 1 ) " : Conversely if there is a monomorphism 

<A :M->nC with Q = C for all iel, 
iel 

and if 7r, is the ith projection, then we have e Homj^Af, C) as well as, 
from 4.8.1, 

n Kerfo) ^ p| K e r ( ^ ) = Ker(^) = 0, 
<peHom R (M.C) i e / 

thus 
PI Ker(?) = 0, 

(peHom R (M,C) 

i.e. C is a cogenerator. • 

EXERCISES 

(1) 
Show: 

(a) For a homomorphism a\A-+B the following are equivalent: 
(1) Ker(a) is a direct summand of A and Im(a) is a direct summand 
of B. 
(2) There is a homomorphism ß\B-*A with a = a ß a . 

(b) How is the equivalence simplified if a is a monomorphism or an 
epimorphism? 

(2) 

Give examples for a family of modules (A/| / € I) and a module Af with 

H o m Ä ( EI Ah Af) * n Horn* (A,, Af) 
\ / e / / iel 

resp. H o m ^ A f , 0 A) ^ 0 Hom Ä (Af , A , ) 
\ iel / i e / 

means "not isomorphic as additive groups"). 

(3) 
(a) Let Af R # 0 be a module with MR = MR ®MR and let 5 := End(Af Ä ) . 

Show: For every n e N a basis of Ss exists with n elements. 
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(b) Construct an example of a module M ^ 0 with M = M ®M and for 
every n e N a basis of Ss with n elements. 

(4) 
Show: A ring R 5* 0 is a skew field if and only if every right £ - m o d u l e is free. 

(5) 
Show: 4.4.6 holds also for direct summands of free modules. 

(6) 
(a) Show: I f ß:BR^CR is an epimorphism, if <p\FR^>CR is a 

homomorphism and if FR is a free module, then there is a <p':FR BR with 
<p=ß<p'. 

(b) Show: (a) holds also if FR is replaced by a direct summand of a free 
module. 

(7) 
(a) Show: If 

A - > £ 

<p ß 

M >N 

is a pushout of (<p, a) then there is an isomorphism rj:B/Im(a) -+ N/Im(ij/), 
so that 

B > B / I m ( a ) 

ß v 

N • N/ImW 

is commutative (v is, as appropriate, the natural epimorphism). 
(b) Formulate and prove the dual Statements. 

(8) 
Let R be an integral domain with quotient field K. A module M is called 
divisible if, for every 0 ¥• r e R, Mr = M holds. Show: 

(a) The class of divisible R-modules is closed on taking factor modules, 
products and coproducts. 
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(b) The only divisible submodules of KR are 0 and K. 
(c) R 9^K^> every divisible, cyclic R-module is 0. 

(9) 
Let R be an integral domain. Show: 

(a) MR is then divisible if and only if to every cyclic ideal A <-+ R and 
to every homomorphism <p: AR -> MR there is a homomorphism <p'\RR-* MR 

with <p'\A = <p. 
(b) If for fixed MR and arbitrary NR every homomorphism cp: MR -»NR 

splits, then MR is divisible. 

(10) 
(a) Let T be a divisible abelian group. 

(1) Show: If finitely many, arbitrary elements are omitted from an 
arbitrary generating set of T over Z, then the set of the remaining 
elements is still a generating set (see also 2.3.7). 
(2) Show that T contains no maximal subgroup. 

(b) Show: an abelian group which has no maximal subgroup is divisible. 
(c) Give an example of a divisible abelian group, which contains a simple 

subgroup. 

(11) 

For an abelian group A the torsion subgroup T(A) is defined by 

T(A) := {a\a € A A 3Z e Z[z * 0 A az = 0]}. 
Show: 

(a) A is divisible T(A) is a direct summand in A. 
(b) A is divisible A T(A) = 0=̂ > A is Z-isomorphic to a direct sum of 

copies of Q z . 
(Hint: A may be made into a Q-vector space.) 

(12) 
Let p be a prime number and let 

Q p := j ^ r l z e Z A n e / j . 

Show: 

Q / Z = 0 Q P / Z . 
P r i m e p 

(13) 
Let G be a group, R a ring and GR the group ring of G with coefficients 
in R. 
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(a) Show: For £gr g , Yg'r'^eGR a new left GR -module structure is 
defined on GR by 

(EgO°(XgV g 0:=Igg'g-VV-
(b) Use (a) in order to give an example of a module which as well as 

being a left GR -module is also a right GR-module but which is not a 
OR-GjR-bimodule. 

(14) 
A module MR is called (von Neumann) regulär if every cyclic submodule 
is a direct summand. Show: 

(a) In a regulär module every finitely generated submodule is a direct 
summand. 

(b) RR is regulär<=>RR regulär<=>to every reR there is an r'eR with 
r = rr'r (see also Chapter 2, Exercise 13). 

(c) I f R is regulär then every free right R-module is regulär. 
(Hint: If {xi\i ei} is a basis of FR and if x eFR, consider the left ideal of 

R which is generated by the coefficients of x in the representation of the 
basis and which from (1) and (2) is of the form Re with e2 = e \ this is used 
to find a projection F-*xR.) 



Chapter 5 

Injective and Projective Modules 

Injective and projective modules or, more generally, injective and projec­
tive objects in a category, play ah important role in the later development 
of algebra. I t is therefore advisable to become familiär with these concepts 
at the earliest opportunity in order to give due emphasis to the resulting 
point of view in further considerations. Here we shall present the general 
properties of injective and projective modules. We shall return many times 
to these concepts. 

As a tool for the investigation of injective and projective modules we 
need large and small submodules as well as complements. These concepts 
are essentially needed also in other respects (as e.g. with respect to the 
radical and the socle) and are to be investigated here somewhat further 
than would be necessary for the considerations of this chapter. 

5.1 B I G A N D S M A L L S U B M O D U L E S 

5.1.1 Definition 
(a) A submodule A of a module M is called small (= superfluous) in 

M , notationally A ^ M , respectively large (= essential) in Af, notationally 
A *>M :<=> 

V£7 M[A + U = M=>U=M] 

resp. VU A f [ A n U = 0=> U = 0]. 

(b) A right, left or two-sided ideal A of a ring R is called small resp. 
large in R :<=> A is a small, resp. large, submodule of RR, RR or RRR. 

(c) A homomorphism a : A^B is called small, resp. large :<=> 

Ker(a) «s» A resp. Im(a) B. 

106 
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Remark. We obtain immediately from the definition: 

(1) A ^ M&VU ^ M[A + U*>M]. 
(2) A ^ M o V l / ^ M , U * 0[A n U * 0]. 
(3) M ^ O A A^M^A^M. 
(4) M ^ 0 A A ^ M 4 > A ^ 0 . 

5.1.2 Examples 
(1) For every module M we have: 0 ^ M , M M. 
(2) A module is called semisimple if every submodule is a direct summand 
(see Chapter 8). 

M is semisimple ̂  0 is the only small submodule of M and M is the only 
large submodule of M. 

Proof. A ^ M = > there exists U^M with A®U = M. II A&>M then 
U = M and so A = 0. I f A M then U = 0 and so A = M. • 

(3) Let R be a /öca/ rmg (see Chapter 7), but not a skew field and let A 
be the two-sided ideal consisting of the non-invertible elements of R. Then 
A 0 (since R is not a skew field) and A is the largest proper right, left 
or two-sided ideal of R (see 7.1.1). I t follows therefore that A is small 
and (since A # 0) large in RR, RR and RRR resp. 

Example of a local ring: 

R := Z / p"Z, A := pZ/pnZ, p = prime. 

(4) In a free Z-module only the trivial submodule 0 is a small submodule. 

Proof. Let 

ie/ 

be a free Z-module with basis {JC, |/ e / } , A ^ F , a e A and let 

with z i 5*0. Let neZ with GCD (z i , n) = 1 and n > 1 (e.g. let AT be a prime 
p not dividing Z\). Put 

( 7 = © XiZ + Xi.nZ, 

then it follows that aZ+ £/ = F, hence certainly A + U = F with UVF. 
In particular the only small ideal of Z is 0. However every ideal ^ 0 is 

large in Z, for if aZ and 6Z are two ideals ^ 0 then we have O^abe 
aZnbZ. 
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(5) Every finitely generated submodule of Q z is small in Q 2 . For the proof 
let qi,. . ., qn e Q and let U «-» Q 2 with 

qiZ + .. . + qnZ + U = Q, 

then { g i , . . . , qn}<J U is a generating set of Q, consequently from 2.3.7 U 
is already a generating set of Q, thus we have U = Q. 

We come now to simple deductions from the definition. 

5.1.3 L E M M A 
(a) A ^ B ^ M ^ N AB<^M^>A<^N. 

(b) Ai*>M,i = l,...,n3>t At M. 
i = l 

(c) A^MA(peHomR(MYN)^xp{A)^N. 
(d) Ifa : A - > B , ß :B-» Care small epimorphisms then ßa:A-+Cis also 

a small epimorphism. 

Proof (a) Let A + U = N. Then B + U = N and so B + (UnM) = M (by 
the modular law). Hence U nM = M (since B ^ M) and so Af «-> C7 and 
since by assumption A ^ M w e deduce that U = A + U = N which was to 
be shown. 

(b) Proof by induction on n. For n = 1 the assertion holds by assumption. 
Let 

A := A i + . . . + A „ _ i ^ Af, 

and suppose we have for U ^ M 

A + A „ + U = M 

^>An + U = My since A ^ Af and so U = Af, since A„ ^ Af. 
(c) Let <p(A)+ U = N with U ^> N. Then we have for arbitrary meM: 

<p(m) = (p(a) + u with 

a e A, u e U^>(p(m -a) = u ̂ >m -a <= <p~~l(U)^>m e A + y~x{U) 

^A + (p~\U) = M^>M = (p~\U), 

since A M =><p(Af) = <p<p~l(U) = Unlm(<p). Thus <p{A) ~> (p{M) ~> U 
and hence £/ = <p{A)+U = N> which was to be shown. 

(d) Let K e r ( / 3 a ) + £ / = A with U ~> A , then, as KerQSa) = a _ 1 (Ker(/3)) 
it follows that 

a (Ker(ßa)) + a ((7) = Ker (ß) + a (U) = a (A) = B. 
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Since by assumption we have Ker(ß) ^ B, we obtain a(U) = B and con­
sequently 

K e r ( a ) + ( 7 = A . 

As Ker(a) ^ A it follows therefore that U = A, which was to be shown. • 

Before we direct our attention to dual properties with regard to large 
submodules, we have a further important Statement for cyclic submodules 
which are not small. 

5.1.4 L E M M A . For aeMR we have: aR is not small in M&there is a 
maximal submodule C ^> M with agC. 

Proof. I f C is a maximal submodule of A f with a£C then it follows 
that aR + C = Af, thus aR is not small in Af. 

Proof by the use of Zorn's Lemma. Let 

T := {B\B ^ M A a R + B = AT}. 

Since aR is not small, there is a B e T, i.e. I V 0 . 
Let A 0 be a totally ordered (wrt ^> ) subset of T. Then 

B0 *•= U B 
B e A 

is an upper bound of A. Suppose a e B0, then a must already be contained 
in a B; from which it would follow that aR B, thus 

B = aR+B=M h-

From a <£ B0 it follows that £ 0 M Since 5 £ 0 for i? € A4> 

ai? + £o = M , 

thus we have B0 e T, i.e. A has an upper bound in T. Zorn's Lemma implies 
then that T contains a maximal element C. 

We claim that C is in fact a maximal submodule of Af. Let C U M, 
then it follows that U£ T, since C is maximal in T. From M = 
ai? + C ai? 4- (7 Af it follows that aR + U = M and as T we must 
have U = A f which was to be shown. • 

We now direct our attention to large submodules. For these we have 
first of all the Statements dual to 5.1.3. 

5.1.5 L E M M A 
(a) A^B^M ~>NA A**N^>B*>M. 

(b) Ai? Af, / = 1 , . . . , n 4> P l At Af. 
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(c) B^NA(peHomR(M,N)^<p~\B)*>M. 
(d) Let a : A B, ß :B-> Cbe large monomorphisms. Then ßa :A^Cis 

also a large monomorphism. 

Proof. (a) From U M A B n U = 0 we obtain AnU = 0 and so U = 0, 
since A N A U M^> N. 

(b) Proof by induction on n. For n = 1 the assertion holds by assumption. 
Let now 

A := H At <*> M 

and we have for U ^> M: A n A„ n U = 0=>A„ n [ / = 0 , since A M. 
Then £7 = 0 follows since An M . 

(c) Let 

U A(p-\B)nU = 0=>Bn(p(U) = Od><p(U) = 0, 

since B N. Then it follows that 

£/ Ker(0) = ^ ( 0 ) ~> (p _ 1(B)4> U = cp'l(B) nU = 0. 

(d) Let U ^ C and I m ( ß a ) n f 7 = 0. Since ß is a monomorphism it 
follows that 

0 = ß~\0) = ß-\lm(ßa)) nß~\U) = Im(a) nß~l(U). 

As Im(a) we deduce therefore that ß~1(U) = 0, thus this yields that 
lm(ß) n [ / = 0 and from lm(ß) ^ C it follows that (7 = 0 , which was to be 
shown. • 

The following criterion for large submodules is important for applications. 

5 . 1 . 6 L E M M A . Let A <-> MR, then we have 

A**MR o V r a e M, m * 0 3r e R[mr * 0 A mr e A ] . 

Proo/. From m ^ O w e have mi? 0 and so A n mR ^ 0 , since A M 
we have the assertion. 

"<=": Let B ^ M AB 9^0. Then there is m e B, m # 0. Let mr * 0 A mr e 
A , then O^mreAnB and so A ^ M . • 

5 .1 .7 C O R O L L A R Y . Lef M = X A/,-, M , «-> M , A , ^ M,- /or ^ r y / e 7 and 

let i e I 
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then it follows that 

A*>M and M = © Mh 

iel 

Proof A^M: Since every element from M lies in a sum of finitely many 
of the Mh it is sufficient from 5.1.6 to establish the assertion for a finite 
index set I, say I = { 1 , . . . , n). 

Proof by induction on n. The initial induction step n = 1 holds by assump­
tion. Let the assertion be valid for n -1 summands, i.e., suppose 

A i + . . . + A „ _ i ^ M i + . . . + A f n - i . 

Let now 

CMra = rai + . . . + m„_i + m n with m, e M , . 

If indeed mi + . . . + m n _ i = 0 then m = ran #0=> there is r € Ä , 05* mr = 
m n r G A„. Let therefore m\ +... + m„_i # 0, then, by induction assumption, 
there is an r e R with 

0 ^ (rai + .. . + mn-i)reA1 + .. . + A n _ i . 

I f for this r we have further mnr = 0 then we are finished. Thus let m n r ^ 0. 
Then there is an s eR with 0 5* mnrs e An, and it follows that mrs e 
A\ 4-. . . + An; from the directness of the sum of the A,- we have moreover 
mrs # 0. Therefore we have shown that A^M. 

M = ©M,- : I t is still also sufficient to assume that I = { 1 , . . . , n} and to 
iel 

suppose that 

0 ^ m „ = mi + . . . + mn-ieMn n £ 

Then there exists an r e R with 
n - l 

0 # (mi + . . . + m„-i)re Z A,-, 
i = l 

thus 
M - l 

07*mnr = (mi + . . . + mn-i)reMnn £ 
i = i 

Let then 5 G i ? with 0 ^ ra„rs e A„, then it follows that 
n - l 

0y£mnrs = {m\ + . . . + mn-i)rseAnr\ £ A,-
/ = i 

in contradiction to the assumption. • 
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5.1.8 C O R O L L A R Y . Let M = 0 Af,-, Af,- Af, A,- Af,- for every i e I. Then 
we have i e I 

A := £ A , = 0 A , - and A^M. 
iel iel 

Proof From Af = 0 A f , and A , ^ Af,- it follows that A = 0A,-. Then A AT 
follows from 5.1.7. 

5.1.9 C O R O L L A R Y . Let A f = 0Af,- and let B ^ M then the following 
conditions are equivalent: i e I 

(1) V i e / t J S n M / ^ A f / ] . 
(2) ® ( 5 n M , ) ^ M 

i e / 

(3) B^M. 

Proof "(1)4>(2)": From 5.1.8. 
"(2)4>(3)": From0CBnM ,)<V£ and 5.1.5(a). 

i e / 

"(3)=>(1)": Let O^W/GAf , , then there is, from 5.1.6, an r e i ? with 
0 ^ m,r G B. But also m,r G Mt and it follows that 0 # m,r G 5 n A/,, thus (1) 
holds. • 

5.2 C O M P L E M E N T S 

We are here concerned with weakening the concept of the direct sum 
of two modules. A direct sum 

A 0 £ = Af 

is, as we know, determined by the two conditions 

A + £ = A f , A n £ = 0, 

which are weakened in the following way by the definition of complements. 

5.2.1 Definition: Let A Af. 
(a) A <-* Af is called an addition complement, briefly adco, of A in Af 

(1) A +A* = Af. 
(2) A ' is minimal in A + A* = Af i.e. 

VB ~> A f [(A + B = AT A B A') 4> B = A ' ] . 

(b) A ' ^ Af is called an intersection complement, briefly inco, of A in 
Af :<=> 

(1) A n A ' = 0. 
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(2) A is maximal in A n A ' = 0, i.e. 

V C ^ M[(A n C = 0 A A ' C) A ' = C ] . 

First of all the preliminary remark has to be justified. 

5.2.2 C O R O L L A R Y . LetA ~> MandB ^> M. Then we have: A®B = M<=> 
B is an adco and inco ofA in M. 

Proof. "<£=": This follows directly from the definition. 
"=>": Let A + C =M and C ^ B. By the modular law it follows that 

(AnB) + C = B, and as A n B = 0 we deduce that C = B. Accordingly B 
is adco. Let now AnC = 0 and B ~> C^>A®C = M^>B = C by the 
previous conclusion on interchanging the roles of B and C. Thus B is also 
an inco of A. • 

The question now arises as to the uniqueness and existence of such 
complements. Already in the case A ®B = M (with respect to fixed M and 
A ) B is in general only uniquely determined up to isomorphism. With 
respect to complements even this is no longer the case (see the example 
in Exercise 6(d)); nevertheless a certain uniqueness Statement does arise 
later. 

Now we address ourselves to the question of the existence of comple­
ments. As Z z shows, adcos need not exist: Let n, meZ with (n, m) = l , 
then we have 

/tZ + mZ = Z. 
For n^O, n^±l and («, q) = l, q>\ yields (niqm)=l as well as 
qmZ mZ, thus there is no adco to nZ. 

On the other hand, examples of modules, possessing adcos, are easy to 
construct, such as artinian modules and semisimple modules. In contrast 
to adcos, incos always exist and these can moreover be chosen in a particular 
way. 

5.2.3 L E M M A . Lei1A, B M with AnB = 0. Then there is an inco A of 
A with B A and consequently an inco A" of A with A A" . 

Proof. By the use of Zorn's Lemma. Let 

r = {C\C~>MAB ~> C A Ä n C = 0}, 

then r 0 since 5 e r . Since the union of every totally ordered subset in 
T lies evidently again in T, every totally ordered subset from T has an 
upper bound in T. By Zorn there is then a maximal element A in T. Wi th 
A in the place of A and A in the place of B i t follows that A ^ A" . • 
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The fact, that there is indeed always an inco but not always an adco is 
of great significance for the entire theory of modules. For example, it 
follows from this that there is always an injective hull (definition later) but 
in general not always a projective cover. The reason for this stems from 
the fact that in the category of modules Zorn's lemma cannot be applied 
in the dual case. 

Between the concepts small and adco, resp. large and inco, there exists 
an important connection which wil l now be explained. 

5 . 2 . 4 L E M M A 

(a) LetM = A+B, then we have: 

B is adco of A in A f » A nB ^B. 

(b) If A is adco of A in A f and A" is adco of A in M then A is also 
adco of A" in Af. 

(c) If A is adco of A in A f and A" is adco of A in M with A" A 
then we have A/A" ^ M/A". 

Proof 
(a) "4>": Let U <-> B with (AnB)+U = B9 then it follows that A f = 

A+B =A + (AnB)+U = A + U. Since B is adco of A , it follows that 
U = B, hence we have AnB ^ B. 

(a) Let M = A+U with U B, then it follows that B = 
(AnB)+U. As AnB B we deduce therefore that B = U, thus B is 
adco of A in M. 

(b) By assumption we have M = A"4-A*. Let U <-* A with M = A"+ £7, 
then it follows that A = (A"nA)+U. As M = A+A we obtain M = 
A + {A"nA)+U. From A"nA^A" it follows that A'nA^M. We 
deduce that M = A 4- (A" n A) 4- U = A + U. Since A is adco of A and 
U A it follows that £/ = A. Thus A ' is adco of A" in M . 

(c) Let ( A / A " ) + (C//A") = M/A" with A " 1/ Af, then it follows that 
A + U = M. As A f = A " + A ' and A" «-> £/ we have further that £7 = 
A " + ( A ' n t / ) . Hence we deduce that M = A 4- [ / = A + A " + (A" n £7) = 
A 4- (A* n £7). Since A* is adco of A , it follows that AnU = A\ thus A «-> £7 
and we deduce that Af = A**4- A ' ^ U ^ M, thus we have U = M and it 
follows that U/A"-M/A\ which was to be shown. • 

We come now to the dual Statement. 

5 .2 .5 L E M M A 

(a) Let A and B be submodules of M with 0 = A n ß , then we have: B 
is inco ofA in M<Z>{A+B)/B M/B. 
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(b) If A is inco of A in M and A" is inco of A1 in M, then A' is also 
inco of A" in M. 

(c) If A' is inco of A in M and A" is inco of A in M with A A" then 
we have A A". 

Proof 
(a) Let (A+B)/B n U/B = 0 with B U ~> M , then it follows 

that (A + B ) nU = B. Hence we have AnU B, thus A n [ / ^ A n ß . 
Since B is inco of A , we have A n £ = 0, thus also A n £/ = 0 and as £ «-> U 
and £ is inco of A it follows that B = U Thus we have U/B=B/B = 0, 
which is to say (A + B)/B is large in M / 5 . 

(a) u < = " : Let now A n U = 0 with J5 ^ £ / - > M Let xe(A+B)nU, 
then it follows that x=a+b=u with a G A , b eB, ueU, thus we have 
a = u - b G A n U = 0 and consequently a = 0 and x = beB. Hence we 
have (A + B)nU = B and it follows that (A+B)/B nU/B = 0. As 
{A+B)/B M/B we must have U/B = 0, that is to say ß = U holds. 
Consequently J5 is inco of A in M. 

(b) By assumption we have A " n A ' = 0. Let A^U^M with 
A " n £ / = 0. From (A" + A ' ) / A " «*• M/A" it follows that A " + A'<±>M (by 
5.1.5 (c)). Let x e (A" + A) n (A n £/), then it follows that JC = + = a = w 
with a"eA\ a'eA,aeA,ue U. Hence we have a" = u -a'e A " n U = 0, 
thus a" = 0 and it now follows that x = a' = a e A n A = 0. Thus we have 
(A" + A ' ) n ( A n £ / ) = 0. As A " + A ' ^ M we must then have A n £7 = 0. 
Since A is inco of A and A «-> £7 was assumed, it follows that A ' = £/, 
which was to be shown. 

(c) Let £/ <-> A " with A n £/ = 0. For JC G A n (A ' + £/) we have x = a = 
a' + u with a G A , a' eA, ueU. We deduce that a - w = a' G A " n A = 0, 
thus Jc=a = w G A n £ / = 0. Consequently we have A n (A ' 4- £7) = 0, thus 
A ' + £ / = A ' , thus C / ^ A ' . By observing that U <-> A" it follows that 
U ~> A " n A = 0 and so U = 0. We deduce that A A . • 

5.3 D E F I N I T I O N O F I N J E C T I V E A N D P R O J E C T I V E 
M O D U L E S A N D S I M P L E C O R O L L A R I E S 

5.3.1 T H E O R E M 

(a) The following are equivalent for a module QR: 
(1) Every monomorphism 

splits {i.e. Im(£) is a direct summand in B). 
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(2) For every monomorphism a.A^B and for every homomor­
phism (p.A^Q there is a homomorphism K.B^Q with <p = KCX. 
(3) For every monomorphism a :A-*B 

Hom(a, l 0 ) : H o m Ä ( £ , Q)-+HomR(A, Q) 

is an epimorphism. 
(b) The following are equivalent for a module PR: 

(1) Every epimorphism 

£:B->P 

splits (i.e. Ker(£) is a direct summand in B). 
(2) For every epimorphism ß.B-*C and for every homomorphism 
ip.P^C there is a homomorphism k.P^B with ip = ß\. 
(3) For every epimorphism ß.B^C 

H o m ( l P , ß): Hom*(P, B)^> Horn«(P, C) 

is an epimorphism. 

D I A G R A M F O R (a), (2): 

<p — KOC (i.e. the diagram is commutative). 

D I A G R A M F O R (b), (2): 

B 

ip = ß\ (i.e. the diagram is commutative). 

Proof of 5.3.1. (a) "(1)=>(2)": This follows from 4.7.4 since by assumption 
ip splits in 4.7.4. 
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"(2) (1)": By assumption there is a K : B -> Q so that the diagram 

Q >B 
/ 

Q 
is commutative, i.e. we have 1Q = K£, thus £ splits by 3.4.11. 

(a) "(2)<=>(3)": By considering the definition of Hom(a, 1Q) (see 3.6) it 
is clear that (3) is an equivalent reformulation of (2). 

(b) "(1)=>(2)": This follows from 4.7.6, since, by assumption, a splits 
in 4.7.6. 

(b) " ( 2 ) ^ ( 1 ) " : By assumption there is a A :P^B so that the diagram 
P 

P 

is commutative, i.e. we have 1 P = £A, thus £ splits by 3.4.11. 
(b) " ( 2 ) 0 ( 3 ) " : Equivalent reformulation. 

5.3.2 Definition 
(a) A module QR, which satisfies the conditions of 5.3.l(a), is called an 

injective R-module. 
(b) A module PR, which satisfies the conditions of 5.3.l(b), is called a 

projective R-module. 

This definition of an injective, resp. of a projective, module refers to the 
category of unitary right Ä-modules , since all monomorphisms a.A^B 
resp. all epimorphisms ß : B -» C are allowed. Thus, appropriately, the issue 
concerns a categorical definition by means of universal mapping properties. 

The question then arises whether we can also characterize injective and 
projective modules by means of "inner" properties. For projective modules 
this is—as we shall soon see—easily possible: A n R-module is projective 
if and only if it is isomorphic to a direct summand of a free i?-module. 
For injective modules there is in general no correspondingly simple charac­
terization by inner properties. For R = Z we have however such a charac­
terization: a Z-module is injective if and only if it is divisible. The general 
case can be reduced to this one. 

We come now first of all to some simple consequences of the definition. 
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5.3.3 C O R O L L A R Y 

(a) Q is injective AQ=A^>A is injective. 
(b) P is projective AP = C^>C is projective. 

5.3.4 T H E O R E M 

(a) Let O = n then we have: 
1 6 / 

Q is injective <=>V/ e I [Qi is injective]. 

(b) Let P = I I Ph orP = Q) P„ then we have: 
iel iel 

P is projective&Vi e I [Pt is projective]. 

Proof. Notation for injections and projections corresponding to the direct 
product and the direct sum as in Chapter 4. 

(a) Let Q be injective, and let a : A -»B be a monomorphism and 
let <p: A Oj for / e 7 be a homomorphism. For crrjjip there then corresponds 
by assumption an co : B -» Q with cn7;<p = coa: 

A - >B 

• I 

The desired homomorphism K with <p = KCX is then /< := TTJ(D since we have: 

(p = 1Q;<£= (rrjcrr\j)(p - 7Tj(arjj(p) = TTj(a)a) = (-zr/Cü)« = KCX. 

(a) 4 ' 4 = " : Let now the monomorphism a :A-*B and the homomorphism 
<p : A -+ Q be given. To every 7r,<p there then exists by assumption a KT with 
7Ti<p = /c/a. By 4.1.6 there is then a K :B -+Q with K, = 7T,K: 

A - ? B 

s / 
/ 

/ / 

^ / 

/ K i 
/ 

/ 

/ 
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We claim that cp = KCX. From i r w = AC,« and /c, = 7r,/c it follows that 7T/<p = 
TTiKa, thus by 4.1.6 (uniqueness) <p = KCX. 

(b) By 5.3.3 it suffices to consider the case P = ]J Pi- The proof follows 
dually to (a); hence we can be brief. ' G / 

(b) The following Situation is now given: 

But co exists with ipirp- = ß<o, since P is projective, and A := corij yields the 
desired result since we have 

(A = ^ l p , = ipTTjO"T\j = (if/TTjcr^i = (ß(o)r)j = ß (a)7]}) = ßk. 

(b) "<=": In the diagram 
Pi 

/ 
/ 

/ T1 / 
K / 

/ 
/ P 
\ 

ß 
( 
--1 

there exist A, with 1/07, = ß \ h by assumption, and A with A, = Ar/,-, since 
P = ]\Pi. It remains to show that i(/ = ß \ . From (Ar//= 0A, and A , = A T 7 , it 
follows that il/rji = ß\r)h thus by 4.1.6 (uniqueness) il/ = ß \ . • 

In particular, according to this result, every direct summand of a projec­
tive module is again projective and—since for finite index sets direct sums 
are also direct products—every direct summand of an injective module is 
again injective. 

5.4 P R O J E C T I V E M O D U L E S 

We are now in a position to produce the previously announced "inner" 
characterization of projective modules. 
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5.4.1 T H E O R E M . A module is projective if and only if it is isomorphic to 
a direct summand of a free module. 

Proof. By 4.4.6 every free module is projective and by 5.3.4 and 5.3.3 so 
also is every module which is isomorphic to a direct summand of a free 
module. In order to show the converse, let P b e a projective module and 
let 

i.F^P 

be an epimorphism of a free module F onto P , existing by 4.4.4. Since P 
is projective, £ splits: 

F = Ker(£)®F0 

and F 0 is then isomorphic to P. • 
By this theorem, to which there corresponds no dual theorem with respect 

to injective modules, the theory of projective modules is reduced to the 
question of the properties of free modules and of their direct summands. 

Since, as is well known, every submodule of a free Z-module is again 
free (see Exercise 10), we obtain the corollary. 

C O R O L L A R Y . Every projective Z-module is free. 

A n important lemma for the investigation of projective modules is the 
so-called Dual-basis Lemma, which serves in a certain manner with regard 
to arbitrary projective modules in the place of the basis property of free 
modules. 

5.4.2 T H E O R E M ( D U A L - B A S I S L E M M A ) . The following properties are 
equivalent: 

(X) PR is projective. 
(2) To every family (y,|/ e I) of generators ofPoverR there exists a family 

{(Pi\iel) of epi e P * := Horn* (P, R) with 
(a) V/7 e P [(pi(p) ̂  0 only for finitely many i E / ] ; 

(b) V P E P [ P = I Mi(p)]. 
<P«(p)*0 

(3) There exist families (y,-|/ E I ) with yt E P and (<p,-|/ E I) with (pt E P * , SO 
that (a) and (b) hold. 

Proof. " ( 1 ) ^ ( 2 ) " : As established in 4.4 there is a free .R-module F with 
a basis {xi\iel} and an epimorphism £ : F - > P with £(*,) = y (. Let 

TTJ'.FB Xxfo->r,eR, j e l 
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(where we put ry = 0 in the case that the index / does not appear in £ xfi)9 

then we have for a = X ^ i ^ F : 7r 7 (a)^0 for only finitely many jel and 

Since P is projective, there exists A :P-*F so that 1P = £ A : 

P 

Define cp{ : = TT/A, / G 7, then we have <pt e P*9 and for p e P we have <p,(p) = 
7rF-A (p) ^ 0 for only finitely many / G 7. Further we have for p G P 

P = fUp) = £ ( I JC,IT,(A (p))) = I {(xdirMp) = I y*P*(p), 

thus (a) and (b) hold. 
"(2)=>(3)": Clear. 
"(3)=>(1)": From (b) ( V ; | / G / ) is a family of generators of P. Now let 

ij:F-+P be again an epimorphism as in the proof of (1)=>(2). Further let 
T : P - » F be defined by r (p ) := X x&iip), then firstly r is a mapping, since 
the <Pi(p) are uniquely determined and by (a) almost all <p,(p) are equal to 
0. Obviously r is in fact an R-homomorphism. Then we have 

€r(p) = H ( I Xi<pi(p)) = I y ^ ( p ) = p, 

thus l p = fr , i.e. f splits and by 5.4.1 P is then projective. 

5.5 I N J E C T I V E M O D U L E S 

In general a characterization of injective modules by "inner" properties 
is not possible in as simple a manner as in the case of projective modules. 
For R = Z there is nevertheless such a characterization and this has also 
considerable significance for the case of an arbitrary ring R9 it is in fact 
used to show the existence of injective extensions. 

5.5.1 T H E O R E M . A Z-module (= abelian group) is injective if and only if 
it is divisible. 
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Proof. Let Dz be divisible, then 4.5.5 states that D is injective. Now let 
Qz be injective. Let qQeQ, 0 ^ z 0 e Z ; if we consider the homomorphisms 

z 0 Z »Z 
/ 

/ 
/ 

* 
/ K 

/ 
/ 

\ * 

Q 

where i is the inclusion mapping and <p is defined by (p(z0) '= q>o, then there 
is, since Q is injective, a K with <p = KL. Thus we have K(\)ZQ = K{\Z0) = 
K(ZO) = (/ct)(zo) = <p(zo) - qo- Since qo^Q was arbitrary, it follows therefore 
that QZQ = O, i.e. Q is divisible. • 

Let now R be again an arbitrary ring. Since every module is an epimorphic 
image of a free R-module and as free R-modules are projective, every 
module is an epimorphic image of a projective R-module. We address 
ourselves now to the dual question and wish to show that we can map 
every module monomorphically into an injective module. 

5.5.2 L E M M A . IfD is a divisible (= injective) Z-module then H o m 2 ( Ä , D) 
is injective as a right R-module. 

Proof. Let a : A -*B be an R-monomorphism and let <p : A -> H o m 2 CR, D) 
be an R-homomorphism. Let er be the Z-homomorphism defined by 

er: Homz(RyD)3f-*f(l)eD. 

Then we consider the diagram 

A >B 

<p « y / 

t *' / 
H o m z ( R , D ) /r 

/ 

/ 

/ 
/ 

D 

If we regard a and <p only as Z-homomorphisms, then there is, since D is 
Z-injective, a Z-homomorphism r.B^D with cr<p --ra. Now let K :B-+ 
Hom zCR, D) be defined by 

x(b)(r):= r(br), beB,reR. 
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Then for fixed b e B, obviously «(b)e Hom z(jR, D) and we have 

K(bri)(r) = r(brxr) = K(b)(rxr) = (#ctfOn)(r), 

i.e. t<(bri) = «(b)ri, thus K is an R-homomorphism. Therefore we have 

Ka(a)(r) = r(a{a)r) = r(a{ar)) = ra(ar) = crcpiar) 

= <p(ar)(l) = (<p(a)r)(l) = <p(a)(r) 

and consequently «a =<p. • 

5.5.3 T H E O R E M . For every module there is a monomorphism into an 
injective module. 

Proof. Let MR be given. By 4.5.4 there is a Z-monomorphism 

ix\M^D 

into a divisible abelian group. By 5.5.2 Hom 2 ( i? , D)R is injective as an 
R-module. If we dehne 

p:M-*Homz(R,D) 

by p(m)(r) := p{mr), m e M , r e R, then p is evidently an Ä-homomorphis -
m and, since p, is a monomorphism, even a monomorphism. • 

5.5.4 C O R O L L A R Y . Qr is injective <=> QR is isomorphic to a direct summand 
of a module of the form Hom z ( i? , D)R with D a divisible abelian group. 

Proof. "4>": In proof of 5.5.3. 
By 5.5.2 and 5.3.4. • 

Corollary 5.5.4 can be considered as an "inner" characterization of 
injective modules. 

5.5.5 C O R O L L A R Y . Every module is a submodule of an injective module. 

We formulate the proof as an independent lemma. 

5.5.6 L E M M A . Let p\MR-+NR be a monomorphism. Then there is a 
module N' with M ^> N' and an isomorphism T:N'^N SO that p = rt , 
where i is the inclusion mapping of M in N'. 

Proof. Let D be a set of the same cardinality as the complement N\p(M) 
of p(M) in N with DnM = 0 and let ß:D-+N\p(M) be an injective 
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mapping. Then dehne a set N' : = M u D and let 

be the bijective mapping defined by 

r(m):=p(m), meM 
r(d):=ß(d)9 deD. 

In order to make N' into an R-module containing MR and to make r into 
an Ä-module homomorphism, we put: 

x + y := r~\r(x) + r(y)) , x,yeN' 

xr := r - 1 ( r ( j c ) r ) , r e i ? . 

As is immediately seen, all assertions are then satisfied. • 

Then 5.5.5 follows from this lemma since Hom z ( jR , D)R and the isomorphic 
module N' are both injective. 

5.6 I N J E C T I V E H U L L S A N D P R O J E C T I V E C O V E R S 

Now that we have seen that every module can be mapped, on the one 
hand, monomorphically into an injective module and is, on the other hand, 
an epimorphic image of a projective module, we turn to the question 
whether in a certain sense there are "smallest" such modules. 

5.6.1 Definition. Let MR be given. 
(a) A monomorphism rj.M^Q is called an injective hull of M : O Q 

is injective and 77 is a large monomorphism (see 5.1.1). 
(b) A n epimorphism f :P^M is called a projective cover of M :<£>P is 

projective and f is a small epimorphism (s. 5.1.1). 
If 77 :M-> Q is an injective hull then, if no misunderstanding can arise, 

we designate (? simply as the injective hull of M without expressing the 
17. This holds correspondingly in the case of the projective cover. 

With this Interpretation we denote an injective hull of M also by I(M) 
and a projective cover of M by P(M). We note however that I(M) and 
P(M) are not thereby uniquely determined but only up to isomorphism 
(see 5.6.3). 

Example. Z 2 -1» Q z is an injective hull of Z z , for 1 is a monomorphism, Q z 

is injective = (divisible) and by 5.1.6 Z z is large in Q z . 
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5.6.2 C O R O L L A R Y 

(a) / / r)i: Mi -* Qifor i = 1 ,2 , . . . , n is an injective hull ofMi then 

i=l i=l i = l 

n 

is an injective hull of © M , . 
« = i 

(b) / / f : Pi -> Mi for i = 1, 2 , . . . , n is a projective cover of M„ then 

®ti-.®Pi^®Mi 

n 

is a projective cover of 0 M(. 

Proof (a) This follows from 5.1.7 and 5.3.4. 
(b) This follows from 5.1.3 and 5.3.4. • 

Two questions now arise immediately, namely the uniqueness and 
existence of hulls and covers. We begin with the question of the uniqueness 
and at once prove a somewhat more general result. 

5.6.3 T H E O R E M 

(a) Let < p : M i - » M 2 be an isomorphism, let rji'.Mi^ Qi be an injective 
hull and let y]2: M2 C?2 be a monomorphism with Q2 injective. Then there 
exists a split monomorphism 

so that the diagram 

Mi >M2 

i * 

Oi >Q2 

is commutative and 

r)2: M2 9 m rj2(m) e lm(ip) 
is an injective hull of M2. r)2 is an injective hull of M2 if and only if is an 
isomorphism. 
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(b) Let <p : M i -> M 2 be an isomorphism, let £\: Pi -» M i an epimorphism 
with P\ projective and letg2:P2-+ M 2 be aprojective cover. Then there exists 
a split epimorphism 

so that the diagram 

<l>:Px-*P2, 

Px 

M i > M 2 

is commutative and, if Px = K e r ( ^ ) © P 0 (note P 0 = Pi/Ker(</0) | i := £ i |P 0 

/s fl projective cover of M\. f i w a projective cover of M\ if and only if 
\jj is an isomorphism. 

Proof. (a) In the commutative diagram 

M i ^ > Q i 

1 
M 2 /</< 

\jß exists, since Q2 is injective. Since 7}2<p = \j/7]\ is a monomorphism it follows 
that Ker(</0 n Im(?7i) = 0. Since Im(7ji) is large in C?i it follows that Ker(tp) = 
0, i.e. ^ is a monomorphism. Since d is injective, \jß splits and Im(</0 is 
injective. 

Since Im(?72) Im((/0 the definition of r)2 is meaningful. ?72 is, along with 
r]2, a monomorphism and Cod(?72) = Im(</0 is injective. It remains to be 
shown that Im(?72) = Im(?72) is large in Im(i/0. Let 

then \jß is an isomorphism and we have 

ipVi(Mi) = r)2<p(Mx) = rj2(M2). 

Since 7?i(Mi) is large in Qi, it follows therefore from 5.1.5(c) (with <p = ip~l), 
that rj2(M2) is also large in Cod(tp) = Im(i/0. 

I f 7)2 is an injective hull of M 2 then Im(?72) Q 2 holds and as 
Im(?72) *-» Im(</0 it follows that Im(</0 Q 2 . Since however Im(</0 is a direct 
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summand in Q2, this is only possible with lm(ip) = Q2, i.e. ip is an isomor­
phism. Conversely if ip is an isomorphism, then it follows that 772 = T?2, thus 
7)2 is now an injective hull of M 2 . 

(b) In the commutative diagram 

/ 

Pl 
/ 

/ 

Afi 

/ 

>M2 

\p exists, since Px is projective. Since <p£i = £2ip is an epimorphism it follows 
that Im((/0 + Ker(£>) = P 2 . Since Ker(£>) is small in P 2 , it follows that 
Im(<^) = P 2 , i.e. ip is an epimorphism. Since P2 is projective, ip splits: 

Pi=Ker(<A)©P 0 , 

and P o = Pi/Ker((/0 is projective. 
As Ker(t/0 ^> Ker(£i), £ 1 := £ i | P 0 is, along with £ 1 , an epimorphism. Since 

Po is projective, it remains to be shown that Ker(£i) ^ P 0 . Let 

ip:P0Bp^ip(p)eP2, 

then <p is an isomorphism and as <p£i = $2\p and since <p and ip are 
isomorphisms 

Ker(6) = (A_ 1(Ker(6)). 

Since Ker(£ 2 ) is small in P 2 it follows from 5.1.3(c), that Ker(£i) is small 
in <p-\P2) = P0. 

If £ 1 is a projective cover of M i , then Ker(£i) ^ P\ holds and as 
Ker(</0 «-> Ker ( | i ) it follows that Ker (ip) Px. Since however Ker(e/0 is a 
direct summand in Px this is only possible with Ker(i/0 = 0, i.e. ip is an 
isomorphism. If conversely ip is an isomorphism then it follows that £ 1 = £ 1 , 
thus £ 1 is now a projective cover of M i . • 

Once more we point out explicitly that from 5.6.3 the injective hull and 
the projective cover (if they exist) are uniquely determined up to isomor­
phism. For example if we put in the injective case M = M i = M 2 and <p = 1 M 

then 7)2 is an injective hull of M if and only if ip is an isomorphism. 
We come now to the question of the existence of projective covers and 

injective hulls. Whereas—as is shown subsequently—to every module there 
exists an injective hull, the dual Statement does not hold. Thus there are 
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modules which do not have projective covers. For example no Z-module, 
which is not itself already projective ( = free), has a projective cover, for 
as we have earlier shown in 5.1.2, the trivial submodule 0 is the only small 
submodule of a free Z-module. 

The interesting question then arises of characterizing the rings R for 
which every R-module has a projective cover. These are the perfect rings 
which are treated later. 

5.6.4 T H E O R E M . Every module has an injective hull. More precisely: If 
p.M^Q is a monomorphism into an injective module Q and if \m(p)" is 
an intersection complement of an intersection complement of Im(^t) in Q 
with Im On) r-> Im(/*)", then 

/l:M^lm(p)" 

with ß(m) = p,(m) for all meM (restriction ofthe codomain of p to Im(^)") , 
is an injective hull of M. 

Proof. Let A := Im(/x). As shown in 5.2.5(c), A is large in A" . I t remains 
to be shown that A " is injective. To that end we prove that A " is a direct 
summand of Q; since Q is injective, this follows then from 5.3.4 also for 
A" . We consider the diagram 

A " © A ' - >Q 

3 

Q/A'@Q/A" 

where t is the inclusion mapping. In order to dehne a and ß, we write the 
elements of Q/A'® Q/A" as pairs. Then for a" + a'e A " © A ' let 

ß(a" + a') := (a" + a' + A ' , a" + a' + A") = (a" + A\ a'+A") 

and also 

a(q):= (q+A\q+A"). 

Then the diagram is commutative, i.e. we have ß = at from which 
lm(ß) lm(a) follows. As A " n A ' = 0 a and ß are monomorphisms. Since 
Q is injective and a is a monomorphism, a splits. 

We assert that lm(ß) is large in Q/A'®Q/A". Since from 5.2.5 
A " + AIA' Q/A' and A " + A ' / A " Q/A", the assertion follows by 5.1.7. 

As lm(ß) ^ Im(a) then Im(a) is also large in Q/A'®Q/A". Since a 
splits, it follows that Im(a) = 0 / A ' © 0 / A " , i.e. a is an isomorphism. To 
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an arbitrary qeQ there is therefore a ^ e O with (q + A ' , 0 + A") = (gi + A ' , 
qi+A") from which firstly ^ G A " and then qeA" + A' follow. Thus 

We now summarize, once again, how we have produced the injective 
hull for a module MR: 

(1) Embedding (monomorphism) of M as an abelian group in a divisible 
abelian group D. 

(2) Embedding p,: MR -> Hom zCR, D)R, where the module H o m z ( Ä , D)R 

is injective. 
(3) Let Im(p,)" be an intersection complement of an intersection comple­

ment of lm(p) in Hom zCR, D)R with lm(p) ^> Im(p)", then 

is an injective hull of M. 

I t is clear that, by this complicated construction, it is hardly to be expected 
in general that we can infer directly from the properties of M those of the 
injective hull of M. The question of which properties of M remain preserved 
or become lost on passing to the injective hull of M is in any event an 
interesting question which has been explored from different points of view 
and assumptions. 

A n injective hull, which is itself a "minimal injective extension" can also 
be characterized as a "maximal large ( = essential) extension". 

5.6.5 Definition. Let a : A - > 5 b e a monomorphism. 
(1) a is called a large extension of A Im(a) B. 
(2) a is called a maximal large extension of A :<=> a is a large extension 

of A and every large extension of B is an isomorphism. 

5.6.6 T H E O R E M . Let y.MW'be a monomorphism. Then we have: y is 
a maximal large extension of M if and only if y is an injective hull of M. 

Proof. Let r\:M^Q be an injective hull of M , then we consider the 
commutative diagram 

A"@A' = Q holds. • 

(1 :M 3 m ^ p(m)e Im(p)1 

M y w 
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in which <p exists, since Q is injective. As Im(y) W and Im(y) n Ker(<p) = 
0, we have Ker(<p) = 0, i.e. <p is a monomorphism. As Im(?7) Im(<p) and 
I m ^ ^ ö it follows that Im(<p) Q. Let now y be a maximal large 
extension, then it follows that <p is an isomorphism, thus y is an injective 
hull. 

The converse that every injective hull is a maximal large extension, 
follows from the fact, that every monomorphism 

a:Q-*B 

with injective Q splits and proper direct summands are not large in a 
module containing them. • 

We now direct our attention once again and briefly to the projective 
cover. As we know this need not exist. If we assume however that the 
corresponding addition complements exist then we can dualize Theorem 
5.6.4. The intersection complements used in the proof of Theorem 5.6.4 
exist by virtue of Zorn's lemma, whereas the dual addition complements 
exist only under appropriate assumptions. The exact formulation is not to 
be given here. Later, in the treatment of semiperfect and perfect modules, 
the question of the existence of projective covers wil l be thoroughly investi-
gated. 

5.7 B A E R ' S C R I T E R I O N 

In order to establish whether a module Q is injective we have to test 
whether to every monomorphism a.A^B and to every homomorphism 
(p.A^Q there is a homomorphism K.B-*Q with <p = t<a. This prompts 
the question whether we can restrict the class of "test monomorphisms'' 
a:A->B. This is in fact possible and indeed it suffices to consider all 
inclusions of right ideals U «-» RR. 

5.7.1 T H E O R E M ( B A E R ' S C R I T E R I O N ) . A module QR is injective if and 
only if to every right ideal U ^ RR and to every homomorphism p :U -> Q 
there exists a homomorphism r : RR -> Q with p = n , where 1 is the inclusion 
mapping of U into R. 

Proof. That the condition is necessary for injectivity is ctear. The converse 
proof, that it is sufficient, follows in two steps. 

Step 1. Let a :A-+B be a monomorphism and let <p eHomR(A, Q). Let 
C B with Im(or) C and let y: C-> O with <p(a) = ya(a) for all a e A . 
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Assertion. There is a C\ ^ B with C Cx and a yx: C\ -> Q with y i | C = y 
(hence also <p(<z) = y ia (a) ) . 

To prove this assertion let beB, b&C; put Cx = C + bR. I f we had 
CnbR = 0 then immediately we could extend y trivially to C\. The 
difficulty stems from the fact that we can have C nbR # 0. Let 

U = {u\ueR AbueC}, 

then (7 is obviously a right ideal in R and 

£: UBu-^bueC 

is an homomorphism. Let p = y £ then we have p:U -*Q, and by assump­
tion there is a r : R -» Q with p = TL: 

U 

C 

-+R 

We now dehne y i : Ci Q by 

y i : C + ac + 6 r - + y ( c ) + T ( r ) e Q . 

To establish that y i is a mapping, let 

c + £r = C\ + brXi c, c i€ C, r, rxeR. 

Then 

c - C i = ö ( r i - r ) e C n ^ J R 4 > r - r i G L ^ 4 > y£(r - rx) = r ( r -

4> y(c - Ci) = y(Ä(ri ~ r ) ) = y£(r, -r) = r{rx -r) => 

y(c) + r ( r ) = y(ci) + T ( r 1 ) . 

Since y and r are homomorphisms, y i is also an R-homomorphism and 
by the definition of y i we have yx\C = y. 

Step 2. Let C 0 •= Im(a) and let a0 be the isomorphism of A onto C 0 

induced by a. In addition let y 0 '•= <paöl, then we have (p(a) = yo&(a) for 
all a eA. The homomorphism y 0 is now extended to the whole of B with 
the help of Step 1 and Zorn's Lemma. For this let F be the set of all 
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pairs (C, y) with lm{a) = C0^> C ^> B and y : C-> Q with y\C0 = yo. As 
(C 0 , yo) e T this set is not empty. A n ordering is dehned in F by 

12. n | C = y. 

Now let A be a non-empty totally ordered subset of T and let 

D U C 
(Cr)eA 

then we have C0^> D ^ B. Further let 

8:D3d->y(d)eQ, 

ior deC with (c, y) € A. Then by 2 this is a homomorphism with 8\C0 = yo-
Consequently (D, 8) is an upper bound of A in T. Hence by Zorn's Lemma 
there exists a maximal element in T, which, from Step 1, must be equal to 
a (B, K) with <p = Ka. This completes the proof. • 

Further, following this, we point out that this theorem remains valid if 
in it we replace RR by an arbitrary generator (see exercise 21). The 
correspondingly dual assertion does not hold however. 

A n important application of Baer's criterion follows in the next chapter, 
where it is shown that a ring R is noetherian if and only if every direct 
sum of injective R-modules is again injective. 

5.8 F U R T H E R C H A R A C T E R I Z A T I O N S A N D P R O P E R T I E S 
O F G E N E R A T O R S A N D C O G E N E R A T O R S 

In 3.3 as well as in 4.8 we have introduced and characterized generators 
and cogenerators. These considerations are here to be carried forward. In 
particular a characterization of cogenerators is given which makes it possible 
for them to be constructed and so to demonstrate their existence. Moreover, 
in addition, a "minimal" cogenerator can be given. 

5.8.1 T H E O R E M 

(a) The module BR is a generator if and only iffor every projective module 
PR a direct sum of copies of B exists which contains a direct summand 
isomorphic to P. 

(b) The module CR is a cogenerator if and only if for every injective 
module QR a direct product of copies of CR exists which contains a direct 
summand isomorphic to Q. 
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Proof. (a) Let BR be a generator. By 4.8.2(4) there exists an epimorphism 
of a direct sum of copies of B onto P. Since by 5.3.1 every epimorphism 
onto a projective module splits, the condition follows. The converse follows 
likewise from 4.8.2(4) if we observe that every direct summand of a module 
is an epimorphic image of the module and every module M, by 4.4.4, is 
an epimorphic image of a projective (indeed free) module. 

(b) Dual to (a), in which 5.5.3 now appears in the place of 4.4.4. • 

5.8.2 C O R O L L A R Y 

(a) Let P be a projective generator, then we have: The module B is then 
a generator if and only if there is a direct sum of copies of B which contains 
a direct summand isomorphic to P. 

(b) Let Q be an injective cogenerator, then we have: The module C is 
then a cogenerator if and only if there is a direct product of copies of C which 
contains a direct summand isomorphic to Q. 

Proof. (a) If B is a generator, then the condition follows by 5.8.1. Conversely, 
if the condition is satished, i.e. 

]\Bi = P'®L, Bi - B, P'=P, 
iel 

then this module can evidently be mapped epimorphically onto P, thus is 
a cogenerator and by 4.8.2 this follows also for B itself. 

(b) Dual to (a). • 

A projective module P is defined by the fact that for every epimorphism 
ß : B ^ C H o m ( l p , ß) is also an epimorphism. A generator D can now 
conversely be characterized by the fact that for every epimorphism 
H o m ( l j D , ß), ß is also an epimorphism. This holds correspondingly in the 
dual case. 

5.8.3 T H E O R E M 

(a) The module DR is a generator if and only if every homomorphism 
ß.B^C for which H o m ( l D , ß) is an epimorphism is itself an epimorphism. 

(b) The module CR is a cogenerator if and only if every homomorphism 
a :A-*B for which Hom(a, l c ) is an epimorphism is a monomorphism. 

Proof. (a) Let D be a generator, then we have 

C= Z Im(cp). 
<peHomR(D,C) 
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Since H o m ( l D , ß) is an epimorphism, there is to every <p e Hom R (£>, C) a 
(p'e H o m R ( D , B) with <p =ß<p'. Then it follows that 

C= I I r m » = I Im(j8^') *•» Im(j8) ^ C, 
<f><= Horn R(D,C) < p ' e H o m R ( D , ß ) 

thus Im(/3) = C, i.e. ß is an epimorphism. 
To prove the converse let MR be arbitrary. We dehne 

B := LI Ap 
<p e H o r n « (D.JVf) 

with D^^D for every <p e H o m Ä ( A M ) and also ß : £ -> Af by 

0((<*„))= Z * W J . 

Then for (po^Hom«(Z), Af), <Po = ßv<f>o obviously holds, where rj^: 
I I D v is the canonical monomorphism. Hence it follows that H o m R ( l D , ß) 
is an epimorphism. By assumption ß is then an epimorphism. Consequently 
we have 

M = lm(ß)= Z Im(<p), 
<peHomR(£>,M) 

thus D is a generator. 
(b) Since the proof runs dually, we can be brief. If C is a cogenerator, 

then the assertion follows from the relations 

0 = U Ker(<p)= p | Kerfo 'a) 
< p e H o m R ( A , C ) <p'e H o r n « ( ß . C ) 

= n«" 1 (Ker( < P ' ) ) «- a" ' (0) = Ker(a) «- 0, 

thus Ker(a) = 0, i.e. a is a monomorphism. 
To show the converse, let MR be arbitrary. We dehne 

B '= n Q, with Q = C for every <p e Horn« (Af, C) , 
<p6Hom R (M ,C) 

as well as a : Af -» B by 

a (m) '•= (cp{m)), meM. 

Then, for <p0 e Horn« (Af, C) , 

where 7 ^ : I I Q , -> Q 0 = C is the canonical epimorphism. Hence Horn(a, l c ) 
is an epimorphism and by assumption a is then a monomorphism. Con­
sequently we have 

0 = K e r ( a ) = f l Ker(<p), 
<pe Horn R ( M , C ) 

thus C is a cogenerator. • 
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5.8 .4 C O R O L L A R Y 

(a) Let PR be a projective generator and let ß : BR -> CR be a homomor­
phism. Then: 

ß is an epimorphism <=>Hom(l P , ß) is an epimorphism. 

(b) Let QR be an injective cogenerator and let a :AR-* BR be a 
homomorphism. Then: 

a is a monomorphism O H o m ( a , \Q) is an epimorphism. 

Proof. This holds since P is projective, resp. Q is injective. 
"4=" By 5 .8 .3 . • 

We now direct our attention in particular to cogenerators. Let ER be a 
simple module and I(ER) an injective hull of E, for which we assume 
E I(R). Let CR be a cogenerator, then as 

n Ker(<p) = 0 
< p e H o m R ( / ( E ) , C ) 

there must be given a homomorphism <peHomR(I(E), C) with 
E Ker(<p). Since E is simple it follows that E nKer(<p) = 0 . Since E is 
large in I(E) it follows therefore that Ker(^) = 0, i.e. <p is a monomorphism. 
Obviously (by 5 . 6 . 3 ) 

<p': E3x-><p(x)Glm(cp) 

is also an injective hull of E where the module Im(<p), isomorphic to I(E), 
is an injective submodule of C. As an injective submodule it is in fact a 
direct summand of C. We have therefore established that the cogenerator 
C to every simple module E contains an injective hull. Henceforth it is 
crucial that this property is characteristic for cogenerators. 

5.8.5 T H E O R E M 

(a) The module CR is a cogenerator if and only if for every simple module 
it contains an injective hull. 

(b) Let {Ej\j eJ}bea System of representatives for the classes of isomorphic 
simple R-modules, and let I(Ef) be an injective hull ofEj. Then 

Co := II HEj) 
j<=J 

is a cogenerator. 
(c) A module CR is a cogenerator if and only if it possesses a submodule 

isomorphic to C 0 . 
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Proof. (a) We have previously determined that a cogenerator for every 
simple module E contains an injective hull. Conversely let this now be 
satished for C. Let 0 ¥=• m e M, then mR is finitely generated and has 
therefore by 2.3.12 a maximal submodule A. Then E := mR/A is simple. 
Let 

y:E-+I(E) 

be an injective hull of E with I(E) C, which exists by assumption. Since 
y is a monomorphism, y ( m + A ) ^ 0 . Let v\mR-*mRIA be the natural 
epimorphism then yv{m) = y(m + A) ^ 0. Since / ( £ ) is injective, there is 
a y ' : M ->I(E) so that the diagram 

mf l >M 

is commutative. Consequently we have y '(m) ̂  0. Then let <p be dehned by 

cp: M BX -> y '0t)e C, 

thus it follows that <p(m) # 0, i.e. mg Ker((p). Thus altogether we have 

n Kerfo>) = 0, 
(peHomR (M.C) 

i.e., C is in fact a cogenerator. 
(b) From consideration of 5.6.3 it follows by (a) that C 0 = LI H E , ) is a 

cogenerator. y e J 

(c) If we have C\ C with Ci = C 0 then it follows by (a) that C is a 
cogenerator. Now conversely let C be a cogenerator, then there is by (a) 
to every Ef an injective hull Q, ^ C, which by 5.6.3 is isomorphic to I(E,); 
let y 7 : /(£"/) = (?,. We assert that 

Z 0/ = ©(?/ , 

where the sum is to be taken in C. Let := y7-(£•/), then £ • is isomorphic 
to Ej and £"y Oy. To prove the assertion it sufhces by 5.1.7 to show that 

jeJ jeJ 

I f we suppose that this sum is not direct then there is a finite sub-sum ^ 0 
which is not direct. Of all finite sub-sums ^ 0, which are not direct, let (with 
respect to new indices) E\ +... +E'n be one with the smallest n. 
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Then we have 

E'2+. . .+E'n=E'2®.. .@E'n, 

and also E\ n (E'2 ®.. .®E'n) # 0. Since E\ is simple it follows that 

E[ -*E2®...®E'n. 

Let 77, be the projection of E2 ®.. .®£?J, onto J5J, / = 2 , . . . , rc, then there 
is an i0 e { 2 , . . . , n} with 7r,-0(£j i ) ^ 0. Since E[ and E'io are simple, it follows 
that E[ =7Th(E[) = E'ioi thus also Ei=E[ =E'io = f j / o , in contradiction to 
the assumption concerning {£•,•[/ eJ}. Thus we have in fact 

and hence the isomorphisms 77:/(£}) = Qy can be assembled to give an 
isomorphism 

(see 4.3.1) for which we have y((fl/)) = Z ' yy(ßy), where (ay) e LI/(£",), 

Condition (b) of this theorem provides us with a "minimal" cogenerator 
C 0 which is injective for finite / (for this see also Exercise (28)). For an 
arbitrary / , C 0 is injective in the case that RR is noetherian (see 6.5.1). 

In the general case to obtain an injective cogenerator, we take an arbitrary 

injective module containing LI Ej as for example II LI EA. 

Later we shall be closely concerned with injective cogenerators, where 
the preceding theorem is essentially used. 

5.8.6 Example. For R = Z , Q/Z is an injective cogenerator. Since Q/Z 
is divisible Q/Z is firstly injective. For an arbitrary ring R every cyclic 
R-module M = mR is isomorphic to a module R/A with AR <-> RR (A = 
Ker(a) , if a: Rsr^mreM). Consequently every cyclic and thereby in 
particular every simple Z-module is isomorphic to a module of the form 
Z/nZ (with n e Z). Since for n * 0 

j£j jeJ 

y : I I / O B / ) - © Oy 
jeJ jeJ 

I ' y / ( a / ) e © Q y . 

Z/nZ3z^- + ZeQ/Z 
n 

is obviously a monomorphism, Q/Z contains for every simple Z-module 
an isomorphic copy. Consequently Q/Z is also a cogenerator. 
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EXERCISES 

(1) 

Let A B Af. Show: 
(a) B ^M&B/A^M/AAA^M. 
(b) A Af O A *>BAB*>M. 
(c) Let A ' be adco of A in Af. Show for T Af : r ^ Af 4> T n A A . 
(d) Let A ' be inco of A in Af. Show for T^M\ T^M^> 

(T + A')/A'*>M/A'. 

(2) 
Let A and B be submodules of Af. 

(a) Show: A+B =M AAnB B^>B is adco of A in Af. 
(b) Show: A DB = 0 A (A-\-B)/B Af /£^>J5 is inco of A in Af. 

(3) 
Show: For A ^ Af the following properties are equivalent: 

(a) A ^ A f . 
(b) For every generating set (jc, |/ef) of Af and every family (a^iel) 

with a{ G A , (xi - at\i € I) is also a generating set of Af. 
(c) There is a generating set (xi\iel) of Af so that for every family 

{cii\i e 7) with a, e A , (je,- -a,-|/ e I) is also a generating set of Af. (Note the 
special case MR - RR with 1 as generating family.) 

(d) If from a generating set of Af all elements of A are omitted then 
a generating set of Af is again obtained. 

(4) 

For m G MR let 

rR{m) = {r |r eR A mr = 0}. 

Show 

Si(Af) := {m\m eM A rR(m) RR} 

is a submodule of Af* (Si(Af) is called the Singular submodule of Af) . 

(5) 
Show: 

(a) Let R be a commutative ring, A^>Ra and A" an adco of A in R. 
Then there is a B A with A'©2? = 

(b) I f R is an integral domain and A has an adco in R then A is 
small in 
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(6) 
A submodule X <-* MR is called closed in M if from X U ^ M it always 
follows that X = U. Show: 

(a) For X the following are equivalent: 
(i) X is closed in M . 
(ii) X is an intersection complement of a submodule of M , i.e. there 
is an A ^ M with X = A \ 
(iii) From X ^ V M it always follows that V / X ̂  M / X , i.e. the 
natural mapping v :M^M/X "contains" large submodules. 

(b) Additionally let M Q R with QR injective (thus injective hull of 
M ) . Then we have: X is closed in M if and only if there is a direct summand 
Y^Q with y n M = X . 

(c) Every submodule in MR is a direct summand ( = Mk semisimple) if 
and only if every submodule is closed. 

(d) Construct an example in which a closed submodule is not a direct 
summand (say in M 2 := (Z/8Z)©(Z/2Z)) . 

(e) I f R is an integral domain then in every R-module M the torsion 
submodule 

T(M) := {m\m e M A mr = 0 for an r e R, r * 0} 

is closed. 

(7) 
For R = Z, i.e. in the category of abelian groups, the closed submodules 
are to be characterized. Show for X ^ M z : 

(a) I f X is an intersection complement of A in M and if we have m e M , 
m g X , mp € X for a prime number p, then there is an x e X with mp = xp. 
(Show that (mZ + X ) / X is simple and (X + A)/X is large in M/X so that 
it follows that m e X + A . ) 

(b) I f X ^ [ / ^ M , then there is a w G [ / and a prime number p with 
u £ X, upeX. (Show that £ / /X has a simple subgroup.) 

(c) A subgroup X is closed in M if and only if for every prime p we 
have: Xp - X n M p . 

(d) A subgroup X is closed in M if and only if: 

Soc(M/X) = (Soc(M) + X ) / X . 

Here Soc(M) is the sum of all simple subgroups of M. 

(8) 
Let 0 # e 7* 1 be an idempotent (e = e2) from the centre of R. Show: The 
right Ä-module eR is projective but not free. 
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(9) 

Let ßi : J P I - » M , ß2\P2^*M be epimorphisms and Pi, P2 projective. Show: 

Pi®Ker(ß2)2*P2®Ker(ßl). 

(10) 
Let U^+F where F is a free right .R-module with a basis (e,|ie J). Let 
the set / be well-ordered (by =s) and to every jel let there be defined: 

F , = © « Ä F, = ®e,R, U, = UnF„ Ü, = UnF„ 

and also Af = 7Tj{Ü}) where TTJ is the yth projection of F onto R. Show: 
(a) If the right ideal Aj is projective, then there is a V, =A}- with Üj = 

UjeVj. 
(b) If there is for every iel a Vi with U = Ui® Vi then it follows that 

C/ = © Vi. 

(To show that X = Z Vi coincides with t / one shows that the set {/|/ ei A 
C7i ^ X } is empty.) 

(c) If in R every right ideal is projective then every submodule of a free 
right .R-module is a direct sum of right ideals (up to isomorphism). 

(d) Over a principal ideal domain every submodule of a free module is 
again free. 

( U ) 
Let (Tj\i e I) be a family of rings and let 

R := I I T, 
iel 

R itself becomes a ring, if addition and multiplication are defined com-
ponentwise, R is then called the ring product of the family (Ti\iel). Let 

A := LI Th 

iel 

then obviously we have A R. For kel denote by ek that element from 
A whose kth component is 1 and whose remaining components are 0. Show: 

(a) A is a two-sided ideal in R with AR = © e{R and AR RR. 
(b) AR is projective. , € / 

(c) HomR((R/A)R, RR) = 0 and (R/A)R is not projective for infinite I. 
(d) For jel have: (ejR)R is injective<^>(r ;)r, is injective. 
(e) If all (Tj)T. are injective and I is infinite then AR is a direct sum of 

injective modules but AR is not itself injective. 
(f) RR is i n j ec t i ve»V, e J [(T,)Tj is injective]. 
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(12) 
Let R be an integral domain with quotient field K ^R. Show: 

(a) Horn* (ÜT,Ä) = 0. 
(b) KR is not projective. 
(c) I f a projective module PR has a finitely generated large submodule, 

then P is itself finitely generated. 
(d) Every (as Ä-module) projective ideal is finitely generated. 
(Hint: For (c) use the Dual Basis Lemma.) 

(13) 
Show in the category of abelian groups (i.e. R = Z ) : 

(a) If P is projective ( = free) and if A , B are two direct summands in 
P then A n B is also a direct summand in P. 

(b) I f O is injective ( = divisible) and if A , B are two direct summands 
in Q then A + B is also a direct summand in Q. 

(14) 
Show: A module P is projective if and only if to every epimorphism 
ß : Q -> C with injective Q and to every homomorphism <p :P-»C there is 
a homomorphism <p* :P-> Q with <p=ß<p'. 

(15) 
In the following let / ( A f ) always be an injective hull of Af with Af I(M). 

(a) Show: Every endomorphism <p of / ( A f ) with <p(m) = m for all m e A f 
is an automorphism. 

(b) Show that the following conditions are equivalent: 
(1) Every endomorphism <p of / ( A f ) with cp(m) = m for all meM 
is the identity of / ( A f ) ; 
(2) Horn* (/(Af)/Af, / (Af) ) = 0. 

(16) 
Let always Af *-> / ( A f ) , and X ^ I{X) resp. Let Af be called X-determined 
if H o m * ( / ( A f )/Af, I(X)) = 0. Show: 

(a) Af is X-determined » t o every homomorphism <p:M-+X there is 
only one homomorphism <p': / ( A f ) -» / ( X ) with <p(m) = <p'(m) for all meM. 

(b) Af is i n j e c t i v e » V X € MR [Af is X-determined]. 
(c) \/xeX[{r\reR Axr = 0}*> RRd>x = 0]e>VMeMR [Af is X-deter­

mined]. 
(d) Af is n X r determined » V / e I [Af is X r determined]. 

(e) Afi©Af 2 is X-determined<=>Afi and Af 2 are X-determined. 
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(f) M\®M2 is Mi©M 2 -de te rmined<=>M; is M r determined for /, / = 
1,2. 

(g) Let C be a cogenerator and X an arbitrary module. Precisely the 
injective modules are C©X-determined. In particular we have: C © X is 
C©X-determined»C and X are injective. 

(17) 
Show: If Qu Q2 are injective and pi'.Qi-* Q2i pi'Q2^Q\ are 
monomorphisms, then we have: Q i = Q 2 . (Hint: Without loss we can 
assume that Q 2

c - * Q i , n\:Q\ -+Q\ and fi2 is an inclusion mapping. Let 
Q i = Q 2 © A , then let 

B := A + M l ( A ) + ^ ? ( A ) + M ? ( A ) + . . . 

and let C be an injective hull of B nQ2 = ix\{B) in Q2. By using the 
homomorphism B 3b^fXi(b)eC it may be shown that A © C = C.) 

(18) 
Let S '= E n d ( M Ä ) where M is considered as an 5-i?-bimodule $MR. Show: 

(a) Let J C G M , let xR be simple and let xR be contained in an injective 
submodule of MR. Then Sx is a simple left S-module. 

(b) Let x, y e M , xR=yR and let xR be contained in an injective 
submodule of MR. Then Sx is isomorphic to a submodule of Sy. 

(c) Let x, y e M , xR =yR and as well let xR and yR be contained in 
injective submodules of M . Then it follows that I(Sx) = I(Sy). 

(19) 
For an integral domain R show: 
Every divisible torsion-free R-module is injective. 
(MR is divisible : » Vr e R, r * 0 [Mr = M ] ; 
M R is torsion-free : » Vra e M , m 5 * O V r e R , r ^ 0 [ m r ^ 0 ] . ) 

(20) 
Let be an integral domain with quotient field K. In the lattice Lat(jfiTR) 
of Ä-submodules of KR a multiplication is defined: 

i /= i J 

This multiplication is commutative and associative and has R as unit 
element. Show: 

(a) For 0 ^ / 7 ^ KR the following are equivalent: 
(1) There isa V ~> KR with £ / • V = Ä. 
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(2) UR is projective and finitely generated. 
(3) UR is projective. 

(Hint: Use the Dual Basis Lemma.) 
(b) If 0^UR^> RR holds then the three conditions are further equiv­

alent to 
(4) For all divisible MR the mapping 

HomU, 1 M ) : Horn* (R, M ) -> Horn*(U, M) 

is surjective. 
(c) The following are equivalent for R: 

(1) Every ideal is projective. 
(2) Every divisible jR-module is injective. 

A n integral domain with property (c) (1) is called a Dedekind ring. In 
particular every principal ideal domain is a Dedekind ring. 

(21) 

Let MR be called XR-injective: <=>for every monomorphism a : A -> X 

Hom(a, l M ) : H o m Ä ( X , M ) ^ H o m i , ( A , M ) 
is surjective. Show: 

(a) Let £i:Xi^>X be a monomorphism and let £2:X-+X2 be an epi­
morphism with Im(£i) = Ker(£ 2 ) . If M is X-injective then M is also X\-
and X 2 -injective. 

(b) Let M be X-injective and let M i be large in M. Then we have :Mi 
is X - i n j e c t i v e » f o r every <p e H o m R ( X , M ) we have lm(cp) M\. 

(c) I f M is Xrinjective for every Xi of the family (Xt\iel) then M is 

also L̂I injective. (Hint: Use (b) with an injective hull of M.) 

(d) Let M be AT-injective and let X be a generator, then M is injective. 
(Generalization of Theorem 5.7.1.) 

(22) 

Let MR be called YR-projective : » f o r every epimorphism ß :Y-+B 

H o m ( l M , / 3 ) : H o m * ( M , Y)-+HomR(M,B) 

is surjective. Show: 
(a) Let R = Z . Q 2 is Z 2-projective, but not Z^-projective [ZN = \~\ Zn 

(b) If every simple right R-module is X-projective, then X is semisimple 
( = sum of its simple submodules). 
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(23) 
Show: 

(a) If R is a Dedekind ring (see Example 20) with quotient held K ^R 
then K/R is an injective cogenerator of MR. 

(b) I f R is a principal ideal domain and with exactly one maximal ideal 
pR 9^0, then the i£/i?-projective modules (see Example 22) are precisely 
the torsion-free R-modules. 

(Hint: Use the following two facts concerning R: 
(1) If an R-module M is not torsion-free, it has a direct summand 
which is isomorphic to K/R or R/(pn) for an n ^ 1. 
(2) The Ä-modules An := R/(pn) have the following property: 
An «-> B A B/An torsion-free ^>An is a direct summand in B.) 

(24) 

Let 5 := End(C^) and consider C as an S-i?-bimodule SCR. For U <=• C let 

ls(U) := {s\seS AÜ(U) = 0} 
and also for 7 c S 

r c ( ^ ) - = { c | c G C A / ( c ) = 0 for all f e T } , 

then ls(U) is a left ideal of 5 and rC(T) is a submodule of C Ä . Let the 
other annihilators be analogously formed. 

Show for a cogenerator CR: 
(a) B^CR ^rcls(B) = B. 
(b) A^RR^>rRlc(A)=A. 
(c) is a cogenerator C R is injective. 

(Hint: Let 77: C -> J(C) be an injective hull ; by using the left ideal L SS, 

L := {A77IA <E Horn« (J(C), C)} 

we show that 77 splits.) 
(d) If R is a cogenerator on both sides then R is injective on both sides. 

(25) 
Let QR be injective, S := End(Q R ) and let (7 ^ O, V <-> Q. Show: 

(a) / s ( £ / n V ) = /s(L0 + / s ( n 
(b) Isro(I) = 7 for all finitely generated left ideals 7 ^ S S. 

(26) 

Let 5 = E n d ( M Ä ) . For [ / ^ M w e define in 5 the right ideal 

A s ( [ / ) : = { s | s € 5 A l m ( s W £/}, 
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for T <= 5 we define in M the Ä-submodule 

PM(T)'>= Z Im(5) . 
seT 

Show: 
(a) MR is a generator^>PM^S(U) = (7 for all U «-» M R . 
(b) M R is projective =>A s (*7 + V) = A s ( t / ) + A S ( V) for all U, V ~> MR. 
(c) M R is projective 4> ASPM(I) ~l for all finitely generated I 5s. 

(27) 
Let JR =ÜT[JC, y ] be the polynomial ring in the indeterminates x and y over 
a field K. For fixed n e N let A denote the ideal generated by the elements 

{ j c
f

y
R + 1

" i O ^ / ^ n + l } 

and let 5 := R/A. Show: 
(a) 5s is not injective. 
(b) The R-module 

A f : = ( l xy-^/ix^R+y^R) 

is also an 5-module (i.e. MA = 0) and possesses exactly one simple sub­
module Es-

(c) The inclusion Es <-> MS is a maximally large extension. 
(d) Ms is an injective cogenerator. 

(28) 
Let the cogenerator Co, introduced in 5.8.6, be injective and let D be also 
a cogenerator of MR to which in every cogenerator of MR there is an 
isomorphic submodule. 

Show: C 0 = D. 



Chapter 6 

Artinian and Noetherian Modules 

One of the starting points in the historical development of "non-commu-
tative" rings and of modules over such rings was the theory of algebras 
over a field K. The algebras themselves, their ideals as well as modules 
over such algebras are also X-vector Spaces. Consequently it was possible 
to draw upon the theory of vector Spaces for much of what was done in 
the initial stage of the development. If a finiteness assumption is needed 
then it is clear that finite dimension is required of the underlying AT-vector 
Spaces. 

The further development aimed, as far as possible, at removing the 
assumption of an algebra. I f we only have a ring (which is not an algebra), 
then certainly in such a case we do not have the linear theory available 
and in particular the question arises as to a Substitute for the finiteness 
condition of an algebra which is now no longer applicable. 

Here, above all, Emmy Noether provided the appropriate notions and 
interpretations and thereby sowed the seeds for the further development. 
As finiteness assumptions she introduced maximal and minimal condition 
which can also be formulated as chain conditions. In other parts of algebra 
these have turned out to be just as significant and natural. These conditions 
are now about to be provided so that in the following considerations we 
can always refer back to them. From the considerations of this chapter the 
investigation of artinian and noetherian modules is not in any way concluded 
but, as further concepts and lemmas present themselves, we shall return 
to the theme many times. 

In order to avoid misunderstanding it is to be emphasized that in the 
following it is a question of finite or countable chains of submodules with 
inclusion as order relation. 

146 
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6.1. D E F I N I T I O N S A N D C H A R A C T E R I Z A T I O N S 

6.1.1 Definitions 
(1) A module M = MR is called noetherian resp. artinian every non-

empty set of submodules possesses (with respect to inclusion as ordering) 
a maximal resp. minimal element. 

(2) A ring R is called right noetherian resp. artinian RR is noetherian 
resp. artinian. 

(3) A chain of submodules of M 

A / _ i ^ Ai <-» A / + i * -> . . . 

(finite or infinite) is called stationary :<=> the chain contains only finitely 
many different A, . 

Remarks. (a) These properties are obviously preserved under isomorphism. 
(b) A noetherian resp. artinian module is also called a module with 

maximal resp. minimal condition. 

6.1.2 T H E O R E M . Let M = M r and let A <-* M. 

(I) The following properties are equivalent: 
(1) M is artinian. 
(2) A and M/A are artinian. 
(3) Every descending chain Ai <-» A 2 «-> A 3 . . . of submodules ofM 
is stationary. 
(4) Every factor module of M is finitely cogenerated. 
(5) 7« eüery sef {At \iel}^0 of submodules At <-* M there is a finite 
subset {Ai | / e /o} 0-e. finite I0 a I) with 

DAi=nA, 
iel iel0 

(II) The following properties are equivalent: 
(1) M is noetherian. 
(2) A and M/A are noetherian. 
(3) Every ascending chain Ax ^ A 2 «-> A 3 ^ . . . of submodules of M 
is stationary. 
(4) JEWy submodule of M is finitely generated. 
(5) 7n et»ery 5er {A,1 / e 1} # 0 0/ submodules Ai ^> M there is a finite 
subset {Ai | i e I0} (i.e. finite I0 c J) with 

I Af- = I A z , 
« 6 / / € / Q 
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(I I I ) The following properties are equivalent: 
(1) M is artinian and noetherian. 
(2) M is of finite length (see 3.5.1). 

Proof. (I) " (1)4 > (2)" : Since every non-empty set of submodules of A is 
also such a set of M there is therefore a minimal element, thus A is artinian. 
Let v:M^>M/A and let { f t f | / e / } be a non-empty set of submodules of 
M/A. 

We claim that if ^ - 1 ( 0 , 0 ) is minimal in {v~l(Cli)\iel) then f l / o is minimal 
in {fli\i£l}. Suppose ü , «-» Clin. Then i/~l(Cli) ^ *> - 1(fi, 0) 
and so, from the minimality of f l / o : 

i / - 1 ( ß / ) = i / - 1 ( n f e ) > 

and we have ftf = ^ " ^ ( f i , ) = w - 1 ( f l l 0 ) = ü , 0 . This follows also directly from 
3.1.13. 

(I) "(2)=>(3)": Let A x<-» A 2 A3 . . . be a descending chain of 
Ai <-» M and let again v.M^M/A. Let 

T := {Ai | / = 1, 2, 3 , . . . } , p(T) := M A , ) | / = 1 ,2 ,3 , . . . } , 

T A : = { A , n A | / = l , 2 , 3 , . . . } . 

Since T is not empty, v(T) and T A are not empty. By assumption there is 
therefore a minimal element in v(T), say v(Ai) and a minimal element in 
T A , say Am r\A. Let n := Max(/, m), then we have 

*/(A n ) = * / ( A n + / ) , A „ n A = A „ + 1 n A , i = 0 , 1 ,2 , . . . 

We claim that An = A n + i , / = 0 , 1 , 2 , . . . so that the given chain is in fact 
stationary. 

From v(An) = v(An+i) we have 

An + A = i / " V ( A n ) = *>~V(A„4-/) = An+i + A , 

i.e. A„ + A = A n+,- + A . Further we have A„ n A = An+t n A as by assump­
tion An *-» An+i. By the modular law it now follows that 

An = (An+A)nAn = (An+i+A)nAn = An+i + (Ac\An) 

— An+i 4- (A o A n . f / ) = A„4-/. 

(I) "(3)=£>(1)": Indirect proof. Suppose the non-empty set A of sub­
modules contains no minimal element. For every U eA there is then a 
U'eA with U' U. For every [ / let such a fixed U' be chosen (Axiom 
of Choice). For arbitrary U0eA 

u0 ** u'o ** m ... 
is then an inhnite, properly descending chain in contradiction to (3). 
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(I) " ( 4 ) 0 ( 5 ) " : This follows immediately from 3.1.11 (if in (5) we write 
£/:= n , 6 / A,) . 

(I) " ( l ) z>(5 )" : By (1) in the set of all intersections of any finitely many 
of the Ah i e I there is a minimal element; let this be D := P | A/. 

iel0 

By the minimality of D it follows for every j ei: D nA}=D and hence 
D n Ah thus D = P l Aj. 

(I) "(5)=>(3)": Let A i A 2 A 3 . . . be given, then from (5) there 
is an n with 

n A : = n A/ 
1 = 1,2,3,... i = l n 

and consequently we have An = A , for / n. 
(II) The proof follows dually to the artinian case up to (4)<=>(5): this 

equivalence was shown in 2.3.13 (with Af in the place of £ A , in (5)). 
iel 

(III) "(1)=>(2)": Since M is noetherian by (II) every submodule is 
noetherian. Consequently there is in every submodule A M (including 
M itself), A 5* 0, a maximal submodule A'. To every such A let a fixed 
submodule A ' be chosen. Then consider the chain 

M**M'<*M"<* NT" ... 

Since M is artinian this must break off and then it represents a composition 
series, i.e. M is of finite length. 

(III) "(2)=>(1)": Let A := A x ^ A 2 ^ A 3 . . . be an ascending chain 
of submodules of Af. 

Let / be the length of Af (= the length of a composition series of Af) . 
We claim that in A at most / + 1 different A , occur. Suppose there were 

more than / + 1 , then a subchain of A of the form 

A/j A / 2 . . . *3T* A/,^2 

would exist. This could be refined to a composition series of Af (see 3.5.3) 
and consequently Af would have to have a length ^l + l. But if A has only 
finitely many different A , then A is stationary, thus Af is noetherian. 
Analogously it follows that M is artinian. • 

The condition (I), (3) resp. (II) , (3) in 6.1.2 is called the descending resp. 
ascending chain condition. Thus by 6.1.2 we conclude that a module satisfies 
the minimal resp. the maximal condition if and only if i t satisfies the 
descending resp. ascending chain condition. This S t a t e m e n t remains valid 
if we consider not all submodules but only the finitely generated submodules 
resp. the cyclic submodules resp. the direct summands of a module. Thus 
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by way of example we have: a module then satishes the minimal conditions 
for finitely generated submodules (that is to say, in every non-empty set 
of finitely generated submodules there is a minimal one), if and only if the 
descending chain condition for finitely generated submodules is satisfied 
(that is to say, every descending chain of finitely generated submodules is 
stationary). The easy proof of this and of the other corresponding Statements 
is left to the reader as an exercise. The reader will also notice that in place 
of the set of all finitely generated submodules resp. all cyclic submodules 
resp. all direct summands an arbitrary set of submodules can appear. Of 
course only the three given cases are of interest here. 

6.1 .3 C O R O L L A R Y 

(1) If M is a finite sum of noetherian resp. artinian submodules then M 
is noetherian, resp. artinian. 

( 2 ) If R is a right noetherian resp. artinian ring and M = MR is finitely 
generated then M is noetherian, resp. artinian. 

( 3 ) Every factor ring of a right noetherian resp. artinian ring is again right 
noetherian resp. artinian. 

n 

Proof. (1) let M= £ A/ with A , M . We obtain the proof by means of 
i = 1 

induction on the number n of the summands. For n -1 the assertion 
coincides with the assumption. Let the assumption be valid for n - 1 and let 

n 

M = X A( with Ai noetherian resp. artinian for all /. 
/=i 

Then 
n - l 

L := X A,- is noetherian resp. artinian. 
/=i 

By the First Isomorphism Theorem (3 .4 .3) we have 

M/An = (L + An)/An =L/LnAn. 

From 6 .1 .2 whenever L is noetherian resp. artinian so also is L/LnAn 

and hence also M/An. Since A„ is also noetherian resp. artinian the assertion 
now follows from 6 . 1 . 2 . 

( 2 ) For x e M consider the mapping 

cpx: R Br*->xreM. 

This is immediately a homomorphism of RR into MR. From the 
Homomorphism Theorem we deduce that 

R/Ker(<px) = lm(<px) = xR 
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as right R-modules. If RR is artinian resp. noetherian then it follows from 
this by 6.1.2 that this also holds for xR. If JCI, . . . , xn is a generating set of 
MR then the assertion follows from Corollary (1) as 

M= t XiR. 

(3) Let A RRR, then whenever RR is noetherian resp. artinian so also 
is (R/A)R. Since (R/A)A = 0 the submodules of (R/A)R coincide with the 
right ideals of R/A from which the assertion follows. • 

6.2 E X A M P L E S 

(1) Every hnite-dimensional vector space is of finite length. In order to 
see this let VK be a vector space over the skew field K and let {xu . . . , xn} 
be a basis of VK. Then 

xxK XlK + x2K .. . <*>xiK + .. > + xnK= V 

is a composition series of V since from 

(x\K + . .. + xi+1K)/(xiK + ... + xiK)^xi+iK=K 

every factor is simple. 
(2) Every finite-dimensional algebra R over a field K is on both sides of 
finite length since every right or left ideal is a subspace of R considered 
as a K-vector space. 
(3) A vector space VK of infinite dimension is neither artinian nor no­
etherian. Let {xi | / £ Ni\ be a set of linearly independent elements, then we 
may consider the chains 

CO OO CO 

X XiK X XiK X XiK ... 

i=\ 1=2 ;=3 

and 

x\K x\K + x2K x\K + x2K + x3K ... 

neither of which is stationary. 
(4) Z z is noetherian but not artinian. Since every ideal is a principal ideal 
and so finitely generated Z z is noetherian. 

Since 

Z ^» IT ±* 22Z ... 

is not stationary, Z z is not artinian. 
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Remark. In Z we have a ring which (on each side) is in fact noetherian 
but not artinian. The converse S i t u a t i o n is with respect to a ring (with a 
unit element!) not possible! Actually we shall show later that every artinian 
ring is also noetherian. In order to obtain an example of an artinian module, 
which is not noetherian (see next example), we can in consequence not 
refer to a ring. 
(5) Let p be a prime number and let 

Q P : = | - ^ | < I € Z A / € N J 

i.e. the set of the rational numbers, whose denominator is a power of p 
(including p ° = l ) . Then Q p is a subgroup of Q (as additive group) and 
Z~>QP. 

A S S E R T I O N . Q P / Z is artinian but not noetherian as a Z-module. 

Proof. Let 

Then 

i - + z ) be the Z-submodule of Q p / Z generated by i + Z e Q p / Z . 
7 / p 

l+zh\7+zh\p+zh-p J ip 
is a properly ascending chain for 

1 

thus Qp/Z is not noetherian. In order to show that Q p / Z is artinian we 
show that in the chain given above all proper submodules of Q p / Z occur. 
In every non-empty set of submodules there is evidently then a smallest 
submodule (not only a minimal one!). 

We consider firstly: 

(*) (a,p) = l: a 

P ' P 

As (a, p) = 1 (coprime) there are b, c e Z with 

4 . ab 1 
ab+plc = l^> — — j 

P P 
-ceZ 

thus 
aZ> 1 ^ 
- 7 + Z = - 7 + Z4> 
P P p i W 

Since on the other hand \a/p' +Z) \l/p' + Z ) , the assertion follows. 
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Let now B ^ Q p / Z , then there are two distinct cases. 

Case 1. For every n e M there is an / e N with / 2*n and an a/pl +ZeB 
with (a, p) = 1 (i.e. there are elements of arbitrarily high order in B). 

From (*) it then obviously follows that B = Qp/Z for every z/pn + ZeB. 

Case 2. There is a maximal / € f̂J for which there exists an a/pl +ZeB 
with (a, p) = l (i.e. there is no element of arbitrarily high order in B). From 
(*) it then follows that 

• 

(6) Example of a ring which is artinian and noetherian on one side, thus 
of hnite length, but which is neither artinian nor noetherian on the other 
side. Let R and K be fields and let R be an infinite dimensional extension 
field of K. Example: R and Q. 

Let 5 be the ring of all matrices of the form 

with keK, ru r2eR. 

As we see immediately, 5 is a ring with unit element 

5 is neither left artinian nor left noetherian. Let {xt \ i e N} be a set of 
elements from R which are linearly independent over K. Let 

> < :;)• '«* 
then we have 

(k r{\ (0 kx\ 

lo r 2 r lo or 

thus it follows that the left ideal generated by s, is 

Then 
55/ Ssi + 5^2 + Ss2 + Ss3 
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is a properly ascending chain of left ideals and 
OO OO OO 

is a properly descending chain of left ideals. 
To see that Ss is of finite length a composition series of Ss wi l l be explicitly 

given. For this it is useful to have the product of two elements of S in view: 

th a\\fk ri\_(hk hr]^-air2\ 
lo a2)\0 r2)~ \ 0 a2r2 ) 

Let now 

/0 1\ /0 Ä\ , /0 0\ / 0 0 \ 

M o o)
5 =

 (o o)' M o i M o * ) ' 
then these right ideals are obviously simple (since R is a field) and we have 
AlnA2 = 0. 

Then it follows that A\ 4- A2/Ax =A2 is also simple. 
We claim that 0 ^ A i «-* A\ 4- A 2 ^ 5 is a composition series of S s. I t 

remains only to be shown that A\ + A2 is maximal in 5. Let 

then it follows that h^O. For 

\0 a2J 

we then have 

((h a{\ /0 0 U / Z T 1 ~h~xaA / l 0\ „ 

(lo J
 +

 (o i-JXo i Ho i H 
thus £ = S. 

6.3 T H E H I L B E R T BASIS T H E O R E M 

The Hilbert Basis Theorem can be considered as the principle of construc-
tion for certain noetherian rings. I t has important applications in algebraic 
geometry. 

6 . 3 . 1 T H E O R E M . Lei R be a right noetherian ring. Then the polynomial 
ringR[x] (in which x commutes with the elements from R) is right noetherian. 
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C O R O L L A R Y . R[xu ..., xn] is right noetherian. 

Proof of the theorem. We show that every right ideal A from R[x] is finitely 
generated. For the proof we assume A ^ O . We obtain the proof in three 
Steps. 

Step 1. Let P(x) = xnrn + j t n " 1 r n _ i + . . , + r0eR[x] with rn ^ 0 , then rn is 
called the highest coefficient of P{x)\ the highest coefficient of the zero 
polynomial from R[x] is put equal to 0. Let A 0 ' - = the set of the highest 
coefficients of polynomials in A. 

A S S E R T I O N . A 0 ^ RR. 

Proof Let a, b e A 0 , a ^ 0, b ^ 0 then there are 

P\(x) = xma + xm~lam-i + . . . e A , 

P2(x) = xnb + xn-lbn-l + ...eA. 

Let further rur2eR with <zri + £ r 2 ^ 0 , it follows that JPIOOX'VI + 
P2(x)xmr2 e A , thus arx + Z?r2 e A 0 and consequently A 0 ^ i?/?. 

Since RR is noetherian, A 0 is finitely generated. Let au • • •, ak be a 
generating set of A 0 , where all ^ 0, then there are PI(JC), . . . , Pk(x) e A 
with fli,..., flfc as the highest coefficients (in the given sequence). By 
multiplication by powers of x it can be arranged that all Pt(x) have the 
same degree, say n; which we now assume. Let now 

B := t Pi(x)R[x], 
i=i 

then B is finitely generated and we have B <-» A . 

Step 2. Now let F (x )e A . 

A S S E R T I O N . F ( J C ) can be written in the form 

F(x) = G(x) + H(x) 

where G(x)e B and H(x) = 0 or the degree ofH(x) is ^ n. 

Proof I f F(x) = 0 or if the degree of F(x) is ^ n the assertion holds with 
F(x) = H{x). Thus let the degree of F(x) be t>n. I f b is the highest 
coefficient of F(x) then b can be represented in the form 

b = axri + . .. + akrk, neR. 
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The polynomial 

Fx(x):= F(x)-&Pi{x)ri)xt-n 

then has a degree — 1 or Fx{x) = 0 . Thus putting 

G I ( J C ) : = dPi(x)ri)xt'n 

we then have 

F(x) = Gl(x)+F1(x)i 

where Gi(x) e B. In the case that the degree of FI(JC) 2* n we may decompose 
FI(JC) correspondingly: 

F1(x) = G2(x)+F2(x) 

with G 2 ( JC)€ j B and F2(x) = 0 or the degree of F2(x)^t-2. From this it 
follows that 

F(x) = Gdx) + G2(x)+F2{x) 

with GI(JC) + G2(x) e 5 and F 2(JC) = 0 or the degree of F2(x) ^ f - 2 . 
After at most f — n Steps (i.e. using induction) the desired decomposition 

is obtained 

(*) F(x) = G(x) + H(x). 

Since F(x)e A and G(x)eB ^ A it follows that 

H(x) = F{x) -G(x) e A n (R + xR +... + xnR). 

Step 3. Now consider the right JR-module 

An(R+xR+... + xnR). 

This is an R-submodule of the finitely generated right R-module R +xR + 
... + xnR, over the right noetherian ring R. By 6.1.3 and 6 .1 .2 this is 
then also finitely generated. Let, say, 

An(R+xR+... + xnR) = £ Qj(x)R. 
7 = 1 

A S S E R T I O N 

A = £ P , (* )Ä |>] + £ Oy(jc)Ä[jc]. 
1 = 1 y = l 

Since JP,-(JC), C?,0t)e A the right side is contained in A and from (*) A is 
also contained in the right side. This completes the proof. • 
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6.4 E N D O M O R P H I S M S O F A R T I N I A N A N D 
N O E T H E R I A N M O D U L E S 

First let M = AfR be an arbitrary module and let <p be an endomorphism 
of Af, i.e. a homomorphism of Af into itself. Then <pn, neN, is also an 
endomorphism of Af and we have 

Im(<p) Im(<p2) <H» Im(<p3) ^ . . 

Ker(<p) ~> Ker(<p2) ~> Ker(<p3) ~ > . . . 
In case Af is artinian resp. noetherian, the first, resp. second of these chains 
must be stationary. This yields interesting corollaries. 

6.4.1 T H E O R E M . Let <p be an endomorphism ofAf. 
(1) Afis artinian^>3n0eNVn^n0 [Af = Im(<pn) + Ker(<pM)]. 
(2) Af is artinian A<p is a monomorphism 4> <P is an automorphism. 
(3) M is noetherian 4>3n 0 € N Vrc n0 [0 = Im(<pn) n Ker(<p")]. 
(4) M zs noetherian A <p w an epimorphism is an automorphism. 

Proof. (1) By the preceding remark there is an n0 e N with Im(<p"°) = Im(<pn) 
for n ^ n 0 . For n^n0it then follows that Im(<p") = Im(<p 2 n). Let xeM, then 
< p " U ) G l m ( ^ n ) = Im((p 2")^>there exists yeM with <P"(JC) = <p2n(y)^> 
<pn(x - <pn(y)) = 0d>k:=x-cpn(y)e Ker(<pn) ^>x = <pn(y) + ke lm(<pn) + 
Ker(<p n), which was to be shown. 

(2) I f <p is a monomorphism then obviously so also is <pn for every n e f̂ J, 
i.e. Ker(<p") = 0. Then it follows from (1) that Af = lm(<pn°), thus also 
Af = lm(<p), for Im(<p"°) ^ Im(<p). Consequently <p is an epimorphism, thus 
an automorphism. 

(3) Here there is a n n 0 e N with Ker(<p"°) = Ker(<p") for n n0. For n ^ n0 

it then follows that Ker(<p ") = Ker(<p 2n). Let x £ Im(<p ") n Ker(<p " ) , then there 
is a y 6 M with JC = cpn (y), and we have 

0 = <pn(x) = <p 2 n(y). 

Consequently we have y eKer(<p2") = Ker(<p"), from which we have x = 
<pn{y) = 0, thus we obtain 0 = Im(<p")n Ker(<pn). 

(4) I f <p is an epimorphism then so also is cpn for every neN, i.e. 
Im(<pn) = M . From (3) it then follows that 0 = Ker(<p"°), thus since 
Ker(<p) «-> Ker(<pn°) we have also Ker(<p) = 0. Consequently <p is a 
monomorphism, thus also an automorphism. • 

6.4.2 C O R O L L A R Y . Let Af be a module of finite length and let cp be an 
endomorphism ofAf. Then we have 

(5) 3rc 0e N Vn «o [ M = Im(<pn) ©Ker(<p")] . 
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( 6 ) (p is an automorphism O <p is an epimorphism <=>cpis a monomorphism. 

Proof. (5 ) For n0 we now take the maximum of the numbers n0 in ( 1 ) and 
( 3 ) . ( 6 ) follows from ( 2 ) and ( 4 ) . • 

By means of 6 . 4 . 2 well known properties of hnite-dimensional vector 
Spaces are generalized. 

6.5 A C H A R A C T E R I Z A T I O N O F N O E T H E R I A N R I N G S 

We give here a characterization of noetherian rings which is of funda­
mental significance for a comprehensive theory of modules over noetherian 
rings. The proof is based essentially on Baer's Criterion. 

6 . 5 . 1 T H E O R E M . The following conditions are equivalent for a ring R: 
( 1 ) RR is noetherian. 
( 2 ) Every direct sum of injective right R-modules is injective. 
( 3 ) Every countable direct sum of injective hulls of simple right R-modules 

is injective. 

Proof. 4 < ( 1 ) = > ( 2 ) " : Let Q := © Q, be an internal or external direct sum of 
iel 

injective right Ä-modules (?,. By Baer's Criterion 5 .7 .1 it suffices for the 
proof of injectivity to show that for every right ideal U RR and every 
homomorphism p:U-+Q there exists a homomorphism T.R-+Q with 
p = rt, where c:U->R is the inclusion mapping. Since RR is noetherian, 
U is finitely generated: 

U=t utR. 
i = 1 

The images z' = l , . . . , / t , of the w, under p have components 
different from zero for only finitely many of the Qh say for the Qt with 
/ G J 0 , where I0 is a finite subset of / . 

Let 

i 0:© a - > © a 
iel0 /E/ 

be the inclusion mapping and let p0 be the homomorphism jnduced by the 
restriction of the domain of p to © Qh Then we have p = t0po-

ielo 
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Since I0 is finite, © Qt is injective and there exists a homomorphism r 0 

iel0 

so that the following diagram is commutative: 

U 

Po 

© Oi 
ielo 

iel 

Consequently we have p = i0Po = Wot* = r t if we put r := LQTQ. 
"(2)=>(3)": (3) is a special case of (2). 
"(3) =>( ! )" : The proof is obtained indirectly. 
Let RR be non-noetherian, then there is a properly ascending chain of 

right ideals of R: 

Then 
A :=• Ai %> A 2 ^ A 3 

A := U A,. 
i=i 

is also a right ideal of R and to every a eA there is an na € l\l so that a e A , 
for all / 2* n a . For every / = 1, 2, 3 , . . . let ct e A , A,-. In the cyclic module 
(c,Ä - f -A,) /A, by 2.3.12 there exists a maximal submodule N , / A , ; then 

( ( c ^ + A ^ / A ^ / M / A , ) 

is a simple right jR-module. Let JE/,-: (ctR+Ai)/Ai->Ei denote the natural 
epimorphism. Let I(Et) be the injective hull of Ei with Et «-> /(£",•) and let 
Li :Ei~* I(Ei) be the inclusion mapping. Then there exists a commutative 
diagram 

(CiR+Ai)/Ai > A / A , 

KEi) 
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where i'i is the corresponding inclusion mapping and we have 77,(c,) = 
w t ö ) 5* 0 for / = 1, 2, 3, 

We now dehne 

a:A3a^i 77,(0 + A , ) e © /(£?,•), 

in which 77,(0 + Ai) is thus the /th component of a(a). Since 0 e Ai for / 2* nay 

a(a) lies in fact in the direct sum. (If we consider ©7CE, ) as an external 
00 

direct sum then we put a(a) = (77,(0 + A, ) ) . Since by assumption © I(Ei) 
i = 1 

is injective, there is a ß so that the diagram 

A * R 

' 0 

© i m 

is commutative. Let bi be the /th component of 0(1) in © / ( £ , ) , then 
there is an n e N with = 0 for i^n. Since a(a) = ß(a) = ß(l)a, a e A it 
follows that 17/(0 + A,-) = /3,0, thus 77,(0 + A , ) = 0 for / and all 0 e A . But 
7]n(c„ + A „ ) ^ 0 by the definition of 77,, contradiction! Hence 6.5.1 is com-
pletely proved. • 

Remark. I f we are only interested in 6.5.1 (1)<=>(2), then the proof can 
be simplified. We need (3)=>(1) for a later theorem. The simplification in 
the proof of (2)=^>(1) as opposed to that of (3)=>(1) wil l be indicated briefly. 
The proof now follows directly by first starting from an arbitrary chain of 
right ideals 

A i ^> A2^> A 3 . . . 

Again let 

A := Ü Ah 

/ = i 

Now let 77, be the inclusion mappings 

77,-: A/Aj 3a+At>->a + A,- e J ( A / A , ) 

and let 

a:A-+@I{A/Ai) 
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be defined by 

a(a):= £ (a+A,-) , aeA. 
i=l 

Then i t follows that 77, = 0 for / 2= n and consequently A = A{ for / ^ n. 
If R is an arbitrary ring and 77,:M t -» 7(M,) , / = 1 , . . . , n, are hnitely many 

injective hulls of -modules, then 

0 rji: 0 Ai) -> 0 I(Mi) 
1 = i i = i / = i 

is also an injective hull . I f RR is now noetherian then it follows from 6.5.1 
and 5.1.7 that the corresponding result also holds for an arbitrary index set. 

6.5.2. C O R O L L A R Y . Let RR be noetherian and let (Mi | / e / ) be a family 
of right R-modules. If 

rji'.Mi^KMi) 

is any injective hull of M{ then 

®Vi'.®Mi^®I(Mi) 
iel iel iel 

is an injective hull of 0 Mi. 
iel 

6.6 D E C O M P O S I T I O N O F I N J E C T I V E M O D U L E S O V E R 
N O E T H E R I A N A N D A R T I N I A N R I N G S 

In order to explain the issues to follow we need some dehnitions. 

6.6.1 Definitions 
(a) MR is called directly decomposable resp. directly indecomposable: 

<£>MR = 0 or there is a direct summand of M different from 0 and M resp. 
MR 7* 0 and there is no direct summand of M different from 0 and M. (See 
2.4.3.) 

(b) Let U MR. M is called irreducible (meet-irreducible) over 
U :€> for arbitrary submodules A,B^>M with U A , U B we have 
U^AnB. 

(c) M is called irreducible (meet-irreducible) M is irreducible over 0. 

One of the fundamental questions of the theory of modules concerns 
the decomposition of a module into a direct sum of submodules. The utmost 
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possible such decomposition is then obviously achieved if all submodules 
of the decomposition are themselves indecomposable. In this connection 
there arise three questions: 

(1) Under what assumptions does a module admit a decomposition into 
a direct sum of directly indecomposable submodules? 

(2) Is such a decomposition (if it exists) uniquely determined? 
(3) What properties do directly indecomposable modules have? 

Questions (1) and (3) are answered here for injective modules over no­
etherian and artinian rings. A n answer to question (2) is given in the next 
chapter by the Krull-Remak-Schmidt Theorem. 

We begin by investigating directly indecomposable, injective modules 
for which, hrst of all, the ring R is arbitrary. 

6.6.2 T H E O R E M . Let QR be injective, QR 5* 0. Then the following con­
ditions are equivalent: 

(1) Q is directly indecomposable. 
(2) Q is the injective hull of every submodule 7*0. 
(3) Every submodule # 0 of Q is irreducible. 
(4) Q is the injective hull of an irreducible submodule. 

Proof. " ( l ) z > ( 2 r : Let U^ Q, U^O and let I(U)<-*Q be the injective 
hull of U. Since U 0 we also have I(U) ^ 0. Since I(U) as an injective 
module is a direct summand of Q it follows that I(U) = Q. 

"(2)z>(3)": Let M Q and let A , B H > M, A * 0, B * o. Since Q is an 
injective hull of A , A is large in Q and it follows that AnB T^0. 

"(3)z>(4)": As an irreducible submodule we may take Q itself. 
"(4)4>(1)": Let Q be an injective hull of the irreducible submodule 

M*0 of Q. Suppose Q=A®B, A ^0, B *0. Since M is large in Q it 
follows that M n A ^ O , M n B ^ O . Since M is irreducible, it follows that 
(Mc\A)r\{MnB)^0 in contradiction to AnB = 0. Thus Q is directly 
indecomposable. • 

6.6.3 C O R O L L A R I E S 

(a) The injective hull of a simple R-module is directly indecomposable. 
(b) A directly indecomposable, injective module Q contains at most one 

simple submodule. 
(c) If RR is artinian then every directly indecomposable, injective module 

QR 7*0 is the injective hull of a simple R-module. 

Proof (a) Every simple module is irreducible. 
(b) Let E, Ei be simple submodules of Q. From E Q it follows that 

E n £ ^ 0 , thus E = EnEx= Ex. 
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(c) Let 0 5* q e Q, then by 6.1.3 qR is artinian. Thus a simple submodule 
E exists in qR «-> Q. By the theorem Q is an injective hull of E. • 

We come now to the following interesting theorem which yields a new 
characterization of noetherian resp. artinian rings. 

6.6.4 T H E O R E M 

(a) The following conditions are equivalent: 
(1) RR is noetherian. 
(2) Every injective module QR is a direct sum of directly indecompos­
able submodules. 

(b) The following conditions are equivalent: 
(1) RR is artinian. 
(2) Every injective module QR is a direct sum of injective hulls of 
simple R-modules. 

By 6.6.3(a) the injective hulls of simple R-modules appearing in the 
characterization of artinian rings are likewise directly indecomposable. 
From the theorem we have in particular: I f RR is noetherian but not artinian 
then there is a directly indecomposable injective .R-module which contains 
no simple submodule. 

The proof of the theorem is now only indicated for noetherian rings in 
the direction (1)=>(2). In order to obtain (1)=>(2) for artinian rings, we 
need the fact that every right artinian ring is also right noetherian, which 
wil l be proved in Chapter 9. For the proof of (2)=>(1), further lemmas are 
required, and in particular the fact of the uniqueness (up to isomorphism) 
of the decomposition of a semisimple module into a direct sum of simple 
modules. As soon as the necessary lemmas become available we shall obtain 
the complete proof (in 9.5). Thus now we prove only 

6.6.5 P R O P O S I T I O N . / / RR is noetherian then every injective module QR 
is a direct sum of directly indecomposable submodules. If moreover, RR is 
artinian (it is shown later: artinian RR ^noetherian RR) then every one of 
the directly indecomposable summands is an injective hull of a simple 
R-module. 

For the proof of 6.6.5 we need two lemmas which are also of interest. 

6.6.6 L E M M A . Let T be a set of submodules of a module MR. Then among 
all subsets A of Y with 

(*) ! £ / = © £ / 

there is a maximal set A 0 . 
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Proof. By the help of Zorn's Lemma. Let 

G := {A | A <= r A (*) is satisfied}, 

then G is ordered by inclusion and G 5* 0 for 0 e G ^ since 0 

© t / 1 . Let H be a totally ordered subset from G and let 

n := U A, 
A e H 

then H c i r . Assertion: Ü G G, i.e., (*) is satisfied for Cl. Suppose that were 
not the case, then the sum of the submodules from Cl would thus not be 
direct. Consequently there must be in fact a finite subsum of the sum which 
is not direct. But finitely many submodules from fi lie already in a AeH 
(since H is a totally ordered subset) so that their sum is direct. Consequently 
we have in fact CleG and so (1 is an upper bound of H in G. Consequently 
by Zorn there exists a maximal element A 0 in G. • 

6 .6 .7 C O R O L L A R Y 

(a) For every module MR there is a maximal set of directly indecomposable, 
injective submodules whose sum is direct. 

(b) For every module MR there is a maximal set of simple submodules 
whose sum is direct. 

Proof. This follows from 6.6 .6 if T = set of directly indecomposable, injec­
tive submodules in case (a) and if T = set of simple submodules in case (b). • 

6 .6 .8 L E M M A . If Rr is noetherian then every module MR ^ 0 contains an 
irreducible submodule 9^0. 

Proof. We show that every finitely generated submodule B ^M, ß ^ O , 
which is noetherian by 6 .1 .3 , contains an irreducible submodule 5*0. Let 
{X\X B AX is inco in B} be the set of proper submodules of B which 
are intersection complements of a submodule of B in B. This set is not 
empty since 0 is an inco of B. Since B is noetherian there is a maximal 
element X0 in this set. Let X0 be an inco of t / 0 ^ B. Clearly then t / 0 ^ 0. 

We claim that every submodule 0 ^ C *-> U0 is large in t / 0 and con­
sequently t / 0 is irreducible. Suppose, for L t/o we have C n L = 0 , then 
it follows that C n ( X 0 + L) = 0 . From the maximality of X0 and as C ^ O 
(thus C V 5 ) it follows that X0 + L= X0, thus L^>X0 and consequently 
L ^ U0nX0 = Q. From C n L = 0 it follows therefore that L = 0, i.e. 
C*>U0. • 

= I t/ = 
UG0 
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Proof of 6.6.5. Consider a maximal set of directly indecomposable, injective 
submodules of O, whose sum is direct (6.6.7). Let this direct sum be 
Oo : = © Oi. Since all the O, are injective by 6.5.1 Oo is injective. Con-

i&i 

sequently Oo is a direct summand of Q: 

O = O
o
0Oi. 

Suppose Oi ^0, then Oi contains an irreducible submodule M ^ O 
(6.6.8). Let / ( A f ) be an injective hull of Af in Oi, then / ( A f ) is a direct 
summand in Qu Oi = / ( A f ) © 0 2 , and by 6.6.2 / ( A f ) is directly in ­
decomposable. But then Oo = © 0 , would not have been maximal, since 

iel 

Oo©/(Af) is also a direct sum of directly indecomposable, injective sub­
modules of O. This contradiction means that already O = Oo = © O, holds. 

1 6 / 

If RR is not only noetherian but also artinian then by 6.6.3 all O, ^ 0 
are injective hulls of simple submodules. • 

EXERCISES 

(1) 
Let Rn b e t h e r i n g o f a l l n x n S q u a r e m a t r i c e s w i t h c o e f f i c i e n t s f r o m R. 

Show: Rn is r i g h t a r t i n i a n r e s p . n o e t h e r i a n i s r i g h t a r t i n i a n r e s p . 

n o e t h e r i a n . 

(2) 
Show: Every right artinian ring without zero divisors is a skew held. 

(3) 
Let L := k(tu t2, t3,...) be the field of rational functions in the indetermin-
ates tu h, h,.. . with coefficients in the field k. The elements of L are then 

/
>

i ( ^ ) 
quotients of polynomials (with P2(ti) ^ 0). 

PiVi) 

Let K := k(t2

u t\, tj,...), then K is a subfield of L . 

(a)Show r : L B — r £ K 

is a ring isomorphism. 
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(b Show: The product set R = L x L becomes by the definitions 

( / i , / 2 ) + (mi , m2) •= (/i + m i , / 2 + m 2 ) , 

m2) •= ( U i , /im 2 + /2T(mi)), 

a ring with a unit element. 
(c) Show: Ä J R has length 2 (i.e. it has a composition series of the form 

.4 *+R). 
(d Show: is neither artinian nor noetherian. 

(4) 
A ring is called a principal right ideal ring : 0 every right ideal is principal 
(= cyclic). Let R be a principal right and left ideal ring without zero divisors 
and let A «-» RR, A ^ O . Show: (R/A)R is artinian. 

(5) 
(a) If a module MR satishes the maximal conditions for finitely generated 

submodules then it is already noetherian. 
(b Give an example of a module MR which satisfies the maximal condi­

tion :or cyclic submodules but which is not noetherian. 
(c) Show that for an abelian group M = M Z the following are 

equivalent: 
(L M satisfies the minimal condition for cyclic subgroups. 
(2; T W ) = M, i.e. Vm e M 3z e Z, z # 0 [mz = 0]. 
(3^ M satisfies the minimal condition for finitely generated subgroups. 

(6) 

Let A, B be rings and AMB an A-#-bimodule. Then define 

a e A , m e M , b e i?J with componentwise addition 

and 

la\ m{\/a2 m2\ _fü\a2 a\m2 + m\b2\ 
\ 0 bj\0 b2) \ 0 /7,Z?2 / ' 

The mit element of this ring is then 

Stow: 
(a) RR is noetherian (resp. artinian) RR<?>AA, BB, MB are noetherian 

(resp artinian). 
(b) RR is noetherian (resp. artinian)<=>AA. BB, AM are noetherian (resp. 

artin an). (Hint: Consider the ring homomorphism p:R-*AxB with 
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= (a,b) and show for the kernel K := Ker(p) that KR and MB 

\0 DJ 
(resp. and AM) have isomorphic submodule lattices). 

(7) 
Show: 

(a) Let M = U® UY = V® VX with U ~> V. Then U has a direct comple­
ment in M, which contains V\ (i.e. M = U® W with V i IV) , and V has 
a direct complement in M , which is contained in U\. 

(b) MR satishes the maximal condition for direct summands if and only 
if it satishes the minimal condition for direct summands. 

(c) Let MR satisfy the maximal condition for direct summands. Show 
that for <p eEndR(M) the following are equivalent: 

(1) <p is left invertible (i.e. split monomorphism). 
(2) <p is right invertible (i.e. split epimorphism). 
(3) <p is invertible (i.e. isomorphism). 

(8) 
Give an example of a ring R and a module MR which does not have finite 
length and with the property that for every cp e End(M*) there holds: 

(a) 3n0eNVn^n0[M = Im(<p n)©Ker(<p")]; and 
(b) <p is an automorphism <£><p is an epimorphism <=><p is a 

monomorphism. 
(Hint: For MR use a direct sum of infinitely many non-isomorphic simple 

R -modules). 

(9) 
Show: If BR is artinian and BRT^O then there is an indecomposable factor 
module ^ 0 of B. 

(MR is called indecomposable if MR ^ 0 and the sum of any two proper 
submodules is again a proper submodule of MR.) 

(10) 
Show that for a commutative ring R the following Statements are equivalent: 

(1) For every x eR the series xR <-» x2R <-» x3R «-» . . . is stationary. 
(2) For every cyclic module MR the injective endomorphisms are already 

automorphisms. 
(3) Every prime ideal in R is already a maximal ideal. 
(Hint: For (3)=>(1) consider the multiplicative subset 

5 X : = {xn(l-xr)\n^0,reR}.) 
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(11) 
For a module MR show the following are equivalent: 

(1) Every set of submodules, whose sum is direct, is finite. 
(2) Every submodule satishes the maximal condition for direct sum­

mands. 
(3) Every sequence U\ U2 ^ U3 . . . with U-t M and U{ a direct 

summand in Ui+\ is stationary. 
(4) Every sequence M ^ t / i ^ ^ ^ ^ ^ . . . with Ui+\ a direct 

summand in Ui is stationary. 
(5) Every submodule has a finitely generated large submodule. 
(6) M satishes the maximal condition for incos (= intersection comple­

ments). 
(7) M satisfies the minimal condition for incos. 
(8) The injective hull of M satisfies the maximal condition for direct 

summands. 

(12) 
As ir Chapter 5, Exercise 4 let the singular submodule of a module MR 

be defined by 

Si(M) := {meM\rR(m)*> RR}. 

Show that for a ring R with Si(RR) = 0 the following are equivalent: 
(1) I(RR) satisfies the maximal condition for direct summands. 
(2) For every family (Qi\iel) with Q, injective and Si(Q,) = 0 LI Qi is 

iel 
injective. 

(H:nt: Use the equivalent Statements in Exercise 11 and show firstly with 
respect to (2)^>(1) that in an ascending sequence 

Ai «-» A 2 . . . <->• RR 

of intersection complements from Si(RR) = 0 it follows that Si(i?/A,) = 0). 

(13) 
(a) Show that the following are equivalent for a module MR: 

(1) M ( / ) is injective for every index set /. 
(2) Mm is injective. 
(3) M is injective and R satisfies the maximal condition for right 

ideals which are annihilators of subsets of M . 
(b) Show that the following are equivalent for a ring R: 

(1) RR noetherian. 
(2) For every injective module QR, Q m is also injective. 



Chapter 7 

Local Rings: Krull-Remak-Schmidt Theorem 

In Chapter 6 it was shown that every injective module over a noetherian 
ring is a direct sum of directly indecomposable submodules. The question 
arises as to whether and in what sense such a decomposition is uniquely 
determined. This question is answered by the Krull-Remak-Schmidt 
Theorem. The proof of the Krull-Remak-Schmidt Theorem assumes that 
the endomorphism rings of the direct summands are local rings. Hence we 
have, hrst of all, to introduce local rings and then to S ta te sufficient 
conditions in order that the endomorphism ring of a directly indecompos­
able module is local. 

7.1 L O C A L R I N G S 

A n element r of a ring R is called right resp. left invertible, if there is 
an r'eR with r r ' = l resp. r 'r = l , and r' is then called the right inverse 
resp. left inverse of R. I f we have rr' = r'r = 1 then r is said to be invertible 
and r' is said to be the inverse of r. If there are a right and a left inverse 
of r then these are equal and consequently there is then an inverse of r 
(see 2.5.4). As examples show there are right resp. left invertible elements 
which are not invertible. 

We now have to consider rings in which the set of all non-invertible 
elements have a particular structure. For convenience we assume always 
that R*0. 

7.1.1 T H E O R E M . Let A be the set of all non-invertible elements of R, then 
the following properties are equivalent: 

(1) A is additively closed (Vfl i , a2 e A[ax + a2 e A ] ) 

169 
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(2) A is a two-sided ideal. 
(3r) A is the largest proper right ideal. 
(31) A is the largest proper left ideal. 
(Ar) In R there exists a largest proper right ideal. 
(4/) In R there exists a largest proper left ideal. 
(5r) For every reR either r or l — ris right invertible. 
(51) For every reR either r or l—ris left invertible. 
(6) For every reR either r or l—ris invertible. 

Proof. "(1) => (2)": We show hrst that every right resp. left invertible element 
is invertible. Let bbf = 1. 

Case 1. b'b£A. Then there is s eR with 1 =sb'b. Hence 

b' = sb'bb' = sb' 

and so 

l = b'b, 

which was to be shown. 

Case 2. b'beA. Then l — b'b& A must hold, since otherwise 

l-b'b + b'b = leA ^. 

Let now 

1 = 5 ( 1 - * ' * ) . 

Then 

b' = s(l-b,b)b' = s(b,-b'bb') = s(b'-b') = 0 

in contradiction to W = l . 
Since A , by assumption, is additively closed, we require only to show: 

\fa e A V r e R[ar e A A ra e A]. 

Suppose ar £A, then there is s e R with ars = 1. By the preliminary remark 
(with a-b and rs = b') it follows that rsa = 1 in contradiction to a e A. 
Analogously for ra. 

4 '(2)4>(3r)": Since A~> RRR we have A^RR. Since l £ A , A ^R. Let 

B RR AbeB. 

Then 

bR <-> B RR 
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so b has no right inverse. Therefore b has no inverse; hence beA and so 
b A. 

"(3r)4>(4r)": Clear. 
"(4r)=M5r)" : Let C be a largest proper right ideal (which is then uniquely 

determined). Let reR\ suppose r and 1 — r are not right invertible. Then 

rR ^>RR A(l-r)R RR, 
hence 

rR ~> C A(1-r)R C 
and so 

lerR+(l-r)R<+ C^>C = R ^. 

"(5r)4>(6)": I t suffices to show that every right invertible element is 
invertible. Let bb' = 1. 

Case 1. b'b right invertible, hence there is seR with l = *'*s so b = 
ü ' f r s = therefore 1 = 

Case 2 . 1 - r i g h t invertible, hence there is s eR with 1 = (1 -b'b)s so 

* = *(1 - b'b)s = bs - bb'bs = 0 

in contradiction to bb' = 1. 
"(6)=>(1)": Suppose, for au a2eA that ax + a2 is invertible, then there 

is seR with (<2i + a 2)s = 1; hence axs = l-a2s. Since ( 6 ) ^ ( 5 r ) holds we 
can (as shown in the proof (5r)=^ (6)) use the fact that every right invertible 
element is invertible. Hence it follows from aeAAreR that areA (for 
if ar & A then ar right invertible and so a right invertible, i.e. a £ A\). Then 
it follows that axs eA A a2s e A; in contradiction to which we obtain from 
a2seA by (6) 

axs = l—a2s £A ^. 

Analogously we obtain the left-sided assertions. • 

7.1.2 Definition. A ring, which satishes the equivalent properties of 7.1.1, 
is called a local ring. 

7.1.3 C O R O L L A R Y . Let R be a local ring and A the ideal of the non-
invertible elements of R. Then we have 

(1) R/A is a skew field. 
(2) Every left resp. right invertible element is invertible. 
(3) Every non-zero ring, which is the image ofa local ring under a surjective 

ring homomorphism, is itself local. 
In particular \ every isomorphic image of a local ring is local. 
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Proof. (1) Every element not contained in A has an inverse. 
(2) This is contained in the proof of 7.1.1. 
(3) Let a-: R -> S be a surjective ring homomorphism. We show that 7.1.1 

(6) is satished for 5. Let seS, then there is reR with cr(r) = s and 
consequently < x ( l - r ) = cr(l)-cr(r) = 1 - 5 . By assumption either r or 1 - r 
is invertible. Let r be invertible, then cr ( r _ 1 ) is an inverse element of 5, 
for from rr~1 = r~1r = l it follows that a(r)a(r~l) = sa(r~l) = a{r~1) - s = 
<r(l) = l e S . I f 1 - r is invertible then c r ( ( l - r ) _ 1 ) is an inverse element 
0 f l - 5 . • 

7.1.4 Examples of local rings 
(1) The power series ring over a held K is local, for the non-

invertible elements are precisely those with constant term = 0 and the set 
of these elements is additively closed. 

(2) Localizations of commutative rings at prime ideals are local. We give 
briefly the dehnition of localization: Let R be a commutative ring and let 
P R be a prime ideal in R, where P is thus dehned by the property 

VaybeR[abeP^>(aePv beP)] 

which is equivalent to 

, b e R [(a £ P A b £ P) ab £ PI 

Let now 

r = {(r,a)\reR AaeR\P}. 

In T an equivalence relation ~ is introduced 

(r i , ax) — (r 2 , a2): <=> 1a e R\P[rxa2a = r2axa\ 

The equivalence class with the representative (r, a) is denoted by r/a. Let 
RiP) be the set of the equivalence classes, i.e. 

R(P) = ^\reR AaeR\P^. 

Then by the dehnitions 

r\ [ r2 _ r i f l 2 + r 2 q i n r 2 _ r i r 2 

ax a2 axa2 ' a i a 2 a i « 2 

i ? ( P ) becomes a ring, as is easily verihed. The zero resp. unit element of 
RiP) is the element (0/1) resp. (1/1) with 0 = zero element and l = u n i t 
element of R. The mapping 

r 
<p: R 3 r » - » - e / ? ( p ) 
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is a ring homomorphism and Im(<p) is often identihed with R (e.g. Z is 
considered as a subring of Q). In R(P) precisely the elements of the form 
r/a with reP are non-invertible, as is immediately verihable. The set of 
these elements is however additively closed and consequently R(P) is local. 
As an exercise the reader may carry through the proofs in detail, in 
particular the demonstration of the independence of the dehnition of 
representatives. 

In an integral domain R, 0 is a prime ideal and Ä (o) is the quotient field 
of R. Z constitutes an example of this with Z ( 0 ) = Q. 

If R is a principal ideal ring and P = (p) then Rip) is written instead of 
R(P). Note Q p * Z ( p ) ! 

7.2 L O C A L E N D O M O R P H I S M RINGS 

Conditions are now to be given so that the endomorphism ring of a 
module is local. A necessary condition for this is that the module is directly 
indecomposable. This condition is however not sufficient in general, as the 
example Z z shows. Hence we have to set down additional properties which 
ensure that the endomorphism ring is local. 

We begin therefore by considering ring-theoretic properties which are 
of interest in this connection. 

7.2.1 Definition. Let R be a ring and let reR. 
(1) r is called nilpotent :<$3neN[rn = 0]. 
(2) r is called idempotent: <£> r 2 = r. 

7.2.2 C O R O L L A R Y 

(1) If r is nilpotent, then r is not invertible and l—ris invertible. 
(2) / / r is idempotent, then l—ris also idempotent. 
(3) If r is idempotent and invertible then r-1. 

Proof. (1) Suppose rs = 1. Let n0 be the smallest neN with rn = 0. Then 
rn°~l * 0 and so 0 = rn°s = r n o _ 1 r s = rn°~l • 1 = rn°~l # 0^. Further we have 

( l - r ) ( l + r + . . . H - r n o _ 1 ) = ( l + r + . . . + r n o _ 1 ) ( l - r ) = l . 

(2) ( l - r ) ( l - r ) = l - r - r + r 2 = l - r - r + r = l - r . 
(3) r2 = rArr' = l^>r = r • rr' = r2r' = rr' = 1. • 

Examples 
(1) Let R be the ring of all n x n matrices with coefficients in a held (or 

ring). Let da be the matrix which in its /th row and /th column has the 
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entry 1 and whose other entries are 0. Then we have 

0 for j * Jfc, 
dijdki — Sjkdn — 

in particular: 

du for y = k, 

dl = 0 for / # j i.e. dü is nilpotent 

d\ = du i.e. öf„ is idempotent. 

(2) Let G be a hnite group of order n, let AT be a held and let GÄ" be the 
group ring. Let 

r : = I g , 

then we have yg = y for every geG and consequently y 2 = yn. 
If the characteristic *(üO of AT is a divisor of « then it follows that 

y 2 = yn = 0, i.e. y is nilpotent. If x(K) is not a divisor of n then we have 

/ 1 \ 2

 2 1 n 1 
\ n) n n n 

and consequently y — is idempotent. 
n 

In the following lemma some decomposition properties of rings are listed, 
these are also needed later on other occasions. 

7.2.3 L E M M A . Let R be a ring and let 

RR — © Ai 

be a direct decomposition of R into right ideals Ah i £ I . Then we have: 

(a) The subset 

I 0 = {i\iel AAi^O} 

is finite; consequently 
R = ® Ah 

«€/() 
(b) There exist elements et € A , for i e I 0 so that for /, / e I 0 we have: 

(1) Ai = EIR, ielo, 

(2) 1 = 1 et9 
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10 for / T^y 

/.e., e J 0} w a set of orthogonal idempotents. 
(c) If the At, i el0 are two-sided ideals, then the elements ex, ielo in (b) 

are from the centre of R (i.e. eir = ret for all reR). 
(d) Conversely if orthogonal idempotents e\,..., en eR with 

n 

are given then it follows that 

R = ® e>R, 
i=i 

and the etR are in fact two-sided ideals, in the case that the et are contained 
in the centre of R. 

Proof. Let 1 = X eh e( e Ah and let 

ie/ 

/(>:= { / | / e /A ^ 5 ^ 0 } . 

Then I0 is hnite and we have 
1 = 1 * 

i'e/o 

and also et ^ 0 for i e I0. Since et e Ai it follows also that A{ ¥=• 0 for / e I0. 
Let now a,- e Aj for arbitrary / € / , then from 

iel0 

by multiplication by a} on the right we obtain 

aj= £ aüj: 
ielo 

As RR = © Ai and e/^e A , there follow therefore: 
iel 

(1) For 7 ^ / o : a / = 0 4 > A 7 = 0 ^ > / 0 = { / | / 6 / A A / ^ 0 } = > Ä = © A H from 
which (a) is proved; ' € / ° 

(2) For / e I0: a, = ep, A 7 = e,Aj e^R ^ Aj A 7 = ejR, and also 0 = 
e/a, for / j . I f we now restrict ourselves to /, / e I0 then we deduce for e7 = a ; 

e}- = efej, eief - 0 for / ^ j , 
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from which (b) is entireiy proved. From reR and 1 = L it follows that 
iel0 

r= X e«r and r = £ re,. 

If the A,- are two-sided ideals, then we have rex e A,- and as 

X e,r = £ re, 

the assertion exr = ret of (c) follows. For the proof of (d) hrst of all we obtain 

R = t etR from 1 = £ ex 

/=i i=i 
on multiplying by R on the right. Let now 

n 

r e eioR n £ exR, 
i = i 
I * l"0 

then it follows that r = elV/ and 

thus 

i = i 

i 9* l'0 

Consequently we have 

/=i 

If the ex lie in the centre of R, then, as rexR = e,ri? <-> exR, exR is a two-sided 
ideal. Thus the lemma is proved. • 

7.2.4 C O R O L L A R Y . The following are equivalent for a ring R: 
(1) RR is directly indecomposable. 
(2) RR is directly indecomposable. 
(3) 1 and 0 are the only idempotents in R. 

Proof. " ( 1 ) ^ ( 3 ) " : Let e be an idempotent, then e, l-e are orthogonal 
idempotents with 1 = e + (1 - e). Thus it follows from 7.2.3 that 

R=eR®(l-e)R. 
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As (1) holds either eR = 0, thus e = 0 or eR = R. In the latter case we have 

(l-e)R=(l-e)eR=0, 

thus 

( l - e ) l = l - e = 0 . 

" ( 3 ) z > ( l ) " : Assume RR = A@B, then by 7.2.3 there is an idempotent 
e with A = eR. From (3) it follows that e - 1 or e = 0, thus A = R or A = 0, 
i.e. A R is directly indecomposable. 

Analogously we show (2 )o (3 ) . • 

7.2.5 T H E O R E M . Let 5 := End(MR), then the following are equivalent: 
(1) MR is directly indecomposable. 
(2) Ss is directly indecomposable. 
(3) sS is directly indecomposable. 
(4) 0 and 1 are //te only idempotents in S. 

Proof. By 7.2.4 (2), (3) and (4) are equivalent. 
" ( l ) z> (4 ) " : Let e e S be an idempotent, then we have 

M = e(M)®(l-e)(M), 

since for meM it follows that m = e(m) + ( l - e ) ( m ) and if we suppose 
e(mi) = (1 — e)(m2) then applying e to this equation yields 

e2(mi) = e(m\) = e(l-e)(m2) = 0. 

From (1) it must be that e(M) = 0, thus e = 0 or (1 - e)(M) = 0, thus l = e. 
"(4)=>(1)": Assume MR = A®B, then 

r\ \ M3a+b*-*aeM 

is an endomorphism with 772 = 77, thus is an idempotent in 5. By assumption 
it follows that 77 = 0 or 77 = 1. I f 77 = 0, then it follows that A = 0; if 77 = 1, 
then it follows that A = M , i.e., M is directly indecomposable. • 

7.2.6 C O R O L L A R Y . Let 5 : = E n d ( M Ä ) be local, then MR is directly 
indecomposable. 

Proof. By 7.2.5 it is sufficient to establish that 0 and 1 are the only 
idempotents in S. Let e e S be an idempotent, then 1 - e is also an idem­
potent. Suppose e # 0, e ^ 1 then we also have l - e # 0 , X-e^l. Since e 
and 1-e are both not invertible, in the case of a local ring 1 = e + 1 - e 
must be also not invertible ^ . • 



1 7 8 7 L O C A L R I N G S : K R U L L - R E M A K - S C H M I D T T H E O R E M 7 .2 

The converse of this S t a t e m e n t holds under additional assumptions, as 
we shall show in two cases. 

7 . 2 . 7 T H E O R E M . LetMR 5* 0 be a directly indecomposable module of finite 
length, then End(MR) is local and the non-invertible elements from E n d ( M R ) 
are precisely the nilpotent elements. 

Proof. Let <p e End (M R ) . Then by 6 . 4 . 2 we have 

3n e M [ M = Im((pn)®Ker(<pn)]. 

Since M is directly indecomposable it follows that either Ker(<p") = 0 or 
lm(<p n) = 0. 

Case 1 . Ker(<prt) = 0=>Ker(<p\= 0=><p is a monomorphism. Hence <p is 
an automorphism by 6 .4 .2 , i.e. (p is invertible. 

Case 2 . lm(<pn) = 0^><pn = 0 = > 1 -<p invertible by 7 . 2 . 2 (1 ) . 

We have thus established: Either cp or l—<p is invertible; by 7 . 1 . 1 
E n d ( M Ä ) is then local. If <p is not invertible (Case 2 ) then <p is nilpotent. 
Conversely if <p is nilpotent, then by 7 . 2 . 2 <p is not invertible. • 

As a special case we can deduce from this theorem the result, already 
known to us, that the endomorphism ring of a simple module is a skew 
held; for the only nilpotent endomorphism of a simple module is the zero 
mapping. 

A further interesting case is given in the following theorem. 

7 . 2 . 8 T H E O R E M . Let QR 5* 0 be a directly indecomposable injective module, 
then End(QR) is local. 

Proof. Let (p:Q->Q be a monomorphism, then Im(<p) is injective, thus a 
direct summand in Q. Since Q is directly indecomposable, it follows that 
Im(<p) = Q, i.e., <p is an automorphism and hence invertible in End(QR). 
Hence every non-invertible endomorphism of Q has a kernel different 
f r o m zero. 

Let now <pi, <p2 be two non-invertible endomorphisms of Q, then we 
thus have Ker(<pi) 5* 0, Ker(<p2) 5* 0 . Since Q is irreducible by 6 . 6 . 2 , it follows 
therefore that 

0 5* Ker(<pi) n Ker((p 2) ^> Ker(<pi + <p2), 

i.e. <p\ + <p2 is also not invertible. By 7 . 1 . 1 End(MR) is then local. • 
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In view of the Krull-Remak-Schmidt Theorem that follows, it is of 
interest to ask which modules may be decomposed into a direct sum of 
submodules with local endomorphism rings. There is a positive answer to 
this question above all in the important cases which here follow: 

(1) M is an injective module over a noetherian (or artinian) ring. 
(2) M is a module of finite length. 
(3) M is a semisimple module. 
(4) M is a projective, semiperfect module. 

Case 1 was already answered for us by 6.6.5 and 7.2.8. Case 2 is to be 
handled immediately below. We treat Case 3 resp. 4 in Chapter 8 resp. 11. 

7.2.9 T H E O R E M . Let MR * 0. 

(a) Let M be artinian or noetherian, then there are directly indecomposable 
submodules M\,. .., Mn of M with 

M=@M, 

(b) Let M be of finite length (i.e. artinian and noetherian), then there are 
directly indecomposable submodules Mx,..., Mn of M with 

n 

M = © Mi where End(Mj) is local for i = 1 , . . . , n. 
i=i 

Proof. (a) Let M be artinian. Let T be the set of the direct summands B ^ 0 
of M. As A 4 V 0 and M = M®0 we have MeF, thus I V 0. Let B0 be 
minimal in T, then B0 is directly indecomposable (since otherwise B0 would 
not be minimal in T). Now let A be the set of submodules C M, so that 
finitely many directly indecomposable submodules B\ # 0 , . . . , Bi ^ 0 exist 
with 

M = Bx®.. . © J 5 , © C . 

Owing to the existence of B0, A 5* 0. Let C 0 be minimal in A and let 

M = Mi®. . .®Mn®C0 

be the corresponding decomposition. We assert that C o = 0. Otherwise, 
since C 0 is again artinian as a submodule of an artinian module, by the 
first remark, C 0 would split off a directly indecomposable direct summand 
# 0 in contradiction to the minimality of C 0 . 

Let now M be noetherian and let T be the set of the direct summands 
A T*M of M. Since OeT, we have I V 0. Let A 0 be maximal in T and 
suppose we have 

M = A0®B0. 
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From the maximality of A 0 , it follows that B0 is directly indecomposable 
and as A0 ^ M we have B0 ^ 0. Let now A be the set of all submodules of 
M which are direct summands of M and are finite direct sums of directly 
indecomposable submodules. 

As {0} e A, we have A 0 . Let 

Bx +.. . + Bk =Bi®. . .®Bk 

be a maximal element in A with directly indecomposable B{. Let further 

M = BX®.. .®Bk®C0. 

Suppose C 0 0, then by the earlier consideration the noetherian module 
C 0 must contain a directly indecomposable direct summand 5*0. This 
contradicts the maximality of Bi®.. .®Bk. Thus C o = 0 and the proof is 
complete. 

Remark. The "symmetry" of both proofs depends on the fact that in the 
hrst only the minimal condition and in the second only the maximal 
condition for direct summands is required. By Exercise 7, Chapter 6, these 
two conditions are however equivalent. 
(b) follows from (a) 6.1.2 and 7.2.7. • 

7.3 K R U L L - R E M A K - S C H M I D T T H E O R E M 

We c o m e n o w to t h e i m p o r t a n t u n i q u e n e s s t h e o r e m of Krull-Remak-
Schmidt. 

7.3.1 T H E O R E M . Let 

MR = 0 Mi where End(M,) is local for all i € I 

and MR = © Nf where Nj is directly indecomposable and N, ^ 0 for all j e / . 
jeJ 

Then a bijection ß:I->/exists with M{ = Nß{i) for all i 6 /. 

We o b t a i n t h e p r o o f i n s e v e r a l Steps, w h i c h w e f o r m u l a t e i n p a r t as 

l e m m a s . 

7.3.2 L E M M A . Let 

M = ® M ( where End(M,) is local for all i e / 
iel 

and 
er, r € E n d ( M ) with 1M = er4-r. 
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Then to every jei there exists a £/y M and an isomorphism cpj:My -» Uj 
which is induced by a or r (i.e. <Pj(x) = a(x) for all x e Mf or <pj(x) = T(X) for 
all x e M ; ) , so that we have 

M 

Proof Let TTJ'.M-^MJ be the projections, t ; : M y - » M be the injections for 
all jel (in the sense of Chapter 4 ) . 

From 1 M = er + r it follows that 

1 Mj = TT] 1 mij = TT/ (er + r ) ty = 7T/0-6/ + 7T/TI/. 

Since in the local ring End(My) the non-invertible elements form an ideal 
and 1 M ; is invertible, at least one of the elements 7TJ<TLJ, TTJTLJ must be 
invertible, i.e. must be an automorphism of My. 

Let, say, TTJCTIJ be an automorphism. Then we dehne: 

£/,:= <7ly(My) = <r(My), 

<Pj : Mj 3x >-+cr(x) e Uj, 

ij : Uj3y>-*y eM. 

Accordingly <pf is an epimorphism. For x e M , we then have 

Lj(Pj(x) = <pj(x) = a(x) = atj(x)^ Lj<pj = atj => TTJLJVJ = TVjCrij. 

Thus we have the following commutative diagram 

M • M 

Since irprij is an automorphism, it follows from the commutativity of the 
lower triangle by 3 . 4 . 1 0 that 

M = ImU;<py)©Ker(7ry) = £ / , © ( © M , ) . • 

7 . 3 . 3 L E M M A . Assumptions as in 7 . 3 . 2 . Let further E = {i\,..., 
TTzerc /Ziere are Q. M , / = 1 , . . . , t and isomorphisms 
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which are induced either by er or r, so that we have: 

V iel / 

Proof. The Q. are determined successively with the help of 7 . 3 . 2 . For /'i = j 
in 7 . 3 . 2 let Ch = Uil9 for which we then have 

M = Q © ( © M , ) . 

As Affj = C L P End(C J L ) is also local. In this decomposition we now exchange 
by 7 . 3 . 2 Mi2 for a Q2. Note: C J 2 need not be equal to Ui2, since now another 
decomposition of M appears! After t Steps (i.e. by induction) we obtain 
the desired result. • 

7.3.4 L E M M A . Let 

M = © Mi where End(My) is local for all i e / 
iel 

and letM = A®B where A^O and directly indecomposable, 7r':M-^A the 
corresponding projection. Then ake I exists so that rr' induces an isomorphism 
ofMk onto A andM = Mk@B holds. 

Proof. Let t : A - > M b e the inclusion and let TT := irr'. As \ M = TT + ( 1 M ~TT) 
we can use 7 . 3 . 2 with cr = 7r and r = l - 7 r . A S A ^ O there is O ^ a e A , 
from which we have ir(a) = a. Then it follows that ( 1 M - rr)(a) = 0 . Let 

t 

a= £ w,', with 0 T * mit e Mi/ , € J 

be the unique representation in M - © A4). 

In the sense of 7 .3 .3 now let the modules Q and the isomorphisms yif 

be determined. Suppose the y I ;, were all induced by 1m~TT, then it would 
follow that 

0 = ( l M - 7 r ) ( f l ) = I ( l
M
- 7 r ) K ) 

with ( I M - Tr)(mi.) = %;.(m/.) € C I ; . Because the sum of the C I ; is direct, this 
implies % / (m t / ) = 0 , thus m I ; = 0 and hnally a = 0 ^ . Thus there is at least 
one /y, so that y,. is induced by rr; let this be denoted by k. Then 

yk: Mk Bx>-*Tr(x)€Ck 
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is thus an isomorphism. By 7.3.3 Ck is a direct summand of Af ; let thus 
Af = Ck ®L. Further we have that 

Ck = 7r(Mk)~>Tr(M) = A. 

Then it follows that 

A=MnA = (Ck@L)nA = Ck®(LnA), 

and since A is directly indecomposable and Ck ^ 0 (as Af f c 5* 0) we deduce 
hnally that A = Cfc. 

From the commutative diagram 

Mk - >Af 

A - Q 

in which t: Mk Af is the i n c l u s i o n mapping, it follows then from 3 .4.10 that 

A f = Im(i ) ©Ker(Tr') = Mk ®B, 

from which the lemma is proved. • 

Proof of 7.3.1. By 7.3.4 (with A = Nj) every N}- is isomorphic to an Afi ; thus 
End(JVy) is local and the assumptions are S y m m e t r i e . We now introduce 
into any I and / an equivalence relation and in fact let 

i\ ~ h ' OAf £ l = Mi2 ( / 1 , i2 € /), 

jx~j2:&Nh=Nh UuheJ). 

For / G 7 let F be the equivalence class determined by / and let / be the 
set of all equivalence classes. Analogous notation for / . 

Definition. Let <t>: / - » / be defined by <&(/) = 7, if Af, = N / . 

0 w a bijective mapping. <I> is defined on / , since by 7.3.4 (for A = Af,-
and Af = ©JVy in place of Af = © M , in 7.3.4) a jeJ exists with Nj = Af 
Since the isomorphism isan equivalence relation, $ is independent of the 
representative (in / and / ) , i.e. it is in fact a mapping. 

<t> is injective, for from <$>{T\) = j \ = j 2 = <t>(f2) it follows Mh = Nii = NJ2 = 
Mj2, thus T\ = T2. By 7.3.4 (with A = JVy) <1> is also surjective. 

I t still remains to show that for every / ei a bijection J5r: f-»<I>(T) exists. 
Then ß:I3i*-+ßT(i)eJ is the desired bijection with Mi=Nß(i). By the 
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Schröder-Bernstein Theorem (to be found in any text book on set theory) 
it suffices to show: 

There are injective mappings F-»<I>(F) and <I>(F)-» f. 

From the symmetry of the assumptions only the existence of an injection, 
say <£(F)-> F, needs to be demonstrated. 

Case 1. F is finite. Let the number of elements of F be / say. Let further 
E = {ju • • • , / s} c *0') . By 7.3.4 (with A=Nil) there is then an Mix with 
Mh=Nh, i.e. i\ e T and 

M = Mh®[® N). 

By 7.3.4 (with A=Nh and B = M / l © ( © N^j there is once again an 

Mh with Mi2 = NJ2, i.e. / 2 e F and i*h.i*h 

M=Mil®Mi2®( © NyY 

We obtain successively 

M = Mh®...©Mts © ( © N y ) AMi, sAFÄ for / = 1,..., s. 
\ / € / / 

Since the sum is direct, the M „ , . . . , M / s are pairwise different, thus we 
must have s ^ t. Consequently the number of the elements of 4>(F) ^ / and 
the assertion is clear. 

Case 2. T is inhnite. Let TT'J:M-+NJ be the projection and let for k ei 

E(k) : = {j\j e J A TT'J induces an isomorphism of Mk onto Nj}. 

Assertion. E(k) is hnite for all k e I. 

Let 

0 # ra e M f c A m = X 0 ^ e Njt 7ry,(ra) = nit; 
/=i 

in order that rr) induces an isomorphism, we must have 7ry(ra)#0, i.e. 
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Assertion. 3>(T) = U E{k). 

"<t>(f) => U £ ( * ) " : Let ifc e f and / g E(k). 
kei 

k e f = > M k = 
jeE{k)^>Mk =Nj J 

"<!>(/)<=: U £ ( * ) " : je<&(i)^Mh=Nj. By 7.3.4 there is a fceJ, so that 

7ry induces an isomorphism of Mk onto Nj^Mk=Nj^Mk = 

Mi^keT A jeE(k). Let U £ W be the disjoint union of the sets E(k)9 

kei 

then there is an injection <&(F) = U E(k)-+ U E(fc). Since every J5(fc) is 

hnite, for every E(k) there is an injection into IV Then an injection exists 

\jB(k)^TxN. 
kei 

Since F is inhnite, by a known result of set theory there is a bijection 
TxN-*T. A l l injections together yield an injection 4>(F)-»F. Hence the 
Krull-Remak-Schmidt Theorem is proved. • 

7.3.5 C O R O L L A R Y . Let M = © Mt where End(M f ) is local for all i e I. Let 
ier 

N = (&Nj where Nf is directly indecomposable and Nj ^ 0 for all j eJ and 

M = N. Then a bijection ß:I->Jexists with M , = Nß{i) for all i eI. 

Proof. Let a:N->M be an isomorphism then we have 

M = ®a(Nj) 
jeJ 

with directly indecomposable a(Nj) and by 7.3.1 (with M = © cr(Nj) in the 
place of M = © Nj) it follows that M , ^cr(NßU)) = Nß(i). 

7.3.6 C O R O L L A R Y . The decomposition of an injective module over a 
noetherian ring resp. of a module of finite length into a direct sum of directly 
indecomposable submodules is uniquely determined in the sense of the Krull-
Remak-Schmidt Theorem. 

Proof. This follows from 6.6.5 and 7.2.8 resp. 7.2.9. • 
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EXERCISES 

(1) 
Let cr.R^S be a surjective ring homomorphism and let 5 ^ 0 . Show: If 
R is local and if A is the ideal of the non-invertible elements of R, then 
cr(A) is the ideal of the non-invertible elements of 5. 

(2) 
(a) Let R be a local ring. Show that the following are equivalent for MR: 

(1) The lattice of submodules of M is totally ordered. 
(2) The set of cyclic submodules of M is totally ordered. 
(3) Every hnitely generated submodule of M is cyclic. 
(4) Every submodule of M generated by two elements is cyclic. 
(b) Give an example of a ring R and a module MR such that (3) is 

satisfied but not (1). 

(3) 
(Continuation of Exercise 11, Chapter 6.) Show that the following are 
equivalent for an injective module QR: 

(1) Q satishes the maximal condition for direct summands. 
(2) Q is a direct sum of hnitely many directly indecomposable sub­

modules. 
(Hint: With respect to ( 2 ) ^ ( 1 ) show hrst that every non-zero submodule 

of Q contains an irreducible submodule). 

(4) 
A module M , which satishes the equivalent conditions of Exercise 11, 
Chapter 6, is called finite-dimensional, and the number of the directly 
indecomposable summands in a decomposition of J ( M ) (Uniquely deter­
mined by the Krull-Remak-Schmidt Theorem) is then called the dimension 
of M ( = d i m ( M ) ) . Show: 

(a) d im(M) = O o M = 0, d im(M) = 1 <=>M is irreducible A M ^ O . 
(b) M is hnite-dimensional A U ^ M = > U is hnite-dimensional A 

d i m ( L 0 ^ d i m ( M ) . 
(c) If M is hnite-dimensional and U *-> M then U ^ * M<=>dim(£/) = 

d im(M) . 
(d) M i , M 2 are hnite-dimensional M i © M 2 is hnite-dimensional and 

d i m ( M j © M 2 ) = d im(Mi) + d im(M 2 ) . 
(e) If X ^> M and X and M/X are hnite-dimensional then M is also 

hnite-dimensional and d i m ( M ) ^ d i m ( X ) + d im(M/A' ) . 
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(5) 
(a) Exhibit a nilpotent element ^ 0 in Z/360Z. 
(b) Exhibit seven different idempotent elements # 0 in Z/360Z. 
(c) Decompose the ring Z/360Z into a direct sum of directly indecompos­

able ideals. 

(6) 
Show: 

(a) Q 2 is directly indecomposable. 
(b) Qz is the sum of two proper submodules. 
(c) The endomorphism ring of Q z is ring-isomorphic to Q as a field. 
(d) Q z possesses a factor-module which is not directly indecomposable. 

(7) 
Let R be an integral domain and let K be the quotient field of R. Let V 
and W be üiT-vector Spaces and let M resp. N be an -submodule of V 

m 

resp. W. Let JCI, . . . , xm e M , ku • •., km e K, £ e Af, <p e H o m Ä ( M , N). 
Show , = = 1 

I Xiki) = I <p(Xi)ki. 

(Note that we may have neither kt e R nor x{ki e M ! ) 

(8) 
Let R be an integral domain, K the quotient field of R, V = VK an 
n-dimensional vector space over K, U =UR an R-submodule of V = V«. 

Show: There are directly indecomposable R-submodules C A , . . . , £ / m of 
[7 with m^n and with 

c/ = £/1e...ec/m. 
(Hint: Let a decomposition £/ = Ui®.. . © C / m be given and let u{ € Ui9 

U( # 0, then Wi, . . . , wm are linearly independent over K.) 

(9) 
Let V = VQ with a basis JCI, . . . , x m +„ in which ra, n 2* 2. Let p„ be prime 
numbers for 1 ̂ / ^ r a + n, 1 ̂ j m + n - 1 , and let 

Ai : = Q P . = { ^ r z e Z A n e z J , 1 ^ / ^ r a + n, 

Z 

:= —, l ^ y ^ r a + n - 1 , 

yj : = = *y + */+i> + w — 1. 
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(a) Show: Let p i , . . . , pn, q\,. . . , g,,-i be pairwise different, then 

is a directly indecomposable Z-module. 

Hint: Suppose U = U'®U" with projections rr' and rr". Show success-

ively rr'(Xi)Ai*-* U, rr'(Xi) ex,A,, 7r'(x,) = 0 or 7r"(jtf) = 0, t / is directly 

indecomposable with the help of the elements yy—.) 

(b) Let pi for 2 ̂  / n + m, / V AI + 1 and for l ^ / ^ n + m - l be pair­
wise different and let p i = pn+i hold. Show 

i xAi + "l yßi 
i = l 7=1 

and 
m + n m + n — l 

t /
2
- I xAi+ I y A 

i = n +1 / = n +1 

are directly indecomposable. 
Dehne <p:Ui®U2-* Ui®U2 for 

n + m n + m — l 

u = Z * A + Z yA> a i £ ^<> e 

1 = 1 ; = 1 
7 * n 

by 

<p(u) '= (qi(ai + bi) + qn+i(an + i + bn+1)){xi-xn+i). 

Show: <p is an i?-homomorphism. Determine qu qn+1 so that cp2 -<p holds. 
Deduce: U\®U2 may be written in two ways, different not only up to 

isomorphism and order, as direct sums of directly indecomposable sub­
modules. 

(10) 
Let M = MR. For n e N let Mn := M { 1 , 2 " } . Let 

A * = © A „ BR=@Bi. 
iel jeJ 

Let End(A,) be local for iel, and Bj be directly indecomposable for jeJ. 
Show: 

(a) Let neN. From A " = Bn it follows that A=B. 
(b) Let 7 be hnite and let 5, T be non-empty sets. From A ( 5 ) = A ( T ) it 

follows that 5 and T have the same cardinal number. 



Chapter 8 

Semisimple Modules and Rings 

8.1 D E F I N I T I O N A N D C H A R A C T E R I Z A T I O N 

There are two immediate and important generalizations of the concept 
of a vector Space. These are: 

(1) Free modules and direct summands of free modules, the projective 
modules with which we have already become acquainted. 

(2) Modules, in which every submodule is a direct summand; these are 
called semisimple modules. They provide the theme for the following 
considerations. First some lemmas are presented. 

8.1.1 L E M M A . Let M = Mr be a module, in which every submodule is a 
direct summand. Then every non-zero submodule contains a simple sub­
module. 

Proof. Let U^M, U^O and U hnitely generated. By 2.3.12 there is a 
maximal submodule C By assumption we have M = C®Mu hence 
it follows with the help of the modular law that U = M nU = C ©(Mi u U), 
thus we have U/C =MinU. Since C is maximal in U, U/C is simple. 
Thus M i n U is a simple submodule of U. • 

8.1.2 L E M M A . Let M- £ M{ with simple submodules M,-. Further let 

U*-*M. Then we have: 

(a) There is J<=/so thatM = £ / © ( © AdS. 
\ieJ / 

(b) There is K <=/so that £ / = © M,. 
ieK 

189 
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Proof. (a) Proof with the help of Zorn's Lemma. Let 

L | L C / A C / + I Mi = U ® ( ® M l \ \ . 
ieL \ieL / J 

As © M | = 0 we have 0 G T , thus r ^ 0 and T is ordered by c:. Let A 
1 6 0 

be a totally ordered subset in T. We claim that 

is an upper bound of A in T. I t is clear that L * is an upper bound. I t 
remains to be shown that L*eT. 

Let E<=:L*, E hnite, then there is an L e A with E <= L . Let now 

w + Z = 0, « e ( 7 , rrii e Mh 

ieE 

then it follows from EdL that: w = m, = 0 for all / 6 E . Thus we have 

£7+ Z M , = £ / 0 ( © A f , \ 

and consequently L * G T. By Zorn's Lemma there is then a maximal element 
/ € T. Let 

N'-=U+Y, Mi = U©(© W ) . 

Now consider N + Af^ for arbitrary / 0 e 7. N +Mio = N®Mio is not possible 
for then we must have 

7
t

- > / u { /
0
} e T 

Thus it follows that N n M , o ^ 0 . But since Af;0 is simple, we must have 
N n M / o = Af, 0, thus Mio N holds. Then it follows that 

M= Z Mi~>N~>M, 

i.e. TV = Af. 

(b) Let now Af = £ 7 © ( © A f , 0 ) . Then (a) is applied to the submodule 

©Af , (in the place of £7 in (a)). Accordingly K<=I exists with Af = 
ieJ 
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( 0 Mi) ©I 0 Mi). By the First Isomorphism Theorem it follows that 
V / 6 / / \it=K / 

We come now to the main theorem on semisimple mouules. 

8.1.3 T H E O R E M . For a module M = MR the following conditions are 
equivalent: 

(1) Every submodule ofM is a sum of simple submodules. 
(2) M is a sum of simple submodules. 
(3) M is a direct sum of simple submodules. 
(4) Every submodule of M is a direct summand ofM. 

Proof. "(1)=>(2)": (2) is a special case of (1). 
"(2)^>(3)": 8.1.2 (a) for t / = 0. 
"(3)=>(4)": 8.1.2 (a). 
"(4)=>(1)": Let U^M. Put 

Uo'= Z Mh 

simple M{ 

Then UQ^U and by (4) U0 is a direct summand of M : 

M = U0®NU = M n U = U0®(N n U). 

Case 1. N n t / = 0 4 > t / = l 7 o = > ( l ) . 

Case 2. N n t / # 0 = ^ B y 8 . 1 . 1 there is a simple submodule B^>Nr\U^> 
B <-> U0, by definition of t / 0 we have B^>U0r\(N nU) = 0 ^. 
Thus only the first case can occur. • 

8.1.4 Definition 
(a) A module M = MR is called semisimple :<$M satisfies the equivalent 

conditions of 8.1.3. 
(b) A ring R is called right resp. left semisimple :ORR resp. RR is 

semisimple. 

We observe that the module 0 is semisimple for 

0 = £ Mh semisimple M , 
1 6 0 

but 0 is not a simple module, since it was assumed that, for a simple module 
M , M ^ 0 . 

We shall show later: R R is semisimple ORR is semisimple so that with 
regard to a semisimple ring the Statement of sidedness can be omitted. 
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Examples 
( 1 ) Every vector space V-VK over a skew field K is semisimple: 

VK ~ Z xK, xK is simple for x 5* 0 

( 2 ) Z / r tZ with n ^ 0 is semisimple as a Z-module<=>rc is square-free (i.e. 
n is the product of pairwise different prime numbers) or n = ± 1 . 

Pröö/. Exercise for the reader. The proof follows later in a more general 
context. 
( 3 ) Z z and Q 2 are not semisimple since they have no simple submodules. 
( 4 ) Let V = VK be a vector space. Then we have: End( VK) is a (two-sided) 
semisimple ring<=>dim/<:(VO<oo. 

Proof. Later (in 8 . 3 . 1 ) . 

8.1.5 C O R O L L A R Y 

( 1 ) Every submodule of a semisimple module is semisimple. 
( 2 ) Every epimorphic image of a semisimple module is semisimple. 
( 3 ) Every sum of semisimple modules is semisimple. 
( 4 ) Two decompositions of a semisimple module into a direct sum of simple 

modules are isomorphic in the sense of the Krull-Remak-Schmidt Theorem 
( 7 . 3 . 1 ) . 

Proof. ( 1 ) This follows immediately from 8 .1 .3 . 
( 2 ) Let A be simple and let a : A -+B be an epimorphism, then it follows 

that A / K e r ( a ) = £ . If Ker(a) = 0 , then B is simple; if Ker(a) = A , then 
B = 0. Since A is simple there are no further possibilities for Ker(a). The 
image of a sum of simple modules with respect to a homomorphism is 
hence a sum of simple and zero modules, of which the latter can be omitted, 
and therefore by 8.1.3 is again semisimple. 

( 3 ) Since by 8.1 .3 every semisimple module is a sum of simple modules, 
a sum of semisimple modules is also again a sum of simple modules and 
hence by 8.1.3 again semisimple. 

( 4 ) Since the endomorphism ring of a simple module is a skew field and 
thus is local, the Krull-Remak-Schmidt Theorem holds in this case. • 

The following theorem shows that for a semisimple module all finiteness 
conditions are equivalent. 

8 .1 .6 T H E O R E M . For a semisimple module M = MR the following con­
ditions are equivalent: 

( 1 ) M is a sum of finitely many simple modules. 
( 2 ) M is a direct sum of finitely many simple modules. 
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(3) M has finite length. 
(4) M is artinian. 
(5) M is noetherian. 
(6) M is finitely generated. 
(7) M is finitely cogenerated. 

Proof. Since all Statements are trivial for M = 0 we can assume that M # 0. 
"(1)=>(2)": By 8.1.2. 

"(2)4>(3)": Let M = ® M ; , M, simple. Then 0~>Mx<+Mx® 
i = l 

n 

M2 ... © M,; = M is a composition series because M i © . . . ©Mj/Afi © 

. . . © M , _ i s M | is simple. 
"(3)=>(5)" 
" ( 5 ) ^ ( 6 ) ' 
" ( 6 ) ^ ( 1 ) " : By2.3.12 
" ( 3 ) ^ ( 4 ) " 1 

» ( 4 ) = > ( 7 r ) : B y 6 - 1 - 2 

"(7)=>(2)": Suppose that M were the direct sum of infinitely many 
simple submodulesM i 9 then a submodule of M exists of the form M\®M2® 
. . . with countably infinitely many submodules M i , M 2 , . . . Let 

A r . = © M y , ieN, 
]' = ' 

co 

then obviously we have P | Ax• = 0 for 
« = i 

oo 

( A f i © . . . ® A f n ) n A „ + i = 0, thus ( M i © . . . © A f n ) n 0 ^ = 0 
i = 1 

for arbitrary neN. But the intersection of any finitely many of the At is 
evidently equal to the A , with largest /, thus unequal to 0. 

Let now MR be semisimple and let T denote the set of all simple 
submodules of M: T = {E | E ^> M A E is simple}. 

Then = is an equivalence relation on T. Let the set of equivalence 
classes, which are now called isomorphism classes, be { f l 7 | / e / } , so that H 7 

is thus an isomorphism class. Therefore we then have 

n / o n Clh = 0 for /o, j \ e / and j 0 * j \ . 

8.1.7 Definition B} *.= X ^ is called a homogeneous component of M . 
Heft, 
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8.1.8 L E M M A . Let MR be semisimple and let Bj be a homogeneous com­
ponent of M. Then we have 

(a) U^Bj A U is simple ^Ue £1,. 

(b) M = ®Bj. 

Proof (a) This follows from 8.1.2(b); there is accordingly an Eetlj with 
U = for more summands cannot appear in E since U is simple. 

(b) Since M is a sum of simple submodules and every simple submodule 
is contained in a fly, it follows that M = Z Suppose for y 0 e / that we had 

Then by 8.1.1 there is a simple submodule E of £>. Since E c-^Bio it follows 
by (a) that E e a / o . Since E ~> Z £ , it follows by 8.1.2(b) that a y'x e / , / i * j 0 

exists with E e l l 7 l . Then it would follow that ü / o n Hy, ^ 0 ^ . • 

If we have to determine in a concrete case whether a module is semisimple 
then this can be difficult and depend on very special properties. From this 
point of view an interesting and important example for semisimple modules 
(and rings) is to be considered. Let R := GK the group ring of a hnite 
group with coefficients in a held (see 4.6.2). 

8.1.9 T H E O R E M (of Maschke). RR and RR are semisimple if and only if 
the characteristic of K is not a divisor of the order of G. 

Proof. Let the characteristic of K be not a divisor of n := Ord(G). Then 
for 0 7̂  k 6 K, nk := k +... + k (n summands) is invertible. For the inverse 
of nl with 1 G K we write 1/n. Let the elements of G be gu ..., gn. I f we 
consider R only as a right K-module then R is a vector space over K. For 
every <p eEndCR*;) a mapping <p:R^R is dehned by 

1 n 

<p(r)'=- Z <p(rgi)gi \ reR. 
n i=i 

We require to show that <p eEnd( i? Ä ) . For arbitrary keK we have 

<p(rk) = - Z <p(rkgi)g7A =(- f <p(rgi)gTl)k = $(r)k. 
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Let now g e G, as {ggu • • •, ggn} = {gu . . . , gn} we have 

1 " _ i 1 " _ i 
<p(rg)=- Z (p(rggi)gi1 =- Z (p(rggi)(ggi) lg = <p(r)g. 

n / = i n 

Hence it follows that <p{rx) = <p(r)x for arbitrary elements r, xeR, i.e. 
<p eEnd(RR). 

Let now A^>RR, then A is also a vector subspace of RK. Consequently 
a B^>RK exists with i?* = A ®B. Let 7r: RK -* RK be the projection of R 
onto A , i.e. let 7r(a+6) = a for a e A , beB hold. As A ^ Ä / ? it follows 
for a e A that 

1 " 1 N 1 
7 r ( a ) - - Z rr(agi)g7l = - Z ag.gr 1 = - n a = a, 

« i - i « i - i n 

and for reR we obtain 

l n 
rr(r)=- Z ^ ( ^ / ) g / 1 € A , 

n i = i 

since 7r(rgz) e A . Therefore 7r is a projection of onto A and it follows that 

RR = 7T(R)®(1-TT)(R)=A®(1-7T)(R). 

Thus A R is semisimple (analogously for RR; see also 8 . 2 . 1 ) . 
Let now the characteristic of K be equal to p and let p be a divisor of 

AI. Then we show that for r 0 '= gi + . . . + gn the ideal r0R is not a direct 
summand of RR. For g e G we have hrst r 0 g = r 0 , thus it follows that 
ro = w 0 = 0 as well as r0R = r0K. Suppose RR = r 0 i? © £/, then an idempotent 
e must exist with eR = r 0 i? = r0K. But it would follow from e = r 0/c 0 with 
fc0e AT that e = e2 = r2

0k2

0 = 0, thus r 0 = 0 ^ . • 

8.2 S E M I S I M P L E R I N G S 

I f a ring possesses a certain property on one side then it need not possess 
it on the other side. For example we have established that there are rings 
which are only one-sidedly artinian. With regard to all ring-theoretic 
properties which depend on the side, the question naturally arises as to 
whether they are in fact one-sided or whether their validity on one side 
implies their validity on the other side. With regard to semisimple rings 
the latter is the case. 

8 . 2 . 1 T H E O R E M . For a ringR we have: 

RR is semisimple <=> RR is semisimple. 

http://ag.gr1
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Proof. I t suffices to show: RR is semisimple =>i? Ä is semisimple for the 
converse implication follows analogously. 

By 7.2.3 (with change of side) the semisimple ring RR has a decomposition 

n n 

RR = © Li = ®Reh simple L , <-> RR 
i=l i = l 

with 
n 

et 7* 0, e,e/ = Li = Reh 1 = Z 
/=i 

By 7.2.3(d) the decomposition 

R = © * Ä 
/•=i 

follows and we only have to prove that all etR are simple. To prove this 
let e be one of the e, and let 0 ^ a = ea e ei?. Then it follows that ai? ^ ei?. 
We wish to show ai? = eR, from which it follows at once that eR is simple. 

As ea 5* 0 and since i?e is simple 

<p: Re 3re>->rea = ra e Ra 

is an isomorphism. Let RR = i?ß © U9 then 

(A: R=Ra®U sra + u^(p~l(ra) = re eR 

is an endomorphism of «i?, which is given by right multiplication by an 
element b e R (for R(r) = End(RR), see 3.7). Thus it follows that 

e = 4/{a) = ab, 

hence e e aR, i.e. eR aRt and so 

eR = aR. • 

8.2.2 C O R O L L A R Y 

(a) R is semisimple <=>every right and left R-module is semisimple. 
(b) R is semisimple ^RR and RR have the same finite length. 
(c) R is semisimple and surjective ring homomorphism p: R -> S => 

5 is semisimple. 
(d) R is semisimple ^>RR and RR are cogenerators. 
(e) R is semisimple <=> every right and every left R-module is injective<£> 

every right and every left R-module is projective. 
(f) R is semisimple every simple right R-module and every simple left 

R-module is projective. 
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Proof. (a) If RR is semisimple and if M = MR, m eM, then by 8.1.5 
mR is semisimple as an epimorphic image of RR. Consequently 

M = I mR 

as a sum of semisimple modules is again semisimple. Analogously for the 
left side. 

(a) Special case. 
(b) This is contained in the proof of 8.2.1 since, for simple Rei9 t{R is 

also simple. 
(c) Ss can also be considered (see also 3.2) as an R-module if we put 

and thereby the ideals of 5s coincide with the submodules of SR. Since SR 

is semisimple, then Ss is also semisimple. 
(d) In order to show that RR is a cogenerator let m e M R , m # 0 . Since 

RR is semisimple the epimorphism 

splits, consequently mR is isomorphic to a right ideal of R; thus there is 
a monomorphism 

Then it follows that ra£ Ker(<p) which was to be shown. 
(e) RR is semisimple every right R -module is semisimple every sub­

module is a direct summand every right R-module is injective, resp. 
projective every right ideal of R is a direct summand in RR ^ semisimple 
RR. Similarly for the left side. 

(f) " = > " : Clearby (e). 
(f) " < = " : Let SocCR*)be the sum of all simple right ideals oiR (detailed 

investigation of Soc(MR) in next chapter), then it is to be shown that 
R = Soc(RR). Suppose R 9^SOC(RR), then by 2.3.11 Soc(RR) is contained 
in a maximal right ideal A of R. Since R/A is a simple right R -module 
and thus projective by assumption, a homomorphism cp exists so that 

sr : = 5 p ( r ) , seS,reR 

R 3 r*—> mr £ mR 

<p : mRR -» RR. 

Since mR is a direct summand in MR, there is a homomorphism 

0 : MR -> RR with $ | mR = cp. 

R/A 

R/A 

R R/A 
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is commutative. I t then follows that <p # 0 and 

R = Im(<p)@A. 

But since Im(<p) is simple, in contradiction to this we must have 

Im(<p)<-»Soc{RR)~>A. 

Thus in fact it follows that R = Soc(RR). • 

The next step in our investigation consists in decomposing a semisimple 
ring into a direct sum of directly indecomposable two-sided ideals. Thus let 
R be semisimple and let 

R=B1®...®Bm 

be the decomposition of RR into homogeneous components (in the sense 
of 8 . 1 . 8 ) . By 7 .2 .3 the number of the homogeneous components, which 
by dehnition are right ideals, is hnite. We wish to show that the B} are 
two-sided simple ideals which mutually annihilate one another. 

As a preliminary we prove hrst a result for an arbitrary ring R. 

8.2 .3 L E M M A . Let A^RR and let A be a direct summand of RRi then 
the two-sided ideal RA generated by A contains all right ideals of R which 
are epimorphic Images of A. 

Proof. Let RR -A®B, let B^RR and let TT:R-*A be the projection. 
Further let a : A - » A ' be an epimorphism, let A'^RR and let L :A'-+RR 

be the inclusion. Then it follows that COLTT e YiomR{RR, RR). As established 
in 3 .7 , every endomorphism of RR is by left multiplication. Thus there is 
a c € Ä with c ( / ) = i'arr. Then it follows from rr(R) = TT(A) that 

A ' = L'arr(R) = < , W ( A ) = c A c RA, 

which was to be shown. • 

We prove now the hrst part of the classical Theorem of Wedderburn, 
which Wedderburn had originally proved for algebras. 

8.2.4 T H E O R E M . Let R 0 be a semisimple ring and let 

RR=Bi®...®Bm 

resp. RR = C,®...®Cn 

be the decomposition ofRR resp. of RR into homogeneous components ( 8 . 1 . 8 ) . 
Then we have: 

(a) The Bh j = 1 , . . . , m, are simple two-sided ideals of R. 
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(b) n = m and [with respect to an appropriate ordering) 

Bj = Chj = l,...,m. 

(c) BiBj = 8iiBi,i9j = l9...,m. 
(d) Bi9 considered itself as a ring9 is a simple ring with a unit element. 
(e) The decomposition of R into a direct sum of simple two-sided ideals 

is (up to ordering) uniquely determined. 

Proof. (a) We show that: If E^B{ and E is simple then it follows that 
RE = Bi. For reR 

Esx>->rx€rE 

is an epimorphism. Since E is simple this is either the zero mapping, i.e. 
rE = 0, or an isomorphism, i.e. E = rE. In both cases it follows that rE^>Bt. 
Conversely let E = E\ then we infer from 8.2.3 that E' has the form E' = rE9 

from which it follows that Bt^RE. Altogether this yields RE = Bt. 

From 5, = £ £ it then follows that 
J E e H , 

RBi= I RE= I B,=Bh 

thus B is a two-sided ideal. Let now A ^ 0 be a two-sided ideal contained 
in Bi9 then AR is semisimple and consequently there is a simple right ideal 
E with 

E*+AR<-*Bi. 
Then it follows that 

Bi = RE <-+ RA =A<-+ Bi9 

thus A - Bi9 i.e. Bi is simple as a two-sided ideal. 
(b) Correspondingly the Cj9 j = 1 , . . . , n9 are also simple two-sided ideals. 

Since BiQ is a two-sided ideal, which is contained in Bi as well as in Cj9 

and these are simple, we have either 

BiQ = 0 or Bi = BiQ = C ;, 

For fixed / 0 = 1, . . . , m at least one ; 0 with Bio = BioCh = CJo must exist, 
since otherwise it would follow that BioR = X BioCj = But there can also 

exist only one such / 0 , for from Bio = BioCh = Ch it would follow that 
Cio = C,-^. Since also correspondingly to every C / o , y 0 = 1, . . . , n9 an / 0 with 
Bh = C / o must exist, the assertion (b) follows. 

m m 

(c) From R = ^Bt it follows that RBj = Bf = © BtBh from which (c) is 

obtained. 
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(d) According to (c) the two-sided R -ideals from B( coincide with the 
two-sided -ideals from Bt. Thus Bi is simple as a ring. Let 1 = Z fh f e Bh 

then we have (7.2.3) B{ = fR and the f are idempotents from the centre 
of R. For b = fr e Bi it then follows that bft = fb = fir = fr = b, thus f is the 
unit element of Bh 

(e) As in the proof of (b). • 

8.2.5 Definition. The simple two-sided ideals Bh i = 1, . . . , ra, in 8.2.4 
are called the blocks of R. 

8.2.6 C O R O L L A R Y . Let R be semisimple, then we have: The number of 
the blocks is equal to the number of the isomorphism classes of simple right 
R-modules and equal to the number of isomorphism classes of simple left 
R-modules. 

Proof. Every simple right resp. left R -module is isomorphic to a right resp. 
left ideal of R (since every epimorphism of RR onto a cyclic right JR -module 
splits). Consequently it suffices to consider the simple right, resp. left ideals. 
For these the assertion follows from 8.2.4. • 

8.3 T H E S T R U C T U R E O F S I M P L E R I N G S W I T H A 
S I M P L E O N E - S I D E D I D E A L 

In order to elucidate entirely the structure of a semisimple ring, we now 
address ourselves to the investigation of the two-sided simple ideals Bj in 
8.2.4. By dehnition the Bj are right ideals of the semisimple ring R, thus 
semisimple right R-modules. Therefore it follows from 8.2.4(c) that the 
Bj are also semisimple rings. We are here dealing with rings that are both 
simple and semisimple. Examples show (see Exercise 8) that not every 
simple ring is semisimple. Since the Bj are semisimple and it was assumed 
that Bj # 0, they are therefore simple rings which possess a simple right ideal. 

Conversely every simple ring R, which possesses a simple right ideal E, 
is also semisimple, as we wish to establish immediately. Let B be the 
homogeneous component corresponding to E in RR, i.e. the sum of all 
right ideals of R isomorphic to E, then, as a sum of simple right ideals BR 

is semisimple. Further for reR and for a simple right ideal E'^>RR, rE' 
is either a right ideal isomorphic to E' or is equal to zero; thus B is a 
two-sided ideal ^ 0 in R. Since R is simple, it follows that B = R. Thus 
hnally it is established that RR is semisimple (see also 8.2.4(a)). 

For rings of this sort the structure is now to be determined. I t wil l emerge 
that every such ring is isomorphic to the endomorphism ring (=ring of 
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linear transformations) of a finite-dimensional vector Space V over a skew 
field K, which is again itself isomorphic to the ring of n x n matrices 
(n = dimK(V)) with coefficients in K and hence can be regarded as known. 

8.3.1 T H E O R E M . Let V' = KVbe a vector space over the skew field K. Then 
we have 

(a) If 1 ̂ d\mK( V) = n <oo then EndGcV) is a simple and a semisimple 
ring. 

(b) If d\mK(V) = oo, then End(KV) is neither simple nor semisimple. 

Proof First of all we point out that we have here—with a view to the 
following theorem—hxed upon a left vector Space V = KV and we wish to 
write the endomorphisms of V on the right of the argument: For <pe 
End(K V) and x e V let x<p be the image of x by <p. The result holds naturally 
also for the right vector Spaces. 

(a) Let vu • • •, vn be a basis of KV and denote 

y ( 0 : = £ Kvh 1 = 1 , . . . , * ; 
/=i 
/Vi 

S:=End(*V0. 

Then 

Et:={<p\<peSA V(i)Ker(<p)} 

is a simple right ideal in 5 and we have 

S s = £ i © . . . © £ „ ; 

Ei = Ej for all /, / = 1 , . . . , n. 

Consequently 5 is semisimple, and since all £ , are naturally isomorphic, 
Ss consists only of one homogeneous component, thus 5 is a simple ring. 
The above assertions on the Ei wil l not be proved here. I t is a matter of 
simple assertions of linear algebra which are left to the reader as an exercise. 
The proof can also be obtained with the help of the ring of n x n matrices 
with coefficients in K and isomorphic to 5. In this ring every row is a simple 
right ideal (and every column a simple left ideal), and the ring is the direct 
sum of its rows (resp. columns) which are all isomorphic. 

(b) Let again 5 := End(KV). 

Definition. (peS is said to be of finite rank :»dim j K : ( Im(<p))<oo. Then it 
is easy to verify that the set of endomorphisms of finite rank is a proper 
two-sided ideal A ^ 0 in S. Thus S is not a simple ring. If 5 were a 
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semisimple ring, then there would have to exist a B ^ Ss with 

SS=A®B. 

Since A is two-sided, it would follow that 

BA^B r\A = 0, thus BA = 0. 

Let ß e B, ß * 0 and letveV with vß^O and let 

V = Kvß@U, U~>KV. 

Finally for k e K, u e U let the mapping a be defined by 

a: V3kvß + u^kvß e V. 

Then it follows that aeA (for Im(a) = Kvß) and that ü/3a =vß*0, thus 
)Sa ^ 0 in contradiction to A 4 = 0. • 

Theorem 8.2.4 contains the first part of the familiär and important 
Wedderburn Theorem on semisimple rings. We come now to the second 
part of this Theorem. 

8.3.2 T H E O R E M . A simple ring Rt which possesses a simple right ideal, is 
isomorphic to the endomorphism ring of a finite-dimensional vector space 
over a skew field. 

In particular: Let E be a simple right ideal of R and let K := E n d ^ ^ ) , 
then K is a skew field, E = KE is a left vector space of finite dimension over 
K and we have 

R =End(/c£0. 

Proof. By Schur's Lemma (3.7.5), K is a skew field and E can be considered 
as a left K-module. Then E is a üf-i?-bimodule. For y e f we consider 
now the mapping 

y(E\ E3x^yxeE, 

i.e. the left multiplication of E by y. Then obviously we have y^eK. For 
r e R let 

r(E : E3x>-*xr€E, 

then it follows that r(E eEnd(KE), since for keK we have k(xr) = (kx)r. 
I t is now to be shown that 

<&:R3r^>rE

) eEnd(KE) 

is a ring isomorphism. 
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First of all 3> is obviously a ring homomorphism. Since Ker(O) is a 
two-sided ideal in R, which, as 1 £ Ker(<J>), is not equal to R and since R 
is simple, it follows that Ker(<I>) = 0 , thus <f> is a monomorphism. There 
remains to be shown: <J> is an epimorphism. As ET^O and since RE is a 
two-sided ideal it follows that RE = R, which yields 

( 1 ) <&(Ä) = &(RE) = * ( Ä )<b(E). 

I t is further to be shown that <&(£?) is a right ideal in jR":=End(jtE). Let 
£ e R" and let x, yeE, then 

y ) = (yx)( = (y{gx)€ = yi? (xf) = y(x() = y 

hence 

* £ f = e*(J5) 

and so 

( 2 ) < ! > ( £ ) £ " = <D(E). 

Finally as ) «-* i? " and 1 %] = 1 E e <&(R) we have: 

( 3 ) R" = <S>(R)R". 

From ( 1 ) , ( 2 ) , ( 3 ) it then follows that 

R" = <1>(R)R" = ®(R)<i>(E)R" = <&(Ä)4>(£) = 

thus in fact <&(/?) = /?". 
Since R is simple and R = must be simple. By 8 . 3 . 1 it then follows 

that dimK(E) <oo, by which all is proved. • 

Besides this direct proof we obtain a second proof as a corollary of the 
Density Theorem in the next section. 

We formulate the main contents of Theorems 8 .2 .4 and 8 .3 .2 once more 
in a somewhat different form: 

8.3 .3 C O R O L L A R Y . A semisimple ring (with unit element) is a direct sum 
of simple rings, which mutually annihilate one another and every one of 
which is isomorphic to a complete finite-dimensional matrix ring over a skew 
field. 

8 .3 .4 C O R O L L A R Y . LetR be a simple ring with a simple right ideal E and 
let R be a finite-dimensional algebra over a field H. Then there exists a 
subfieldKo^K :=End(H/?) with AimKo(K)<oo and which is isomorphic to 
H. 

If H is algebraically closed then we have H = K = End(jEÄ). 
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Proof. For heH let 

then, as (xh)r = (xr)h for r e R, it follows that e K and therefore 

^ H a A ^ A ^ e i T 

is a ring homomorphism. Let K0'-= Im(</0. By assumption J R h is finite-
dimensional and so also is EH. 

As /ZE}JC =xh for heH, xeH, a basis of £W over H is also a basis of 
KoE over £" 0. Hence KoE is finite-dimensional and consequently KoK must 
also be finite-dimensional (for dimKo(K) • dimK(E) = dimKo(E)). 

Since K is a finite algebraic extension field of K0 it follows, in the case 
that H and thus also K0 are algebraically closed, that K0 = K, thus H=K0 = 
K. • 

8.4 T H E D E N S I T Y T H E O R E M 

In our considerations so far we have mostly taken as a basic Start a right 
R -module MR and have written the Ä-homomorphisms on the left side of 
the arguments from M. Let S'=End(MR) be the endomorphism ring of 
MRi then in particular M can be considered as an 5-i?-bimodule. This 
Convention is in fact appropriate for many considerations, but not for all. 
In particular not for such considerations, as is the case in the following, in 
which initially we are provided with an abelian group M and the ring 
T := E n d ( M z ) of endomorphisms of M. 

In order to show how the previously employed Convention may be used 
in the following and to show what is the importance of the following results, 
we make some remarks, in which at first nothing further is assumed. 

8.4.1 Definition. Let R resp. R° be a ring with the multiplication 
resp. o . R° is called the inverse ring to R :<=> 

(1) The additive group of R is equal to the additive group of R° and 
(2) Vr,seR[r-s = s°r]. 

8.4.2 R E M A R K S 

(a) There is exactly one ring R° inverse to R. 
(b) R00 = R. 
(c) R is commutative <£>R = R°. 
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Proof. (a) Existence of R°: Define (R°, +):= (R, +) together with 

s ° r:=r - s, r,seR, 

then R° is an inverse ring to R. 

Uniqueness: Let Ä * with the multiplication * be also an inverse ring to 
R, then it follows by definition that 

( Ä * , + ) = ( Ä , + ) = ( Ä ° , + ) . 

Further we have 5 * r = r ' S = 5 ° r , r , 5 G Ä , thus R* = i ? 0 . 
(b) and (c) may be left to the reader as an exercise. • 

From the dehnition it follows further that all properties of JR are carried 
over to R° on interchanging the sides. 

8.4.3 R E M A R K . Let M = MR. By means of the definition 

r°m'=mr for meM and reR° 

M becomes a left R°-module R°M. Precisely those additive subgroups of M, 
which are also submodules of MR, are also the submodules of R<>M. 

Proof For the proof of M = R°M we conhne ourselves to the associativity 
law. 

r i 0 (r 2 ° m) = rx ° (mr2) = (rnr2)r\ 

= m(r2rl) = (r2r1)° m 

= (ri © r2) ° m for all rx,r2eR,meM. 

Let £/ ̂ >MR. Then 

roU=UraU for all reR^>U~>R*M. 

In the same way it follows that: (7 ̂ ^ M £/ ^>MR. 
A l l properties of M R carry over accordingly to Ä ° M (on interchanging 

the sides). • 

Since we have clarihed the signihcance of the change of sides, we shall 
now assume that M = RM. Further let T : = E n d ( M 2 ) (=ring of all group 
endomorphisms of M) in which the endomorphisms are to be applied on 
the left, so that we have M = TM. For every reR the left multiplication 

r ( / ) : Msx>-*rx eM 
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is then an dement from T and the mapping 

4f: R 3r^>r0)eT 

is, as is directly verified, a ring homomorphism. 
i?(/):=Im(</0 is called the ring of left multiplications of the module RM. 

Ker(i/0 is a two-sided ideal in R and consists of all r e R with rM = 0. 

8.4.4 Definition. The module M is called faithful:» 

Vr € R[rM = 0=> r = 0]»Ker(<A) = 0. 

In the case of a faithful module we can identify R with Ril) so that R^T 
holds. 

8.4.5 Definition. Let T be an arbitrary ring and let A <= T (A subset of 
T). Then 

C e n T ( A ) := {t \ t e T A 6 A [ a f = ta]} 

is called the centralizer of A in T. 
As we see immediately, CtnT{A) is a unitary subring of T and Cenr(jO 

is the centre of T. 

8.4.6 L E M M A . Let M = RM, T := End (M z ) , 5 := E n d ( Ä M ) (a// applied on 
the left), then: 

(a) 5 = Ä ' : = C e n T ( Ä ( / ) ) . 
(b) i? ( / ) cz J R":=Cen r (Cen T ( i? ( / ) ) ) . 
(c) Ä ' = Ä m : = C e n T ( C e n T ( C e n T ( i ? ( / ) ) ) ) . 

Proof (a) 5 ^ C e n T ( Ä ( / ) ) : Let CTG5, then we have for all reR, xe 
M: cr(rx) = r(ax), thus ar(l) = r ( /V^><r e CenT(RU)). C e n T ( i ? ( / ) ) ^ 5 . Let r G 
C e n r ( Ä ( 0 ) = > Tr ( , ) = r ( / ) r for all reR^>r(rx) = r(rx)^reS. 

(b) and (c) follow by the definition of centralizer. • 

On account of this Situation the interesting question arises as to the 
assumptions under which R(l) = R" holds and as to the relationships which 
exist in case Ra)*R" between Ril) and R". We observe moreover that 
Ril) and R" evidently depend on M = RM which is not apparent from the 
notation. 

8.4.7 Examples 
(1) If M = RM is a free R -module then RM is a faithful R -module 
and we have Ril) = R". Prove as an exercise. 
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(2) Let RM = Z Q , then we have Z = Z{} and S = Z' = Z" = Q. Prove as an 
exercise. 
(3) Let V = VK be an inhnite-dimensional vector space. Let R be the 
subring of T : = End( VK) which is generated by the identity mapping of V 
and by all linear mappings of VK of hnite rank. We claim: 

(a) V = R V is a simple R -module. 
(b) R' = End(RV) = K(r)( = K). 
(c) Ril) = R*R" = End(V Ä . ) . 
(d) For any hnitely many elements vu • • •» vt e V and er e R" there is an 

reR with cn;, = rvi9 i = 1, . . . , f. 
Proof of (a), (b), (c) is an exercise for the reader; (d) is a special case of 

the Density Theorem to follow. 

8.4.8 Definition. Let R and S be rings and let as well RM and s A f be 
modules with the same additive group. RM is called dense in sAf :<^>for 
any hnitely many elements * i , e Af and seS there is an r e w i t h 
sxi = rxi9 i = 1, . . . , t. 

8.4.9 T H E O R E M , fjuery semisimple module RMis dense in R»M. 

Proof The proof follows in three Steps. 

(1) First let N = RN be an arbitrary module with U a direct summand 
of N, thus N= U®NX. Let now R" = R& be the double centralizer of R 
with respect to N. We claim that R"U = U, i.e. U is an "-submodule of 
R«N. For the proof let TT be the projection of N onto L/, and T? the inclusion 
of U in N , then it follows that TJTT e = Horn* (N, N ) and Im(r/7r)= U. 
For r"eR" and ueU we obtain therefore 

r " w = r ' ^ d ^ ) = r?7rr"(w) = 7?7r(r"«) 6 U, 

which was to be shown. 
Let now N be semisimple and let xeN, then Rx is a direct summand 

in N and it follows (for U = Rx) that Rx=R"Rx. Since, by 8.4.6(b), we 
also have RHRx -R"x we deduce that Rx = R"x. Thus to every x eN and 
r" € JR" there is an r 0 e Ä with r 0 x = r"x. 

(2) Let now Af = Ä A f be semisimple and let N := ]J Af, with A// = Af for 

/ = 1, . . . , n. Then we have (see Chapter 4) 

N= Ü M f = © Afl- with AfJ- = Af,- = M 

Consequently N is a direct sum of the semisimple modules Af ,• and therefore 
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(by 8.1.5) is itself again semisimple. Let now the double centralizer of R 
with regard to M resp. N be denoted by RM resp. Rfc. 

Assertion. For r "G RM and (JCI, . . . , xn) G N by means of the definition 

fu(xi...xn):=(r»xl...rnxn) 

N becomes an R M-module and the mapping 

r": N B (xi ... xn)^(r"Xl... r"xn)eN 

is an element of R^. (Indeed RM^r,'^f"eR'^ is a ring monomorphism.) 
The module property is clear. I t remains to be shown that feRj*. Let 

77/: N -» Af) resp. ryf: Mt-*N 

be the projection resp. the inclusion (see Chapter 4), then we have 

r ' V / U i . . . * „ ) = r,lXi = 7T/r"(A:i . . . x„), 

;"
r?/X
. = ̂(o . . . OJC/0 . . . 0) = rj/'Xi, 

i.e. 

r"7ri = 7rir" and r " ^ = Virff. 

n 
As X ^ i ^ / = 1 iv we have for arbitrary <p G H o m Ä (N, A0 

n n 
<p = IMV^N = X Z riiiri<prijirh 

«=i / - i 

in which (as M,- = M) TT^J G H o m Ä ( M , M ) . 
Hence it follows that 

f"<p = r" Z Z Vim(pvm = Z Z v / ' i ^ V i ) ^ 
i i i } 

= Z Z T?/{7Ti<prij)r"TT} = ( Z Z ViiriCpVjTTj) f" = <pr", 

which was to be shown. 
(3) Let now JCI, . . . , x n G N and rtfeRMbe given. By (1) applied to 

N : = LI M / with A f , = A f for i = l , . . . , « 
/=i 

and w i t h * = 0 t i , . . . , x „ ) G N a n d r"Gi?^(r", in the sense of (2) correspond-
ing to r") there is an r 0 G J? with 

r0x = (roxi . .. r0xn) = f"x = {r"xi... r"xn)\ 
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thus we have 

r§X{ — r • 

8.4.10 C O R O L L A R Y . Let RM be simple and let M be finite-dimensional 
over K = E n d ( R M ) , then we have RU) = R". 

Proof Let xi, . . . , xn be a basis of KM, then to every creR" there is an 
reR with axt = rxh i = 1, . . . , n. Since er and r ( / ) are linear mappings, it 
follows that cr = r ( / ) , thus R"~>R(l). Since, on the other hand, R0)~>R" it 
follows R(l) = R". • 

8.4.11 C O R O L L A R Y . Let RM be simple and RR be artinian. Then M is 
finite-dimensional over K and we have Ril) = R". 

Proof. By 8.4.10 we have only to show that KM is hnite-dimensional. 
Suppose that that were not the case, then there would exist a countably 
inhnite set of linearly independent elements in KM: 

Xi, *2> *3> • • 

Let 

An = {a | a e R A ax\ = ... = axn = 0}, 

then An is a left ideal in R. Since an aneA with anxn+i ^ 0 exists (from 
8.4.9), An An+l holds, and we would obtain the inhnite chain of left ideals 

A\*3A2*3A3±3... 

which contradicts the fact that RR is artinian. • 

As a corollary from 8.4.9 we prove once more the structure theorem 
for simple rings (8.3.2). 

8.4.12 C O R O L L A R Y . Let R be a simple ring with a simple left ideal. Then 
R is isomorphic to the endomorphism ring of a finite-dimensional vector 
space over a skew field. 

Proof. As established at the beginning of 8.3, JR is semisimple and hence 
by 8.1.6 (two-sided) artinian. Let RM be a simple left ideal in R . Then 

II/:R^RM 

is an isomorphism, since Ker(t^) as a two-sided ideal in a simple ring must 
be equal to 0, for 1 £ Ker(^) . By 8.4.11 the assertion follows. • 
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EXERCISES 

(1) 
(a) Let p be a prime number and let n e N. Which is the largest semisimple 

Z-submodule of Z/pnZ? 
(b) Which is the smallest Z-submodule U of Z/pnZ, so that (Z/pnZ)/U 

is semisimple? 
(c) Give an example of a module M and a [ / ^ M so that M is not 

semisimple but M/U and U are semisimple. 

(2) 
Let R be a ring and let Jk(R) denote the number of isomorphism classes 
of simple right R -modules. (In the class of all simple right R -modules = 
is an equivalence relation; the isomorphism classes are the equivalence 
classes with respect to = ) . 

(a) For every neN give an example of a ring R with Jk(R) = n. 
(b) Give an example of a ring R with Jk(R) = oo. 
(c) Does the case Jk(R) = 0 occur? 

(3) 
Let e be an idempotent element of a ring R. Show: 

(a) End(eRR) = eRe. 
(b) Let R be simple and let eRe be a skew held, then eR is a simple 

right ideal of R. 

(4) 
n 

Let Rh i = 1 , . . . , n be rings and let R := Y[ with componentwise addition 
i = i 

and multiplication. 
(a) Show: R is a semisimple ring<£>V/ = 1, . . . , n. [Ri is semisiple.] 
(b) Does (a) hold also for inhnite products? 

(5) 
(a) Let VK be a vector space of countably inhnite dimension. Show: The 
ideal of all endomorphisms of VK of finite rank is the only proper two-sided 
ideal * 0 in End( VK). 

(b) Does (a) also hold if the dimension of V is greater than countably 
inhnite? 

(6) 
Let M - MR be semisimple and let S E n d ( M Ä ) . Show: SM is semisimple. 
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(7) 
Let MR be a semisimple R-module with only finitely many homogeneous 
components: 

MR = © Bh 

Show: 
n 

(a) S : = E n d ( M Ä ) = © 5y, where the S; are two-sided ideals in S and 

Si = End(BiR). 
(b) I f M Ä is finitely generated, then S is semisimple. 
(c) If MR is finitely generated and all simple submodules are isomorphic, 

then S is simple and semisimple. 
(d) I f MR is not finitely generated, then S is neither simple nor semi­

simple. 

(8) 
Let K :=R(JC) be the field of rational functions in x with real coefficients, 
and let for k e K 

dx 

be the usual derivative. Further let R '-=K[y] be the additive group of all 
polynomials in y with coefficients in K. Define in K[y] a (non-commutative) 
multiplication by induction over n = 0, 1, 2, . . . for fixed m = 0, 1, 2, . . . 

(ay°)(bym):=abym, aybeK, 

(ayn)(bym) := ayn-\bym+l + b'ym) for n >0, 

and further require that the associative and distributive laws hold. Show: 
(a) R is a simple ring. (Hint: If a polynomial of degree n with n 1 lies 

in a two-sided ideal then so also does a polynomial of degree n-1.) 
(b) R contains no simple right or left ideal, thus R is not semisimple. 

(9) 
Prove the assertions in 8.4.7. 

(10) 
Show for a module MR: 

(a) M is semisimple<=>M has no large proper submodule. 
(b) Let M be finitely generated. Then we have: M is s e m i s i m p l e ö M 

has no large maximal submodule. 
(c) Construct a non-semisimple module which possesses no large 

maximal submodule. 



Chapter 9 

Radical and Socle 

In the historical development of the theory of rings it had already been 
early established that in every hnite-dimensional algebra A a two-sided 
nilpotent ideal B exists such that A/B is a. semisimple algebra. (B is 
called nilpotent if Bn = 0 for some natural number n.) 

This result yields three avenues for the investigation of A: 
(1) the investigation of the semi-simple algebra A/B (for which the 

theory of semisimple algebras is at our disposal); 
(2) the investigation of the nilpotent ideal B; 
(3) the investigation of the relation between A/B and A, which is given 

by the epimorphism A^A/B\ in particular the question arises as 
to whether properties of A/B can be "l if ted" to A. 

Since the formulation of these questions was very fruitful for the investi­
gation of algebras, the desire arises of having at our disposal an object 
corresponding to B in an arbitrary ring or module. We cannot enter here 
into the interesting historical development of this question. I t would lead 
in any case to current concepts of the radical which are to be developed 
in this paragraph. The radical of a module MR, denoted by Rad(M R ) , is 
accordingly the intersection of all maximal submodules of MR or is 
equal to the sum of all small submodules of MR. In consequence we 
then have Rad(M/Rad(M)) = 0 and Rad(M) is contained in every sub­
module U^M with Rad(M/L0 = 0. The three possibilities, listed 
above, have also to be reconsidered if M / R a d ( M ) is in general no longer 
semisimple. 

The concept dual to that of the radical is the socle. The socle of the 
module MR, denoted by Soc(M R ) , is the sum of all minimal (=simple) 
submodules of MR and therefore is the largest semisimple submodule of 
MR. I t is equal to the intersection of all large submodules of MR. 

212 
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9.1 D E F I N I T I O N O F R A D I C A L A N D S O C L E 

9.1.1 T H E O R E M . Let M = MR be given. Then we have 
(ä) 

I A = P I B= D Ker(,p). 
A <2* M B<->M semis imple NR 

m a x i m a l B <peHomj? (M,N) 

(b) 

n A i 5= Im(<p). 
B<-+M 

m i n i m a l B 
( = s imple B) 

semis imple NR 
<peHomR(N,M) 

Proof. (a) In the order written the submodules of Af, for which the equality 
is to be shown, are denoted by Uu U2, U3. 

"U2 *-* Ui"\ Let a e U2. Suppose aR were not a small submodule of Af, 
then there would be by 5.1.4 a maximal submodule C of Af with a&Q 
thus a£ U. Consequently aR is small and hence aeaR U\. 

" U3<-+ U2"\ L e t ß be maximal in A f and let vB:M -+M/B be the natural 
epimorphism onto the simple module M/B. Then Ker(*>B) = B and it follows 
that 

" l / i £ / 3 " : By 5.1.3(c) we have A M^xp(A) N for every 
homomorphism <p:M^N. I f N is semisimple, then 0 is the unique small 
submodule of N, then we must have <p(A) = 0, i.e. A ^ Ker(<p) holds. 
Consequently we have U\ «-> £/3. 

(b) Let the submodules again be denoted in order by Uu U2, U3. 
"U2 ^ C/i": I f 5 is a simple submodule of M and A M. Then A nf? ^ 

0 so Ac\B = B, B ^> A and hence U2 U\. 
" L ^ ^ L V : Since the image of a semisimple module under a 

homomorphism is again semisimple and likewise so also the sum of semi­
simple modules (8.1.5), U3 is a semisimple submodule of Af, thus is the 
sum of simple submodules of M. Consequently we have U3 U2i since 
U2 is the sum of all simple submodules of M. 

" Ui U3": We claim that U\ is semisimple. Let C *-» U\ and let C be 
inco of C in Af, then we have C 4- C = C 0 C M (5.2.5), thus Ui C + 
C . By the modular law (note C t / i ) it follows that Ui = C © ( C ' n CA), 
thus t / i is semisimple. Let t: Ui^M be the inclusion, then it follows that 
t / i = I m ( t ) ^ U3. • 

C/ 3c H Ker (* B ) = n B = U2. 
B~>M B^M 

m a x i m a l B m a x i m a l B 
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9.1.2 Definition 
(1) The submodule of M defined in 9.1.1(a) is called the radical of M 

and is denoted by R a d ( M ) . 
(2) The submodule of M defined in 9.1.1(b) is called the socle of M and 

is denoted by Soc (M) . 

9.1.3 C O R O L L A R Y 

(a) For meMRwe have: mR ^ M » r a e R a d ( M ) . 
(b) S o c ( M ) is the largest semisimple submodule of M. 

Proof. (a) mR ^M^memR R a d ( M ) by 9.1.1. The converse, me 
RdL(\(M)^>mR M> was shown in the proof of 9.1.1(a) with regard to 

(b) By definition S o c ( M ) is semisimple as the sum of simple submodules. 
Let C be a semisimple submodule of M , then C is contained in S o c ( M ) 
being the image of the inclusion i : C - » M , thus S o c ( M ) is the largest 
semisimple submodule of M. • 

We come now to the main theorem on the radical and socle. 

9.1.4 T H E O R E M 

(a) cpe H o m R ( M , A0=><p(Rad(Af)) <-+ Rad(JV) A <p(Soc(M)) ~> Soc(N) 
(b) R a d ( M / R a d ( M ) ) = 0 A V C ^ M [ R a d ( M / C ) = 0 4 > R a d ( M ) - > C ] 

i.e. R a d ( M ) is the smallest submodule ofM with Rad (M/C) = 0. 
(c) SOC(SOC(M)) = S O C ( M ) A V C ^ M [SOC(C) = C4> C ~> S o c ( M ) ] i.e. 

S o c ( M ) is the largest submodule which coincides with its socle. 

Proof. (a) From R a d ( M ) = X A it follows that <p(Rad(M))= I cp(A). 

As shown in 5.1.3 we have <p(A)^N, thus it follows that 
<p(Rad(M)) Rad(iV). Since the image of a semisimple module is again 
semisimple, we have also <p(Soc(M)) ^ Soc(/V). 

(b) Assertion. The maximal submodules A of M/C are obtained as images 
of the maximal submodules B M with C <-> B by v :M-+M/C. 

Proof. See 3.1.13 or directly as follows. vv~l(k) = A n l m ( ^ ) = A. Let 
B := ^ _ 1 ( A ) . Then v(B) = &AC~>B~>M. Since A is maximal ( M / C ) / A = 
(M/C)/(B/C)=M/B simple, thus B is maximal in M. 
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Assertion. If (Bt\i € I) is a family of submodules of M A V/ 61[C Bi]y then 
we have 

navc)=(n#/V c 

Proö/. I t is clear that ( P | £ « ) / C <-* DiBjC). Let now ü + C e f l W C ) . 
Then for every / there is a b{ e with i ; + C = 6; + C, so u = 6/ + c, e 5 , + C = 

for all / e / hence t> + C e (C]Bi)/C. 
We now apply the two Statements established above. 

R a d ( M / R a d ( M ) = f l A = p | (JB/Rad(Af)) 
max A in M / R a d ( M ) m a x B<->M 

R a d ( M ) - H » ß 

= ( n s ) / R a d ( M ) = ( D ß ) / R a d ( M ) 

R a d ( M ) ^ ß 

= R a d ( M ) / R a d ( M ) = 0. 

Let now C «-» M A Rad(M/C) = 0, then it follows for the mapping 
V.M-+MIC by (a) that 

*>(Rad(Af)) ^ R a d ( M / C ) = 0 

and consequently 
Rad(Af) ~> Ker(^) = C. 

(c) A semisimple module coincides with its socle. Since Soc(Af) is the 
largest semisimple submodule of Af, it is hence clear that Soc(Soc(Af)) = 
S o c ( M ) . Let Soc(C) = C, then C is semisimple and it follows that 
C S o c ( M ) . • 

The properties (a), (b), (c) of this theorem can be formulated functorially 
and motivate the definition of preradical ((a)), radical ((a) and (b)) and 
socle ((a) and (c)) in categories. 

9.1.5 C O R O L L A R I E S 

(a) Epimorphism <p:M-+N A Ker(<p) M => <p (Rad(Af)) = Rad(A0 
ARad(Af) = <p _ 1(Rad(A0). 

Monomorphism cp:M^N Alm((p) N<p(Soc(Af)) = Soc(N) 
ASoc(Af) = (p _ 1(Soc(N)). 

(b) C ~> M 4 > R a d ( C ) ^ R a d ( M ) A SOC(C) Soc(Af). 
(c) M = © A£ 4>Rad(Af) = © R a d ( M ) A S O C ( M ) = © S o c ( M ) . 

(d) M = © M L = » M / R a d ( M ) E = © ( M / / R a d ( M / ) ) . 
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Proof. (a) <p(Rad(M)) Rad(iV) holds by 9.1.4. Now let U N and for 
A <-*M let A + <p-\U) = M. 

Since <p is an epimorphism it then follows that q>(A)+U = N9 thus 
<p(A) = N and consequently 

A+Ker(<p) = M . 

As K e r ( < p ) ^ M we obtain A = M , i.e. <p~\U) M^><p~l(U) ~> 
R2Ld(M)d><p((p-\U)) =U^ <p(Rad(M)), thus Rad(A0 <-* <p(Rad(M)), 
which was to be shown. 

From <p(Rad(M)) = Rad(A0 it follows hnally as Ker(<p) ^ Rad(M) that 

Rad(M) = Rad(M) + Ker(<p) = <p-l<p(Rad(M)) = <p~\Rad(N)). 

For the socle we have on the other hand by 9.1.4 <p(Soc(M)) «-» Soc(JV). 
Let now E ^ N be simple, then as Im(<p) ^ N we have: E <-* Im (<?)=> 
?~ lCE) Soc(M)^><p<p~\E) = E ~> <p(Soc(M))4>Soc(A0 ^ ?(Soc(M)). 
From <p(Soc(M)) = Soc(iV) it follows hnally that 

Soc(M) = <p-l<p(Soc(M)) = <p~\Soc(N)). 

(b) Let t: C-+M be the inclusion, then it follows by 9.1.4 that 

R a d ( C ) = t(Rad(C)) «-* Rad(M) A SOC(C) = t(Soc(C)) <-> Soc(M). 

(c) Rad(M,) ~> Rad(M) from (b) hence 

I Rad(M,) = © Rad(M,) Rad(M). 
i e / iel 

Let now ra = £ra,- e Rad(M) and let 7r,-: M -> Mi be the /th projection. Then 
7r,(ra) = ra,- e Rad(M,) from 9.1.4 and so ra e © Rad(M,). Hence Rad(M) ^> 
© Rad(M,) whence Assertion. Analogously for the socle. 

(d) We exhibit explicitly an isomorphism 

<p: M / R a d ( M ) -» © (M,/Rad(M,)). 
I G / 

Let £ra, e © M i with ra, e M , be an arbitrary element from M , then let 

<p((Ira,) + Rad(M)) := I(m i + Rad(Af i ) )€©(Mi/Rad(Af , ) ) . 

"(p is a mapping": Let (£ra,) + Rad(M) = (£ra!) + Rad(M) with ra„ ra,- e 
M, , then it follows that X ( m / - m { ) GRad(M) hence, by (c), ra,-ra!e 
Rad(M,) and therefore it follows that ra,-+ Rad(M,) = ra,' + Rad(M,), thus 

Z(ra,+Rad(M,)) = Z(ra; + Rad(M,)). 
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4 V is a monomorphism": Let 

<P ((Im,-) + Rad(M)) = I (m f . + Rad(M,)) = 0, 

then it follows that m, € Rad (Mi) for all occurring m,. As Rad(M f ) ^ Rad(M) 
we deduce therefore that 

(Lmt) + Rad(M) = Rad(M), 

thus Ker(<p) = 0. 
"<p is an epimorphism": Clear. • 

(1) Rad(Z z ) = 0, since by 5.1.2 0 is the only small ideal in Z. Soc(Z z) = 0 
for Z has no simple ideals. 
(2) Rad(Q z ) = Q, since for every q eQ, #Z is small in Q (see 5.1.2). This 
is equivalent to saying that Q has no maximal submodules. 
(3) Let n e Z, n > 1 with the unique decomposition into powers of prime 
numbers 

n=pTl ...Pkk,Pt*Pi for / # / , r o , > 0 . 

The maximal ideals of Z are the prime ideals generated by prime numbers. 
The maximal ideals which contain nZ are then the ideals p,Z, / = 1 , . . . , k, 
and we have 

k 
n Pii=pi.. .pkz. 

Hence we have 

Rad(Z/nZ) = [ 0 PtZ^j I nZ = px... pkZ/nZ. 

Therefore it follows that 

Rad(Z/nZ) = O O A Z = px . .. pk. 

Likewise for n = 0 and n = 1 we have Rad(Z/nZ) = 0. 
We now wish to determine Soc(Z/nZ). This is equal to 0 for n = 0 and 

n = 1. Now again let n > 1 with the decomposition into powers of primes 
as given above. First of all we establish: Z/nZ is a simple Z-module, if 
and only if n is a prime number. I f namely n = p is a prime number, then 
Z/pZ (as a ring) is a field and hence is simple as a Z-module. I f n has at 
least one proper divisor q, then qZ/nZ is a proper submodule 5*0 of Z/nZ. 
As 

-Z/nZ^Z/ptZ (i = l , . . . , f c ) 



218 9 R A D I C A L A N D S O C L E 9.1 

the modules ~Z/nZ are simple submodules of Z/nZ. Then 
Pi 

I - Z / / i Z = ( £ -z)/nZ = Z /nZ<^Soc(Z/nZ) . 
i - i Pi \ i = i p» / / Pi • . . Pk 

On the other hand let qZ/nZ with n=qn\ be a simple submodule 
of Z / n Z . Since 

4Z/rcZ = Z/rciZ 

tti must then be one of the prime numbers p i , . . . , p k 9 say p,; thus q = —-, 
and it follows that ^' 

Soc(Z/«Z) = Z / n Z . 
Pi . . . p f c 

We point out the following special cases: 

R a d ( Z / p ! . . . p f cZ) = 0, Soc(Z/p! . . . p k Z ) = Z/Pl... pkZ, 

Rad(Z/p"Z) = p Z / p " Z = Z / p n - 1 Z , Soc(Z/p"Z) = p " _ 1 Z / p " Z = Z / p Z . 

9.2 F U R T H E R P R O P E R T I E S O F T H E R A D I C A L 

We collect together several other properties of the radical in the following 
theorem. 

9.2.1 T H E O R E M . Let Af = MR, then we have 
(a) Af is semisimple 4> Rad(M) = 0. 
(b) M RadCR*WRad(M) . 
(c) M is finitely generated =^>Rad(M) ^ Af, in particular Rad GR*) ^ RR. 
(d) Af is finitely generated A A ^ Rad(RR) {<£> A RR)^>MA M 

(Nakayama's Lemma). 
(e) Af is finitely generated A Af ^ 0 Rad(M) ^ Af. 
(f) Rad ( A R ) is a two-sided ideal ofR. 
(g) For every projective module PR we have: Rad(P) =P Rad(RR). 
(h) A f ^ > C + R a d ( A f ) / C ^ R a d ( M / C ) . 

Proof (a) Af is semisimple every submodule is a direct summand =>0 is 
the only small submodule =>Rad(Af) = 0. 

(b) Let m e Af, then (pm: RRsr-+mreMR is a homomorphism. By 9.1.4 
we have 

m R a d ( Ä Ä ) = ? m(RadCR Ä)) Rad(Af) 

=> Z m Rad(RR) = Af RadCRg) Rad(Af). 
m e M 
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(c) Let R a d ( M ) + C = M Suppose C^M. Then, since M is finitely 
generated, C is contained (2.3.11) in a maximal submodule B «-» M ; hence 
M = R a d ( M ) + C B^. Thus we have C = M and so R a d ( M ) «s> M 

(d) M A <-> M R a d ( Ä Ä ) ~> R a d ( M ) ^M^MA^M. 
(e) Since M ^ O A R a d ( M ) ^ M we have R a d ( M ) # M , since from 

R a d ( M ) = M we should have R a d ( M ) + 0 = M , thus 0 = M would follow. 
(f) This follows from (b) with MR = RR. 
(g) Let (y„ (pi) be a "projective basis" in the sense of the Dual Basis 

Lemma (5.4.2). For weRad(P) it then follows that <pt{u)eRad(RR) (by 
9.1.4) and hence we have 

K = I y w ( « ) e P R a d ( Ä Ä ) , 

thus Rad(P) P Rad(RR). Since by (b) the reverse inclusion also holds, 
the assertion follows. 

(h) Let v.M^MlC be the natural epimorphism, then we have 
C + R a d ( M ) / C = */ (Rad(M)) <-> R a d ( M / C ) . • 

We point out meantime that we need 
(f) in order to prove in 9.3 that Rad(i? Ä) = R a d ^ Ä ) . 
We now wish to show: I f M is artinian then M / R a d ( M ) is semisimple. 

We deduce this from the following more general theorem. 

9.2.2 T H E O R E M 

(a) Every submodule of M has an adco in M and R a d ( M ) = 0 < = > M is 
semisimple. 

(b) M is artinian and R a d ( M ) = 0 < = > M is semisimple and M is finitely 
generated. 

Proof. (a) "=>": Let C ^ M A C adco of C in M. Then M = C + C A 

C n C R a d ( M ) = 0. Then (by 5.2.4(a)) M = C@C'^>M is semisimple. 
(a) "<=": Clear. 
(b) "=>": M is artinian4> every submodule has an adco. By (a) it then 

follows that M is semisimple. Since M is semisimple and artinian, M is 
finitely generated (8.1.6). 

(b) "<=": Since M is semisimple and finitely generated, M is artinian 
(8.1.6). R a d ( M ) = 0is clear. • 

9.2.3 C O R O L L A R Y . M is artinian = > M / R a d ( M ) is semisimple. Special 
case: RR is artinian ^>R/Rad(RR) is semisimple. 

Proof. M is artinian 4 > M / R a d ( M ) is artinian. Since R a d ( M / R a d ( M ) ) = 0 
by 9.1.4(b), it follows by 9.2.2 that M / R a d ( M ) is semisimple. • 
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We remark further in the special case of MR = RR being artinian that 
hrst of all R/Rad(RR) is semisimple as a right i?-module. Since RadCR*) 
is, by 9.2.l(f), a two-sided ideal, R := i?/Rad(jR R) is also as a ring right-
sided semisimple. As we have earlier shown (8.2.1), RR is then also 
semisimple and consequently also RR. Hence by 9.1.4(b) we must have 

Rad(fljR) t-> R a d ( Ä Ä ) . 

From the basic symmetry the reverse inclusion also holds and equality then 
follows. This equality is proved in the next section for arbitrary rings. 

9.3 T H E R A D I C A L O F A R I N G 

The main result of this section is the equation 

R a d ( Ä Ä ) = Rad( j R Ä). 

We lead up to the proof by means of a lemma, 

9.3.1 L E M M A . The following Statements are equivalent for A *-> RR. 
(1) A*RR. 
(2) A * + R a d ( Ä Ä ) . 
(3) V<2 e A [1 — a has a right inverse in R]. 
(4) \/a eA [1 — a has an inverse in R]. 

Proof 4 4(1)4>(2)": By definition of the radical. 
" (2)4>(D": By 9.2.1(c) we have Rad(RR) RR, thus A RRm 

" ( 1 ) ^ ( 3 ) " : For arbitrary reR we have ar + (1 -a)r = r=> 
A + (l-a)R=R^(l-a)R=R (since A*>RR)d>(3). 

"(3)=>(4)": Let ( l - a ) r = l ; then r = 1 + ar = 1 - (-ar). Since -areA, 
there exists s eR with rs = (1 — (—ar))s = 1. Thus r has 1 -a as left inverse 
and s as right inverse which then must coincide and it follows that 1 = rs = 
r ( l - t f ) , i.e. r is an inverse of (1 —a). 

"(4)=>(1)": Let A + B=RR. Then l=a+b with a e A , i.e. 6 = 
1 - a and so there exists r with 6r = (1 -a)r = 1 hence B = R,i.e. A «s> • 

i?em<2r/cs 
(a) In the literature a right ideal with property (3) is also called quasi-

regular. 
(b) Evidently this lemma holds also "on the left side" i.e. if we inter-

change the right and left sides. 

9.3.2 T H E O R E M . Rzd(RR) = Rad(RR). 
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Proof. We apply the lemma to A =Rad( i? Ä ) . For it (4) then also holds. 
Since A is a two-sided ideal (9.2.l(f)) A is also a left ideal, and so (4) of 
the "left-sided" version of the lemma holds; thus it follows that 

R a d ( j R R ) ^ R a d ( Ä i ? ) . 

On the basis of symmetry the reverse inclusion also holds and the equality 
follows. • 

9.3.3 Definition. Rad(Ä) := R a d ( Ä Ä ) = R a d ( Ä Ä ) . 
In general Ä / R a d ( Ä ) is not semisimple; e.g. we have for R = Z since 

Rad(Z) = 0: Z/Rad(Z) = Z / 0 = Z and Z is not semisimple. If however the 
case arises that Ä/RadCR) is semisimple, then interesting Statements can 
be made. 

9.3.4 T H E O R E M . If R is a ring such that R/Rad(R) is semisimple then we 
have: 

(a) Every simple right resp. left R-module is isomorphic to a submodule 
of CR/RadCR))« resp. R{R/R*d{R)). 

(b) The number of the blocks of R/Rad(R) is finite and equal to the 
number of the isomorphism classes of simple right R-modules and equal to 
the number of isomorphism classes of simple left R-modules. 

Proof. (a) Since every cyclic right i?-module MR = mR is an epimorphic 
image of RR, it follows that M = R/A with A «-> RR. I f now MR is simple, 
then A must be maximal. Consequently Rad(i?) A then holds and we 
obtain 

M = R/A = ( Ä / R a d ( Ä ) ) / ( A / R a d ( Ä ) ) . 

Since R := Ä / R a d CR) is semisimple, Ä := A / R a d ( Ä ) is a direct summand, 
thus 

RR=Ä®By 

from which MR =BR follows. Analogously for the left side. 
(b) As we know, the Ä-submodules of RR coincide with the right ideals 

of R, and two R-submodules are isomorphic if and only if they are 
isomorphic as right ideals of R. The assertion then follows from 7.2.3 and 
8.2.6. 0 

We had established in 9.2.1, that for an arbitrary module we have 

M R a d G R W R a d ( M ) . 

Here we give a condition sufficient to ensure M Rad CR) = Rad(M). 
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9.3.5 T H E O R E M . If R/Rad(R) is a semisimple ring then we have for every 
module MR: 

(1) Rad(M) = M RadCR). 
(2) Soc(M) = / M (RadCR)) := {m\m eM A m Rad(JR) = 0}. 

Proof (1) Since ( M / M RadCR)) RadCR) = 0, M / M RadCR) can be con­
sidered as an jR/RadCR)-module, in which the -submodules and the 
JR/RadCR) submodules are the same. As a module over the semisimple 
ring Ä / R a d R, by 8.2.2 M/M RadCR) is semisimple, thus we have by 9.2.1 
(a) R a d ( M / M R a d ( Ä ) ) = 0. By 9.1.4(b) it follows therefore that 
Rad(M) <-» M RadCR) and then 9.2.1 (b) implies (1). 

(2) First of all from 9.2.1 (a) and (b) it follows that Soc(M)«-» / M (RadCR)). 
On the other hand /M(RadCR)) is semisimple as an Ä/RadCR) module and 
hence also as an Ä-module. Thus we have also / M (RadCR)) Soc(M). • 

9.3.6 Definition. A right, left or two-sided ideal A of a ring R is called 
a nil ideal : ^ V a e A 3 n e N[an = 0], resp. nilpotent ideal :<$3ne 
N[An=0]. 

9.3.7 C O R O L L A R Y 

(a) Every one-sided or two-sided nilpotent ideal is a nil ideal. 
(b) The sum oftwo nilpotent right, left or two-sided ideals is again nilpotent. 
(c) If RR is noetherian then every two-sided nil ideal is nilpotent. 

Proof. (a) Clear. 
(b) Let A~>RR, B^RR and Am =0, Bn =0. We assert that 

( A + B ) m + " = 0 . Let a , eA , bt eB, i = 1 , . . . , m + n, then by the Binomial 
Theorem 

n (a, + b,) 
/•= 1 

is a sum of products of m + n factors of which either at least m factors are 
from A or at least n factors are from B. Since A and B are right ideals 
the assertion follows. 

(c) Let i V b e a two-sided nil ideal of R. Since RR is noetherian, among 
the nilpotent right ideals contained in N there is a maximal one; let A 
be one such and suppose we have A " = 0 . By (b) A is indeed the 
largest nilpotent right ideal contained in N. Since for x e R xA is also a 
nilpotent right ideal contained in N, A is in fact a two-sided ideal. If for 
an element beN we have: (bR)k A, then it follows that (bR)kn =0, 
thus bR A. 



9.3 T H E R A D I C A L O F A R I N G 223 

We claim that A=N. Suppose Ar±N9 then let b e N\A (set-complement 
to A in N) be chosen so that 

rR(b9A) := {r\reR AbreA} 

is maximal. For an arbitrary x e R we then have xb e N as well as 

rR(b,A)<+rR(xb,A), 

since N and A are two-sided ideals. Consequently for xb£ A we must have 

rR{b9A) = rR(xb,A). 

For xb£A let ( j t £ ) k e A and 0 t 6 ) k - 1 £ A (k exists, since *6 is nilpotent!), 
then it follows that 

rR(b,A) = rR((xb)k-\A)9 

thus bxb e A and consequently (bR)2 ^ A , in which the two-sidedness of 
A for xb e A is used. As established at the beginning, it follows that bR ^ A , 
t h u s i e A ^ . • 

We now investigate the relation between the recently introduced concepts 
and the concepts of the radical. 

9.3.8 T H E O R E M . Every (one-sided or two-sided) nil ideal is contained in 
Rad(Ä) . 

Proof. Let A be a nil right ideal and let a e A , an = 0, then we have 

{\ + a + ... + an-x){\-a) = {\-a){\+a +.. . + an~l) 

= \ - a n = l9 

i.e. 1-a has an inverse element. By Lemma 9.3.1 it follows that 
A ^ R a d ( Ä ) . • 

We consider now the radical of an artinian ring. 

9.3.9 T H E O R E M . Rr is artinian =>Rad(i?) is nilpotent. 

Proof. For brevity let U := Rad(i?). Since RR is artinian, the chain 

R ^ U ^ U 2 ^ . . . 

is stationary, i.e. there is an n e N with Un = Un+l (i e N). I t is to be shown 
that Un = 0. Suppose Un * 0. Then the set of right ideals 

T : = {A\A~>RR A A [ / V 0 } 
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is not empty, since UeF. By assumption there is a minimal A0eT. Then 
there exists a0eA0 with a0Un T^O, thus also a0RUn # 0 , and from the 
minimality of A 0 it follows that a0R = A0. As Un = Un + l and RU = U we 
deduce further that 

a 0 i W = a0RUU" = a0U- U\ 

so that indeed a0U = a0R =A0 holds. Since RR is hnitely generated and 
U = RadCR) it follows on the other hand by Nakayama's Lemma ( 9 . 2 . 1 ) 
that: a0U = a0RU ^ a0R, thus a0U^a0R H. • 

9 . 3 . 1 0 C O R O L L A R I E S 

(a) yRR is artinian RadCR) is the largest nilpotent right, left or two-sided 
ideal of R. 

(b) R is commutative and artinian RadCR) is the set of all nilpotent 
elements of R. 

(c) RR is artinian ^>for every right R-module MR resp. for every left 
R-module RM we have 

Rad(M) = MRad(jR) Af resp. Rad(M) = RadCR)M Af. 

Proof (a): RadCR) is nilpotent and every nilpotent ideal is contained in it. 
(b) : Since Rad(Ä) is nilpotent, every one of its elements is nilpotent. 

Let now a €R, an - 0 . Then it follows that since JR is commutative 

(aR)n = anRn = anR =0R=0, 

thus aR is nilpotent and consequently aeaR ^ RadCR). 
(c) By 9 .2 .3 and 9 .3 .5 we have Rad(M) = M RadCR) resp. Rad(M) = 

RadCR)M Since by 9 .3 .9 RadCR) is nilpotent, there is an n e N with 
(RadCR))" = 0 . Let now for U ~> MR 

Af = U + M RadCR), 

then by substituting the equality for Af ( r t - l ) t imes into Af RadCR) it 
follows that on the right side of the equality we have 

Af = C / + Af (Rad CR ))" = £/, 

thus M RadCR) ^ Af holds. This equally holds for left Ä-modules. • 

9 . 3 . 1 1 T H E O R E M . Let R/Rad(R) be semisimple and let RadCR) be nil­
potent. Then the following are equivalent for a module MR: 

( 1 ) MR is artinian. 
( 2 ) MR is noetherian. 
( 3 ) Af Ä has finite length. 

(Analogously for left R-modules.) 
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Proof. Since (1)A(2)<^(3) it suffices to show that ( 1 ) » ( 2 ) . Put 
U := RadCR); then we define 

e(M) := Min{ / | / e N A ML/ ' ' = 0}, 

then this e (M) exists, since there is an n with U" = 0, thus also MUn = 0. 
We now prove (1)<£>(2) by means of induction over e (M) for all modules 

Beginning: e(M) = 1, i.e. MU = 0. Then by putting 

m(r+U) *= rar, r e R , meM 

M becomes an R := i?/L/-module, in which the i?- and jR-submodules 
coincide. Since R is semisimple, M is semisimple (8.2.2(a)) and ( l ) ö ( 2 ) 
holds by 8.1.6. 

Now let the assertion be satisfied for all M with e(M)^k and suppose 
e ( M ) = fc + l . Then it follows that e(MUk) = l. As (M/MUk)Uk = 0 we 
have further e(M/MUk)^k. 

Let now M be artinian resp. noetherian, then by 6.1.2 A f l / * and M/MUk 

are both artinian resp. noetherian. Then by the induction assumption both 
are noetherian resp. artinian, and by 6.1.2 M is noetherian resp. artinian. • 

9.3.12 C O R O L L A R Y 

(a) Let RR be artinian and let MR be artinian resp. noetherian, then MR 

is also noetherian resp. artinian. 
(b) If RR is artinian, then RR is noetherian. 
(c) If RR is artinian and RR is noetherian then RR is artinian. 

Proof. (a) By 9.2.3 R/Rad(R) is semisimple and by 9.3.9 Rad(Ä) is ni l ­
potent. The assertion then follows from 9.3.11. 

(b) Special case of (a) for RR = MR. 
(c) By 9.3.11 for RR = RM. • 

9.4 C H A R A C T E R I Z A T I O N S O F F I N I T E L Y G E N E R A T E D 
A N D F I N I T E L Y C O G E N E R A T E D M O D U L E S 

We have already become acquainted earlier with finitely generated and 
finitely cogenerated modules and in particular we have used them for the 
characterization of noetherian and artinian modules (in Chapter 6). We 
are now in a position to present further characterizations. 

9.4.1 T H E O R E M . Mr is finitely generated if and only if we have: 
(a) Rad(M) is small in M; and 
(b) M / R a d ( M ) is finitely generated. 
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Proof. First let MR be finitely generated. Then (a) holds by 9 .2 . l ( c ) . As 
with M every epimorphic image of M is finitely generated, thus (b) also 
holds. Let us now assume (a) and (b). Thus let = j t ,+Rad(M) , / = 
1 , . . . , AI, be a generating set of M / R a d ( M ) . Then it follows that 

xxR +... + xnR + Rad(M) = M , 

since Rad(M) ^ M we deduce that 

+ .. .+xnR = M , 

thus M is finitely generated. • 

9 . 4 . 2 C O R O L L A R Y . A module MR is noetherian if and only if for every 
U ' M we have: 

(a) R a d ( L 0 ^ U\ and 
(b) t//Rad(C7) is finitely generated. 

Proof. This follows by 6 .1 .2 and 9 . 4 . 1 . • 

We now consider finitely cogenerated modules. 

9.4 .3 T H E O R E M . For a module MR ^ 0 the following conditions are 
equivalent: 

( 1 ) M is finitely cogenerated. 
( 2 ) (a) Soc(M) is large in M and (b) Soc(M) is finitely cogenerated. 
( 3 ) For an injective hull I{M) of M we have 

/ ( M ) = o1e...ea, 
where every O, is an injective hull of a simple R-module. 

Proof. 4 ' ( 1 ) ^ > ( 2 ) " : (a) With the help of Zorn's Lemma we show that every 
submodule U M , U ^ 0 contains a simple submodule E, so that U n 
Soc(M) * 0 then also holds. Let 

r :={(7,|/G/} 

be the set of all submodules Ut ^ 0 of U. As U e T, T ̂  0 . In T we dehne 
an ordering by 

Ut *zUr-<* Uj ~> Ui 

(reverse inclusion). Let 

A = { A / | / € / } 
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be a totally ordered subset of T. We then show that 

jeJ 

is an upper bound of A in T. If we suppose D = 0, then by (1) the intersection 
of finitely many of the Ai must already be equal to zero. Since A is totally 
ordered, under these finitely many Ai there is a largest element (with 
respect to the reverse inclusion), and this must then be already equal to 
zero: contradiction to [7 ,7*0! Thus DT*0 and consequently DeT. By 
Zorn's Lemma there is now a maximal element U0 in T and this U0 is 
obviously a simple submodule of U. 

(b) By definition of "finitely cogenerated" as well as M every submodule 
of M is finitely cogenerated, thus also Rad(M). 

" ( 2 ) ^ ( 1 ) " : From 

C]Ai = 0 with At <-> M 
i e / 

it follows that f l Soc(A,) = 0. 
As i e I 

Soc(A,) Soc(M) 

and since Soc(M) is finitely cogenerated, there is a finite subset I 0 <= / with 

PI Soc(A,) = 0. 

For an arbitrary submodule A ^ M w e have by the definition of the socle 

S o c ( A ) = A n S o c ( M ) . 

Therefore it follows that 

0 = H Soc(A,) = H (AT n Soc(M)) = ( D A) n Soc(M). 

Since by assumption Soc(M) is large in M , we obtain finally 

n Ai=o. 
iel0 

(2)=£>(1) is therefore proved. 
" ( 2 ) ^ ( 3 ) " : Let I(M) be an injective hull of M with M I(M) and let 

M * 0. As Soc(M) M it follows that Soc(M) # 0. Let 
Soc(M) = JEi@.. .®En 

with simple modules Ei and let Q, I{M) be the injective hull of Then 
by 5.1.7 we have 
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(as sums in / (Af ) ) , as well as 

Soc(M) ^ © Q, 
i = \ 

n 

As a finite direct sum of injective modules 0 Qt is injective and con-

sequently is a direct summand in / ( A f ) . As Soc(M) ^ Af and M / ( A f ) 
it follows that Soc(Af) / ( A f ) , thus also 

© a ^ / ( A f ) . 
»=i 

From the last two Statements we deduce that 

© Oi = / ( A f ) 
i = i 

which was to be shown. 
"(3)=>(2)": Without loss it can again be supposed that 

M ^ / ( A f ) = © Q , . 
i = i 

and that as well as Ei Qh Ei is simple. As Ei Qt Ei is the only simple 
submodule of (?,-. Hence by 9.1.5 we have 

Soc(/(Af)) = ©Soc(a-) = 
/ = 1 i = 1 

As Af ̂  / ( A f ) we have E{ <-*> Af for / = 1 , . . . , n, thus 

Soc(Af) = © £ , - . 

By 8.1.6 Soc(Af) is hnitely cogenerated, i.e. (2)(b) is satished. As 

Soc(Af) = Soc(/(Af)) / ( A f ) 

we also have Soc(Af) Af, i.e. (2)(a) is also satished. • 

9.4.4 C O R O L L A R Y . A module MR is artinian if and only if for every 
factor-module Af/ U we have: 

(a) Soc(Af/t/) *>M/U\ and 
(b) Soc(Af/ U) is finitely cogenerated. 

Proof This follows from 6.1.2 and 9.4.3. • 
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9.5 ON T H E C H A R A C T E R I Z A T I O N O F A R T I N I A N 
A N D N O E T H E R I A N RINGS 

In Chapter 6 the following Theorem (6.6.4) was stated but was there 
proved only in part. 

9.5.1 T H E O R E M 

(a) The following conditions are equivalent: 
(1) RR is noetherian. 
(2) Every injective module QR is a direct sum of directly indecompos­
able [injective) submodules. 

(b) The following conditions are equivalent: 
(1) RR is artinian. 
(2) Every injective module QR is a direct sum of injective hulls of 
simple R-modules. 

The implication (1)=>(2) was proved in 6.6.5, from which it now suffices, 
by 9.3.12, only to assume in (b) that RR is artinian (and not additionally, 
as in Chapter 6, that RR is noetherian). The lemma for proving the converse 
is now available. 

Proof of (b). " ( 2 ) ^ ( 1 ) " : In view of 9.9.4 it suffices to show that every 
factor module M = R/A of RR satishes condition (3) in 9.4.3. Let I(R/A) 
be an injective hull of R/A with R/A I(R/A). By assumption we have 

/ ( Ä / A ) 
iel 

where the Q, are the injective hulls of simple R-modules. Since R/A is 
cyclic, R/A is already contained in a hnite subsum: 

R/A ~> © Qh hnite / 0 . 
ielo 

From R/A <*> I(R/A) it then follows that / = J 0 , i.e. I(R/A) = © Qh which 
was to be shown. < e / ° 

Proof of (a). "(2)4>(1)": The proof is established by showing that condition 
(3) in 6.5.1 is satished. Let 

M = © Q , -
/=i 

be a direct sum of injective hulls Q, of simple R-modules Et <-» (?,. Let 
I(M) be the injective hull of M with M «-> I(M). We prove that M = I(M). 
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As M ^ I(M) we have Soc(M) = Soc(/(M)). Further we have 
oo oo 

Soc(M) = © S o c ( Q , ) = © £ , 
1=1 i = l 

We now use the assumption J ( M ) = © D ; where the D, are directly 
indecomposable injective modules. Let 1 € J 

/ ^ { / l / e / A S o c d J / J ^ O } , 

then we have 
Soc( / (M))= 0 Soc(D/). 

If Soc(D,-) T * 0 then by 6 .6 .3 F ; := Soc(£>y) is simple and Df is the injective 
hull of Ff. Consequently we have 

S o c ( J ( M ) ) = © E , = © F „ 
i = l jeJi 

and by the Krull-Remak-Schmidt Theorem these two decompositions are 
isomorphic (in the sense of 7 . 3 . 1 ) . I f J E / = F 7 then by 5 .6 .3 it follows that 
Q(~Dj and by consideration of the bijection in 7 . 3 . 1 we obtain 

M = © G - 0 D}. 
i = l / e / i 

As 

/ ( M ) = ( © D , W © D), 

M is therefore isomorphic to a direct summand of the injective module 
I(M) and is itself thereby injective which was to be shown. • 

9.6 T H E R A D I C A L O F T H E E N D O M O R P H I S M R I N G O F 
A N I N J E C T I V E O R P R O J E C T I V E M O D U L E 

For certain considerations it is of interest to know the radical of the 
endomorphism ring of an injective or projective module. We wish to 
concern ourseives here with this issue. As an application it is then to be 
shown that for a projective module P ^ 0 we always have Rad(F) ^ P, which 
also indicates that P always contains a maximal submodule. 

9 . 6 . 1 T H E O R E M 

(a) Let QR be injective and let S := End((? Ä ) , then we have for a eS: 

Sa «s> sS<Z>a eRad(S)<^>Ker(a) QR. 
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(b) Let PR be projective and let S := End(PR), then we have foraeS: 

aS Ss<$a eRad(S)<^>Im(a) PR. 

Proof. (a) "Sa ^ s5<=>a e Rad(S)": This holds by 9.1.3. 
(a) 4 ' aeRad(S) :=>Ker(a)*>Q R " : Let U ^ QR with K e r ( a ) n C / = 0. 

Then a 0 •= a | t / is a monomorphism and there exists a commutative 
diagram 

17-

As u = = jSa 0 («) = ßor(«), w e £/, we have t / ^ K e r ( l -ßa). Since a € 
Rad(S), it follows that /3a eRad(S). From 9.3.1 l - / 3 a is then invertible, 
thus K e r ( l - ß a ) = 0, from which U = 0 follows. Hence we have shown 
that Ker(a) is large in Q. 

(a) "Ker(a) QR =>Sa s 5 " : Let Sa+T = sS with T SS, then there 
are er G 5, y G T with cra + y = 1. From this it follows that Ker(a) n Ker(y) = 
0, and as Ker(a) QR we deduce that Ker(y) = 0. Then there exists a 
commutative diagram 

i.e., we have l Q = 8y and hence it follows that T = 5, thus 5a ^ sS. 
(b) u a S ^ 5 s « a e Rad(S)": This holds by 9.1.3. 
(b) u a e R a d ( S ) ^ I m ( a ) ^ i V ' : Let U P R with I m ( a ) + C / = P, and 

let v\P-*P/U be the natural epimorphism. Then i/a is an epimorphism 
and we obtain the commutative diagram 

'P/U 

From v = vaß it follows that v(\-aß) = 0, thus I m ( l - a ß ) ^ [/. As a e 
Rad(S) we also have aß e Rad(S), and by 9.3.1 1 - a ß is then invertible, 
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thus 

P = lm(l-aß) U~>P, 

i.e. U -P. Hence we have shown that Im(a) ^ PR. 
(b) "ImW^PR^aS^Ss": Let aS + r = Ss with r ~> Ss, then there 

are <x e S, y e T with acr + y = 1. From this it follows that Im(a) + Im(y) = F , 
thus Im(y) = F as I m ( o : ) c ^ F i ? . Hence y is an epimorphism and con­
sequently there exists a 8 so that the diagram 

is commutative, thus we have 1 P = y8. I t then follows that T = 5, which was 
to be shown. • 

9 . 6 . 2 C O R O L L A R Y . Let QR be injective and let S := End(Q Ä ) . Then to 
every aeS there is a yeS with aya -a eRad(S). 

Proof. Let a G 5 and let U be an inco of Ker(a) in Q. By 5.2 .5 we then 
have Ker(a) + U «*» Q. As Ker(a) n U = 0 , a 0 •= a\U is a monomorphism. 
Hence there exists a y e 5 so that the diagram 

£/ >Q 

Q 

is commutative (t = the inclusion mapping). For ueU it then follows that 

ya(u) = ya0(u) = u. 

Hence we have 

K e r ( a ) + U ^ Ker(aya - a ) 

and as 

K e r ( a ) + £ / ^ Q 

it also follows that 

Ker(aya -a)^ Q. 
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From 9.6.1 it then follows that 

aya — a e Rad(S). • 

This result says that 5/Rad(5) is a regulär ring. Regulär rings are introduced 
in the next paragraph and investigated in detail. 

The Dual Basis Lemma and 9.6.1(b) also yield an interesting result on 
the radical of a projective module. 

9.6.3 T H E O R E M . For every projective module P 5* 0 

Rad(P)^F . 

Proof. We consider generally: If p e P R and <p e F* = HomR(PR, RR)9 then 
p<p can be considered as an element from 5 = End(PR); namely let for x e P 

(p<p)(x) := p<p(x)y 

then from 

(p<p){xlrl + x2r2)=p<p{xxrl+x2r2) 

this is in fact an element of 5. Let now p e Rad(P), then pR RRi and 
consequently we also have Im(p<p) = p<p(P) PR (as p<p(P)^> pR). By 
9.6.l(b) it follows that p<pS 5 S . Let 

be a representation of x in the sense of the Dual Basis Lemma 5.4.2. I f 
we now suppose x ^ 0 and let (after a change of indices) / = 1 , . . . , n be 
the indices with (pt(x) 5* 0, then it follows that 

in the sense of the earlier Interpretation of the as elements of S. I f we 
now suppose Rad(P) = P, then we have I m ( p ^ i ) ^ PR, thus p&iS ^ Ss, 
thus pi<pi G Rad(S) and hnally 

= p(<p(x1)rl + <p(x2)r2) = (p<p(xi))ri + (p<p(x2))r2 

= (p<p)(xx)rx + {p(p){x2)r2 

x= Z Pt<Pi(x) 

n 
I p,<p,eRad(S). 
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By 9.3.1 

i p ~ Z W / 

is then an invertible element in 5; let er e S be the inverse element, then 
it follows that 

The supposition O^xeP was thus false, and under the assumption 

As we have already remarked at the beginning, it follows from Rad(P) ^ P 
that P has at least one maximal submodule. 

9.6.4 C O R O L L A R Y . If P is projective and we have P = P\®P2 with 
P2 «-> Rad(P) then it follows that P2 = 0. 

Proof Let TT : P -» P2 be the projection of P onto P 2 , then from P2 «-> Rad(P) 
it follows by 9.1.4 that P2 ~> 7r(Rad(P)) ~> Rad(P 2), thus P2 = Rad(P 2). 
Since P2 is projective, it follows from 9 .6 .3 that P2 = 0. • 

As we have seen in 9 .2 . l (b ) we always have M Rad(i?) «-> Rad(M). The 
question arises as to when equality holds. By no means is this the case for 
an arbitrary ring and module; e.g. Rad(Z) = 0 but there are, as we know, 
Z-modules with non-zero radical, as say Z /4Z or Q z (Rad(Q z ) = QzO-

Additionally the following theorem gives certain Information. 

9 . 7 . 1 T H E O R E M . Let MR be the category of unitary right R-modules, and 
let R := Ä / R a d t R ) , then the following are equivalent: 

( 1 ) V M e MR [ M Rad(Ä) = Rad(M)] . 
( 2 ) V M e MR [ M Rad(J?) = 0 ̂  Rad(M) = 0]. 
( 3 ) Vne/W Ä [Rad(f t ) = 0 ] . 
(4) V M , N € MRV(p e Horn«(M, N ) M R a d ( M ) ) = Rad(<p(M))]. 
(5) \/MeMRVU~> M [ R a d ( M ) +U/U = Rad(M/ [ / ) ] . 
( 6 ) V M G W Ä V [ / H M [ R a d ( M ) = 0^>Rad(M/1/) = 0]. 

Rad(P) = P we have necessarily P = 0. • 

9.7 G O O D R I N G S 

Proof We prove (1)=»(2)=>(3)=>(1) and (1)=>(4)=>(5)=>(6)^(1). 
" ( 1 ) = > ( 2 ) " : Special case. 
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"(2)=>(3)": Let Cle MR, then f l can be made into a right Ä-module by 
means of the following dehnition: 

cor := cor, coefl, r = r + RadCR) e 

For ü considered as a right jR-module we then obviously have 
ü RadCR) = 0. By (2) itfollows that R a d ( ü * ) = 0. But since by the dehnition 
of CtR the R- and .R-submodules of f l coincide, i t follows also that 
Rad(a^) = 0. 

"(3)=>_(1)": As ( M / M RadCR)) RadCR) = 0, M/M RadCR) can be made 
into an R-module by the following dehnition 

mr = (m+M RadCR))(r + RadCR)) '•= mr = mr + M RadCR), 

in which the R- and R-submodules of M / M RadCR) again coincide. I t 
then follows from R a d ( ( M / M RadCR))*) = 0 that also 
R a d ( M / M R a d ( i ? ) ) Ä ) = 0, and hence from 9.1.4(b) we have 
Rad(M) <-> M RadCR), thus from 9.2.1(b) it follows that Rad(M) = 
M RadCR). 

" ( l ) z>(4 )" : From M RadCR) = Rad(M) A <p(M) RadCR) = Rad(<pM)) it 
follows that <p(Rad(M)) = <p(M Rad(Ä)) = <p(M) Rad(Ä) = Rad(<p(M)). 

"(4)=>(5)": Special case <p = v\M^M/U. 
"(5)=> (6)": Special case for Rad(M) = 0. 
"(6)4>(1)": By 9.1.5(a) (1) is preserved under isomorphisms of modules. 

Since every module is an epimorphic image of a free module, it suffices to 
prove (1) for modules of the form F/U, where F is a free module and 
U^F. By 9.2.1(g) we have Rad(F) = F RadCR). Hence we have 
Rad(F/F RadCR)) = 0, thus by (6) we also have 

Rad(F/F R a d ( Ä ) ) / ( F RadCR) + U/F Rad(Ä)) = 0. 

Since 

(F /F R a d ( Ä ) ) / ( F Rad(i?)+ U/F Rad(Ä)) = F / ( F Rad(Ä) + U) 

= (Fl U)/(F RadCR )+U/U) 

it then follows that 

Rad((F/ U)/(F RadCR) + UI U) = 0, 

thus by 9.1.4(b) 

Rad(F/U)~>F RadCR) + U/U = (F/U) RadCR). 

By reference to 9.2.1(b) it follows therefore that Rad(F/ U) = (F/ C/)Rad(Ä) 
which was to be shown. • 
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9.7.2 Definition. Let a ring, which satisfies the conditions of Theorem 
9.7.1, be called a right good ring. Correspondingly let a left good ring be 
defined. Let a two-sided good ring be called a good ring. 

9.7.3 C O R O L L A R I E S 

(a) A ring R, for which R := i ? /Rad (Ä) is semisimple, is by (3) a good 
ring. 

(b) By 9.2.3 every (one-sided) artinian ring is consequently a good ring. 
(c) If R is right good ring then by 9.1.5(b) and 9.7.1(1) we have for an 

arbitrary module MR: 

A f = I M f =>Rad(Af )= I Rad(Af,). 
i e / iel 

Finally we remark that there are good rings for which Ä/Rad(jR) is not 
semisimple; e.g. this is the case if /?/Rad(jR) is commutative and regulär 
(see Chapter 10, Exercise 18), but is not semisimple. 

EXERCISES 

(1) 
(a) Show that for a ring R the following S t a t e m e n t s are equivalent: 

(1) For every right £ - m o d u l e Rad(M) ^ Af. 
(2) There is no right £ - m o d u l e Af * 0 with Rad(Af) = Af. 

(b) Show that for a ring R the following S t a t e m e n t s are equivalent: 
(1) For every right Ä-module Soc(Af) Af. 
(2) For every cyclic right R-module Af Soc(Af) Af. 
(3) There is no right Ä-module Af ̂  0 with Soc(Af) = 0. 

(2) 
(a) Let Soc(Af) ^ BR ^ MR A a e A f A a£ B. Show: Then there exists 

C Af with B C A a£ C. 
(b) Show: Soc(Af) ^BR-+MR^B= f ) C. 

(c) Show: Soc(Af) ^ A ~> A f A Soc(Af/A) M/A^A Af. 

(3) 
Show: RR is a cogenerator if and only if the injective hull of every finitely 
cogenerated right Ä-module is projective. 
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(4) 
(a) Determine Rad(/?), Soc(RR), Soc(i?R) and find out whether 

SOC(.RR) = SOC(RR) holds for the following rings: 

zeZ/\a,beQ 

In the above let R be the held of real numbers. 
(b) Assumptions as in Exercise 6 of Chapter 6. Show 

Rad(Ä) = { ( g ™) a 6 R a d ( A ) , m 6 M , i G R a d ( 5 ) J . 

(Hint: Determine the right-invertible elements in R.) 

(5) 
Show: The following Statements are equivalent for MR (Compare 9.2.2(b)): 

(1) M is hnitely cogenerated and Rad(M) = 0. 
(2) M is hnitely generated and semisimple. 

(6) 
Let A be a complete lattice (see 3.1). Let the smallest element be denoted 
by 0 and the largest by M For A , B e A with A ^ B let 

[ A , £ ] : = { L G A | A ^ L ^ J 5 } ; 

under the lattice structure induced from A this is again a complete lattice. 

Definitions 
(a) A family r = ( A , - | / G / ) of elements from A is said to be directed 

upwards if to any two elements Ai9 A 7 from T there exists an element Ak 

from T with A , ^Ak and A] ^ Ak. 
(b) A n element A G A is called compact, if in every directed family 

(Ai\i GI) with A =ssU A f there exists an A , with A ^ A,. 
iel 

(c) A is called compactly generated, if every element from A is a union 
of compact elements. 

(d) A is called modular^A, B, C G A[£ ̂  A =>A n (B u C) = 5 u 
( A n C ) ] . 

(e) A G A is called small in A : O V B G A \ { M } [ A Af ] . 
(f) Rad(A) := P | B. 

m a x . ß in A \ { M } 
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Show: 
(1) U A ^ R a d ( A ) . 

A s m a l l in A 

(2) A is compact and A ^ Rad(A)4> A is small in A. 
(3) A is compactly generated U A= Rad(A). 

A sma l l in A 

(4) For A e A we have A u Rad(A) ̂  Rad([A, M ]). 
(5) If A ^ Rad(A), then we have Rad(A) = Rad([A, Af]) . 
(6) If A is compact Rad(A) is small in A. 
(7) Let A be modular and A e A then we have Rad([0 A])^Rad(A). 
(8) In the lattice A of submodules of a module M what does it mean if 

A e A is compact? (Observe: I J is then +) . 

(7) 
For a module Af* we define: 

(a) Af is semiartinian : <=> V U A f [Soc(M/ U) * 0]. 
(b) Sa(M) := I U. 

semiar t in ian U 

Show: 
(1) Af is semiartinian =>V£/ «-> M[M/U is semiartinian]. 
(2) For arbitrary M Sa(M) is semiartinian. 
(3) VAf, NeMRV<pe Horn*(Af, N)[<p($a(M)) ~> Sa(AT)]. 
(4) Sa(Sa(M)) = Sa(M). 
(5) Sa(M/Sa(M)) = 0. 
(6) Af is semiartinian Soc(Af) M . 
(7) M is semiartinian=>V*7 ̂  M [ S o c ( M / £ / ) ^ M / t / ] . 
(8) Let U ^ M = > M is semiartinian <$M/U is semiartinian A U is semi­

artinian. 
(9) A is semiartinian and M is noetherian <=>M is artinian and M is 

noetherian. 
(10) M is semiartinian and RR is noetherian = > M is the sum of its artinian 

submodules. 

(8) 
Definition, (a) M is seminoetherian : » V t / «-> M , £/ ^ 0[Rad(C/) * [ / ] . 

(b) Snr(M) := £ [/. 
R a d ( L O = C / 

Consider whether the properties dual to those given in problem 7 hold 
and consider respectively under which additional assumptions they hold. 
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(9) 
Definition. Coatomic: 

M: o V [ / <*> M3A M[U A A maximal in A f ] . 

Show: 
(a) If A is semisimple or hnitely generated then Af is coatomic. 
(b) There is a coatomic Z-module M which is neither semisimple nor 

hnitely generated. 
(c) Af is semisimple is coatomic and every maximal submodule of 

Af is a direct summand in Af. 
(d) U ~> Rad(M) and U is coatomic U M. 
(e) Af is coatomic^Rad(Af) ̂  Af. 
(f) There is a module Af with Rad(M) = 0 but Af is not coatomic. 

(10) 

Let Af = A f z be an abelian group and let 

T(M) := {m e M | 3 z * 0[mz = 0]} 

be the torsion subgroup. Show: 
(a) Soc(M) <*>M<$T(M) = M\ Soc(M) = 0<&T(M) = 0. 

(b) U*>M<Z>SOC(M)~>U~>MAT(M/U) = M/U. 
(c) Af is s e m i s i m p l e » 7"(Af) = Af and Rad(Af) = 0. 

(11) 
Show that for a ring R the following Statements are equivalent: 

(1) For every family (Af,|/ e I) of right R-modules we have: 

Soc(n Afi) = n Soc(iWi). 
V / 6 / / iel 

(2) Every product of semisimple right -modules is again semisimple. 
(3) Every radical-free right R-module (i.e. with Rad(M) = 0) is semi­

simple. 
(4) R/Rad(R) is semisimple. 

(12) 
For a right R-module Af show: 

(a) U ^ Af A U is a direct summand in Af ^ R a d ( A f / L 0 = (Rad(Af) + 
U)/£/, Soc(Af/ U) = (Soc(Af) + U)/ U. 

(b) V t / ^ Af[Rad(L0 = £ 7 n R a d ( A f ) ] » R a d ( A f ) = 0. 
(c) V [ / ^ Af[Soc(Af/L0 = (Soc(Af) + U)/U]e>M semisimple. 
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(13) 
(a) Show that for a left ideal U ^> RR the following Statements are 
equivalent* 

(1) (\[MAU=X[(MiU) for every family ( A f , | / e / ) of right JR-

modules. 
(2) RUis finitely generated. 

(b) I f R is right good, then the radical in MR is permutable with direct 
products if and only if Ä Rad CR) is finitely generated. 

(c) I f R is commutative and noetherian then the radical is permutable 
with direct products. 

(14) 
For a commutative ring R we have Rad(Af Ä) = P K M A | A maximal ideal in 
R). A corresponding result wil l be shown more generally for rings in which 
every maximal right ideal is two-sided. 

Definition: For a right R-module MR let 

D(M) := f l { M A | A maximal right ideal in R}. 

Show: 
(a) D(M) is a submodule of MR and for every homomorphism f\M-*N 

we have f(D(M))<=D(N) (i.e. D is a preradical in MR). 
(b) D(RR) = R O n o maximal right ideal is two-sided. 
(c) D(M) = Rad(M) for all M e MR » e v e r y maximal right ideal is two-

sided. 

(15) 
Let Af = Mz be an abelian group. 

Show: There is an abelian group N with Rad(N) = Af. (Hint: Choose an 
injective extension A f ^ Q and consider Soc(Q/Af).) 

(16) 
Notations as in Chapter 5, Exercise 27. Show: 

(a) S is local. 
(b) The socle of Ss has length n + 1. 

(17) 
For every R-module Af we define an ascending sequence of submodules 
Af,(/ = 0 , 1 , 2 , . . . ) by 

Af 0 := 0 and A f , + 1 / M := Soc(Af/M) 
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(more precisely: let v:M -* M/ M{ be the natural epimorphism, then let 
M / + 1 := i / _ , ( S o c ( M / M , ) ) . Show: 

(a) If M is artinian, then we have for every / 5= 0: 
(1) Mi+i has hnite length. 
(2) If B~>Mi+l and if the length of B is then it follows that 
B ~> Mi. 

(b) If M is artinian and a self-generator then M is also noetherian. ( M 
is called a self-generator, if for every submodule U of M we have: 

C/= Z Im(/). 
/ 6 H o m R ( M , LO 

Hint: With regard to (b) show that the set { A | A M A M / A noetherian} 
has a smallest element A 0 and apply (a) with / = length of M / A 0 . ) 

(18) 
For every JR-module M we dehne a descending sequence of submodules 
M ' ( / = 0 , 1 , 2 , . . . ) by 

M ° : = M and M ' + 1 := R a d ( M ' ) . 

Show: 
(a) If i?/RadCR) is semisimple and if MR is noetherian then we have for 

/ssO: 
(1) M / M ' + L has hnite length, 
(2) if Mi+l ^ B ^ M and if the length of M / B is *£/ then it follows that 
M ' <-> 5. 

(b) If /?/Rad(jR) is semisimple and if M is a noetherian seif cogenerator, 
then M is also artinian. 

(c) Question: In (b) can we omit the assumption "jR/RadCR) semi­

simple"? i^M is called a selfcogenerator if for every submodule U of M 

w e h a v e : 0 = P l Ker( / ) . ) 
fe Horn R(M/UM) ' 



Chapter 10 

The Tensor Producta Fiat Modules and Regulär Rings 

The significance of the tensor product depends above all on the two 
following facts: 

(1) The tensor product has an important factorization property, namely 
every tensorial mapping can be factorized over the tensor product and the 
tensor product is uniquely determined up to isomorphism by this property. 

(2) The tensor product is a functor (10.3.1) and in fact is an adjoint 
functor to the functor Horn (10.3.4). 

10.1 D E F I N I T I O N A N D F A C T O R I Z A T I O N PROPERTY 

The tensor product links a module As and a module SU into a new module 

A® U, 
s 

which, in general, is a Z-module, under suitable assumptions however it 
can also be a module over other rings. 

In order to define A® U let 
s 

AxJJ = {(a, u) | a e A A U e U] 

be the product set of A and U and let F = F(A x [/, Z) denote the free 
right Z-module (or left module—the side for Z plays no role) with the basis 
AxU (see 4.4). We again denote the basis elements of F by (a, «) . Finally 
let K be the submodule of F (as a Z-module) generated by the set 
D\\JD2KJT with 

D\ = {(a + a', u)-(a, u)-(a'', u)\a, a'e A A U e U}, 

242 
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D2 = {(a, u + u')- (a, u) - (a, u') \ a G A A U, U' G U}, 

T = {(as, u)-(a,su)\aeAAueU A S G 5}. 

10.1.1 Definition. The factor module F/K is called the tensor product of 
As and SU over S, notationally 

A®U'.= F/K. 
s 

The image of the element (a,u)eF under the natural epimorphism F - » F/K 
is called the tensor product of a and w and is denoted by a ® w: 

a® u := (a, u) + K. 

If it is clear from the relationship that we have a tensor product over S, 
then we write only A® U. 

For the tensor product the following operational rules hold. 

10.1.2 Operational Rules 

(1) (a + a') ® u = a ® u + a' ® u, 

(2) a ® (u + u') = a ® u + a ® u', 

(3) as® u = a® su, 

(4) 0 ® w = a ® 0 = 0, 

(5) -(a ®u) = (-a) ®u = a® (-u), 

(6) (a®u)z = (az)®u = a®(uz), zeZ. 

Proof. (1), (2), (3) by dehnition of K. 

(4) 0 ® w + 0 ® w = (0 + 0 ) ® « = 0 ® w 4 > 0 ® a = 0 ; 

analogously it follows that a ® 0 = 0. 

(5) a ® w + ( - a ) ® w = ( a - a ) ® w = 0 ® w = 0 4 > ( - a ) ® w 

= - ( a ® «) ; 

analogously for <z ® (~u). 

(6) z > 0 : ( a ® w ) z = a ® w + . . . + a ® w = ( a + . . . + a ) ® w = (az) ® u; 

z = 0:(a®u)0 = 0 = 0®u = (a0)®u; 

z<0:(a® u)(-z) = (a(-z)) ®u = (-az) ®u = -((az) ® u) 
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by (5). Since we also have 

(a ® u)(-z) + {a ® u)z = {a® u){-z+z) = (a ® u)0 = 0 

the uniquely determined element negative to —{{az)®u) is on the one 
hand az ® u and on the other hand (a ® u)z, thus we have (az) ® u = 
(a ® u)z; analogously for u. • 

10.1.3 Remarks 
(1) The free right Z-module F can also be considered as a free left 

Z-module; the side is of no significance, and in the following the side for 
F and A ® U is chosen which is the more convenient for the purpose 

s 
under consideration. 

(2) By Rule (6) every element t e A ® U can be written as a finite sum 
s 

of the form 
t = Idai® u{. 

(3) The representation t = £ di ® «/ is not uniquely determined in gen-
eral, and indeed not even if it is a representation of "shortest length". 

(4) The tensor product of two modules diflferent from zero can be zero. 
Example for (3) and (4). Let A = (Z /2Z) Z , U = Z ( Z / 3 Z ) , then we have for 
arbitrary aeA, ueU in A® U: 

z 

0 ® 0 = 0 = a ® 0 - 0 ® u = a ® (3u)-(2a)® u 

= 3(a ® u) -2(a ® u) = a ® u, 
thus 

A® U = 0. 

10.1.4 Definition. Let As, sU, Mz be given. 

(1) A mapping of <p : A x U-+M is called biadditive 

Va, Ö ' G A V W , W'G U[<p(a + a', u) = (p(a, u) + <p(a', u) A 

cp(a, u + u') = (p(a, u) + cp(a, u')]. 

(2) A biadditive mapping <p is called an S-tensorial mapping : 0 

Va G AVw € UVs € S[cp(as, u) = <p(a, su)]. 

10.1.5 C O R O L L A R Y . Letv.F'^F/K = A ® Übe the natural epimorphism 
s 

and let r be its restriction onto the basis AxUofF, 

T := v\AxU, i.e. r{a,u) = a®u, 
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then we have: For every Z-homomorphism A :A® U-*M the mapping 

s 

<p := \T:AXU-*M 

is an S-tensorial mapping. In particular r is an S-tensorial mapping. 

Proof. We have 

kr(a+a\ u) = \((a + a')® u) = \(a® u + a'® u) = \(a® u) 

+ A ( a ' ® «) = Ar(a, w) + Ar(a ' , u). 

The other properties follow analogously. • 

In the following it is important that we can express the image of an 
element under A by cp := Ar: 

(10.1.6) A £ at ® ud = I A (at ® ud = I Ar(a„ ut) = I <p(ah ut). 

Now let Tens(A x U, M) denote the set of 5-tensorial mappings of A x U 
into M ; then by the dehnition 

(<Pi + <P2)(a, u) := «pi(a, u) + <p2(a, u\ (-<p)(a, u) := -<p(a, w) 

this set obviously becomes a Z-module and the mapping 

$ : H o m z ( A ® U9 M) 9 A (p := Ar e Tens(A x U, M) 
s 

is a Z-homomorphism. 

10.1.7 T H E O R E M . O /S an isomorphism. 

Proof. Injectivity of <J>: This follows from 10.1.6. Surjectivity of <t>: Given 

<p e Tens(A x U, M) we seek a A e H o m z ( A ® U, M) with <p = Ar. 
5 

First of all <p is extended to <p e Hom z (F , M) by the dehnition 

Since <p is 5-tensorial it follows that K Ker(<p). Consequently <p can be 
factorized over F/K =A® U (3.4.7 special case); the factorizing mapping, 

s 
which is again a Z-homomorphism, we call A and therefore we have <p - Ar. 

• 

For later applications we summarize 10.1.6 and 10.1.7 in the following 
S t a t e m e n t s : 
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10 .1 .8 C O R O L L A R Y . For every S-tensorial mapping <p:AxU->M there 

is exactly one Z-homomorphism A :A® U-*M with <p = Ar, such that 
s 

A ( I ai®ui) = Yd<p(ah Ui) 

also holds. 

Finally it is to be shown that the tensor product A ® U is uniquely 
s 

determined by 1 0 . 1 . 8 up to isomorphism. 
More precisely: Given C z , let y : A x U ^ C be an S-tensorial mapping 

so that for every Z-module M and every 5-tensorial mapping <p:AxU -+M 
there exists exactly one Z-homomorphism 

with cp = r\y, then we have A ® U = C as Z-modules. 
s 

In the proof we can certainly make do with weaker assumptions as the 
following theorem shows. 

1 0 . 1 . 9 T H E O R E M . Let y:AxU-+Cbean S-tensorial mapping with the 
following properties: 

(1) There exists a Z-homomorphism 

cr:C->A®U 
s 

with r = ay (i.e. factorization of r over y is possible). 
(2) The equation y-y\y with rj e Hom z (C , C) is only satisfied for 17 = l c 

(i.e. factorization of y over y is unique). 
Then we have 

C =A ® U as Z-modules. 

s 

Proof. By 1 0 . 1 . 8 there is a p:A® U^C with y = pr and by assumption 

we have r = cry. From the two equations together it follows that: 

r = crpr, y = pay. 

By 10 .1 .8 and assumption (2) it then follows that 

ap = lA®u, pa = lc, 

thus C = A ® t / . • 
s 
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Nevertheless with regard to the tensor product only the equation y — pr 
and the uniqueness of the factorization r = crpr wi l l be used. 

10.2 F U R T H E R P R O P E R T I E S O F T H E T E N S O R P R O D U C T 

10.2.1 T H E TENSOR P R O D U C T OF H O M O M O R P H I S M S 

Let 5-modules A s , Bs as well as SU, SV and 5-homomorphisms 

a:A->By fi:U+V 

be given. Then we consider the mapping 

<p:AxU3(ayu)*-+a(a)®p(u)eB® V. 
s 

As is immediately verihed, this is an 5-tensorial mapping of A x U into 
Z? ® V, in which thus <p(a, u) = a(a) ® p(u) holds. The Z-homomorphism 

5 

of A ® U into B ® V, which exists in the sense of 10.1.8, is to be denoted 
s s 

by a ® p; thus we have: 

a ® p: A® U 3Y,ai® Ui*-^Y,<x(cii)® p,(iii)€B ® V, 
s s 

i.e. we apply a and p, to the respective components. 

Definition, a ® p is called the tensor product of the homomorphisms a and 

The following properties of this tensor product of homomorphisms are 
immediately clear: 

(1) 1 A ® 1 L / = 1 A ® U. 
s 

(2) Besides a and p, let the homomorphisms ß : Bs -> Cs, v : sV -> s W be 
given, then we have (ßa) ® (vp) = (ß® v)(a ® p). 

(3) Let a and p be isomorphisms, then a® p, is an isomorphism and 
(a ® p)~l = a~l ® pi~l holds. 

10.2.2 M O D U L E PROPERTIES OF T H E TENSOR P R O D U C T 

Now let R be also a ring and let RAS be a bimodule. I t is to be established 
that according to the dehnition 

r ( I at ® ut) := X (ra,) ® uh reR, 
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A ® U is then a left R-module. For this purpose we consider for fixed 
s 

reR the mapping 

A 3a^ra eA. 

Since RAS is a bimodule, this is evidently an 5-homomorphism which is to 
be denoted by r\ By 10.2.1 r' ® \ v is then a homomorphism with 

f® lv\A® Us^di® u^Y. (rai)®Ui€A® U, 
s s 

so that the definition above in fact makes A® U into a left Ä-module . 
s 

(Z (rat) ® Ut is uniquely determined by r and Z dt ® independently of 
the representation of Z a{ ® «,•!) 

I f SUT is a bimodule, then by the definition 

(Z at ® udt := Z at ® (utt\ t e T 

A® U becomes a right T-module and in the case RAS, sUT, we have 
s 

A ® U as an Ä-T-bimodule. 
s 

Let homomorphisms 

a : RAS -> RBS, fj,:sU->sV 

be given, then a ® ß is an Ä-homomorphism 

a®fji:R(A® U)->R(B® V), 
s s 

for 

(a ® n)(r Z cii ® Ui) = £ a(rflf) ® 

= I ra(a,) ® /A(w,-) = r Z a(a,-) ® M(W,) 

= r(a ® /x)(Z ® «/)• 
Correspondingly for 

a : RAS ->RBS, fi: s£/ T -»s VV 

a ® fM is an Ä-T-bimodule homomorphism of R(A ® U)T into R{B ® V)T. 
s s 

Ii R is a subring of the centre of S (for commutative S e.g. R =S) then 
by definition 

ra dr, ur := rw, r € aeA, ueU 
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As and SU become RS resp. S-R bimodules and A ® U is a two-sided 
s 

Ä-bimodule. We then have 

r(Z ei, ® ui) = Z (rat) ® ut = Z (a,r) ® u{ 

= Z a, ® (rw;) = Z a,- ® (utr) = (Z fl/ ® ut)r. 
The special case of S commutative and R = S is of particular interest. 

Now let RAS> SU and RM be given, as well as an S-tensorial mapping 

(p:AxU^M with cp(raf u) = r(p(a, u), reR. 

We consider A ® U as a left .R-module and show that the Z-homomorphism 
s 

A which exists in the sense of 10.1.8 is also an Ä-homomorphism: 

A (r Z * ® Ui) = A (Z (rat) ® ut) = Z <p{rau u{) 

= Z r<p(ah ud = rk (Z a{ ® ut). 

A corresponding S t a t e m e n t holds also in the case RASi SUT, RMT. 

Finally we wish to establish that the mapping 

A: A ® S 3 Z ai ® Si^ -̂>Z CLtSi € A 
s 

is an S-isomorphism of the right S-modules A ® 5 and As. Since 
s 

<p: AxS3(a, s)>->aseA 

is 5-tensorial and <p(a9 ssi) = <p(a, s)si holds, A is an 5-homomorphism and 
indeed is obviously an epimorphism. Let Z ® st e Ker(A), thus Z - 0, 
then it follows that 

Zai®Si=Z(cnSi® D = (ZcitSi)® 1 = 0 ® 1 = 0 , 

i.e. A is also a monomorphism, thus an isomorphism. Analogously we also 
h a v e s ( 5 ® U) = SU. 

s 

10.2.3 A S S O C I A T I V I T Y OF T H E TENSOR P R O D U C T 

We have to show here that the tensor product is associative up to 
isomorphism. Let modules AR, RMSI sU be given, then we assert: 

(A ® M) ® U=A®(M ® U), 
R S R S 

and this isomorphism is obtained from 

(*) Z ( f l i ® rrii) ® w,^Z dt ® {nti ® «/). 
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For the proof we consider the mapping 

<pu: A xM3(af m)^a ® (m ® u)e A ® (M ® U) 
R S 

with respect to a fixed u e U. 
As we see immediately, this is an Ä-tensorial mapping, so that by 10.1.8 

the homomorphism 

ku:A®MsYdai®mi M > £ at ® (m,- ® u) e A ® (M ® U) 
R R S 

exists. Consequently the element £ ca ® (mi ® w) is uniquely determined 
by X at ® rrii and u (independently of the representation of af ® m/). 
Consequently the mapping 

(A®M)x U3&ai®mi, a( ® (rrii ® u)e A ® (M ® U) 
R R S 

is an 5-tensorial mapping. By 10.1.8(*) is then a homomorphism p. Similarly 
a corresponding homomorphism er exists in the reverse direction, and hence 
we have obviously 

erp = 1(A®M)®U, per = 1A®(M®LO; 

thus p and er are isomorphisms. 
On the basis of the associativity of the tensor product we can omit 

brackets in many tensor products if we are not concerned about 
isomorphisms. 

10.2.4 C O M M U T A B I L I T Y OF T H E TENSOR P R O D U C T W I T H T H E D I R E C T 

S U M 

Let now modules As, sU with 

A=®Ah !/ = ©£// 
iel jeJ 

be given. Let denote the subgroup of A ® U which is generated by 
s 

the elements a, ® uh at e Ah u} e Uj. Then we have 

(1) A®U= © Af,,, Mij=Ai ® Uj 
S ielJeJ S 

and consequently 

(2) ( © A , W © ü } ) s © (At ® Uj). 
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Proof of (1). By definition of M{j we have first of all A ® U = £ Mu. Let 

S /£/,/€/ 

tiiAi-^A, i'j'.Uj^U 

be the inclusion mappings and let also 

vi: A -> Ai, v'j'.U-* Uj 

be the projections with respect to the direct sums. Then we have 
TTM — 1A,> TT)**) — 1 un 

and consequently 

1 A , ® U t = TTiLi ® Vfi'j = (Vi ® Vj)(Li ® i'j). 

Hence t, ® i) is a monomorphism with Im(t, ® c'j) Miy. By definition of 
Mn and i{ ® i\ we even have Im(t, ® i\) = Af)y, i.e. t f ® i\ induces (by restric­
tion of the codomains) an isomorphism (Oi, between At ® Uj and Mu. This 

s 
means that we do not have to differentiate between the elements a, ® wy e 
Ai ® U with at € Au Uj € t7y and the elements a{ ® u}- e Ai ® Uj. 

s s 

Note: The hrst at ® Uj is regarded as an element from A ® U> the second 
s 

ai ® Uj is regarded as an element from A , ® Uj. 
s 

Since o>/;- is an isomorphism, it follows that v, ® v\ \ Mtj is also an 
isomorphism. Hence we have 

cüij(vi®Vj)\Mij = lMii 

and consequently wi;(7r, ® 7ry) is the projection of A ® U on M,, . Therefore 
s 

we obtain finally A ® U = © M l 7 . • 
s 

10.2.5 T H E T E N S O R P R O D U C T O F F R E E M O D U L E S 

Now let A s be a free 5-module with basis {xi\le L } , so that in consequence, 
A = 0 XlS holds. 

P R O P O S I T I O N . Every element of A® U is representable as a finite sum 

s 

Y.xi® uh u{eU 

in which the ui^O are uniquely determined. 
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Proof. By the use of 10.2.4 Jt/S = S and xtS ® U = S ® U = U. The proof 
s s 

can also be inferred directly from 10.1.8. By the distributive law for the 
tensor product (10.1.2) it is clear that every element from A® U can be 

s 
written as a finite sum £ xi ® The uniqueness remains to be shown. Let 

a — Z xiSu SisS 

be the representation of a e A in terms of a basis and let k € L be fixed. 

. . {sku, if xk appears in the basis representation of a, 
( * ' w ) ~ i 0 , otherwise, 

is obviously an 5-tensorial mapping AxU -> U. Consequently there exists 
a homomorphism A ® £/-» U for which the following holds: 

I Xi ® Ui • 
uk, if xk appears in the sum X x( ® uu 
0, otherwise, 

Since the image with regard to a homomorphism (independently of the 
representation Y.X\®u\) is uniquely determined, the uniqueness of the 
uk 0 follows. • 

If A and U are vector Spaces over the same field of dimension m and 
n then the tensor product is a vector space of dimension mn over this field. 
More generally we have the following. 

P R O P O S I T I O N . Let S be a commutative ring, let As be a free S-module with 
a basis JCI, . . . , xm and let SU be a free S-module with a basis Z \ , . . . ,zn, 
then A® U is a free S-module with the basis 

s 

{Xi ® Zj\i = 1 , . . . , m ; / = 1 , . . . , n}. 

Proof. This follows from 10.2.4 or from the preceding proposition. Accord-
ingly the u{ ^ 0 in X x\ ® U\ are uniquely determined thus also the coefficients 
^ 0 in the representation 

W/ = Z SikZk 

of U[ in terms of a basis. Then in the representation X xt ® u( = X (*/ ® zk)stk 

the Sik ^ 0 are uniquely determined. • 
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10.3 F U N C T O R I A L P R O P E R T I E S O F T H E 
T E N S O R P R O D U C T 

Let Ms resp. SM denote the categories of the (unitary) right resp. left 
S-modules and A the category of Z-modules, i.e. of abelian groups 
(definition see Chapter 1). 

10.3.1 T H E O R E M . The tensor product is a functor of Ms x sM into A which 
is covariant in both arguments. 

Proof. I t is to be shown that the conditions of 1.3.4 are satisfied. First of 
all it is clear that 

O b j W s ) xObj ( sM) 3(A, U)>->A ® UeA 
s 

and 

H o m s ( A , 5 ) x H o m s ( L / , V) 3 (a, p)^a ® p e H o m 2 ( A ® U, B ® V) 
s s 

are mappings with the proper codomains. Further we have, as shown in 
10.2.1, 

1A ® 1 u = 1A®L/, ßa®vp=(ß® v){a ® p). 
s 

Hence the theorem is proved. • 

In addition we may observe that the tensor product can be considered 
as a covariant functor of the form 

®: RMS x SMT -> RMT. 
s 

We direct our attention now to the proof of the fact that the tensor 
product and Horn for a suitable fixed argument are adjoint functors in the 
other argument. We deduce this as a special case from the following general 
theorem. In order to understand the formulation of this theorem we have 
first to recall some earlier Statements. 

Let the modules X S I SUT, YT be given. I f we apply the homomorphisms 
from H o m T ( £ / , Y) on the left of the elements of U, i.e. let p(u) be the 
image of u £ U under p e H o m T ( £ / , Y)9 then by the following prescription 
H o m T ( t / , Y) becomes a right S-module 

(ps)(u) := p(su), ueU, 5 G 5 , peHomT(U,Y). 

In this sense then H o m r ( £ / , Y) is to be considered as a right S-module in 
Hom5(JV, H o m r ( t / , Y)). Further, with regard to SUT, X® U is a right 

s 
T-module which appears as such in H o m T ( ^ ® U, Y). 

s 
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Now let a homomorphism <$>(X,U,Y) of HomT(X ® U, Y) into 
s 

H o m s ( X , Hom T (c7, Y)) (as additive groups) be given. For this purpose for 
every p eHomT(X ® U, Y) there must be made explicit an image p*e 

s 
Horns (X, H o m T ( f / , Y)).Forx e X w e must then have p*(x) e Horn T(U, Y). 
The application of p*(x) on ue U is to be written in the form p*(x){u). 
We now dehne: 

p*(jc)(w):=p(;c® w), J C G X , X ® W < E A T ® 17, 
s 

p e H o m T ( X ® J7, r ) . 
s 

By this means p* is evidently uniquely dehned for every x e X and w e U. 
I f we now consider for x\, x2 e X , wi, w2 e 17, s i , s2 e 5, f i , t2 e T 

P*(XiSi + X2S2)(Uiti + u2t2) 

= p((XiSX+X2S2) ® (uih + u2t2)) 

= p(Xi ® SiUi)h +p(jCi ® SiW2)f2 + p(x 2 ® S2Ui)ti+p(x2 ® S2U2)t2 

= p*{xx){s1ux)h + p*{xi)(siu2)t2 + p*^ 

from which it follows that p*GHom s (Xs , Hom T ( {7 , Y)). Let now pi,p 2e 

HomT(X ® U, Y), then evidently we have 

s 

(Pi + Pi)*(x)(u) = (pi + p 2 )(x ® M) 

= Pl(jC ® w) + p2(* ® w) = P * U ) ( W ) + P?U)(W), 
thus 

(p i+P 2 )*=P*+P2. 

Altogether 

(10.3.2) #(X,L/,Y): Hornr(AT ® [/, y ) 3p^>p* € H o m s ( X , HomT(C7, y ) ) 

s 

with 

p*(jc)(w) := pU ® w), J C G X , W G C / 

is a homomorphism of the additive groups. 

10.3.3 T H E O R E M . (1) For every triple Xs, sUT, YT, ®(X,U,Y) is an 
isomorphism. 
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(2) Let £\XS->XS> II'.SU'T^SUT, T):YT-»Y'T, then the following 
diagram is commutative: 

H o m T ( X ® [/, Y) 
s 

Hom(f®M.,i7) 

H o m T ( X ' ® U\ Y') 
s 

H o m s ( X , H o m r ( { 7 , Y)) 

Horn (£, Horn (n, TJ ) ) 

H o m s ( X ' , H o m T ( C / \ V')) . 

jPröo/. (1) Put $ := 4> (x,L/,Y)- * is a monomorphism for p* = 0 signifies that 
p*(jc)(w) = p(x ® w) = 0 for all x e X , K € [/, thus p = 0 . Let CTG 
Horns (AT, H o m T ( t / , Y)) , then consider the 5-tensorial mapping 

Xx UB(X9 u)^a{x)(u)e Y\ 

in addition there is a T-homomorphism 

p: X ® U BY Xi ® m <r{Xi){ui) e Y. 
s 

For this p we then have 

p*(x)(u) = p(x ® u) = cr(x)(w), 

i.e. <t>(p) = <r, thus $ is also an epimorphism and consequently an 
isomorphism. 

(2) By running down the left edge we obtain for p e H o m T ( X ® U, Y): 

s 

p ^ H o m ( £ ® v){p) = vp(i® P>)*-+{rip(i ® /*))* 

and similarly from the right edge 
p ^ p * , _ * H o m ( £ Hom(M, v))(p*) = Hornau,, 7?)p*f 

If we apply the mappings first on the right to x' eX' and subsequently to 
u'e U' then we obtain 

(r?p(f ® /*))*(*')("') = (Vp({ ® n))(x' ® u1) = vpifr' ® f l U 1 ) 

( H o m f e r , )p*f)U')(* ' ) = (HomOi, T / ) P * ) ( £ 0 ( K ' ) = v(p*(&')<J*u')) 

= 7ip(£x' p.u'). 

Consequently the diagram is commutative and the theorem is proved. • 
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10.3.4 C O R O L L A R Y . For every U e SMT 

-®U.MS^MT and H o m T ( l 7 , -)\MT^MS s 

form a pair of adjoint functors. 
(For the dehnition of adjoint functors, see Chapter 1.) 

Proof. This follows from 10.3.3 for p. = \ v . • 

10.3.5 Remark. 10.3.3 and 10.3.4 hold analogously also for sX, RUS, RY 
(permutation of the sides). In particular in the place of (1) in 10.3.3 the 
isomorphism 

UomR(U®X, y ) = Horns (AT, Horn* ( [ / , Y))9 

s 
appears and the adjoint functors in 10.3.4 are now 

U®-:SM^RM, 
s 

HomR ([/,-): R M -> SM. 

Since important applications of the adjointness of ® and Horn are treated 
later, we can here forego examples. In the next section the hrst application 
already follows. 

10.4 F L A T M O D U L E S A N D R E G U L Ä R R I N G S 

Let A R be a two-sided ideal of the ring R and let t: A -> R be the 
inclusion mapping. We consider then 

i ® 1: A ® R/A -*R® R/A (where 1 = \ R / A ) . 
R R 

P R O P O S I T I O N 

(1) t ® l = 0. 

(2) A®R/A=A/A2; thus A®R/A*0 for A*A2. 
R R 

Proof. (1) For a e A , Fe R/A we have 

(i ® \)(a ® r ) = a ® r = l - a ® f = l ® ä r = l ® Ö = 0, 

thus L ® 1 = 0. 
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(2) Now let ä *.= a +Ä1eA/A2 for aeA. Since the mapping 

A x R/A 3(a,f)>->ar<= A/A2 

is i?-tensorial and surjective, there is an epimorphism 

A :A®R/A^A/A2 

R 

with A (a ® r) = ar. Let 

I at ®n=t atn ® I = ( I atr)®leKer(A), 

then it follows that 

thus 

Z apisA , 

n fc 

Z flir,-= Z fl/öy with a'h a'-eA. 

Consequently we have 

( Z atnj ® 1 = ( Z a)a']) ® 1 = Z (fl/fl / ® D 

= Z flj®ö7= Z a/®5 = 0, 
y - i /= i 

i.e. A is also a monomorphism, thus in fact an isomorphism. In the case 
that A 2 T * A (e.g. A = nZ Z with n > 1) i: A -» R is thus a monomorphism 
but t ® 1 is not a monomorphism. • 

On the other hand there are modules R M so that for every monomorph­
ism a :AR -*BR 

a ® \ M : A ® M - * B ® M 
R R 

is also a monomorphism. As we show in the following this property is 
satished, for example, by all projective modules. Such modules are of 
interest in many respects. They are now to be investigated. 

10.4.1 Definition. R M is called a flat module if for every monomorphism 

a : A R ^ B R 

a ® IM is also a monomorphism. 
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10.4.2 C O R O L L A R Y . Every isomorphic image of a flat module is flat. 

Proof Let RM be flat and let <p :RM^> RN be an isomorphism. Then we 
have the commutative diagram: 

A®M-
R 

1A®<P 

« ® L 
-* B®M 

R 

A®N 
R 

s®<p 

>B®N. 
R 

Since 1A® <P and 1B ® <p are isomorphisms, a ® 1 ^ is a monomorphism 
if and only if a ® lM is a monomorphism. • 

10.4.3 T H E O R E M . Let 

RM = U Mi (or rM = ®M), 
iel \ iel / 

then we have: M is then flat if and only if all Mh i e / are flat. 

Proof. By 10.4.2 it suffices to consider the case M=\[Mi in which the 
iel 

elements are denoted as in Chapter 4 by (m,) (with only finitely many 
m, 5* 0). Then the diagram 

A® 2>(UAf) 
R \iel / 

U (A®Mi) 
iel R 

« ® 1 

U ( « ® 1 M . ) 

B®(U M) 
R \iel J 

U (B®Mi) 
iel R 

is commutative; letting the vertical mappings be the isomorphisms defined 
in 10.2.4 (e.g. we have for the left isomorphism a ® ( m f ) ^ ( a ® m,)). I t 
follows that a ® l M is a monomorphism if and only if ( a ® l M . ) is a 
monomorphism and this is the case if and only if a ® lMi is a monomorphism 
for every / € / . Hence the assertion follows. • 
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10.4.4 T H E O R E M . Every projective module is flat. 

Proof. Since, as we know, every projective module is isomorphic to a direct 
summand of a free module, it suffices by 10.4.2 and 10.4.3 to prove the 
assertion for RR. In the commutative diagram 

A®R - >B®R 
R R 

A 2 > B 

a ® l R is then a monomorphism if and only if a is a monomorphism. • 

If we consider this result, the question immediately and naturally arises 
whether the converse holds and as to what assumptions are necessary. In 
1960 H . Bass characterized those rings R for which every flat i?-module 
is projective. They are characterized by the following equivalent conditions: 

(1) Ä/RadCR) is semisimple and RadCR) is right transfinitely nilpotent, 
i.e. to every sequence au &2, # 3 , • • . of elements from RadCR) there is an 
n with a\a2 ... an=0. 

(2) JR satisfies the minimal condition for principal right ideals ( = cyclic 
right ideals). 

(3) Every left R-module RM has a projective cover, i.e. there exists an 
epimorphism RP-+RM with projective P and small kernel. A ring with 
these (and further equivalent) properties is called left perfect. By (1) resp. 
(2) every left resp. right artinian ring is left perfect. We shall later discuss 
thoroughly the theory of perfect rings. 

A second related question concerns the rings R for which every R-module 
is flat. The main aim of the following considerations is to characterize these 
rings. 

10.4.5 L E M M A . Let BR and RMbe given. 

(a) If 0 = £ 6, ® m(GB ® M , holds, then there are finitely generated sub-
R 

modules B0 B, M0

 t-» M with bt e B0, m{ e M0 and 

0 = Ytbi®mieBo®Mo. 
R 
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(b) Let Bi ^ B, M i ~> M and let 0 = £ b( ® mx eBx®Mx hold, then it 
R 

follows that 

0 = X Z>,- ® ra,- e # ® M . 
R 

Proof (a) As generating elements of B0 resp. of M 0 we take firstly the 6, 
resp. m-i occurring in £ bx ® ra,-, so that we have £ h ® ra,- eB0® M 0 . In 

R 
order to conclude that £ bt ® mx• = 0 e B0 ® M 0 further elements are needed. 

R 
In the sense of 10.1.1 £ 6,-® ra,-= 0€ i? ® M , indicates that £ (b» rnx)eK 

R 
where K =K(B, M) depends on B and M . With regard to the representa­
tion of £ (bh Mi) as an element in K there occur only hnitely many hrst 
components from B resp. second components from M . These are subsumed 
as generating elements for B0 resp. M 0 so that we then have £ (bb ra,)e 
K(B0,Mo), thus 0 = I ® ra,- e ß 0 ® M 0 . 

(b) Let LBI'.B\^>B and L M I ' - M I - * M be the inclusion mappings. Then 
we have 

0 = (iBl ® t M l ) (0 ) = (iBl ® bi ® ra,) = I i , ® m , G J B ® M • 
R 

10.4.6 C O R O L L A R Y . If RM is a module such that every finitely generated 
submodule of M is contained in a flat submodule thenMis flat. 

Proof. Let a : AR -+BR be a monomorphism and let £ ® ™< € 
Ker(a ® 1 M ) . Then by 10.4.5(a) there is a hnitely generated submodule 
M 0 ^ M so that £ ax ® ra,- e A ® M 0 and X a, ® ra,- G Ker(a ® l M o ) . 

R 

Let M 0 ^ M i ^ M and let M i be flat, then by 10.4.5(b) it follows that 
X at ® ra, 6Ker(a ® lMl). Since M i is flat we must have £ fl* ® ra, = 0 e 
A ® M i and by 10.4.5(b) it follows that £ <z,- ® ra,- = 0 e A ® M , w h i c h was 

JR R 
to be shown. • 

10.4.7 C O R O L L A R Y . If for a homomorphism a :AR -*BR and a module 
RM 

a®lM'.A®M-+B®M 
R R 

is not a monomorphism, then there is a finitely generated submodule A0^> A 
such that (a | A 0 ) ® I M is not a monomorphism. 



10.4 F L A T M O D U L E S A N D R E G U L Ä R R I N G S 261 

Proof. By assumption there is an element 0 ^ £ ax ® rrii e Ker(a ® 1 M ) . Let 
A 0 be the submodule of A generated by the a{ appearing in £ ® mh then 
by 10.4.5(b) we have 

0*Ytai®mi€Ao®M 
R 

and as before 

((a | A 0 ) ® 1M)(L fl/ ® m,) = I a(ai) ® rrii = 0 6 B ® M. • 
R 

In order to verify whether a module RM is flat, by virtue of this corollary, 
we can confine ourselves to monomorphisms a : A -» B in which A is finitely 
generated. The question arises as to whether we can still further restrict 
the class of necessary "test monomorphisms" a.A^B. We are led back 
in this Situation to injective modules and to the application of Baer's 
Criterion. 

The reduction to injective modules is facilitated by the help of an injective 
cogenerator of /W z. Let D be an injective cogenerator, say D = Q/Z (see 
5.8.6) then for X e Mz define 

X° := Homz(AT, D ) , 

so that X° is again a Z-module. For X = RM by setting (see 3.6) 

((pr)(m) = <p(rm)9 <peM°, reR, meM 

M° becomes a right R-module and can then be considered as a Z-R-
bimodule. For arbitrary JJL:RM-+ RN let 

f i ° := Hom(jLt, l D ) : i V ° ^ M ° , 

then 0 is a contravariant functor of RM into MR. 

10.4.8 T H E O R E M . The following are equivalent for RM \ 
(1) RMisflat. 
(2) For every finitely generated right ideal A RR with 

I>A ' AR -» RR 

as the inclusion mapping iA® 1 M is a monomorphism. 
(3) MR = H o m z ( M , D) is injective. 

Proof. The following are equivalent for a homomorphism a.A-*B: 
(a) a ® 1M is a monomorphism. 
(b) Hom(a ® 1 M , ID) : (B ® M)°^(A ® M)° is an epimorphism. 

R R 

(c) Hom(a, H o m ( l M , l £ > ) ) = Hom(a, l M o ) : H o m R ( 5 , M 0 ) - ^ 
H o m Ä ( A , M°) is an epimorphism. 
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But ( a ) » ( b ) holds by 5.8.4, and (b)O(c) by 10.3.3. I f we demand the 
validity of (a), (b), (c) for every monomorphism a, then (a) implies that 
RM is flat and (c) implies that MR is injective; i.e. we have therefore proved 
(1) 0 ( 3 ) . According to Baer's Criterion 5.7.1 M r is then injective if and 
only if (c) holds for all inclusions iA : AR -> BR. I f therefore we again return 
to (a), then it follows that MR is injective if and only if for every AR RR 

I M is a monomorphism. Finally, by virtue of 10.4.7 we can restrict 
ourselves to finitely generated right ideals AR RR and so we have (3)<=> 
(2) . • 

We now answer the question of those rings for which every module is 
flat. In this context we recall that the rings for which every module is 
projective resp. injective, are semisimple rings. Since, as was established 
before, every projective module is flat the semisimple rings are in any event 
subsumed by those rings which are characterized in the following theorem. 

10.4.9 T H E O R E M . The following conditions are equivalent for a ring R: 
(1) Every module RM is flat. 
(2) For every element reR there exists an element r'eR with rr'r = r. 
(3) Every cyclic right ideal of R is a direct summand of RR. 
(4) Every finitely generated right ideal of R is a direct summand of RR. 

I t is clear that condition (2) is S y m m e t r i e with regard to sides so that the 
corresponding left-sided conditions are equivalent to those above. 

10.4.10 Definition. A ring R, which satisfies the conditions of 10.4.9, is 
called a regulär ring. 

Proof of 10.4.9. " ( 1 ) ^ ( 2 ) " : For r eR we consider the inclusion i:rR->R. 
Then by assumption 

t ® 1R/Rn rR ® (R/Rr) -+R® (R/Rr) 
R R 

is a monomorphism. Since 

U ® U/Rr)(r ® I ) = r ® I = l ® r I = l ® f = l ® Ö = 0 

we must have 0 = r®lerR® (R/Rr). As before we denote y := y+Rre 
R 

R/Rr and let fz := rz + rRr e rR/rRr. Then evidently 

rR x R/Rr 3 (rx, y)^rxye rR/rRr 
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is an Ä-tensorial mapping and consequently 

T: rR ® (R/Rr) 9 I rxt ® y,f >->X fxlyi e rR/rRr 
R 

is a homomorphism (of additive groups, and indeed even an isomorphism). 
AsO = r ® I e r J R ® (R/Rr) 

R 

r(r®l) = r = 0erR/rRr, 

thus r € rRr, i.e. there is an r' e R with rr'r = r. 
" ( 2 ) ^ ( 3 ) " : From rr'r = r it follows that (rr')(rr') = (rr,r)r' = rr', thus 

e := rr' is an idempotent so that 

RR=eR®(l-e)R 

follows. Further we have eR = rr'R *-* rR and on the other hand as er = 
rr'r = r we have rR eR, thus altogether rR = ei?. 

"(3)=>(4)": By induction on the number of generators we show that 
every hnitely generated right ideal is generated by an idempotent. The 
beginning of the induction is provided by (3) for if RR=rR®A with 
l = e i + e2, eierR, e2eA, then e\, e2 are orthogonal idempotents with 
rR = eiR, A = e2R (see 7.2.3). Let now 

B := rxR+.. . + rnR <-> RR 

be given. By the induction hypothesis there is an idempotent e eR with 
eR = rxR + . . . 4- rn-iR. Then as rn - ern + (1 — e)rn we have 

rnR^ernR + (\-e)rnR 

and consequently 

B = eR + r„Ä = eR + (1 - e)r w Ä. 

As shown at the beginning of the induction, there is an idempotent feR 
with 

fR = (l-e)rnR, 

so that eR+rnR=eR+fR holds. As fe(l-e)rnR we have e/ = 0. We 
claim that g >= e + f(l — e) is an idempotent with 

gR = eR +fR = r iÄ + . . . + r„£. 

First of all we have gR eR+fR. Further we have geR =eR gR as 
well as 

gfR = (ef+f2+fef)R =f2R =fR ^ gR, 
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(as ef= 0 and f = / ) , thus gR = eR + /R . Finally 

g2 = (e + / ( 1 - e))(e + / ( 1 - e)) = e + - - e) 

= e + / 2 - / 2 e = e + / ( l - e ) = g, 

i.e. g is an idempotent. I t follows that 

RR=gR®(l-g)R, 

by which (4) is proved. 
" ( 4 ) ^ ( 1 ) " : By 10.4.8 it suffices to verify whether for every inclusion 

mapping 

' AR -> RR 

of a finitely generated right ideal A^> RR and for an arbitrary module R M 
the mapping iA ® I M is a monomorphism. Since A is a direct summand in 
RR there is an idempotent g with A = gR. Let 

X a, ® m, = £ gat ® m,- = Z g2a,- ® ra, 

= Z g ® gdtnii = g ® (Z gö/m/) G Ker ( t A ® 1 M ) , 

thus 

g ® Z flA = 1 ® Z gdifrii = 0eR®M. 
R 

Then it follows (by 10.2.5) that Z gß/W, = 0, thus also 

Z at ® mx: = g ® (Z ga,-m/) = g ® 0 = 0. 

Consequently L A ® l m is a monomorphism, hence (1) is proved. • 

As mentioned before every semisimple ring is regulär. However, there 
are also regulär rings which are not semisimple. In order to construct such 
an example let K be a regulär ring (e.g. a field) and let 

CO 

R\=\[Ki with Ki=K for / = 1 , 2 , 3 , . . . . 
i = i 

By means of componentwise defined addition and similarly defined multipli-
cation 

(* , ) • (* ; ) = (*,*;) 

R becomes a ring. This ring is regulär. Namely let /c/fcj/c, = k( then it follows 
that 

(kl)(kf

i)(ki) = (ki). 
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If K is a field then we can choose 

, \k~[l forfc,-#0 
' " 1 0 forfc ; = 0. 
oo OO 

As we easily verify A := ]\ Kt is a proper two-sided ideal in R = FI Ki 
< = i /=i 

which is large both in RR and in RR. Consequently A cannot be a direct 
summand in RR (or in RR). Hence R is not semisimple and neither (R/A)R 

nor R{R/A) are projective (for then R^R/A would split). Since every 
R-module is flat we have in (R/A)R a flat but not projective module. 

In conclusion we direct attention to the concept of a pure homomorphism 
which "dualizes" the concept of a flat module. 

Definition 10.4.11. A monomorphism is called pure if a ® 1M is a 
monomorphism for every R-module RM. If AR BR and the inclusion 
mapping t : A -> B is pure then A is called a pure submodule of i?. 

10.5 F L A T F A C T O R M O D U L E S O F F L A T M O D U L E S 

We investigate here the question of those conditions under which a factor 
module of a flat module is again flat. This question is particularly of interest 
in connection with perfect rings, which are treated in the next section. 

10.5.1 L E M M A . Let RM be flat, let U RM, A RR and let t: A -+R 
denote the inclusion mapping. Then the following are equivalent: 

(1) L ® IM/U : A ® (M/U)->R ® (M/U) is a monomorphism. 
R R 

(2) UnAM = AU. 

Proof. " ( 1 ) ^ ( 2 ) " : Let u =Idaimi<= UnAM, then for t = YJai®mie 
A ® (M/U) it follows that: 

R 

(t ® lM/u)(t) = Zai ® rhi = 1 ® Z am = l®ü = 0eR® (M/U), 
R 

thus by assumption t = 0. The relation 

Ax(M/U)3(a,m)^>am := am + AUeAM/AU 

is evidently an Ä-tensorial mapping, by which a homomorphism 

A: A ® (M/U)-+AM/AU 
R 
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is induced. From t = 0 it follows that 

0 = <p(0) = <p(r) = X ^ m , = w, 

thus ueAU. 
"(2) (1)": Let f = I a{ ®rhieA® (Af/ U) with 

R 

U ® 1M/C/)(0 = L ® m, = 1 ® X ölmi = 0, 

thus Z fl/Wti e (7. By assumption there is an equation 

Zfl,-m,- = Yd,

iu]eAU with w7-€ £/. 

Obviously it then follows that 

I a,- ® rrii ~Z aj ® w, 6 Ker(<, ® 1 M ) . 

Since by assumption Af is flat, we thus have Ker(i ® \M) = 0, this implies 
that Z tfi ® m,- = Z fl/ ® «/ a n d consequently for y: Af -» Af/£/ : 

f = (1 A ® ?)(Z a,- ® m,-) = Z a, ® m, 

= (1A ® y)(Z fly ® uf) = Z a} ® üj = 0 e A ® (Af/ LT). 

Thus in fact C®1M/U is a monomorphism. • 

We remark that for (1)=>(2) we have not used the assumption that * A f 
is flat but only for (2)=>(1). 

10.5.2 T H E O R E M . Let RM be flat and let U RM. Then the following 
are equivalent: 

(1) MI Vis flat. 
(2) U n A A f = AU for every finitely generated right ideal A <-* RR. 

Proof. This follows from 10.5.1 and 10.4.8. • 

As is easily seen the proof of 10.5.1 (1)=>(2) is a generalization of 10.4.9 
(1)4>(2). Conversely we can deduce 10.4.9 (1)=>(2) from 10.5.1 resp. 
10.5.2. Namely in 10.5.2 let Af = RR, U = Rr, A = rR, then we have 

RmrR • R=RrnrR=rR • Rr = rRr\ 

as reRmrR it follows that there is an r' with rr'r = r. 
Theorem 10.5.2 has an interesting application for flat factor modules of 

projective modules. 
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1 0 . 5 . 3 T H E O R E M . Let RP be projective, U ^ Rad(P) and let Pj U be flat, 
then U = 0. 

Proof. ( 1 ) We establish the proof hrstly for a free module RF in place of 
RP. Let {%i\iel) be a basis of F and let u e U with a representation in 
terms of the basis as 

u = Z a,jc/, a,- € 
By A = Z denote the right ideal generated by the coefficients at of u, 
which by dehnition is hnitely generated. By 1 0 . 5 . 2 we have 

UnAF = AU, 

thus w = Z bjUj with 6, e A, Uj e £/. By assumption we have [7 Rad(F) = 
RadCR ) F (latter equation holds by 9 . 2 . 1 ) . Thus (since RadCR) is a two-sided 
ideal) in the representation of 

Uj = Z CjkXk 

in terms of the basis all cjk e Rad(jR). I t follows that 

u = Z aiXi = Z Z bjCjkXk 
i i k 

and on comparing coefficients we deduce that at = Z bfn e A RadCR). 

Since this holds for all generators a{ of A it follows that A <^> A RadCR), 
thus 

A=A RadCR). 

Then by 9 . 2 . 1 we must have A = 0 , thus we also have w = 0 . Since ueU 
was arbitrary, it follows that U = 0 . Hence the proof is established for a 
free module. 

( 2 ) Now let P be a direct summand of a free module F, thus 

F = P@PU 

and let U Rad(P) and also let P /£7 be flat. Let v:F-*F/U; then it 
follows that 

F/U = v{F) = v(P) + v(Px). 

As 17 ^ F we have further 

L ( P ) + I / ( JP 1 ) = K P ) © I / ( P 1 ) , 

and also 

P(P)=P+U/U = PIU, = P i +UlU=Pl/PlnU = Px. 



268 10 T E N S O R P R O D U C T , F L A T M O D U L E S A N D R E G U L Ä R R I N G S 10.5 

Consequently we have 

F/U = P/U®Pl. 

Since P/U, by assumption, and P\ (by 10.4.4), as a projective module, 
are flat, by 10.4.2 and 10.4.3 F/U is also flat. Since U ^ Rad(P) Rad(F) 
it follows, as shown above, that U = 0. For an arbitrary projective module 
the assertion holds by 10.4.3. • 

Since the 0-module is flat, as a direct corollary we obtain a result already 
proved in 9.6.3. 

10.5.4 C O R O L L A R Y . Let RP be projective and let Rad(P)=P, then it 
follows that P = 0. 

EXERCISES 

(1) 
Let a commutative ring 5 as well as 5-modules A and U be given. Show: 

A® U = U® A. 
s s 

(2) 
Let an arbitrary ring 5 and let 5-modules Bs As, sV sU be given. 

Let L(B, V) denote the subgroup of A ® U which is generated by the 
s 

elements of the form a ® v, b®v with aeA, beB, veV, ueU Show: 

(A/B)®(U/V) = (A®U)/L(B, V). 
s s 

(3) 
(a) Let B be a right and K b e a left ideal of a ring 5 and let B + V 

denote the additive subgroup of 5 generated by B and V. Show: 

(S/B)®(S/V) = S/(B+V). 
s 

(b) Give an example of a ring 5 and ideal Bs^S, SV^S with 
(S/B)®(S/V) = 0. 

s 

(4) 
(a) For the ideals Bs, SV«-» 5 show: 

B®(S/V) = B/BV 
s 
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where BV denotes the additive subgroup of S which is generated by the 
elements of the form bv with b eB, veV. 

(b) Give an example of the case Bs * 0, SV * S and B ® (S/ V) = 0. 
s 

(5) 
(a) Let tB and i v be the inclusion mappings of the ideals Bs and SV in 

S. Show: 

I m ( t ß ® tv) = BV. 

(b) Give an example of the case B ® V^O, but I m ( t B ® L V ) = 0. 

(6) 
Let Q be the additive group of the rational numbers. Show: 

Q ® Q = Q. 
z 

(7) 

For an abelian group A show: A ® A = O ö A is divisible and every element 
z 

of A has hnite order (see Chapter 4, Exercise 10 and 11.) 

(8) 
Let S := K[x,y] be the polynomial ring in the indeterminates x and y 

with coefficients in a held K. Let B := xS + yS denote the ideal of S 
generated by x and y. Show: The element x®y-y®xeB®B is not 
equal to 0. s 

(9) 
For a set H and a module Ms let 

M H := n Mh with M ^ = M f o r a l l A e Ä 
heH 

As in Chapter 4 we denote the elements of MH by (ra/,). Show for Ms: 
(a) For every set H there is exactly one homomorphism. 

(pH:M®SH^MH with <pH(m ® (sk)) = (ms f c). 
s 

(b) If the set H is hnite, then cpH is an isomorphism. 
(c) lm((pH) = U BH where B runs over all hnitely generated submodules 

of M s . 
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(d) Ms is then finitely generated if and only if for every set H <pH is an 
epimorphism. 

(10) 
Construct sets I and / and also right resp. left 5-modules resp. Uj so 

that there holds: 

( r M , ) ® ( n u ) * n ( A , ® U , ) . 

\ i e / ' S \j<=J / ielJeJ S 

d l ) 

Let a unitary ring homomorphism p:R-+S be given. Then every right 
5-module Ms becomes by the definition mr := mp(r)9 meM, reR a right 
R-module (see 3 . 2 ) . The analogue holds on the left side. Let this be assumed 
in the following for right resp. left 5-modules. 

Show for SU: 
(a) The mapping A : £ / 9 w » - » l ® w e S ® t / i s a monomorphism of the 

R 
left Ä-modules RU and R(S ® U). 

R 
(b) The mapping 

p: 5 ® U B I Si ® ut »-»Z SM e (7 

is an 5-epimorphism and the kernel of /JL is generated by the elements 
s ® u - 1 ® SU. 

(c) R(S® t / ) = Im(A)0Ker(/Lt). 

(d) Further let R C be given and let 

K : C 9 C - > 1 ® C G 5 ® C. 
/? 

Then 

Hom s ( s (5 ® C), s f / ) ^ < p ^ ^ G H o m Ä ( Ä C , Ä t / ) 

is an isomorphism. 
(e) Let p:R-+S and Ä C be given. Further let an sX be given so that 

an i?-homomorphism K':RC^RX exists such that for every SU the 
mapping 

Hom s(sX, SU)3<P*-*<PK' e Horn^UC, RU) 

is an isomorphism. Show that 5 ® U and X are then 5-isomorphic. 
R 
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(f) Give an example of a p : jR -» S and a module RC so that K : C 3 c *-* 
1 ® c eS ® C is not a monomorphism. 

R 

(12) 

Let 5 be rings and let RMS be an RS bimodule. Dehne the functors 

F: MR 3A*-*A ®MeMS9 

R 

G: Ms3X^Homs{M,X)eMR 

and show: 
(a) F is left adjoint to G. 
(b) The following are equivalent: 

(1) F preserves monomorphisms. 
(2) G preserves injective objects (i.e. injective Xs^> injective 
H o m s ( M , X ) * ) . 
(3) Ä M i s f l a t . 

(c) The following are equivalent: 
(1) G preserves epimorphisms. 
(2) F preserves projective objects (i.e. projective AR projective 
( A ® M ) S ) . 

R 

(3) Ms is projective. 
For a unitary ring homomorphism p:S-*R we have: 
(d) Qs is injective=>Hom s(P, Q) is injective as a right R-module. 
(e) Ps is projective P ® R is projective as a right R-module. 

s 
(13) 

(a) Let RM be free with basis {<?, | / G / } . Show that for U M the 
following are equivalent: 

(1) A f / I / i s f l a t . 
(2) ueU^>u eAuU where Au is the right ideal generated by the 
coefficients of u with respect to the given basis. 
(3) u G there is <p :M-> U with <p(u) = u. 
(4) u i , u n e there is <p:M-+U with (p(ui) = Ui for / = 
1 , . . . , n. 

(b) Show that the equivalence of (1), (3), (4), holds also for projective RM. 

(14) 
Let R be commutative and let RM be semisimple. Show: 

(a) If RM is injective then it is flat. 
(b) If RM is flat and if it has only hnitely many homogeneous components 

then it is injective. 
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(c) Now give an example in which RM is semisimple and flat but is not 
injective. 

(15) 
(a) Show: A n abelian group is flat if and only if it is torsion-free. 
(b) Construct an abelian group which is flat but not projective. 

(16) 
Let a module RM be called regulär if every cyclic submodule of RM is a 
direct summand. Show: 

(a) In a regulär module every finitely generated submodule is a direct 
summand. 

(b) I f Mi\iel) is a family of regulär projective R-modules, then M = 
II Mi is also regulär (and projective). 
iel 

(Hint: Show the assertion first for \l\ = 2.) 
(c) Question: Does the Statement in (b) hold without the additional 

assumption "projective"? 
(d) I f R is left noetherian or if i?/Rad(i?) is semisimple then every 

regulär left Ä-module is already semisimple. 

(17) 
Let R be a ring, M an £ -modu le and S = End(M) . Show: 

(a) S is regulär <=>for every a e S Im(a) and Ker(a) are direct summands 
in M. 

(b) R is regulär every projective R-module is regulär. 
(c) R is regulär and M projective and finitely generated 5 = End(M) 

is regulär. 
(d) R is regulär=>M„(Ä) (= r ing of nxn Square matrices over R) is 

regulär. 

(18) 
Show that for a commutative ring R the following are equivalent: 

(1) JR is regulär. 
(2) Every (cyclic) ideal I ^> R is idempotent (i.e. I2 = I). 
(3) Every irreducible ideal is a prime ideal. 
(4) Every irreducible ideal is maximal. 
(5) Every (cyclic) R-module M has zero radical (i.e. Rad(M) = 0). 
(6) Every simple R-module is injective. 

(19) 
Let G be a finite group and let T be a ring. Show: The group ring GT 

is regulär if and only if T is regulär and Ord(G) is a unit in T. 



Chapter 1 1 

Semiperfect Modules and Perfect Rings 

In the historical development of the structure theory of "non-commuta-
tive" rings and modules the finite-dimensional algebras were first investi-
gated. For this the essential resource of the theory of vector Spaces was 
available. Then later it was shown—above all beginning with E. Noether— 
that frequently in the investigation of the structure only chain conditions 
are required and that the investigation can be pursued not only for rings 
and their ideals but also for modules. Thus, in particular, there is obtained 
a structure theory for artinian rings and for modules over such rings. 

The most recent development goes further in this regard. New concepts, 
in particular categorical and homological concepts such as projectivity, 
injectivity, flatness, homological dimension, etc., give rise to the possibility 
of extending the structure theory in different directions. For example we 
have already become acquainted with the decomposition theorems of 
injective modules over noetherian and artinian rings. Now we shall require 
the existence of projective Covers for certain modules and under this 
assumption develop in a simple manner a structure theory for a class of 
modules and rings which embraces properly the artinian case. 

In this introduction we cannot present all of the results to follow in this 
chapter, but nevertheless we should like to present here a particularly 
significant result since it gives a good impression of the considerations to 
follow. 

T H E O R E M ( H . B A S S , 1 9 6 0 ) . The following conditions are equivalent for a 
ring R: 

( 1 ) Every module MR has a projective cover (i.e. there exists an epimor­
phism £.P-*M with projective domain P and small kernet in P). 

(2) Every flat right R-module is projective. 

273 
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(3) R satisfies the descending chain condition for cyclic left ideals. 
(4) Every left R-module # 0 has a socle 5*0 and RR satisfies the minimal 

condition for direct summands. 
(5) R/Rad(R) is semisimple and Rad(jR) is left t-nilpotent\ i.e. to every 

sequence ai,a2,a3,... of elements fl,eRad(i?) there is a keN with 
akak-i... ai = 0. 

A ring with these equivalent properties is called right perfect. As (5) 
shows every right or left artinian ring is right perfect. The conditions (1) 
and (2) are of particular interest for us, for they enable us to answer two 
of the questions that we earlier pursued. For these reasons the theorem is 
also noteworthy because the "outer" properties as in (1) and (2) turn out 
to be equivalent to the "inner" properties as in (3) and (5). 

11.1 S E M I P E R F E C T M O D U L E S , B A S I C C O N C E P T S 

We had earlier established that every module does indeed possess an 
injective hull but not however a projective cover. In the case R - Z for 
example, only the projective = free Z-modules have projective Covers 

(which are then isomorphic to the free modules). Here the existence of 
"sufficiently many" projective Covers wil l be assumed. 

We begin with a theorem which under the assumption of the existence 
of the projective cover represents the counterpart dual to 5.6.4. Evidently 
this theorem could already have been proved in Chapter 5; nevertheless 
we should like to have collected here as far as possible all considerations 
involving the existence of projective Covers. 

11.1.1 T H E O R E M . Let the module NR have a projective cover. If 

a:P->N 

is an epimorphism with projective domain P, then there is a direct decomposi­
tion P = PX®P2 where P2 ^ Ker (er) and 

ai := or |P 1:P 1-»JV 

is a projective cover. 

Proof. Let r : P0 N be a projective cover of A7, then there exists a commuta­
tive diagram 
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Since a is an epimorphism, by 3 . 4 . 1 0 we have P 0 = Im(/<)4-Ker(T). Since 
Ker(r) ^ P 0 we have in fact P 0 = Im(fc), i.e. K is an epimorphism. Moreover 
since P0 is projective it follows by 5 . 3 . 1 that K splits: 

P = P ! e K e r ( K ) . 

Then 

#ci:=#c|Pi:Pi-*Po 

is an isomorphism. Since 

Ker(rici) = K i 1 (Ker(r)) ^ p x 

(by 5 . 1 . 3 ) 

TK\ = CT\'.P\^ N 

is also a projective cover of N. As Ker(/<) «-> Ker(cr) and P = P i©Ker ( / 0 
we have finally with P2 KCT(K) the assertion for P2. • 

1 1 . 1 . 2 C O R O L L A R Y . Lef U «-» P, fe/ P fee projective and let P/U have a 
projective cover. Then there is a decomposition P = P\ ®P2 with 

P2~>U,\P1nU*>P1. 

Proof. This follows from 1 1 . 1 . 1 for er = v: P -* P/ U. • 

We notice also that from P2 = 0 it follows that Pl = P and P n U = £/ ^ P, 
i.e. if t / contains no direct summand ^ 0 of P, then U is small in P. 

If the existence of a projective cover is demanded for every epimorphic 
image of a fixed module MRi then this already has such interesting con-
sequences for the structure of M that we wish first to examine this Situation. 

11 .1 .3 Definition. Let R be an arbitrary ring and let MR be a right 
R -module. 

(a) M is called semiperfect: <£> every epimorphic image of M has a 
projective cover. 

(b) M is called complemented : <=> every submodule of M has an addition 
complement (=adco, see 5 . 2 . 1 ) in Af. 
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11.1.4 C O R O L L A R Y 

(1) Every epimorphic image of a semiperfect module is semiperfect. 
(2) Every projective cover of a simple module is semiperfect. 
(3) Every epimorphic image of a complemented module is complemented. 

Proof. (1) Clear by definition. 
(2) Let £\P'+E be the projective cover of a simple module E. Then 

Ker(£) is a small and maximal submodule of P. For arbitrary [ / ^ ? w e 
then have £/ + Ker(£)%»P and consequently U Ker(£). Thus we also 
have U ^ P and consequently P -> Pj U is a projective cover of Pj U. Thus 
P is the projective cover of every epimorphic image 9^0 of P, i.e. P is 
semiperfect. 

(3) Let C be complemented, let y : C-+M be an epimorphism and let 
B ^> M. We assert that y(y~l(B)') is a complement of B in M Put 
A := y~\B). From C = A + A ' it follows that 

M = y(A) + y(A') = B + y(A'). 

Since A' is an adco of A , we have AnA' ^A'. By 5.1.3(c) this implies 
y ( A n A ' ) ^ y ( A ' ) . Since also 

y ( A n A ' ) = y(y~\ß) nA') = Bn y ( A ' ) , 

the assertion is proved. • 

Later we shall show that a hnitely generated projective module P is 
already semiperfect if every simple image of P has a projective cover. 

The next theorem shows that the investigation of semiperfect modules 
can be reduced essentially to the projective semiperfect modules. 

11.1.5 T H E O R E M . Let ^.P^M be a projective cover of M, the following 
are equivalent: 

(1) M is semiperfect. 
(2) P is semiperfect. 
(3) P is complemented. 

Proof. We show (2) (1) => (3) => (2). 
"(2)=>(1)": Clear from the dehnition of semiperfect. 
t ' ( l )4>(3)" : Let A ^ P, then consider the epimorphism 

cr = v£:P-^M^M/£(A). 
By 11.1.1 there is a direct summand Pi P such that 

er, := alPuP^M/^A) 
is a projective cover. 
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We assert that P\ is an adco of A in P. From <x(Pi) =M/£(A) it follows 
that P = Pl+Ker(a). As Ker(or) = KerO£) = £ - 1 Ker(*>) = £~l(£;(A)) = 
A + Ker(f) it follows that P = P x + A + K e r ( £ ) , since K e r ( £ ) ^ P we have 
P = Pi+A. For U~>Pi let now P = U + A, then it follows that cr(P) = 
cr(Pi) = o-i(Pi) = cri(I7) (since cr(A) = 0), thus 

P! = cri1 (adPi)) = er?1 (<rx(U)) =U + Ker(cn). 

Since Ker(o-i) ^ P x it follows that P i = £/, and hence P i is in fact an adco 
of A in P. 

"(3)=>(2)": Let cr.P^N be an epimorphism and let [ / := Ker(cr), then 
let U' be an adco of U in P By 5.2.4 we have U'nU=U'n Ker(cr) [/•. 
We show that V is a direct summand of P, and thus is projective. Then 
it follows that 

a\U':U'->N 

is a projective cover of N. 
Let U" be an adco of U\ then we assert: P=U'@ U". For the proof let 

z / :P= U'+U" + P/U'nU" 

be the natural epimorphism from which, with the notation P := ^(P), 
Ü".= v(lT), Ü":=v(U"), we have evidently P=Ü'®Ü'\ Further let 
7r:P-» £/ be the projection onto (/* corresponding to P = U'®U". Then 
a commutative diagram exists 

M v.:=v\W 

U' - >U 

As 7TP — v\(p we have irv{U') = £/' = v\(p{U'), thus £/' = <p(£/") + Ker(j>i). 
Since K e r ( ^ i ) = U'nU"&> IT (see 5.2.4) it follows that U' = <p(U'), thus 
P = £/* + Ker(<p). As Ker(<p) Ker(7r*>) = [/" and from the minimality of 
U" it follows that Ker(<p) = U". On the other hand we have 

I T = K e r ( ^ ) = KeT(n<p) = ^ _ 1 ( K e r ( i / i ) ) = <p_1(CT*n LT"), 

and since <p is an epimorphism, it follows that 

0 = <p(lT) = <p<p-\U'nU") =U'n IT, 

which was to be shown. 0 
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11.1.6 C O R O L L A R Y . Every projective artinian module is semiperfect. 

Proof. Every artinian module is complemented. • 

11.1.7 T H E O R E M . If Mr is semiperfect, we have 
(a) M is complemented. 
(b) M / R a d ( M ) is semisimple. 
(c) Rad(M) is small in M. 

Proof. (a) This follows from 11.1.4 and 11.1.5. 
(b) Since M / R a d ( M ) , as an epimorphic image of M, is again semiperfect, 

M / R a d ( M ) is complemented. Let A «-» M / R a d ( M ) , then for an adco A' of 
A in M / R a d ( M ) we have: 

M / R a d ( M ) = A + A' and A n A ' ^ M / R a d ( M ) , 

thus A n A ' ^ Rad(M/Rad(M)) = 0. Consequently we have M / R a d ( M ) = 
A©A*, i.e., every submodule is a direct summand and consequently 
M / R a d ( M ) is semisimple. 

(c) Let £ : P - » M be a projective cover of M. Since K e r ( f ) ^ P , thus 
Ker(£) <-* Rad(P), it follows by 9.1.5 that f (Rad(P)) = Rad(M), so that by 
5.1.3 we have only to show that Rad(P) P. Let */:P-*P/Rad(P), then 
by 11.1.2 there is a decomposition P = Px ® P2, with P i n Rad(P) ^ P i and 
P 2 ^ Rad(P). By 9.6.4 it follows that P 2 = 0, thus P = P i and 

Rad(P) = P n Rad(P) P. • 

11.2 L I F T I N G O F D I R E C T D E C O M P O S I T I O N S 

11.2.1 Definition 
(a) Let a.A^M be a homomorphism. We say that the decomposition 

M = Q)Mi 
iel 

can be lifted with respect to a, if a decomposition 

A = © A ; 

exists so that for all / ei we have: a (A, ) = M / . 
(b) Let B ^ A . We say that the decomposition 

A/B =© Af( 

iel 

can be ////erf to A , if it can be lifted with respect to V.A-+A/B. 
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11.2.2 T H E O R E M . Let g:P->Mbe a projective cover and let 

M = © M , 
iel 

For every i e I let there be given an epimorphism ax?: A{\->Mi with projective 
Ai and Ker(a,-) «-» Rad(A,). Then the decomposition M = © M , oz/i 6e /z/ted 
w/fA respect to f. ' e / 

Proo/. Consider the commutative diagram 

A : = © A t -
i e / 

P > A f = © A f i , 
i e / 

where <p exists since £ is an epimorphism and A is projective. Since ©a,-
is an epimorphism we have by 3.4.10 

P = Imfa>) + Ker(£). 

As Ker(£) ^ P it follows that P = Im(<p), i.e. <p is an epimorphism. Since 
P is projective, <p splits: 

A = P 0 ©Ker(<p) . 

Since the diagram is commutative, it follows that Ker(<p) «-> K e r ( © a , ) = 
© K e r ( a , ) © R a d ( A , ) = Rad(A), in which the last equation holds by 9.1.5. 
By 9.6.4 it then follows that Ker(<p) = 0, thus <p is an isomorphism. Therefore 
we have 

P = ®cp(Ai) 
iel 

with £<p(Ai) = ai(Ai)=Mh iel. Hence we have lifted the decomposition 
M = ©M,- with respect to f. • 

From this there follows directly 

11.2.3 C O R O L L A R Y . Let g:P'->M be a projective cover of the semiperfect 
module M. Then every direct decomposition of M can be lifted with respect 
toi 

Proof. This follows from 11.2.2 since every direct summand of M possesses 
a projective cover. • 



280 11 S E M I P E R F E C T M O D U L E S A N D P E R F E C T R I N G S 11.2 

11.2.4 C O R O L L A R Y . Let P be semiperfect and projective. Then every direct 
decomposition of the semisimple module P/Rad(P) can be lifted to P. 

Proof. This follows from 11.2.2 since by 11.1.7 R a d ( P ) ^ P and every 
direct summand of P/Rad(P) possesses a projective cover. • 

As a special case it follows that with respect to a right artinian ring R 
every direct decomposition of Ä/RadCR) (as right R-module) can be lifted 
to RR. I f this lemma is not available then the lifting is done in the literature 
usually by calculations with idempotents. 

11.3 M A I N T H E O R E M O N P R O J E C T I V E 
S E M I P E R F E C T M O D U L E S 

The following characterizations of a projective, semiperfect module are 
of great interest both with regard to the structure of such a module and 
also for determining whether a given module is semiperfect. 

11.3.1 T H E O R E M . The following are equivalent for a projective module RR: 
(a) P is semiperfect. 
(b) P is complemented. 
(c) There holds 

(1) P/Rad(P) is semisimple; 
(2) every direct summand of (P/Rad(P))R is the image of a direct 
summand ofPR with regard to P - » P / R a d ( P ) ; 
(3) Rad(P) <2> P. 

We have in (c) made condition (2) to be as weak as possible, since by 
11.2.4 for the assertion (a)=>(c) we have in any case a stronger Statement. 
Since for applications the direction (c)=>(a) is of interest it is desirable to 
formulate (c) as weakly as possible. 

Proof " ( a ) » ( b ) " : This was shown in 11.1.5. 
"(a)z>(c)": This holds by 11.1.7 and 11.2.4. 
I t remains to prove (c)^>(b): Let 

*/:P->P/Rad(P) =: P 

denote the natural homomorphism. Let now A P, then there is, since P 
is semisimple, a direct decomposition 

pR = v(A)®r. 
By (2) there is a direct summand P 2 P with ^(P 2 ) = T. We claim that P 2 
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is a complement of A in P. From P = v(A) ® v(P2) it follows that 

P = A + P 2 + Rad(P), A n P2 Rad(P), 

thus since Rad(P) ^ P 

P = A+P2, AnP2*>P. 

Since P 2 is a direct summand in P, it follows from A nP2 ^ P by 5.1.3(c) 
(with the help of the projection of P on P 2 ) that indeed Ac\P2<3* P2. If 
we suppose that fovB^P we have 

A + £ = P , B<-»P2, 

then by the modular law it follows that 

AnP2 + B =P2, 

thus B = P 2 a s A n P 2

t 2 > i > 2 . • 

11.3.2 C O R O L L A R Y . Let R be an arbitrary ring. Then we have 
(I) RR is semiperfect 

(1) R := .R/RadCR) /s semisimple and 
(2) euery idempotent e eR there is an idempotent e eR with e-e. 

(II) RR is semiperfect RR is semiperfect. 

Proof. (I) By 9.2.1 we have Rad(Ä) RRi thus (3) in 11.3.1(c) is satisfied 
for an arbitrary ring and hence the condition is here superfluous. Further 
since the condition (1) here coincides with that in (c), we must only check 
whether the conditions (2) in 11.3.1 and in 11.3.2 follow mutually from 
one another. 
_ "=>": Let e e R be an idempotent. Corresponding to the decomposition 

RR = eR@(l-e)R there is by 11.2.4 a decomposition 

RR = eR@(l-e)R, 

with an idempotent eeR and 

eR = eR, (T -e)R = (1 -e)R. 

Then it follows that ee = e, (1 -e)(l-e) - l - e y thus e= e. 
4 t < ^ " : Every direct summand of RR is of the form eR for an idempoteni 

eeR. Let now e be an idempotent of R with e = e, then eR is a direct 
summand of RR with eR-eR = eR. 

(II) Conditions (1) and (2) in (I) are independent of the side. • 

A ring R is called semiperfect, if it satisfies the (equivalent) conditions 
of 11.3.2. In particular this concept is by (II) independent of the side. 
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As already established, a projective artinian module is semiperfect. In 
particular a right artinian ring RR is thus semiperfect and indeed so also 
on the left, independently of whether R is also left artinian. However there 
are also semiperfect rings which are not artinian. Let R be a local ring 
(7.1.2), then Ä/RadCR) is a skew held, thus in particular semisimple and 
Ä/RadOR) has only 1 as an idempotent #0 . By 11.3.2 R is consequently 
semiperfect. 

For example the ring R '•= K[[x]] of all power series £ ktx1 in an 
/=o 

indeterminate x and with coefficients from a held K is a local ring. In this 
case 

and this radical has no "nil-properties" of any kind. We emphasize this 
here, because this is a semiperfect ring which is not perfect (see 11.6). 

11.3.3 T H E O R E M . Let (P^iel) be a family of semiperfect, projective R-
modules. Then we have: 

is semiperfect if and only if Rad(P) ^ P. 

Proof. By 11.3.1 the condition Rad(P) P is necessary. In order to prove 
this it is sufficient we show that in 11.3.1(c) the conditions (1), (2), (3) are 
fulhlled. By assumption we have (3). 

(1) By 9.1.5(d) we have 

Since by 11.3.1 P,/Rad(P;) is semisimple for every iel, P/Rad(P) is also 
semisimple. 

(2) First of all we establish that every simple submodule E of P/Rad(P) 
possesses a projective cover. As F/Rad(P) = ® P , / R a d ( P , ) E is isomorphic 
to a simple submodule E' of ®P//Rad(P,-). If we decompose every 
Pj/Rad(P,-) into a direct sum of simple submodules and we apply 8.1.2(b) 
then it follows that E' is isomorphic to a simple submodule of one of the 
P;/Rad(P,). Since this, as a direct summand of the semiperfect module 
P f/Rad(P|), has a projective cover, the module E isomorphic to it has a 
projective cover. 

P / R a d ( P ) ^ © P , / R a d ( P , ) . 
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Let now P/Rad(P) = A i © A 2 . Since P/Rad(P) is semisimple, every Ak is 
a direct sum of simple submodules. 

A k = © E ? , fc = l , 2 . 

Let $: A*f-*be a projective cover, then 

ak := © tf: Ak := © A^Ak = © E) 
/eJfc /e/k y'G/k 

is an epimorphism with projective domain Ak and we have as Ker(£ ;

k ) ^ Ak

h 

hence Ker(£ 7

f c) ~> Rad(A 7

f c) and thus 

Ker(a f c) = © K e r ( ^ ) ^ Rad(A f c ), /c = 1, 2. 

If in 11.2.2 we put £ = ^ :P^P/Rad(P) , then the assumptions of 11.2.2 
are satisfied and it follows that the decomposition P/Rad(P) = A i @ A 2 can 
be lifted to P. 

11.3.4 C O R O L L A R Y 

(a) Every direct sum of finitely many semiperfect R-modules is semiperfect. 
(b) If RR is semiperfect then every finitely generated R-module is semi­

perfect. 

Proof. (a) Let M i , . . . , Mn be semiperfect and let 

&:Pi->Mh i = l,...,n 

be a projective cover. By 11.1.5 P, is semiperfect and by 11.3.3 so also is 
n n 

P © Pi for Rad(P) = © Rad(P,) is itself, as a finite sum of small sub-
/=i /=i 

modules Rad(P,), small in P. Since P is semiperfect, Mi®.. .®Mn is also 
semiperfect as an epimorphic image of P. 

(b) By (a) every finitely generated free module is semiperfect and then 
also every epimorphic image of it . • 

We give now another interesting characterization of the semiperfect 
modules which wil l be useful later. 

11.3.5 T H E O R E M . The following are equivalent for a projective module: 
(1) P is semiperfect. 
(2) P satisfies the conditions: 

(a) Every proper submodule ofP is contained in a maximal submodule 
of P\ and 
(b) every simple factor-module of P has a projective cover. 
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Proof. ' 4(1)=>(2)": By definition of "semiperfect" (b) is satisfied. For the 
proof of (a) let U<*>P; since P/U is semiperfect, P/U has by 11.1.7 a 
small radical, which consequently is a proper submodule of P/ U. Since the 
radical is the intersection of all maximal submodules, there exists at least 
one maximal submodule of Pj U of the form X/ U with U ^ X P. Since 
X/U is maximal in P/U and we have P/X = (P/U)/(X/U), then X is 
maximal in P. 

"(2)4>(1)": We establish this proof in three steps. 

Step 1. We are to show that Rad(P) ^ P. Suppose that t / + Rad(P) = P 
with U P, then by (a) there exists a maximal submodule X P with 
U X. From this it follows that U + Rad(P) ^> X * P, contradiction! 

Step 2. We are now to show that P := P/Rad(P) js semisimple. Let v:P->P 
be the natural epimorphism. Suppose that Soc(P) # P, then it follows that 
^ _ 1 (Soc (P) )^P and by (a) a maximal submodule X ^ P exists with 
v-1(Soc(P)) X. Since P/X by (b) has a projective cover, we deduce from 
11.1.2 that 

P = P i © P 2 = Pi+AT 

with P 2 X and Pi n X ^ P i , thus Pi n AT Rad(P). Therefore it follows 
that 

(*) P = v{Pl)@v{X). 

Since X is maximal in P (thus Rad(P) ^> X), P/X = (P/Rad(P))/ 
(AT/Rad(P)) = P/WAT) = ^(Pi) is simple, thus ^(PO <^ Soc(P) */(AT); con­
tradiction to (*)! 

Step 3. Now let 

P = 0 £"/ with simple 
i e / 

There follows for every jel 

Ei=P/®Ei=P/v-1(®E). 
iel \iel ' 
I V / I * / 

By (b) projective covers 

aj'.Aj^Ej, jel. 

exist. 
Since every simple module, which has a projective cover, is obviously 

semiperfect, all Ef and by 11.1.5 also all At are semiperfect. 
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For v:P-+P/Rad(P) (in place of £) and for P/Rad(P) = ©JE",- (in place 
of M ) the assumptions of 11.2.2 are satisfied. As in the proof of 11.2.2 it 
follows that 

is an isomorphism. Thus P = ©<p(A {) is a direct sum of the semiperfect 
modules <p(Ai). As R a d ( P ) ^ P it follows from 11.3.3 that P is semi­
perfect. • 

11.4 D I R E C T L Y I N D E C O M P O S A B L E 
S E M I P E R F E C T M O D U L E S 

I t was established in 11.2.4 for a projective semiperfect module PR that 
every decomposition of the semisimple module P := P/Rad(P) into a direct 
sum 

P = © £ ; 

iel 

of simple modules Eh i e / can be lifted to P. Let 

z , : p ^ P = P/Rad(P), 
then a decomposition 

P = ©P, - with HPd = EhieL 
iel 

exists. As Rad(P) = © R a d ( P , ) (see 9.1.5) we have Rad(P /) = Rad(P)nP / . 
Therefore it follows that 

E( = v(Pi) = Pi + Rad(P)/Rad(P) = P//P/ n Rad(P) = P I/Rad(P /). 

Since Ei is simple Rad(P t) is a maximal submodule of P ;. 
We wish now to investigate projective modules in which the radical is a 

maximal submodule. In this regard a module MR # 0 is called indecompos-
able, if it is not the sum of two proper submodules. I f MR = 0 or if MR is 
the sum of two proper submodules, then MR is called decomposable (for 
"directly indecomposable" see 6.6.1). 

11.4.1 T H E O R E M . Let PR^0 be projective. Then the following are 
equivalent: 

(a) P is indecomposable, 
(b) P is semiperfect and directly indecomposable, 
(c) Rad(P) is a maximal and a small submodule of P, 
(d) Rad(P) is the largest proper submodule of P, 
(e) End(Pfl) is local. 
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Proof. "(a)=>(b)": By 11 .1 .5 it has only to be shown thatPis complemented. 
But by (a) every submodule of P different from P has P itself as adco. 

" ( b ) ^ ( c ) " : By 1 1 . 1 . 7 we have R a d ( P ) ^ P Since by 1 1 . 2 . 4 P/Rad(P) 
is directly indecomposable, P/Rad(P) is not only semisimple but also simple, 
thus Rad(P) is maximal in P. 

"(c)4>(d)": Let U ~> P, £ / * » R a d ( P ) . Since Rad(P) is a maximal sub­
module, it follows that £/ + Rad(P) = P. As Rad(P) e 2 >P it follows that 
U = P. Thus (d) also holds. 

"(d)=>(e)": I f <p:P->P is an epimorphism then it must split. By (d) it 
follows that <p is an automorphism. I f <pu <p2eEnd(PR) are not invertible 
then they cannot in consequence be epimorphisms. Then we have 

Im(<pi + <p2) <-* Im(<pi) 4-Im(<p2) ^ Rad(P), 

thus <pi + <p2 is also not invertible, i.e., End(P*) is local. 
"(e)=>(a)": From P = A+B we obtain a commutative diagram 

A* >P/B 

and for y := tA<p, where LA:A-*P is the inclusion mapping we then have 

Im(y) «-> A , I m ( l F - y) ^ B (since x +B = <p(x) + B for all x € P). 

As l p = y + ( l p - y ) , and since End(P Ä ) is local, y or 1-y must be an 
automorphism, thus we have A=P or B =P. • 

1 1 . 4 . 2 C O R O L L A R Y . I f P Ä w a projective, semiperfect module then a 
decomposition 

P = © P » 
iel 

exists, in which the Pi satisfy the properties of 1 1 . 4 . 1 . The decomposition is 
unique in the sense of the Krull-Remak-Schmidt Theorem ( 7 . 3 . 1 ) . 

For later use we wish to write down explicitly the result in the case of 
a ring, bearing in mind 7 . 2 . 3 . 

11 .4 .3 C O R O L L A R Y . Let R be a semiperfect ring. Then there exists a 
decomposition, unique in the sense of 7 . 3 . 1 , 

RR=e1R@...®enR 
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with the following properties: 
(1) et,..., en are orthogonal idempotents 7*0 with 

n 

1 = I e, 
i = l 

(2) Rad(e,Ä) is the largest proper right ideal in exR and Rad(e ti?) = 
e,-Rad(Ä). 

(3) etR is indecomposable. 
(4) EndidR) is local and End(e/jR) = e,vRe/. 

Proof. By 11.4.2 and 7.2.3 all is immediately clear except for the two 
following aspects, which hold for arbitrary idempotents eeR: "Rad(eÄ) = 
e R a d W . By 9.1.5 we have Rad(ei?) ~> Rad(Ä) . Since x = ex for every 
element x e eR it follows that Rad(eÄ) ^ eRad(R). On the other hand by 
9.2.1 we have ^Rad(Ä) Rad(etf). 

"End(eR) = eRe": Multiplication of eR by an element eaeeeRe 
evidently involves the endomorphism 

(eae)': eR 3 er^eaer e eR 

of eR. We obtain therefore a ring homomorphism 

{(/: eRe 3eae»->(eae)'eEnd(eR). 

is a "monomorphism": From eaer = eber for all er eeR there follows 
for r = 1: eae = ebe. 

ip is an ''epimorphism": Let a e End(eR)\ since eR is a direct summand 
in RR, a can be extended to an epimorphism of RR, i.e. to a left multiplica­
tion by an element aeR: 

a(er) = a(er) = eaer, 

the latter equality since aer e eR. Thus we have a - (eae)'. • 

Example. Fori? := Z/nZ, n > 1, we wish to set out explicitly the decomposi­
tion existing by 11.4.3. A t the end of section 9.1 the radical and socle of 
R were determined. We utilize here the previously employed notation. Let 

Pi ' 

then obviously we have GCD(nu .. •, nk) = 1. Consequently there are 
a\,.. ., ak € Z w i t h a i f l i + . . . + aknk = l .Thereforeit follows that (a„ p,) = 1. 
Let now 

ex := atnt + nZeZ/nZ. 
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Then, it is asserted, RR = e\R®.. .®ekR is the decomposition appearing 
in 11.4.3. First of all it is clear that we have 

ei +.. . + ek = leR. 

Further since n\nirij for / ^ j we have 

e-fii = 0 for / 7* j . 

Then it follows from e\ + . . . + ey = 1 on multiplication by ex that 

e] = eh 

By 7.2.3 we then have 

RR = e\R®.. .®ekR. 

I t still remains to be shown that the exR have local endomorphism rings. 
The ring epimorphism 

Z B z >-» exzex - exz G exRei 

has, by dehnition of the e, (note that (ah pt) = 1), the kernel pT'Z, thus we 
have 

etRet^Z/pT'Z. 

As indicated in 9.1, we have further 

R a d ( Z / p r f Z ) = p , Z / p r Z , 

and since 

( z / p r ' Z ) / ( p f z / p r i z ) = z / p I - z . 

this is a maximal ideal in Z /pT 'Z . Then Rad(e,Äe/) is also a maximal ideal 
and therefore* the largest proper ideal of exRex. By 11.4.1 it follows that 
exRe, is a local ring. 

11.5 P R O P E R T I E S O F N I L I D E A L S A N D 
O F f - N I L P O T E N T I D E A L S 

For the investigation of perfect rings properties of nil ideals and of 
r-nilpotent ideals are needed, which here are collected together. 

There is hrst the question of " l i f t ing" orthogonal idempotents modulo 
a nil ideal. To this effect we recall that an element eeR is called an 
idempotent if e2 = e holds. A n ideal A of R is called a nil ideal if every 
a eA is nilpotent, i.e. there exists a n n e N (depending on a) with an = 0. 
In 9.3.8 it was shown that every nil ideal is contained in RadCR). 
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As groundwork for the lifting of idempotents we prove the following 
simple lemma. 

1 1 . 5 . 1 L E M M A . Let b be an arbitrary element of a ring R and let R0 be 
the subring of R generated by leR and b. 

(a) For arbitrary m, n e N we have 

R=bnR+(l- b)mR + (b- b2)R, bnRn(l- b)mR = ( 1 - b)mR. 

(b) Ifb - b2 is nilpotent then there is an idempotent e e R0 such that we have 
e = br0y e-b = (b-b2)s0 with r0,s0eRo. 

Proof (a) If Z [x ] is the polynomial ring in the indeterminate x with 
coefficients in Z. We have 

l-xn-(l-x)me(x-x2)Z[x], 

for JC(1 -x) = x - j t 2 div ides 1 — xn - ( 1 - x ) m , sincex = Oand x = 1 arezeroes 
of l—xn - ( 1 -x)m. Consequently there is a z 0 e Z [ x ] such that we have 

\=xn+(l-x)m + (x-x2)z0. 

From the ring epimorphism Z[x]*-*R0 with x^b it follows that 

1 = bn + ( 1 - b)m + (b - b2)r0, r0 e R0, 

thus we have 

Ro = bnR0 + ( 1 - b)mR0 Hb- b2)R0 

and then also R =bnR + (l-b)mR +{b-b2)R. 
For the proof of the second equation in (a) it is immediately clear 

that bn(l~b)mR~>bnRn(l-b)mR. Conversely let d = bnr = ( 1 -b)ms e 
bnRn{l-b)mR (r,szR). Then from 

- < i - » r . - ( » - ( > + ( > " - + . . > 

- K ( T M > + - > 
there follows an equation of the form 

5 = d + br0s = bnr + br0s with r 0 e Ro. 

If we S u b s t i t u t e , in this equation on the right for 5, the same equation 
again, then it follows that 

s = bnr + br0(bnr + br0s ) = bnrx + b2rls with r2eR, 
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where we use the fact that JR 0 is commutative. I f we continue inductively 
in this manner, then after hnitely many Steps we obtain an equation of the 
form s = bnt with t e R. Hence it follows that 

d=(i-b)m

s=a-b)mbnt, 

thus d e bn(l-b)mR, which was to be shown. 
(b) Let (b~b2)n = 0, then (b-b2)R0 is a nilpotent ideal in R0 (since R0 

is commutative), thus we have (b -b2)R0 R a d ( Ä 0 ) and consequently 
(b - b2)R0 is small in JR 0. 

From 

R0 = bnR0 + (1 -b)nR0 + (b - b2)R0 

it then follows that 

Ro = bnR0 + (l-b)nR(h 

t h u s as 

bnR0 n (1 - b)nR0 = bn(l- b)nR0 = (b- b2)nR0 = 0 

we have in fact R0 = bnR0®{l -b)nR0. 
Then by 7.2.3 an idempotent e e R0 exists with 

eR0 = bnR0, (1 -e)R0 = (1 - b)nR0, 

thus we have e = br0, r0 6 Ro- Further it follows from (a) that 

e-b=(l-b)-(l-e)ebR0n(l-b)Ro = (b-b2)Ro, 

thus e-b = (b- b2)s0, s0 e R0- • 

11.5.2 Definition, (a) Let A *-> RRR and let v.R-*R/A be the natural 
ring epimorphism. We say that an idempotent e e R/A can be lifted to R 
if an idempotent e eR exists with v(e) = e. 

(b) We say that a set {et\iel} of orthogonal idempotents eieR/A can 
be lifted to R if a set e 1} of orthogonal idempotents et e R exists with 
v(ei) = Ei for all iel. 

11.5.3 T H E O R E M . Let A RRR be a nil ideal. Then every finite or count­
ably infinite set of orthogonal idempotents Ei eR/A can be lifted to R. 

Proof by induction. Beginning of the induction: A n idempotent eeR/A 
can be lifted to R. Again let v.R-* R/A and let b e R with v(b) = e, then 
it follows that 

v(b -b2) = v{b) - v{b)2 = e - e = 0, 
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thus b-b2eKer(v) = A. By 11.5.1(b) there is an idempotent eeR with 
e-b = (b-b2)s0e A. I t then follows that 

0 = v{e -b) = v{e)-v{b) - v{e)-e, 

thus v(e) = e. 
For the induction Step now let 

S i , £2, £3, • • • 

be finitely, or countably infinitely, many orthogonal idempotents from R/A. 
Let e\,...,en be already determined as required. Then let ceR with 
v{c) = en+i and let 

From the orthogonality of the e\,..., en we have therefore 

etb = bei = 0, i = 1,..., n, 

and also 

v(b) = (^l - £ £ ^ £ „ + 1 ( 1 - £ e^j =e„+ i . 

By the initial induction step and 11.5.1 (b) there is an idempotent en+i with 

v(en+1) = v(b) = e n + u en+x = ftr0 = r 0 £. 

As = bei = 0 it follows that 

eien+i = en+iei = 0, / = 1 , . . . , n, 

by which the proof is completed. • 

We come now to the investigation of Miilpotent ideals and repeat first 
the definition previously given at the beginning of this chapter. 

11.5.4 Definition. A set A of elements of a ring R is called left, resp. 
right, t-nilpotent, if for every family 

(ax,a2, a3,...), a(eA 

& keN exists with 

akak-i... ai = 0, axa2 ... ak = 0. 

It is clear then that every left or right r-nilpotent ideal is a nil ideal. On 
the other hand not every f-nilpotent ideal is indeed nilpotent. The t-
nilpotent ideals come between the nilpotent ideals and the nil ideals. 
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11.5.5 T H E O R E M . The following are equivalent for a right ideal A^> RR: 
(a) A is left t-nilpotent. 
(b) For every module MR with MA =M we have M = 0. 
(c) For every module MR we have MA Af. 
(d) RmA R m as right modules. 

Proof. "(a)=>(b)": Suppose we have AfA = M a n d M ^ 0. Then an mxax ^ 0 
exists with mxeM, axeA. Let rai=£m!a!. Then mxax=Y.M'ia,

iax and 
hence there exists m2a2a x ^ 0, m2 e Af, a2 € A. 

Let m 2 = Zm"a". Then m2a2ax = ]?m"ia"a2ax, so there exists 
m3a3a2ai ^ 0. Inductively therefore we obtain a sequence (ax, a2, a3,...), 
a{eA with anan-X ... ax T60 for every neN. Contradiction to the t-
nilpotence! 

"(b)=>(c)": Assume MA + U = Af. Then (Af/J7)A = Af/U, so M/U = 0 
by assumption, whence U = M which was to be shown. 

"(c)=>(d)": (d) is a special case of (c). 
"(d)4>(a)": Let F := R m as a right module with basis xu x2, x3,. . . . 

Along with the sequence (<2i, a2, a3,...) with a{ e A we consider the sub­
module 

of F with ux : = JC,- / e N. Obviously we then have FA + U = F, thus 
by assumption U = F. 

In particular we then have *i e £/, thus there is a representation 

* i = X w . r , - = ^ ^ 1 + ^ 2 ^ 2 - a i r i ) + A : 3 ( r3 -a 2 r 2 ) + . . 
i = i 

+ f̂c(̂ /c ~ ä f c - i f f c - i ) - l ^ ^ r / c . 

Hence by equating coefficients we have 

r i = l , r 2 = a i , r3 = a2ax,..., rk = ak-Xak-2 . .. aXy 

and also akrk = akak-X . . . ax = 0. • 

11.5.6 C O R O L L A R Y . The following are equivalent for a ring R: 
(1) RadCR) is left t-nilpotent. 
(2) Every projective right R-module has a small radical. 
(3) As a right R-module R m has a small radical. 

Proof. "(1)=>(2)": This is a special case of (a)4>(c) in 11.5.5, if we observe 
that by 9.2.1 Rad(F) = P RadCR) for a projective module P. 
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"(2)=>(3)": Clear. 
"(3)=>(1)": (d)=>(a) in 11.5.5 on observing 9.2.1(g). • 

A further interesting characterization of Miilpotent ideals arises with the 
help of the annihilator conditions. 

11.5.7 T H E O R E M . The following are equivalent for a right ideal A ^ RR: 
(a) A is left t-nilpotent. 
(b) For every module RM with rM(A) -Q we have M = 0. 
(c) For every module R M we have r M ( A ) R M . 

Proof "(a)=>(b)": Assume we have rM(A) = 0 ajid M^O. Then to every 
0 7* m e M there is an a e A with am ^ 0. For a fixed 0 ^ m0 e M we obtain 
inductively therefore a sequence (au a2, a3,...), a-x• e A with 

anan-i . . . flim0# 0 for every neN, 

thus also anan-i. . . ai ^ 0 for every n e N. This contradicts the assumption. 
"(b)4>(c)": Assume that for X *-> M we have 

rM(A)nX = 0y 

then it follows that rX(A) = 0, thus X = 0. 
"(c)=>(a)": We show that 11.5.5(b) is satisfied. For MR ?^0we shall show 

that MA T*M. Let U := rR(M), then U is a proper two-sided ideal in R. 
Further let 

H := {x\xeR A A X < = [ / } , 

then it follows that U<^H and 

/ / / £ / = r Ä / l / ( A ) . 

By (c) we have H/U ^ R/U, thus £ / c H and consequently MH * 0, 
but MAH c M [ / = 0. We deduce therefore that MA • 

11.6 P E R F E C T R I N G S 

As announced in the preamble to this chapter we now come to the 
investigation of perfect rings and first of all repeat the definition. 

11.6.1 Definition. A ring is called right perfect (=RR perfect) : Every 
right R-module has a projective cover. 



294 11 S E M I P E R F E C T M O D U L E S A N D P E R F E C T R I N G S 11.6 

11.6.2 C O R O L L A R Y . The following are equivalent for a ring R: 
(a) R is right perfect. 
(b) R m is semiperfect as a right R-module. 
(c) R is semiperfect and every free right R-module has a small radical. 

Proof. "(a)=>(b)": Clear by definition. 
"(b):=>(c)": As a direct summand of R(R\ R is semiperfect. By 11.1.7 

R{R] has a small radical so that by 11.5.6 every projective right -module 
has a small radical. 

u (c)z>(a)": If R is semiperfect and if every free right R-module has a 
small radical then by 11.3.3 every free right R-module is semiperfect. Since 
every right R-module is the image of a free right R-module, every right 
R-module is semiperfect, i.e. R is right perfect. • 

In order to have an example of a perfect ring we take note that a right 
artinian ring is perfect on both sides. 

Thus let RR be artinian. Referring to 11.3.2 it was there established that 
a right artinian ring is semiperfect. Since by 9.3.10 we have for every right 
R-module and left R-module M 

Rad(M) ^ M 

the assertion follows from 11.6.2. 
In this section we shall prove the theorem mentioned in the preamble 

which we repeat for the sake of completeness. 

11.6.3 T H E O R E M . The following conditions are equivalent for a ring R: 
(1) R is right perfect. 
(2) Every flat right R-module is projective. 
(3) R satisfies the descending chain condition for cyclic left ideals. 
(4) Every left R-module ^ 0 possesses a socle ^ 0 and R contains no 

infinite set of orthogonal idempotents. 
(5) Ä/RadCR) is semisimple and RadCR) is left t-nilpotent. 

Proof We shall show successively (1)Z>(2)4>(3)^(4)=>(5)=>(1). 
"(1) (2)": By assumption every right R-module, thus in particular every 

flat right Ä-module has a projective cover. By 10.5.3 (with M = P/U) 
every flat right R-module is then projective. 

"(2)=>(3)":Let 

Rai <^ Ra2 Ra3 

be a chain of left ideals of R. As ai+ieRai there is a bi+\eR with 
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di+i = bi+iüi. I t follows inductively, if we put b\ = au that 

an =bnbn-i . . . b u neH. 

The previous chain can consequently be presented in the form 

Rbi Rb2bi Rb3b2b1 <->... 

and it is uniquely determined by the sequence bu b2, 6 3 , . . . 
We show in three Steps: There is a left ideal A <-» RR and a n m e l \ l with 

Rbnbn-i... b\ = Ran - A 

for all n^m. Then evidently this is equivalent to having the original 
sequence stationary. 

Step 1. Let F := RmeMR with the basis 

Xi := (0_ 1^0_1 0 . . . ) , ieN. 
i places 

Further let 

B'.= I (xi-xi+lbi)R^FR, 

then we have to show that F/B is flat. By 10.5.2 we show that for every 
finitely generated left ideal L^> RR we have 

BnFL = BL. 

We always have BL B nFL and in order to prove the reverse inclusion 
let d 6 B n FL, thus 

d = I (JC,- - Xi+Mn = Z / , / / , /;• € F, // G L . 
1=1 1=1 

Since L is a left ideal, we obtain 

d=I filt= I JC//} with / } e L . 
/=i /=i 

Equating coefficients yields 

r\ = / i , r 2 - b\ri = / 2 , r 3 - b2r2 = / 3 , . . . , 

from which it follows successively that all r, e L , thus we have d e BL which 
was to be shown. 
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Step 2. By virtue of assumption (2) it now follows that F/B is projective. 
Then the epimorphism 

p.F^F/B 

splits and we deduce that F = B®U. Now let 

7r: FBb + u>->ueF, beB,ueU, 

be the corresponding projection of F onto U ^ F (with codomain F!) . 
Then we have 

7r(xk-xk+ibk) = 0, keN, 

thus ir(xk)" Tr(xk+i)bk. I f we now put zk := 7r(xk) then it follows that 

zk = zk+ibk, keN, 

from which by successive Substitution we obtain 

zk - zm+\bmbm-\... bk, m^k. 

As TT2 = TT we have hnally ir{zk) = zk, ke N. 

Assertion. Let rR(zk) be the right annihilator of zk in R, then we have 

rR(zk) = {r\reR A bmbm-\... bkr = 0 for an ra ^ /c}. 

That the set appearing on the right is contained in rR (zk) follows immediately 
from zk = zm+ibmbm-i . . . bk. Now let rerR(zk), i.e. zkr = 0. Then from 

xk = yk + zk, ykeB,zkeU 

there follows an equation of the form 

m 

xkr = ykr= X (x,- -xi+xbj)rh ry eR,m^k. 

Equating coefficients yields 

r i = r 2 = . . . = r f c _ i = 0, 

rfc = r , 

rfc+2 = bk+\rk+\, 

rm — 1 r̂ n — 1) 
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By S u b s t i t u t i o n i t f o l l o w s t h a t 

0 — bmrm = bmbm-\rm-\ — ... = bmbm-\ • • • but, 

b y w h i c h t h e a s s e r t i o n is p r o v e d . 

Step 3. In t h e sense o f t h e d e f i n i t i o n o f F = R m n o w l e t 

zk=(sk) = (sksk

2...\ keN. 

Let A b e t h e l e f t i d e a l of R g e n e r a t e d b y t h e c o e f f i c i e n t s s] o f Z\\ 

i 

s i n c e a l m o s t a l l s) = 0, A is finitely g e n e r a t e d . 

Assertion. There ex i s t s ra0 w i t h Rbnbn-i... b\ = A f o r all n ^ m 0 . I f t h i s is 

s h o w n t h e n o b v i o u s l y w e h a v e d o n e w i t h t h e p r o o f of (2)=>(3). 

In Step 2 

zi = zm+\bmbm-\. • • bu meN 

w a s e s t a b l i s h e d , c o n s e q u e n t l y w e h a v e f o r a l l / e N 

1 m + l i r » 
= $i OmDm-\ . . . Du 

f r o m w h i c h i t f o l l o w s t h a t 

A ^> Rbmbm-\... m e I U 

We h a v e t o s h o w t h a t f o r s u f f i c i e n t l y l a r g e m t h e r e v e r s e i n c l u s i o n h o l d s . 

From 7r = TT1 i t f o l l o w s t h a t z7 = 7r(jc ;) = 7T2(A:/) = 7r(z7), a n d t h u s w e o b t a i n 

w h e r e / i is so c h o s e n t h a t w e h a v e s) = 0 f o r y 5 * h; i n a d d i t i o n w e n o t e 

t h a t f r o m 

h 

7 = 1 

i t f o l l o w s t h a t 

zi = TT(ZI) = X ir(xj)s) = I Z/5) = I X XtS'is). 

Equating c o e f f i c i e n t s y i e l d s 
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From Zj = zh+ibhbh-i... bh j (Step 2) we obtain 

s\ =s**1bhbh-i . . . bj. 

I f we insert this into the preceding equation we deduce that 

h h 

Si = X St + bhbh-i . . . bjSj =Si+ X bhbh-i . . . bjSj. 

On the other hand since we have s] = sl

h+1bhbh-i . . . b\ it follows that 

st+1( I 6 / A - i . • • bfl) - b h b h - x . . . ^ ) = 0, /eN 

thus 

A + i ( • • . bjs) - b h b h - \ . . . / 3 i ^ = 0 . 

By Step 2 it follows that there is an m 0 ^ + 1 with 
bmobmo-i • • • £fe+i( Z • • -bhbh-\ .. . b^J=0. 

This implies that b^bn^-i . . . bxeA and consequently we also have 

i?ft„ . . . / ? i ^ A for n^rriQ. 

"(3)=>(4)": Let 0 T * m e Ä M , then we have to show that Rm contains a 
simple submodule. Suppose this were not the case, then every submodule 
7*0 of Rm must contain a proper submodule 7*0. Then there is therefore 
an inhnite chain 

Rm «a? Rrxm Rr2rxm ... . 

Consequently we have 

R ±3 Rrx Rr2rx ... 

in contradiction to the descending chain condition for cyclic left ideals. 
Now we show that R cannot contain an inhnite set of orthogonal idem­

potents. Namely if e\, e2, e3,... are orthogonal idempotents # 0 in R then, 
as we shall immediately establish, 

R R(l-ei)<*R(l-ei-e2) «tf . . . 

is a proper descending chain of cyclic left ideals in contradiction to the 
assumption. Since 

( \ - e x - e 2 - . . .-en){\-ex-.. . - e „ - i ) = . .-en 
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we have 

A d - * ! .. .~en-i) R(l-ei-.. ,-en); 

suppose 

( 1 - e ! - . . . - e„-i) = r ( l - ß i - . . . - e „ ) , 

then it would follow on pre-multiplication by en that e„ = 0 ^. 
"(4) =^(5)": First of all in order to show that Rad(Ä) is left f-nilpotent, 

by 11.5.7, it must be shown that for every left R-module M 

(for Rad(i?)Soc(M) ~> Rad(Soc(M)) = 0), and because Soc(M) <*» M holds 
by assumption, the assertion follows. 

Since Rad(i?) is left f-nilpotent and so is certainly nil it follows from 
11.5.3 that R/Rad(R) cannot contain an infinite set of orthogonal idem­
potents. 

For the further considerations we remark first of all that the left ideals 
of jR/Rad(Ä) coincide with the -submodules of Ä(l?/Rad(2?))> so that 
every left ideal 7*0 of R/Rad(R) contains a simple left ideal. For brevity 
we put T := R/Rad(R). 

Assertion. Every simple left ideal E «-> TT is a direct summand in TT. 

Proof. Since Rad( i? /Rad(Ä)) = Rad(T) = 0, E is not small in TT, thus an 
A^> T exists with E + A = TT. Since E is simple, i t follows that EnA = 0 
(since otherwise E A 4> A ~ T), thus E®A = TT. 

We now construct a sequence of orthogonal idempotents which in accord-
ance with the assertion at the beginning must break off after finitely many 
Steps. Let Ei ^ TT, then there is an idempotent e\ with Ei = Tei and 

If Ai = 0 then TT is simple and we are done. I f Ai T * 0 then by assumption 
there is a simple left ideal E2^> Ax. Let TT = E2® U2, then it follows by 
the modular law that Ai = E2®{AX n U2). I f now we put A2 := Ai n U2 it 
follows therefore that 

r M ( R a d ( Ä ) ) ^ M 

But we always have 

S o c ( R M W r M ( R a d O R ) ) 

TT = Ei®A1 (=Te1®T(l-e1)). 

TT = Ei®E2®A2. 
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If we continue inductively in this way, then we obtain a sequence of 
decompositions 

TT = EX®.. .®En®Am n = 1, 2, 3 , . . . 

with An-i = En ®An, n = 2 , 3 , . . . , which then only breaks off if An = 0 
occurs. But then TT is semisimple and the proof is complete. 

By 7.2.3, to the sequence of direct decompositions there corresponds a 
sequence of orthogonal idempotents 

eu . • •, enj an, n = 1, 2, 3 , . . . 

with an-i = en+an, n =2, 3 , . . . ( i . e . with respect to the S p l i t t i n g of an-X 

into the idempotents en and an the orthogonal idempotents e i , . . . , e n _ i do 
not change!) Since as asserted the sequence e\, e2, e 3 , . . . must break off, 
the case an = 0 must hold, thus An = Tan = 0 happens. 

"(5)=>(1)": By 11.3.2 and 11.5.3 R is semiperfect. By 11.5.6 for every 
free right R-module Fr we have 

Rad (FR) ^ FR. 

Then it follows by 11.3.3 that every free and therefore every right R -module 
is semiperfect. But this implies that R R is perfect. • 

Hence the proof of Theorem 11.6.3 is complete. The rings characterized 
by this theorem are of interest in various respects. We shall return later 
many times to them. Here let it be emphasized once more that for every 
right Ä-module over a right perfect ring R all S t a t e m e n t s concerning 
semiperfect modules are at our disposal. In particular for every projective 
module over such a ring we have the decomposition property 11.4.2 
(Krull-Remak-Schmidt). 

11.6.4 C O R O L L A R Y . For a right perfect ring R we have: 
(a) Every noetherian left R-module is artinian. 
(b) Every artinian right R-module is noetherian. 
(c) If RR is noetherian then R R is artinian. 

Proof. (a) Let RM be noetherian, then every submodule and every factor 
module is again noetherian. Consequently the socle of any factor module 
of M is hnitely generated. Since by 11.6.3(4) the socle of an arbitrary left 
R-module is large in the module, by 9.4.4 RM is artinian. 

(b) Let MR be artinian and let U ^ MR. Then U is artinian, thus 
L//Rad(t/) is semisimple and artinian and consequently hnitely generated. 
Since R is right perfect we have (by 11.1.7) that R a d ( t / ) « ^ U, and by 
9.4.1 it follows that U is hnitely generated. But this means that M is 
noetherian. 
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(c) By 9.3.7 RadCR) is nilpotent. Since moreover R/Rad(R) is semi-
simple, 9.3.11 yields the assertion. • 

11.7 A T H E O R E M O F BJÖRK 

By 11.6.3 a ring is right perfect if and only if it satisfies the descending 
chain condition for cyclic left ideals. The question then arises as to whether 
it also satisfies the descending chain condition for finitely generated left 
ideals. That this is in fact the case, is the content of the following theorem 
(J.-E. Björk, [32]). 

11.7.1 T H E O R E M . Let R be an arbitrary ring. Every R-module which 
satisfies the descending chain condition for cyclic submodules also satisfies 
this condition for finitely generated submodules. 

Proof. We recall first of all that the descending chain condition for cyclic, 
resp. finitely generated, submodules is equivalent to the minimal condition 
for cyclic, resp. finitely generated, submodules. As an abbreviation we 
denote the descending chain condition for cyclic, resp. finitely generated, 
submodules by ( C ) resp. (F). The proof is set out for right R-modules and 
is subdivided into several Steps. 

Step 1. Assertion: In the set of the submodules of an arbitrary module, 
satisfying (F), there is a maximal element. The proof is obtained with the 
help of Zorn's Lemma. Let M be an arbitrary module and let 3F be the 
set of submodules of M that satisfy (F). Then we have OefF and !F is 
ordered by <=. Let $ f T * 0 be a chain from 3F. Then 

v- U u 
uedc 

is an upper bound of % in 2F. For if v\,... ,vneV, then a U eff exists 
(since % is a chain) with vx,... ,vn€U. Consequently every finitely gener­
ated submodule of V is already contained in a U e 3C. Hence every descend­
ing chain of finitely generated submodules of V is already contained in a 
UeJC and consequently is stationary. Thus in fact we have Ve&. By 
Zorn's Lemma a submodule A^+ M, maximal in 3F then exists. I f A -M 
then we are done. Therefore in the following let A be properly contained 
in M. 

Step 2. Now let MR be a module which satisfies ( C ) . Since A M the 
set of cyclic submodules mR, meM with mR <£ A is not empty. By assump­
tion there is in this set a minimal element y0R. 
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Assertion: U0 '= A + y0R satisfies (F) in contradiction to the maximality 
of A. In order to see this let 

Ui+>U2+*U3+*... 

be a descending chain of finitely generated submodules of Ü70. I f we have 
Ui A for an / then by assumption on A this chain is stationary. Hence 
let Ui<£ A for all / = 1, 2 , . . . . In every Ux there is then a cyclic submodule 
uR with uR<£A. Then by assumption with respect to ur<£A there exists a 
minimal cyclic submodule y{R c Ut. In this sense for every i - 1, 2 , . . . let 
a hxed y, be chosen. 

Step 3. Assertion: I f £/, = A,- + y^R holds with At *-> A , then it follows that 
[7/ = A/ -I- yt+iR for / = 0, 1, 2, As y/+i e £7/+I «-» LT, it follows that yi+1 = 
a + y,r with a € A , r e i?. As y,-+i £ A we also have y,r£ A and consequently 
y,ri?£ A . Since y{R is minimal in Ui with respect to w . R £ A , it follows that 
yjR = yiR, thus there is an r'eR with y,rr' = y f. Then it follows that 
y / + 1 r ' = ar' + y,rr' = ar' + y„ thus we have y, = ar' - y,+ir' with ar' e A, . Hence 
altogether as y,+i e £/, we deduce that £/,• = A f + y/Ä = A , + y / + 1 j R . 

Step 4. By induction we show: 

Ui=Ai + yiR, / = 1 ,2 ,3 , . . . 

with 

A At «-* A , + i 

and with A f being finitely generated. 

Proo/. By assumption every Ui+\, i = 0, 1, 2 , . . . is finitely generated. Let 
vi,. .. ,vn be a set of generators of [7

J +
i .Le tnow Uf = A,- + y,i? with A , <-> A , 

then it follows by the third step that Ui+i *-» (7, = A,- + y,-
+
iÄ, thus we have 

Vj = aj + yt+ir,- with a 7 e A „ r / G Ä . I t follows that a,- = Vj-y,-+ir/ and so 
. . . , « n , y/+i is a set of generators of Ui+\. With A , + i : = ß i j R + . . . + anR 

the assertion then holds. As a beginning for the induction Uo -• A + y 0 ^R is 
available. 

Step 5. Since the condition (F) is satished for A , the sequence 

Al<^ A2<r-> A3*-> . . . 

is stationary. Thus there is an n with 

A„ = A„+;, / = 1, 2, 3 , . . . . 

Then it follows that 

Un=An + yn+iR = An+l + y n + i i ? = C/ n + 1 



11.7 A T H E O R E M O F B J Ö R K 303 

and by induction we deduce that Un = Un+i, i = 1 , 2 , 3 , . . . . Thus the 
sequence U\ <^ U2 <^ U3 <H> . . . is also stationary. Hence the assertion 
given in the second Step is proved and the proof of Björk's theorem is 
complete. • 

11.7.2 C O R O L L A R Y . The following are equivalent for a ring R: 
(1) R is right perfect, 
(2) every left R-module satisfies the descending chain condition for finitely 

generated submodules. 

Proof. "(1) =>(2)": Every descending chain of cyclic submodules of a module 
RM can be written in the form 

Rm <r^> Rrxm ^ Rr2rxm <-» Rr3r2rxm *->. ... 

Since by 11.6.3 RR satisfies (C), the chain 

R <-» Rrx <^> Rr2rx <^ Rr3r2rx 

is stationary and consequently the preceding chain is also stationary. Thus 
(C) holds for RM and by 11.7.2 then (F) also holds. 

"(2):^>(1)": By assumption RR satisfies the condition (F), thus also (C) 
and then (1) follows by 11.6.3. • 

11.7.3 C O R O L L A R Y . If R is right perfect and B is a two-sided ideal of A 
then R/B is also right perfect. 

Proof. By 11.7.2 (C) is satisfied for R(R/B). Since B is a two-sided ideal, 
R/B is also an (R/B)-\eit module and the submodules of R(R/B) and 
R/B{R/B) coincide. Thus (C) is also satisfied for R/B(R/B). By 11.6.3 it 
follows that R/B is right perfect. • 

Obviously in this proof 11.7.1 is not used, but only 11.7.2 for the 
condition (C). Interesting corollaries of 11.7.1 in which not only (C) but 
also (F) must be used are still outstanding. 

EXERCISES 

(1) 
For an integral domain R with quotient field K show: 
(a) If R is not a field then K as an R-module does not have a projective 

cover. 
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(b) If R is not local and if MR is indecomposable then MR does not have 
a projective cover. 

(c) If R is not local and MR is semiperfect then Af = 0. 

(2) 
(a) If A and A@B have projective Covers then so also has B. 
(b) Let R be an integral domain with exactly n maximal ideals (n ^ 2 ) . 

Show: 
(1) The i?-module M := R/Rad(R) is semisimple and has 2" sub­

modules. 
(2) Only two submodules of A f have projective Covers. 

(3) 
Let R be a local principal ideal domain, but not a held. Show for MR: 

(a) Then Af has a projective cover if and only if it is the direct sum of 
a projective and a hnitely generated R-module. 

(b) Then Af is semiperfect if and only if it is hnitely generated. (Hint: 
The quotient held is countably generated as an R-module.) 

(4) 
(a) Give an example of a complemented module M with a non-comple-

mented submodule U. 
(b) If Af = A + B and if A and B are complemented then so also is Af. 
(c) I f Af is hnitely generated and if every maximal submodule in Af has 

an adco, then Af is itself complemented. 

(5) 
(1) Show the following are equivalent for a module MR with Rad(M) # 

Af : 
(a) Af is indecomposable. 
(b) For every X MM/X is directly indecomposable. 
(c) Rad(M) is a maximal and a small submodule of Af. 
(d) Rad(Af) is the largest proper submodule of Af. 
(e) For all ra e Af either mR ^ A f holds or mR = M. 

(2) Let Af T * 0 be semiperfect and let £:P-*M be a projective cover. 
Show that Af then satishes the equivalent properties of (1) if and only if 
P satishes the equivalent properties in 11.4.1. 

(6) 
(1) Show that a projective module PR is semiperfect if and only if it 

satishes the two following conditions: 
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(i) Every submodule which is not small contains a direct summand 
diflferent from zero. 

(ii) Every submodule contains a maximal direct summand. 
(2) Show that a finitely generated module M with property (ii) already 

satisfies the maximal condition for direct summands. 

(7) 
Show that the following are equivalent for a projective module PR: 

(a) S = End(PR) is semiperfect. 
(b) P is semiperfect and satisfies the maximal condition for direct sum­

mands. 
(c) P is semiperfect and finitely generated. 

(8) 
(1) Show that the following are equivalent for a ring R: 

(a) Every finitely generated right ideal has an adco in RR. 
(b) Every cyclic right ideal has an adco in RR. 
(c) R = R/Rad(R) is a regulär ring and to every idempotent eeR 
there is an idempotent eeR with e = e. 

(2) If RR is injective then R satisfies the equivalent conditions in (1). 
(3) R is semiperfect if and only if the equivalent conditions in (1) are 

satisfied and R contains no infinite set of orthogonal idempotents. 

(9) 
Show: If A is a two-sided ideal of a ring R which is left or right /-nilpotent 
and which is finitely generated as a left or right ideal then A is nilpotent. 

(10) 
For a ring R define the left Ä-module K = (RR)° = H o m z ( Ä , Q/Z) . Show: 

(a) RK is an injective cogenerator. 
(b) A right ideal A <-» RR is left /-nilpotent if and only if we have: 

lKN(A)*>KN. 
(c) If KN has a large socle then the radical of R is left J-nilpotent. Give 

an example in which the converse does not hold. 

(11) 
Show for a ring R: (a) A projective module PR has a small radical if and 
only if P.Rad(P) as a right module has a projective cover. 

(b) The radical of R is left /-nilpotent if and only if the right R-module 
C R / R a d ( £ ) ) ( N ) has a projective cover. 

(c) R is right perfect if and only if every semisimple right R-module has 
a projective cover. 
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(12) 
It is to be shown: I f R m is a direct summand in RN (as a right R-module) 
then R is right perfect. For this purpose let Rax «-> Ra2 ^ . . . be a descend­
ing sequence of cyclic left ideals, let b\ '= ax, bi+xa; = ai+x, and dehne 

zk •= ( 0 , . . . , 0, bk+ibk, bk+ibk+ibk,...) e RN with bk in the kth place. 

Show: 
(1) z\ = (ax, a 2, • • • , cik, 0 , . . .) + Zk+iCik for all IceN. 
(2) If we decompose zk = uk + vk e Rm® V = RN, then we have vx = 

Vk+idk for all k e N. 
(3) I f the co-ordinates of ux from the place ra are equal to zero then 

we have Ram = Ram+X =... 

(13) 
Let be a held, let V by a vector space over K with countably inhnite 
basis x\, *2,. • . and let 5 = Endic( V) . Further let 

V o : = 0 , Vn := I JCÄ n s * l , 

then dehne 

N := { /€ 5|dim(Im / ) < oo A / ( l / n + i ) c V n for all « 5* 0}. 

Show: 
(1) TV is a subgroup of 5 with N2 c JV. 
(2) JV is left r-nilpotent but not right r-nilpotent. 
(3) A <= 5 is a subring admitting multiplication by a scalar then R := A + 

N is a subring of 5 with RadCR) = N and #/RadCR) = K (as rings). 
(4) R is a local ring which is right perfect but not left perfect. 
(5) Soc (Ä Ä ) = 0. 

(Hint: First show ls(N) = 0.) 

(14) 
Show: A ring R is semisimple if and only if the endomorphism ring of 
FR=Rm is regulär. 

(Hint: First show: End(F R ) is r e g u l ä r ^ R is right perfect because in the 
proof of Theorem 11.6.3 B is the image of an appropriate endomorphism 
of F.) 



Chapter 12 

Rings with Perfect Duality 

12.1 I N T R O D U C T I O N T O A N D F O R M U L A T I O N O F T H E 
M A I N T H E O R E M 

Let a ring R be called a ring with perfect duality if the right and left 
.R-modules have the same duality properties as vector Spaces over a field, 
thus the best possible duality properties. In this respect we have to put the 
finitely generated or finitely cogenerated R -modules in the place of the 
finite-dimensional vector Spaces. 

The question arises as to the characterization of rings with perfect duality. 
This question originated from J. Dieudonne, who asked it for artinian rings 
(1958). Here it is considered for arbitrary rings. In Order to be able to 
formulate the answer (12.1.1) we must first of all develop some concepts. 

Let R be an arbitrary ring. By the dual module to an arbitrary module 
MR we understand 

M * : = H o m ^ ( M « , i ? R ) , 

in which in consequence of the definition 

(r<p(m):=r<p(m), reRy <peM*, meM, 

M* is a left R -module (see 3.8.2). 
If M = RM is a left R -module, then M * is a right R -module in con­

sequence of the definition 

(<pr)(m) = <p(m)r resp. (m)(<pr) = ((m)cp)r, 

according as the homomorphisms are written on the left or right of the 
argument. 

307 
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For every A«-»MR the orthogonal complement A° of A in M * is defined 
b y 

A ° : = f e | ( p € M * A ( p W = 0} 

Then as w e see e a s i l y , w e h a v e A % RM*:. 
For X R M * o n t h e o t h e r h a n d l e t 

X 1 := {m | m e Af A V£ G AT[f (m) = 0]}. 

Then i t f o l l o w s t h a t XL~>MR. 
For e v e r y m o d u l e MR t h e r e ex i s t s t h e h o m o m o r p h i s m 

d e f i n e d b y 

3>M(W)(<P) := <p(m), m e M , <peM*. 

In t h e m o s t f a v o u r a b l e case <i>M is a n i s o m o r p h i s m a n d M is t h e n c a l l e d 

r e f l e x i v e (3.8.3). It is w e l l k n o w n t h a t e v e r y finite-dimensional v e c t o r space 

is r e f l e x i v e . 

The m o s t i m p o r t a n t r e s u l t s of t h i s c h a p t e r w i l l n o w b e p r e s e n t e d . They 
s e r v e as g u i d i n g p r i n c i p l e s f o r t h e f o l l o w i n g c o n s i d e r a t i o n s i n w h i c h w e 

p r o v e these r e s u l t s Step b y s t e p . In t h e f o r m u l a t i o n of t he se r e s u l t s w e 

u n d e r s t a n d b y a n R-module, e i t h e r a r i g h t o r a l e f t R-module. 

12.1.1 M A I N T H E O R E M . The following are equivalent for a ring R: 
(1) Every finitely generated R-module is reflexive. 
(2) Every cyclic R-module is reflexive. 
(3) Every finitely cogenerated R-module is reflexive. 
(4) For every R-module M and every submodule A ofMwe have A =A°l. 
(5) RR and RR are cogenerators. 
(6) RR is a cogenerator and RR is injective. 
(7) RR is a cogenerator and RR is injective. 
(8) RR and RR are injective and to every simple R-module there is an 

isomorphic ideal in RA 

12.1.2 Definition. A r i n g , w h i c h sat isf ies t h e c o n d i t i o n s o f 12.1.1, is c a l l e d 

a ring with perfect duality. 

12.1.3 C O R O L L A R Y . IfR is a ring with perfect duality then R is semiperfect 
and both RR and RR are finitely cogenerated. 

t The latter property is also named in the Iiterature after the author. 



12.1 F O R M U L A T I O N O F T H E M A I N T H E O R E M 309 

In the Main Theorem conditions (1) to (4) have to do with concepts of 
duality whereas conditions (5) to (8) connect cogenerator and injectivity 
properties. 

The corollary asserts that for rings with perfect duality all results over 
semiperfect rings (from Chapter 11) and over hnitely cogenerated modules 
are at our disposal. 

In the following considerations we shall not only provide the lemmas 
for the proof of the preceding results but we shall also prove results which 
are of independent interest and such as are needed in the next chapter. 

12.2 D U A L I T Y P R O P E R T I E S 

Let R be an arbitrary ring and let f:AR-*MR be an arbitrary R-
homomorphism. Then let 

/ * : * M * ^ R A * 

be dehned by 

r(<p):=<pf, <PZM*. 

As 

/ * ( r i ( p i + r2(p2) = (ri<px + r2<p2)f = rx(<pif) + r2(<p2f) = rif*(<px) + r2f*(<p2) 

/* , as constructed, is an R -homomorphism. We call / * the dual homo­
morphism to f. We now bring together some simple properties of dual 
homomorphisms. 

12.2.1 P R O P O S I T I O N . Let / : A Ä -> MR, f0: MR -* AR and g: MR -> WR be 
homomorphisms. Then we have 

(a) ( g / ) * = / V , / o / = U ^ > / * / o = U = 1A*. 
(b) f is an epimorphism =>/* is a monomorphism. 
(c) If RR is injective, then we have: f is a monomorphism =>/* is an 

epimorphism. 
(d) If RR is a cogenerator, then we have: /* is a monomorphism / is 

an epimorphism, f* is an epimorphism is a monomorphism. 
f R 

(e) If 0-> A — W - + 0 is a split exact sequence (3.9.1) then 

0-> W * - ^ M * - ^ - » A * - > 0 

is also a split exact sequence. 
(f) If RR is injective then along with the exact sequence 

0-+A-^M-^W-+0 
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the sequence 

Proof. (a) 

(gfl*(a>) = a>(gfl = = / * ( * * ) = / * (g*(a>)) = ( /*g*)(«)=>(gfl* = / V -

l X ( a ) = a l A = a = l A * ( a ) = > l X = l A * ^ ( / o / ) * = / * / ? = 1 A = U * . 
(b) From /*(<p) = <p/ = 0 it follows that <p(f(m)) = 0 for all m e Af. If / is 

an epimorphism then it follows that <p(M) - 0, thus <p = 0. 
(c) Let a e A * be given. Since RR is injective a <peM* exists with 

a =*>/ = / * ( * ) . 

A 1 *M 
/ 

/ 

a 

/ 

(d) Let / * be a monomorphism, i.e. from f*(<p) = <pf = 0 it follows that 
cp = 0. Suppose / were not an epimorphism, then, since # Ä is a cogenerator, 
a r e (Af/Im(/))*, r ^ 0, would exist. Let now v : M-> M/Im(f) then letting 
<p:=™eAf*, <p^0 and <p(Im(/)) = 0, then <p/ = 0, thus /*(?>) = 0, thus 
<p = 0 ^ . 

Let / * be an epimorphism. Suppose / were not a monomorphism. 
Since RR is a cogenerator, there is an aeA* with a ( K e r ( / ) ) ^ 0 . 
Let <peAf* with a =/*(<?) = <p/, then it follows that 0 * a ( K e r ( / ) ) = 
? ( / (Ker ( / ) ) ) = 0 

(e) Since the sequence splits, there is (by 3.9.3) a homomorphism f0: A f -> 
A , go* W-+ Af with / 0 / = I A , ggo = W - Therefore it follows from (a) that 

1 A * = / * / * , l w * = g*g*. 

Thus / * is an epimorphism, g* is a monomorphism and in the sequence 

both Im(g*) and the Ker( /*) are direct summands in Af*. I t remains to 
show the exactness at the position Af * where only the exactness of the 
original sequence but not however its Splitting is used. 

From gf = 0 it follows that 

(f*g*)M = a>gf = 0 for all cueW*, 
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thus we have Im(g*) c Ker( /*) . Now let f*((p) = <pf = 0, i.e. <p(f(m)) = 0 for 
every meM. Consequently we have 

Ker(g) = Im(/ )^Ker(<p) . 

In the diagram 

f g 

A > M >W 
/ 

/ 
/ 

<P / 
' CO / 

/ 
w / 

R 

an co e W* exists by 3.4.7 with <p = cog = g*(to), thus we also have 

K e r ( / * ) ^ I m ( g * ) . 

(f) By (b) g* is a monomorphism and by (c) f* is an epimorphism. As 
in the preceding proof it follows that Im(g*) = Ker( /*) . • 

Obviously the corresponding S t a t e m e n t s hold on changing the sides. 
These considerations are now to be applied to 

'MR ~*MR*. 

There then holds 

4 > & : * M * * * ^ Ä M * with <t>Ur) = r<i>M,TeM***. 

Further we have to consider 

12.2.2 L E M M A . Let R be an arbitrary ring and let MR be an arbitrary right 
R-module. Then we have: 

(a) = IM* 

and consequently 

<&M* is a monomorphism, 

<&M is an epimorphism, 

R M * * * = Im(d>M*)0Ker(cD^). 

(b) If <S>M is an epimorphism then <J>M* is an isomorphism, i.e. M* is 
reflexive. 
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(c) For an arbitrary homomorphism f:AR-+ MR 

A >M 

A * * — • M * * 

is commutative. 
(d) R R is a cogenerator if and only if for every module MR <t>M 

is a monomorphism. 
(e) Let R R and R R be injective. Then for every exact sequence 

0 - > A - W - W ^ O 

the sequence 

is also exact and the diagram 

0 >A —-—• Af—-—*W >0 

*A* *M *W 

o > A**J^M**iZ+w** • o 

is commutative. 

Proof. (a) Let <p e Af*, then hrst of all we have 

(<&M*M*)(«P) = * M ( * M * ( ^ ) ) = * M * ( < P ) * M . 

For meM it follows that 

(#M*(<p)<*>M)(m) = *M*(<P)(3>M("0) = * M (m)(<p) = <p(m), 

thus (<1>M#M*)(<P) = <p, and thu* = I M * . 
(b) I f 4>M is an epimorphism then it follows by 12.2.l(b) that <&M is a 

monomorphism. By (a) <&M is then an isomorphism and 3>M* is the inverse 
isomorphism. 
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(c) For a e A and <p e M* we have 

((/**cD A )(a))(<p) = (<D A(a)/*)(<p) 

= <D A (a)(/*(<p)) = *A ( a ) (<p / ) 

= <p(/(a)) = < & M ( / ( a ))(<p) 

= ( ( * M / ) ( A ))(*>), 

thus/**<DA = <I>M/. 

(d) From <l>M(m) = 0 it follows that <p(m) = 0 for all <p<=M*, thus 
m € n Ker(<p). If RR is a cogenerator then we have 

PI Ker(^) = 0 
<peM* 

thus m = 0. The converse is clear. 
(e) From 12.2.l(f) the exactness of 

0 A * * - ^ M * * W** -> 0 

follows and from 12.2.2(c) the commutativity of the indicated 
diagrams. • 

From our considerations so far the following theorem, which is of interest, 
immediately arises and later has other important applications. 

12.2.3 T H E O R E M 

(a) Let R be an arbitrary ring. If 

is a split exact sequence of right {or left) R-modules then we have: M is 
reflexive if and only if A and W are reflexive. 

(b) Let RR and RR be injective cogenerators. If 

0 - * A - W - W - > 0 

is an exact sequence of right (or left) R-modules then we have: Mis reflexive 
if and only if A and W are reflexive. 

Proof. (a) By assumption and 3.9.3(b) there are homomorphisms/o,go with 

/ O / = 1 A , ggo = 1 w, 
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for which 
0 ^ A < M < W^O 

fo gO* 

is also exact and splits. The diagram 

/ g 
0 < M < , > M < > W < > 0 

So 

<*>M <*>w 

' 8** > 
0 < J A * * ; — * A f * * < — » , W * * < > Q 

then has by 12 .2 . l (e ) split exact rows and by 12.2.2(c) is commutative. 
Let M be reflexive. Since now <J>M is an isomorphism and / is a 

monomorphism, as «DA*/= / * * < & A , ^ A must also be a monomorphism. 
Analogously we see that <£>w is also a monomorphism. The assertion that 
4>A and <t>w are in fact isomorphisms now follows from 3 . 9 . 2 . 

Let now A and W be reflexive. In order to be able to apply 3 . 9 . 2 again, 
it must be shown that <J>M is a monomorphism. Let ra e K e r ( $ M ) - then since 

g**$>M = ®wg 

and since <& w is an isomorphism it follows that 

ra eKer(g) = I m ( / ) . 

Thus there is an a e A with 
f(a) = m. 

Therefore it follows that 

0 = 4> M (m) = 4 > M ( / ( « ) ) = <&Mf)(a) = (/****)(*). 

Since / * * and <t>A are both monomorphisms it follows that a = 0 , thus also 
ra = 0 . Since consequently <&M is a monomorphism, the assertion follows 
from 3 . 9 . 2 . 

(b) By assumption 12.2.2(e) holds. In the diagram in 12.2.2(e) <I>A, <frM 

and <$>w are monomorphisms by 12.2 .2(d) . The assertion follows then from 
3 . 9 . 2 . • 

1 2 . 2 . 4 C O R O L L A R Y . LetR be an arbitrary ring. 
(a) If A = M then it follows: M is reflexive if and only ifA is reflexive. 

n 

(b) Let MR = © Mh then we have: M is reflexive if and only if all Mh 

/ = 1 , . . . , n are reflexive. 
(c) Every finitely generated projective R-module is reflexive. 
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Proof. (a) Let f:AR ^MR be the given isomorphism. Then 

OH>A-W->0-*0 

is a split exact sequence and the assertion follows from 12.2.3(a). 
(b) I t suffices to prove the assertion for n = 2 since it then follows for 

arbitrary n entirely by induction. For n = 2 it follows from 12.2.3(a) on 
reflecting upon the split exact sequence 

0 -»Mi -Wi © M 2 - ^ M 2 -> 0 

in which r is the inclusion of M i in M = M\ © M 2 and TT is the projection 
of M onto M 2 . 

(c) Since RR is reflexive, by (b) every finitely generated free R -module 
is reflexive. (We see this also directly as for vector Spaces on using a dual 
basis.) Consequently every finitely generated projective module is reflexive 
as a direct summand of a finitely generated free module. 0 

12.2.5 C O R O L L A R Y . For an arbitrary R-module we have: 
(a) If M is reflexive, then all modules M * , M * * , . . . are also reflexive. 
(b) If M * is not reflexive then none of the modules M * * , M * * * , . . . is 

reflexive. 

Proof. (a) This follows from 12.2.2(b). 
(b) By (a) it suffices to show: I f M * * * is reflexive then so also is Af *. 

By 12.2.2(a) M * is isomorphic to the direct summand Im(<&M*) of M * * * . 
If Af*** is reflexive then it follows by 12.2.4 that M * is reflexive. • 

To conclude these duality considerations we prove a lemma which gives 
Information on the reflexivity of cyclic modules. 

12.2.6 L E M M A . For A^>RR we have: 
(a) h: R(R/A)*B<p^<p(l)eR(lR(A)) with l:=l+AeR/A is an 

isomorphism. 
(b) <I>R/A is a monomorphism <£>rRlR(A) = A. 
(c) Let p:RR-*lR (A)* be defined by 

p(r)(x) := xr, reR,xe lR(A), 

then p is a homomorphism for which the diagram 
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R > R/A 

IR{A)* >(R/A)** 

is commutative (in this, h is the isomorphism from (a)). 
(d) <1>R/A is an epimorphism if and only if p is an epimorphism. 

Proof. (a) I t is clear that h is an R-homomorphism. Let h(<p) = <p(l) = 0, 
then it follows that 

(p(r) = v(lr) = <p(\)r = 0, reR, 

thus (p =0, i.e. h is a monomorphism. Let x e IR(A) then cp e (R/A)* with 
h{<p) = <p(l) = x is dehned by 

cp: R/A Br^xreR. 

Thus h is also an epimorphism. 

(b) For r e R/A we have 

r e K e r ( 4 > Ä M ) » 4 > Ä M ( f ) ( 9 ) = ^ ( ^ = ^(T)r = 0 fora l l <pe(R/A)* 

<$rerRlR(A) (by (a)). Therefore the assertion follows. 
(c) For reR and cp e (R/A)* we have 

(h*p(r))(<p) = (p(r)h)(cp) = p(r)(<p(l)) = <p(l)r 

and also 

( & R / A v ( r ) ) ( < p ) = <bR/A(r)(<p) = <p(f) = <p(l)r, 

thus we conclude that A*p =<$>R/AV-

(d) Since A* is an isomorphism and v is an epimorphism the assertion 
follows from h*p = 4>«/A^. • 

Having become conversant with duality concepts we apply ourselves hrst 
of all to other considerations which likewise are needed for the proof of 
the Main Theorem and which to some extent hnd application also in the 
next chapter. 

12.3 C H A N G E O F S I D E 

We treat here of the question as to the manner in which given properties 
of MR carry over to SM where S := End(M j R ) . 
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12.3.1 L E M M A . LetR be an arbitrary ring, letx, y e MR, letS:= E n d ( M R ) , 
let yR =xR and let xR be contained in an injective submodule of MR. Then 
Sx is isomorphic to a submodule of Sy (as a submodule of 5 M ) . If Sy is 
simple then it follows that Sy = Sx. 

Proof Let <p: yR -> xR be the given isomorphism. Further let 
xR QR^MR with injective QR. Then a commutative diagram exists: 

yR-

xR / y 

/ 

i 
/ 

/ 

/ 

MR 

where t i , t 2 , <o are the corresponding inclusion mappings. For So^t^yeS 
we then have 

<p(yr) = s0yr, reR. 

Let r 0 , ri e Ä be determined by 

<p(y) = s0y = * r 0 , (p(yri) = s0yri = x, 

then it follows that 

$: Sx B sx,—> sxro = ss0y e Sy 

is an S-homomorphism. 
Suppose sxr0 = 0 then it follows that 

5Jcr0ri = 5.Soyri = sx = 0, 

thus <p is a monomorphism. Since from xR = yi? we have either x = y = 0 
o r j c ^ O A y ^ O i t follows finally from the simplicity of Sy that Sy = &c. • 
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12.3.2 L E M M A . Let S := End(MR), let xeM, let xR be simple and let xR 
be contained in an injective submodule Q of MR. Then Sx is a simple 
submodule of SM. 

Proof We show that for arbitrary s0x 5* 0, s0 e 5' it follows that 

Ss0x = Sx. 

Since xR is simple and s0x 5* 0, s0xR is also simple and 

xR B xr s0xr e s0xR 

is an isomorphism. Let 

r : s0xR -* xR 

be the inverse isomorphism, then a <p exists so that the diagram 

s0xR —• MR 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

o 

MR 

is commutative, where r i , r 2 , r 3 , are the corresponding inclusion mappings. 
If we put t0 := c3(p then we have t0eS and r 0s 0-* = rs0x = JC, thus Sso* = Sx, 
which was to be shown. • 

12.4 A N N I H I L A T O R P R O P E R T I E S 

In this section we examine the annihilator properties of R. As abbrevi-
ation in place of lR(A) resp. rR(A) we write only l(A) resp. r ( A ) . We have 
already become acquainted with such an annihilator property in 12.2.6 
where it was a question of characterizing the reflexitivity of cyclic modules. 
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12.4.1 L E M M A . If CR is a cogenerator then we have for every A^>RR: 

rlc(A)=A. 

Proof From the dehnition of annihilator it follows that 

A^rlc(A). 

Let reR, r£ A, then by assumption there is a 

T\{R/A)R^CR with r ( r + A ) ^ 0 . 

Let now 

v.R^R/A, 

then it follows that 

0 = ™ ( A ) = TJ/(1)A, 

thus rv(\)elc{A), and also r*/(l)r = r*/(r) = r ( r + A ) # 0, thus r£rlc(A). 
Hence we have rlc{A)^A \ thus in conclusion the assertion. • 

Mostly this lemma is applied in the case CR=RR where rl(A) = A is 
then briefly written. 

12.4.2 T H E O R E M 

(a) If RR is injective then we have: 
(1) for arbitrary A~>RR,B~>RR\l(A nB) = l(A) +l(B); 
(2) for arbitrary finitely generated C^>RR \ lr(C) = C. 

(b) If conditions (1) and (2) in (a) are satisfied then every homomorphism 
of a finitely generated right ideal of R into R is obtained by left multiplication 
by an element from R. 

Proof. (a) Obviously we always have l(A) + l(B)^>l(AnB). Let now xe 
l(AnB), 

cp: A+B Ba +b*-+xb eR 

is an R -homomorphism (for a + b = a\ + b\^> a-a\ = b\-b eAr\B^> 
xb\ =x(a -ai) + xb =xb). 

Since RR is injective, there is a yeR with <p(a + b) = y(a +b) = xb. In 
particular 0 = (p(a) = ya holds for all aeA, thus y e l(A). Further it follows 
that for all b e B 

<p(b) = yb=xb, 

thus z := x - y e l(B). Therefore it follows that x = y + z e l(A) + l(B), from 
which (1) is proved. 



320 12 RINGS W I T H PERFECT D U A L I T Y 12.4 

For the proof of (2) let C = Rcx + . . . 4- Rcn *-> Trivially we have 

r ( Z Äc,) = H r(Rct) 

and by successive applications of (1) it follows that 

l r ( f Äc,) = / ( Q r(Rcd) = t lr(RCi). 

In order to obtain (2) it must only be shown that 

Ir(Rc) = Rc, ceR. 

Trivially we have Rc^lr(Rc). Let now belr(Rc), then it follows that 
r(c) and hence 

cR Bcr^breR 

is a homomorphism which, since RR is injective, is obtained by left multipli-
cation by an a e R. In particular we then have ac = b, i.e. b e Rc, thus 
lr(Rc)^>Rc, which was still to be shown. 

(b) The assertion is established by induction on the number n of the 
generating elements of a finitely generated right ideal. 

n = l: Let <p:aR^RR be a homomorphism. Since from ar = 0 there 
follows also <p(ar) = 0 = <p(a)r, we have r{a)<-*r((p{a)). Hence we obtain 

r{Ra)~>r(R<p(a)) 

and by (2) it follows that 

R<p(a) = lr(R<p(a))«-»lr(Ra) = Ra. 

Thus there is a c e R with (p(a) = ca and consequently we have 

<p(ar) = (p(a)r = car, 

which was to be shown. 

Inference from n to n + 1 : Let 

n + l 

cp: X diR -> RR 

be a homomorphism, then by induction assumption there are Ci, c2eR so 
that we have 

<p( Z af}\=ci Z Wh <p{an+\rn+\) = c2an+lrn+l. 
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By (1) it then follows that 

c i - c 2 e / ( l diRnan+iI^J = / ( I a ^ + / ( a n + 1 Ä ) , 

i.e. there are 

5€/(i Ö / Ä ) , tel(an^R) 

with C i - c 2 = s - /. Let c := C i - 5 = c 2 - 1 then it follows that 

<p( I fl//) = <P( I a,r^ + <p(a„+ir n 4 . i) 

n n + l 

= ( c i - s ) I a / r i + ( c 2 - 0 f l r i + i ^ + i = c I a,/*,, 

thus <p is obtained by left multiplication by c. Hence (b) is also proved. • 

12.4.3 C O R O L L A R Y . IfRR is noetherian and if the conditions (1) and (2) 
in 12.4.2 are satisfied then RR is injective. 

Proof. Since RR is noetherian every right ideal of R is finitely generated. 
Then the assertion follows from 12.4.2(b) and Baer's Criterion. • 

12.5 I N J E C T I V I T Y A N D T H E C O G E N E R A T O R 
P R O P E R T Y O F A R I N G 

The cogenerator property of RR is in general independent of the injec-
tivity of RR (see Exercises 13, 14). In order to obtain the equivalence of 
these properties additional conditions are required. 

As a preparation for the corresponding theorem we need a lemma. 

12.5.1 L E M M A . Let R be an arbitrary ring. 
(a) Let Pi, P2 be projective right R-modules with small radicals. Then we 

have: 

Px = P 2 » P 1 / R a d ( P 1 ) = P2/Rad(P 2 ) . 

(b) Let Qu Qi be injective right R-modules with large socles. Then we 
have: 

Q,» Q2 » S o c ( O i ) = Soc(Q 2). 
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Proof. (a) Let <p : Px -> P2 be the given isomorphism. Since 

(p(Rad(P1)) = Rad(P 2) 

cp induces an isomorphism 

$: Pi /Rad(Pi) 3 Pi + R a d ( P 0 < p ( p i ) + Rad(P 2) e P 2 /Rad(P 2 ) . 

The converse follows from 5.6.3 for P i -*Pi/Rad(Pi) and P 2 P 2 /Rad(P 2 ) 
are projective Covers . 

(b) Dual to (a). • 

We come now to a theorem which is of independent interest. It can be 
considered as a one-sided weakening of the Main Theorem as mentioned 
at the beginning. 

12.5.2 T H E O R E M . The following are equivalent for a ring R: 
(1) RR is a cogenerator and there are only finitely many isomorphism 

classes of simple right R-modules. 
(2) RR is a cogenerator and every simple left R-module is isomorphic to 

a left ideal of R. 
(3) Every module MR with rR(M) — 0 (i.e. MR faithful) is a generator. 
(4) Every cogenerator of MR is a generator. 
(5) R R is injective and finitely cogenerated. 
(6) RR is injective, semiperfect and has a large socle. 

Remark. A ring with the properties of the theorem is denoted in the 
literature as a right PF-ring. G. Azumaya posed the so far unanswered 
question as to whether a right PF-ring is also a left PF-ring. 

Proof of 12.5.2. We show (2)=>(3)4>(4)=M5)=>(6) together with (6)4> 
(2)A(1), (1)=>(6). 

"(2)=>(3)": Since RR is a generator it suffices by 3.3.2 to show that 

T : = I Im(<p) = R. 
< p e H o m R ( M , R ) 

Since M * = HomR(M, R) is a left Ä-module , T is also a left ideal. Now 
let z e rR(T), then it follows for every meM and <p e M * that 

cp(mz) = (p(m)z = 0 , 

thusMzcz P | Ker(<p). 
<peM* 
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Since RR is a cogenerator we have 

PI Ker(^) = 0, 
<peM* 

thus Mz-0. Since by assumption rR(M) = 0, it follows that z = 0 , thus 
rRT = 0. Suppose T^R, then there is a maximal left ideal A^+RR with 

A ^>R. By assumption there is an Rx^RR and an isomorphism 

er: R/A=Rx. 

Then it follows for all a e A that 

0 = cr(0) = a(ä) = a c r ( T ) , 

thus 0 ^ c r ( I ) € r R ( A ) ^ r R ( r ) = 0 
Consequently T = R must hold, which was to be shown. 
"(3)=>(4 )": From 12 .4 .1 it follows for A = 0 that every cogenerator is 

faithful. Then by (3) it is a generator. 
"(4)=>(5)": The cogenerator 

C 0=LI Qi 
jeJ 

which is minimal in the sense of 5.8.6(b), is by assumption a generator. 
By 5 .8 .2 RR is then isomorphic to a direct summand of a direct sum of 

copies of C 0 and, by the dehnition of C 0 , also of copies of Qh j e / . Since 
R = 1R is cyclic, R is isomorphic to a direct summand of a hnite direct sum 

Q'= Ü Oi with Qie{Q,\j€J}. 
i = i 

Since Q is injective, RR is injective. By the dehnition of Q ; = / ( £ / ) (see 
5 . 8 . 6 ) and by 9 .4 .3 Q is hnitely cogenerated and then so also is RR as an 
isomorphic image of a direct summand of Q. 

"(5)z^>(6)": I t has only to be shown that RR is semiperfect. From 9 .4 .3 

we have 
n 

R R = (B I ( E I ) with simple Eh 

/=i 

As Ei^IiEi), I(Ei) is directly indecomposable. By 7 .2 .8 End(ICE/)) is then 
local and by 11 .4 .1 I(Ei) is semiperfect and then by 1 1 . 3 . 4 so also is RR. 

" ( 6 ) 4 > ( 2 ) A ( 1 ) " : By assumption we have 

Soc(RR)*>RR. 

Since by 12 .3 .2 

Soc(RR)^Soc(RR) 
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and since by 9.2. l(a) and (b) 

S o c ( Ä Ä ) ^ r Ä ( R a d ( Ä ) ) , 

it follows that 

r R ( R a d ( Ä ) ) * Ä Ä . 

Now let E be a simple left R -module and let U^RR with E=R/U. 
Since R is semiperfect (by 11.3.2 on both sides!) there is by 11.1.2 a 
decomposition 

RR=Ri®R2 

with R2~> U, Ri n U^RL Let now 

Rx = Reu R2 = Re2 

with idempotents e\> ^ 2 = 1 —ei. As JR2«-> U it follows from the modular 
law that we have 

U = (RlnU)®R2, 

in which RxnU~> R a d ( Ä i ) ^ Rad(jR) holds. 
As e\ = e 2 * \ (since R2~>U*R) and r = e2r + {\ -e2)r for r e i ? it fol­

lows that 

r Ä ( Ä e 2 ) = ( l - e 2 ) Ä * 0 . 

A s Ä i o I / * ^ R a d CR) we have 

rR (RadCR)) ̂  r Ä (Ä x n 17) Ä Ä . 

Since, as established at the beginning, rR{RsA(R))^RR it follows that 
rR(Rin L O ^ Ä Ä from which it follows that 

0 * rR(R! n (7) n rR(Re2) = rR({Ri n [ / ) + Äe 2 ) = r Ä (17). 

Now let 

0 * a €#•*([/), 

then it follows that lR(a)= U, since U is maximal in RR. Therefore it 
follows that 

Ra=R/U = E, 

i.e. for every simple left R -module R contains an isomorphic left ideal. 
Let now 

Rau • •. ,Ran 

with Rai H Ä Ä be a set of representatives for the isomorphism classes of 
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simple left JR-modules. Since R is semiperfect, by 9.3.4, this is hnite. Since 
RR has a large socle every right ideal aiR contains at least one simple right 
ideal which can be written in the form afiiR, i = 1, . . . , n. I f we now put 
Ci *= üibi then it follows, since Rat is simple, that Rai = Rci and consequently 

RCu - • • » RCn 

is a set of representatives for the isomorphism classes of simple left R-
modules. If we now suppose that dR =CjR then it follows by 12.3.1 that 
Rci =RCJ thus / = /. Consequently (by 9.3.4) 

C\R,..., cnR 

is a set of representatives for the isomorphism classes of simple right 
R-modules. Since RR is injective we deduce from 5.8.6 that RR is a 
cogenerator. Therefore (1) and (2) are proved. 

" ( l ) z>(6 )" : Since RR is a cogenerator there is (by 5.8.6) a set of rep­
resentatives of the isomorphism classes of simple right R -modules of the 
form 

axR,. .., anR 

with diR «-> Qi^>RR where Q, is an injective hull of axR. Since a(R is simple 
and atR Q„ Q, is directly indecomposable. Since Qt is a direct summand 
of RR, Oi is projective. By 7.2.8 and 11.4.1 F, := (?,-/Rad(Q/) is simple and 
Rad(O l-)<2> (?,-. From 12.5.1 it then follows that F i , . . . , F n form again a set 
of representatives for the isomorphism classes of simple right R -modules. 
Since 

vc. Qi->Oi/Rad(Oi) = Fi 

is a projective cover of Fh we deduce from 11.3.5 that RR and then also 
RR (by 11.3.2) are semiperfect. Let 

RR
 = © Ai 

i=i 

be a decomposition of RR in the sense of 11.4.2, then for a suitable / 
A, /Rad Ai =F ) thus by 12.5.1 At = Q,. Consequently RR as a hnite direct 
sum of injective modules is itself injective. Since Qj is the injective hull of 
the simple ideal cijR, we have ÜJR ^ Q 7 and consequently a}R = 
Soc(O y) c S>0 / . As A( = Qj we then also have Soc(A,) c i >A i and Soc(A,) is 
simple. By 5.1.8 and 9.1.5 it follows that 

Soc (Ä Ä ) = © S o c ( A , ) * Ä Ä . 

Therefore (1)^>(6) is proved. • 
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12.5.3 C O R O L L A R Y . IfRR is a noetherian cogenerator then RR is injective 
and semiperfect and has a large socle. 

Proof. Since RR is noetherian Soc(RR) is finitely generated and has thus 
only finitely many homogeneous components. Since RR is a cogenerator 
it follows that only finitely many isomorphism classes of simple right 
.R-modules exist. The assertion then follows from 12.5.2. • 

12.6 P R O O F O F T H E M A I N T H E O R E M 

We now prove the Main Theorem 12.1.1 as given in the introduction 
by the following scheme. 

(5)<*(8), 
(5) A(8)=>(6)A(7), 
(6) =»(5), ( 7 ) ^ ( 5 ) , 
(5)A(8)=>(1)A(3), 
(1)=>(2)=M8), 
(3)=>(5), 
( 5 ) 0 ( 4 ) . 
"(5)z>(8)": By (5) 12.5.2(2) is satisfied on both sides. By 12.5.2 (8) 

then follows. 
"(8)=>(5)": Clear by 5.8.5(a). 
" (5)A(8)4>(6)A(7)" : Clear. 
"(6)^>(5)": I t must be shown that RR is a cogenerator. To this end we 

first show that RR is complemented. Let A^>RR and let B<-*RR be an 
intersection complement of l(A), i.e. l(A)nB = 0 with B maximal in this 
equality. Since RR is injective it follows by 12.4.2 (on interchanging the 
sides) that 

R = r (0 ) = r(l(A) nB) = rl(A) + r(B). 

Since RR is a cogenerator it follows by 12.4.1 that 

R =A+r(B). 

In this r(B) is minimal: Let U*+r(B), then A + U = R ^>l(A) n / ( [ / ) = 
l(A + U) = l(R) = 0;3&U*+ r(B) we have B ^ lr(B) l(U) and so l(U) = 
B from the maximality of B in / (A)nJ9 = 0; from B = l(U)^>r(B) = 
rl(U) = U by 12.4.1. Since R by 11.1.5 is thus semiperfect, there are by 
9.3.4 only finitely many isomorphism classes of simple right R-modules. 
Therefore 12.5.2(1) is satisfied. By 12.5.2(2) and since RR is injective, RR 
is a cogenerator. 

" ( 7 ) ^ ( 5 ) " : Analogously. 



12.6 PROOF OF T H E M A I N T H E O R E M 327 

We have therefore proved (5 )0 (6 )<=>(7)» (8 ) ; this is the part of the 
Main Theorem not referring to the Duality properties. 

"(5) A (8)<=>(1) A (3)": Since every hnitely generated module is an epi­
morphic image of a hnitely generated free module, (1) follows from 12.2.4(c) 
and 12.2.3(b). Now let A R be hnitely cogenerated, then there is by 9.4.3 
(since every Q, from I(A) = Q®.. .©(?„ can be mapped monomorphically 
into RR) a monomorphism of A into a hnitely generated free R-module. 
12.2.4(c) and 12.2.3(b) yields as before the assertion. 

"(1)=>(2)": Clear. 
" ( 2 ) ^ ( 8 ) " : By Baer's Criterion we have to show that RR is injective. 

Let B^RR\ then we have by 12.2.6 (applied to R(R/B))lr(B) = B. I f we 
now apply 12.2.6 t o A = r(b)^>RR then it follows that to every homomorph­
ism r of RB = lr(B) into RR there is an r0eR with r(x) = xr0. By Baer's 
Criterion RR is injective. Analogously we see that RR is injective. Now let 
E R be simple and let A«--» RR with 

R/A= ER. 

By 12.2.6 as A = r / ( A ) we have l(A) * 0. Let 0 * x e / ( A ) then it follows that 

xR=R/A=E, 

which had still to be shown. Analogously for RR simple. 
" (3 )z>(5)" : I f E R is simple and QR is an injective hull of E R then QR 

is hnitely cogenerated. Since QR is reflexive there is a <p e Q* with cp(E) ^ 0. 
As E * Q it would follow in the case Ker(<p) ^ 0 that on the other hand 
E «-> Ker(<p). Thus we have Ker(<p) = 0, i.e. cp is a monomorphism. Therefore 
it follows that RR is a cogenerator. Analogously for RR. (In this proof in 
place of (3) we have only used the fact that the injective hulls of the simple 
modules are torsionless.) 

"(5)=>(4)": By dehnition we have A*-*A0±. Since RR is a cogenerator, 
for every m e M , ra£A there is a <peM* with <p(ra)#0 and <p(A) = 0. 
Therefore it follows that <p e A° and m£A0±, thus A 0 ± t - > A . Analogously 
for the left side. 

"(4)=>(5)": Let MR be arbitrary. Then 0° = M * follows and 

0 = 0 o l = n Ker(«>), 
<P6M* 

thus RR is a cogenerator. Analogously for RR. 
Hence the Main Theorem is completely proved. • 

I t remains hnally to prove Corollary 12.1.3. This follows directly from 
12.5.2 on using the fact that a ring with perfect duality satishes the 
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conditions of 12.5.2 on both sides (e.g. we see immediately that 12.1.1(5)=> 
12.5.2(2)). 

12.6.1 A P P E N D I X . Let R be a ring with perfect duality. Then we have for 
every R-module M: For every A^M the homomorphism 

ifr: M*/A° 9 <p + A°^<p \ A e A * 

is an isomorphism. 

Proof By definition ^ is a monomorphism. As we see easily i// is an 
isomorphism for all MR and all A^>MR if and only if RR is injective. 
Namely if <A is an epimorphism for all A RR then this means that Baer's 
Criterion is satisfied, i.e. that RR is injective. Conversely if RR is injective 
then every element of A * can be continued to one such of Af *. • 

In conclusion the following properties are to be pointed out. By 12.2.5 
we have for every R -module Af : If Af is reflexive then so also is Af * and 
if Af ** is reflexive then so also Af*. If R is a ring with perfect duality then 
in fact from the reflexivity of Af * the reflexivity of Af follows. Namely let 
Af * be reflexive, then it follows by 12.2.2(a) that <1>M is an isomorphism. 
By 12.2.l(d) 4>M is then an isomorphism, thus MR is reflexive. 

In the next chapter we return to the duality properties. The quasi-
Frobenius rings considered there are rings with perfect duality, which are 
artinian on both sides (it suffices to assume noetherian on one side). 
However there are rings with perfect duality that satisfy no chain condi­
tions (see Exercise 11). In the case of artinian rings further additions 
can be made to the characterizations of perfect duality, as, for example, 
that the duals of all simple modules are again simple (see, for this, 
Exercise 12). 

EXERCISES 

(1) 
Show: 

(a) If MR is reflexive, if A^>MR, A0± = A and t * : A f * - * A * is surjective 
then A is also reflexive. 

(b) If MR is reflexive, if A ^ MR, A0± = A and i *: Af ** -> A°* is surjective 
(corresponding to i: Af*) then A/M is also reflexive. 

(c) Construct a reflexive module MR and a submodule A^MR so that 
neither A nor M/A is reflexive. 
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(2) 
Let {Mj | / e / ) be a non-empty family of right R-modules. Show: 

(a) There is a commutative diagram 

( n ( M f ) r ( I I ( A f * ) ) * 

(LI Mi) 

LI Af f 

** . •* n ( A f ? * ) 

riAf, 

in which t and K \ ]\{M*)-*X[(M*) are inclusion mappings. 
(b) If I is hnite then we have U M is reflexive if and only if all Mt are 

reflexive. 
(c) If RR is a cogenerator or is injective and if L I M is reflexive then 

almost all (i.e. all up to hnitely many) M , are equal to zero. 
(Hint: In the hrst case AC* is a monomorphism, in the second an epi­

morphism). 

(3) 
For an arbitrary M let Y be a hnitely generated submodule of M * and 
let a e Y*. Show: I f RR is a cogenerator then there is an meM with 
« = < D M ( m ) | y . 

(4) 
Let MR be given. I f ((m„ Ui)\i e I) is a non-empty family with mx e M and 
Ui «-»M, then meM is called a Solution (of the family) Um- m{ e Ui for 
all / € / holds. The module MR is called linearly compact if every hnitely 
soluble family ((m„ Ut)\iel) (i.e. soluble for every hnite subset / 0 c / ) has 
a S o l u t i o n . Show: 

(a) I f RR is a cogenerator then MR is linearly compact if and only if MR 

is reflexive and RR is injective with respect to M * (the latter means: For 
every monomorphism a : R Y -» RM* and homomorphism ß:RY-*RR there 
is a y: RM* -> with 0 = ya ; see Chapter 5, Exercise 21). 

(b) R is a ring with perfect duality if and only if RR is a cogenerator 
and RR is linearly compact. 

(c) If R is a ring with perfect duality then an R -module is reflexive if 
and only if it is linearly compact. 
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(5) 
Show: 

(a) Every artinian module is linearly compact. 
(b) Every linearly compact module is complemented (i.e. for every 

submodule an addition complement exists). 
(Hint: The proof for the existence of an intersection complement may 

here be dualized). 
(c) The converse holds neither in (a) nor in (b). 
(d) If M = i©/A/i is linearly compact then almost a l l M , are equal to zero. 
(e) I f M is linearly compact and if A <-> M then A and M/A are also 

linearly compact. 
(f) If M is linearly compact and if Rad(M) is small in M (resp. Soc(M) 

is large in M) then M is finitely generated (resp. finitely cogenerated). 
(g) If R is a non-local principal ideal domain then every linearly compact 

R -module is artinian. 

A non-empty family ((ra„ Ui)\i e I) with m, e M and Ul ^>M is called projec­
tive if I is directed (i.e. is provided with an ordering ^ so that for arbitrary 
i,jel there is a kel with i^k, j^k) and for i^j both Uj^+Ui and 
rrij - rrii e Ut hold. Show: 

(a) M is linearly compacte every projective family from M has a Sol­
ution in M . 

(b) If A ^M and if A and M/A are linearly compact then so also is M. 

Show: If R is injective on both sides then for every finitely generated 
R -module M , M * is reflexive. 

(Hint: Use Exercise l(a).) 

If R is an integral domain with quotient field K then we define 

(a) Rank(M) = R a n k ( M / r ( M ) ) , where T(M) is the torsion submodule 
o f M 

(Hint: KR is flat.) 
(b) Rank(M) = O o M = T(M). 
(c) Rank(M)<oo and A ^ > M Rank(A) <oo A R a n k ( M / A ) < o o A 

Rank(M) = Rank(A) + Rank(M/A) . 
(d) T ( M ) = 0<=>there is a free submodule A of M with A ^ M . I f 

A=R(I\ then Rank(M) = Card(J). 

(6) 

(7) 

(8) 
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(e) I f M is generated by n elements then we have Rank(M)=£ n. 
(f) Rank(M) < oo=> Rank(M*) =s Rank(Af) A reflexive Af*. 

(9) 
Let RR be a cogenerator. Show: 

(a) SOC(RR)*>RR. 

(Hint: For 0 x e R choose a maximal right ideal which contains rR (je).) 
(b) SOC{RR)^SOC(RR). 

I f in addition, Soc(RR) has only hnitely many homogeneous components 
then we have further 

(c) r Ä ( R a d ( Ä ) ) = Soc ( Ä Ä) = Soc(Ä Ä ) = / Ä ( R a d ( Ä ) ) . 
(d) r Ä / Ä ( R a d ( Ä ) ) = RadCR) = fcrÄ(Rad(Ä)). 

(10) 
Let T be a commutative ring and let MT be a T-module. Then a commuta­
tive ring R := Id ( M r ) is dehned in the following manner: 

(1) i ? : = M x T a s a s e t . 
(2) Addi t ion in R is componentwise: (ra, r) + (m', r ')'-=(ra + m' , r + r ' ) . 
(3) Multiplication in R: (m, f)(m', r') := (mtf + m'r, rr ' ) . 

The unit element of this ring is then (0,1). Show: 
(a) x = (m,t) is invertible resp. nilpotent in R<$t is invertible resp. 

nilpotent in T. 
(b) Rad(Ä) = M x Rad(T). 
(c) Soc(Ä) = Soc(M) x (Soc(T) n r r ( M ) ) . 
(d) R is perfect resp. semiperfect if and only if T is. 
(e) R is noetherian resp. artinian if and only if T and MT are. 

(11) 
Let T be a commutative ring and let MT be a faithful T-module (i.e. 
rT(M) = 0). For the ring R = I d ( M T ) dehned in Exercise 10 show: 

(a) RR is injective<=>M r is injective and to every q> e E n d ( M T ) there is 
a r e T with <p(m) = mt for all meM. 

(b) RR is a cogenerator<^>RR is injective and MT is a cogenerator. 
(c) Let T be a complete discrete valuation ring with quotient held K 

and let MT'>=K/T. Show: R is a ring with perfect duality but R is not 
noetherian. 

(12) 
(a) Let R be a commutative local ring with hnitely generated socle and 

let E be a simple i?-module. Show: 

= En, E**=En\ 

where n := Le(Soc(jR)) (Dehnition 3.5.4). 
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(b) Show: If üCisa field and HMK:=Kn(n&l) then the ring R = Id(MK), 
defined in Exercise 10 , is commutative, local and artinian and Le(SocCR)) = 
n. 

(c) Show: If R is a commutative local ring then the following are 
equivalent for the simple R -module E: 

( 1 ) E is reflexive. 
( 2 ) JE"* is simple. 
( 3 ) SocCR) is simple. 

(d) Let T be a non-complete discrete valuation ring with quotient field 
K and let MT'=K/T. Show: R = ld(MT) (see Exercise 1 0 ) satisfies the 
conditions in (c), but R is not a ring with perfect duality. 

(13) 
Show: 

(a) R is semisimple <=> Rad CR) = 0 and for every simple right R -module 
there is an isomorphic righ f ideal in R. 

(b) If R is an infinite product of fields then RR is injective but not a 
cogenerator (see also Chapter 5, Exercise 1 1 ) . 

(14) 
Let ^ be a field and let R be the Ä'-algebra with the basis 
{ 1 , w0, «i , w 2 , . . . , e0y e\, ei, • • •} and the multiplication 

UtUj = 0 , ete, = 8ueh ep,- = Suuh utej = <5,-UW/. 

Show: 
( 1 ) For x - lk Uiki + £ e R, where k, kh hx e K we have 

(a) x is left inver t ib leöjc is right invertible <=> k 0 A k + hx ^ 0 for 
all / = 0, 1 , 2 , . . . . 

(b) x eRadCR)Ofc = 0 = h{ for all /<=>*2 = 0<=>JK is nilpotent. 
(c) x e centre of R » / c , = 0 = hx for all /. 

( 2 ) (a) (Rad(i?)) 2 = 0 . 
(b) r R ( R a d ( Ä ) ) = Rad(Ä) = / Ä ( R a d ( Ä ) ) . 
(c) Soc(Ri?) = Rad(i?) = Soc(jRR). 
(d) R/Rad(R) as a ring is commutative and regulär. 

( 3 ) For the maximal resp. simple ideals of R we have 
(a) The maximal right ideals are precisely 

rR(u0), rR(ui), rR(u2), 

They are all two-sided ideals and are also precisely all the maximal 
left ideals. 
(b) The simple right ideals are precisely 

u0R, u\R, u2R, 
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They are all two-sided ideals and are also precisely all the simple 
left ideals. 
(c) u0R, UiR, u2R, . . . is a set of representatives of the simple right 
R -modules. 

oo 

(d) A:= £ tiR is a maximal left ideal in R and R/A, Ru0, Ru\, 
i=0 

Ru2, . . . is a set of representatives of the simple left R -modules. 
There is no left ideal of R isomorphic to R/A. 

(4) For all / ^ O w e have: 
(a) eiRet is ring isomorphic to K, in particular ex is a local idempotent. 
(b) UiR is the unique non-trivial submodule of etR and eiR/uiR = 
ui+iR. 
(c) exR is injective and consequently RR is a cogenerator. 
(d) RR is not injective. 

(Hint for (c)): I f A<^>RRJeHomR(A, etR) and beR f may be 
continued to A + bR if and only if there is a geHomR(bR, etR) so 
that / and g coincide on A n bR. Show that this procedure is also 
feasible for b = ej, / 0 and b = 1 - e t_i - et (putting e_i — 0).) 

(15) 
Show for a ring R:RR is a cogenerator if and only if the injective hull of 
every hnitely cogenerated R-module is projective. 



Chapter 13 

Quasi-Frobenius Rings 

13.1 I N T R O D U C T I O N 

In the following presentation of QF-rings we pursue a direction opposite 
to that of their historical development. In the historical development there 
were considered first in the representation theory of finite groups—more 
or less explicitly—group rings of finite groups with coefficients in a field. 

Let R := GK be such a group ring where 

gi = e, g 2 , . . . , gn 

are the elements of the group G. Then the mapping 

n 

<p: R 3 £ giki^ki^K 
7 = 1 

is a üT-homomorphism of R into K, i.e. <p e JR* : = HomK(R, K). This 
homomorphism <p has the essential property that Ker(<p) contains no right 
or left ideal different from 0. By means of this property <p is essentially 
uniquely determined (i.e. up to multiplication by regulär elements from R 
on the right) and is called the Frobenius homomorphism. Since i?* is a right 
Ä-module, <pR ^ R% and for a Frobenius homomorphism it follows in fact 
that <pR=R*. Then 

4>: RR 3r>-*<pre(pR =R% 

is an 7?-isomorphism and conversely every R-isomorphism 

<S>:RR->RR 

yields, in the form <p := 3>(1), 1 eR, a Frobenius homomorphism cp :RK -» 
KK> After it had become clearer in the course of the development that 

334 
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many attractive properties of group rings depend only on the existence of 
a Frobenius homomorphism cp or—what is equivalent—of an isomorphism 
<I>, the existence of such a <p resp. <I> in regard to a hnite-dimensional 
Ä'-algebra RK was incorporated in the dehnition of a Frobenius algebra 
(even if formulated originally in the context of representation theory, T. 
Nakayama, 1939). 

The next essential step in the development was taken in removing the 
algebra property. As is easy to see, it follows for a Frobenius algebra by 
use of <p resp. 4> that the following annihilator equations hold: 

rRlR (A) = A for all A «-> RR 

lRrR (B) = B for all B RR. 

(Orthogonality relations between a hnite-dimensional vector space and its 
dual space!) By an additional condition on dimensions the Frobenius 
property of the algebra follows again conversely from the annihilator 
equations. In these annihilator equations the algebra properties no longer 
appear. 

A two-sided artinian ring, which satished the annihilator equations, was 
then called a quasi-Frobenius ring and—with an additional condition—a 
Frobenius ring (T. Nakayama, 1941). 

On this basis a plethora of results on quasi-Frobenius and Frobenius 
rings was established. 

A n important new impulse stimulated the development with the coming 
into use of categorical and homological concepts. This led on to to-day's 
Situation in which we have the following results: 

A ring is a quasi-Frobenius ring, i.e. is artinian (and hence also 
noetherian) on both sides and with the annihilator conditions satished if 
and only if it is noetherian on one side and is injective or a cogenerator 
on one side. 

This wi l l be the main theorem of the following analysis. Since accordingly 
a quasi-Frobenius ring is on both sides an artinian (and noetherian) injective 
cogenerator, there is at our convenience all of the structure that we have 
proved up t i l i now for artinian and noetherian modules as well as for rings 
with perfect duality. 

13.2 D E F I N I T I O N A N D M A I N T H E O R E M 

We prove rather more than is mentioned in the introduction. In place 
of lR resp. rR we write in the following only / resp. r. 
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13.2.1 T H E O R E M . LetRr be noetherian, then we have: 
(a) The following conditions are equivalent: 

(1) RR is injective. 
(2) RR is a cogenerator. 
(3) RR is injective. 
(4) RR is a cogenerator. 
(5) V A RR[rl(A) = A] A V £ <-» RR[lr(B) = B]. 

(b) If the conditions in (a) are satisfied then R is artinian on both sides. 

13.2.2 Definition 
(1) A ring which satisfies the conditions of 13.2.1 is called a quasi-

Frobenius ring. 
(2) A ring R is called a Frobenius ring if it is quasi-Frobenius and we have 

SocCR«) = (/?/Rad(/0)*, Soc ( Ä Ä) s Ä ( Ä / R a d ( Ä ) ) . 

Obviously a ring with perfect duality is accordingly a quasi-Frobenius ring 
if and only if it is noetherian on one side. 

We divide the lengthy proof of 13.2.1 into several propositions, some 
of which are also of interest in themselves. 

13.2.3 P R O P O S I T I O N . If RR is injective and noetherian then R is artinian 
on both sides. 

Proof. Since RR is injective by 12.4.2 we have lr(C) = C for all finitely 
generated left ideals C ^ RR. Since RR is noetherian, then R satisfies the 
descending chain condition for all finitely generated and in particular for 
all cyclic left ideals. Consequently by 11.6.3 RR is perfect. Then 11.6.4 
implies that RR is artinian. Therefore it follows from lr(C) = C that RR 
satisfies the ascending chain condition for finitely generated left ideals. We 
reflect that RR is then indeed noetherian. I f this were not the case then 
an ideal B <-* RR would have to exist which would not be finitely generated. 
To every finitely generated subideal of B there is then a proper larger 
finitely generated subideal. In B there may be defined inductively an infinite 
properly ascending chain of finitely generated subideals in contradiction 
to the previous Statement. Since R is thus also right artinian and left 
noetherian it follows from 9.3.12 that RR is also artinian. • 

13.2.4 P R O P O S I T I O N . If Rr is noetherian and (5) of 13.2.1 holds, then 
RR is injective and R is artinian on both sides. 
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Proof. We wish to apply 12.4.3. For that purpose we have to show for 
right ideals A and B of R that 

l(AnB) = l(A) + l(B). 

By (5) we have 

rl(A nB) = AnB = rl(A)nrl{B) = r ( / ( A ) + 7(2?)), 

in which the last equality is easily verihed. By application of / it follows 
therefore that 

l(AnB) = / r ( / ( A ) + l(B)) = 1{A) + 1{B). 

From 12.4.3 we deduce then that RR is injective. The rest follows from 
13.2.3. • 

13.2.5 P R O P O S I T I O N . IfRR or RR is noetherian and we have 

rl(A) = A or lr(A) = A 

for every two-sided ideal A of R then Rad(2?) is nilpotent. 

Proof. I t suffices to exhibit the proof for the case r / ( A ) = A since in the 
other case everything proceeds analogously. Put N := Rad(2?), then 
N <H> N2 <-» N3 ^ ... and consequently 

l(N)^l(N2)^l(N3)^... 

is also a chain of two-sided ideals. Since RR or RR is noetherian this chain 
is stationary, i.e. there is an n with 

l(Nn) = l(Nn+l). 

Therefore we have 

Since RR resp. RR is noetherian, NR resp. RNn is hnitely generated so 
that by 9.2.l(d) Nn+l Nn follows. The last two relations together imply 
that Nn = 0, which was to be shown. • 

13.2.6 P R O P O S I T I O N . If Rr is injective and RR is noetherian then RR is 
a cogenerator and R is artinian on both sides. 

Proof. Since RR is noetherian every left ideal of R is hnitely generated. 
From 12.4.2 and 13.2.5 it follows then that Rad(2?) is nilpotent. From 
9.6.2 we deduce for QR=RR that R := R/Rad(R) is regulär. Since RR is 



3 3 8 1 3 Q U A S I - F R O B E N I U S R I N G S 13 .2 

noetherian RR is noetherian and because of this RR is also noetherian. 
Then 1 0 . 4 . 9 indicates that every left ideal of R is a direct summand of 
R, i.e. R is semisimple. Consequently by 11 .6 .3 R is perfect on both sides 
and bv 1 1 . 6 . 4 RR is artinian. Since RR is perfect by 11 .6 .3 ( 4 ) , SocCR*) 
is large in RR. From 1 2 . 5 . 2 it then follows that RR is a cogenerator. By 
1 2 . 4 . 1 we then have rl(A) = A for all A RR. Since RR is noetherian it 
follows therefore that RR is artinian. • 

Proof of 1 3 . 2 . 1 . Since (b) follows from 1 3 . 2 . 4 only (a) has to be shown. 
" ( 1 ) ^ ( 2 ) " : By 13 .2 .3 RR is artinian, thus also noetherian. Then the 

proposition follows from 1 3 . 2 . 6 . 
" ( 2 ) = > ( 5 ) " : By 1 2 . 5 . 3 RR is injective and by 13 .2 .3 RR is noetherian. 

Since RR is a cogenerator by 1 2 . 4 . 1 we have rl(A) = A for all A RR. 
Since RR is injective and RR is noetherian by 1 2 . 4 . 2 we have also lr(B) = B 
for all B ^> RR, thus ( 5 ) holds. 

" ( 5 ) = > ( 1 ) " : By 1 3 . 2 . 4 . 

" ( 5 ) = > ( 3 ) " : From ( 5 ) and as RR is noetherian it follows that RR is 
artinian thus also RR is noetherian. Hence we obtain ( 3 ) from 1 3 . 2 . 4 . 

"(3)=>(4)": By 1 3 . 2 . 6 . 
" ( 4 ) = > ( 5 ) " : From ( 4 ) and as RR is noetherian it follows from 1 2 . 4 . 1 

that RR is artinian and hence is also noetherian. Then the proposition 
follows as " ( 2 ) =M5)". • 

13.3 D U A L I T Y P R O P E R T I E S O F Q U A S I - F R O B E N I U S R I N G S 

The quasi-Frobenius rings can be characterized under noetherian rings 
by means of the conditions in 1 2 . 1 . 1 . To the conditions in 1 2 . 1 . 1 further 
characterizations can now be added by duality properties. In so doing we 
take over the notations of Chapter 1 2 . 

As a lemma for further considerations we first establish how finiteness 
conditions carry over to the dual module. 

1 3 . 3 . 1 L E M M A . Let MR be finitely generated, then we have for 
M * : = UomR(MR, RR): 

(a) If RR is noetherian then j?M* is noetherian. 
(b) If RR is artinian then RM* is of finite length (i.e. artinian and 

noetherian). 

n 

Proof (a) I f first of all F := 0 xtR is a finitely generated free right Ä -
i = i 
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module with basis xx,... ,xn then (as in the case of a vector space) 

F * = © Ä Ä with «,(*,) = { ° 
, = i 11 f o r / = y 

is a free left -module with basis < 5 i , . . . , <5„. Since is noetherian by 
6.1 .3 RF* is also noetherian. Now let 

MR = I m,Ä 
/=i 

and let 

i = i i = i /=i 

then, since rj is an epimorphism, 

Hom(rj, 1 R ) : M * sa^a-q G F * 

is a monomorphism. Since Ä F * is noetherian, in consequence, RM* is also 
noetherian. 

(b) Follows from (a) and 6 . 1 . 3 . • 

If R is artinian on both sides then it follows, from 1 3 . 3 . 1 together with 
the results of Chapter 6 , that for every hnitely generated right or left 
7?-module M all submodules and factor modules of M and of M * are of 
hnite length. Use is made of this in the following without explicit mention. 
Further recall that Le(Af) is the length of the module M (= length of a 
composition series of M) (Dehnition 3 . 5 . 4 ) . 

13 .3 .2 T H E O R E M . The following are equivalent for a two-sided artinian 
ring R: 

( 1 ) R is quasi-Frobenius. 
( 2 ) Dual modules of simple right and simple left R-modules are simple. 
( 3 ) For every finitely generated right R-module and every finitely generated 

left R-module we have: Le (M) = Le(M*) . 

Proof. " ( 1 ) = £ > ( 2 ) " : Let ER be simple, then, since RR is a cogenerator, there 
is a monomorphism p\ER^RR \ thus E* HomR(ER, RR) ^ 0 . Now let 
O ^ a e E*, then we have to show that E* = Ra holds, i.e. that E* is simple. 
Since ER is simple and a ^ 0 , a must be a monomorphism. Since RR is 
injective for every £ e E* there exists a commutative diagram 
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E *R 
/ 

/ 
/ 

* /. 
/ 

/ 

R 

where r'0 is left multiplication by an r 0 e i?. Thus £ = r0a holds and con­
sequently E* = Ra. Analogously for the left side. 

"(2)=>(1)": We show that the annihilator conditions 13.2.1 (5) are 
satisfied. The proof follows from two Steps. 

Step 1. Assertion: Let A B ^> RR and let B/A be simple, then 
l(A)/l{B) is simple or 0. 

Proof. As is easily verified, 

f:l(A)/l(B)^(B/A)* 

with 

f(x + l(B))(b +A) := xb, x e / ( A ) , beB 

defines a monomorphism. Since CB/A)* is simple by assumption the asser­
tion follows. Evidently the corresponding Statement holds also for left 
ideals. 

Step 2. Let now A ^ RR. Then there is a composition series of RR which 
contains A : 

(i) 0 = Ao<-+...~>Am=R. 

In addition consider the series 

(ii) R = 1(0) ^ / ( A i ) ^ . . . ^ » 1(R) = 0. 

By the first step it follows that 

L e ( Ä Ä ) ^ L e ( Ä Ä ) . 

Since everything is Symmetrie with regard to sides we also have L e ( j R R ) ^ 
Le(RR), thus hc(RR) = Lc(RR) follows. Consequently (ii) must be a compo­
sition series of RR. Likewise 

0 = rl(Ao)^...^rl(Am) = R 

is then also a composition series of RR. Since by assumption (i) is a 
composition series and A ( ^ r / ( A t ) , / = l , . . . , m , holds it follows that 
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Ai = rl(Ai), i = 1,..., m, from which we conclude that rl(A) = A. 
Analogously lr(B) = B holds for B «-» RR. 

u (1 )A(2)=>(3)" : Induction on Le(Af Ä ) . By (2) the assertion holds for 
Le(Mtf) = 1. Let it hold now for all modules with Le(MR) ^ n. Then let LR 

have Le(LR) = n + l and let E be a simple submodule of L. Then by 
assumption we have Le((L/fJ)*) = «. Let, as previously introduced, 

£ ° = {<p|<peL*A<p(£) = 0}, 

then obviously we have (L/E)*=E° and consequently also hc(E°) = n. 
Since by 12.6.1 

ip:L*/E°^>E* 

with tJ/(<p+E0) - <p \E is an isomorphism and we have LeCE*) = 1, it follows 
that Le(L*) = w + l . 

"(3) 4> (2)": (2) is a special case of (3). • 

13.4 T H E CLASSICAL D E F I N I T I O N 

The characterizations above of quasi-Frobenius rings do not render the 
classical dehnition, or further characterizations closely connected with the 
latter, redundant, these give indeed a good insight into the ideal-theoretic 
structure of a quasi-Frobenius ring. 

The dehnition of quasi-Frobenius rings goes back to T. Nakayama (1939). 
In order to be able to present these some notation is needed. 

Let R be a two-sided artinian ring with N := RadCR). Let 

R = A n © . . .®AUl®A2l®.. .®A2g2®.. . © A k l ® . . .®Akf,k 

= enR®.. .®elf,,R®.. .®eklR®.. .®ekfikR 

denote a decomposition into directly indecomposable right ideals A f 7 = e^R 
with orthogonal idempotents en,..., ekgk; in which the indices are chosen 
so that A / i , . . . , A/ g . (/ = 1, 2 , . . . , k) are exactly all of the right ideals 
isomorphic to An in the decomposition. For brevity put A , := An and 
et '= e{\. Let R := R/N and r := r + NeR. In the following let e and e' 
denote two of the orthogonal idempotents eu. Then we have by 12.5.1: 

eR =e'Re>eR=e'R. 

Every one of the e^R is simple and as well as being a right ideal of R 
is in fact also a right R-module (11.43). Further every simple right R-
module is isomorphic to one of the (e~ijR)R. Summarizing it follows that 

eiR, ...,ekR 
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is a representative System for the isomorphism classes of simple right 
i?-modules. 

13.4.1 Remark. Let e and e' be two of the orthogonal idempotents eih 

then we have 
eR=e'R<=>Re =Re'. 

Proof. By 12.5.1 we have 

eR =e'R<=>eR = e'R. 

Since R as a semisimple ring is two-sided injective it follows by 12.3.1 
and 12.3.2 that 

eR=e'Re>Re = Ref. 

Repeated application of 12.5.1 yields the assertion. • 

I f eR, for an idempotent e ^ 0, is directly indecomposable then this means 
that e cannot be written as the sum e = e' + e" of two orthogonal idempotents 

0. Therefore it follows that Re is also directly indecomposable. In this 
regard we recall that e is then called a primitive idempotent. 

From the right-sided decomposition of R stated at the beginning we 
obtain the left-sided decomposition 

R=Reu®.. .®ReHi®.. .®Rekx®.. .®Rekgk, 

which possesses properties corresponding to those on the right side. 
The following theorem embraces the original definition of T. Nakayama 

for quasi-Frobenius rings. 

13.4.2 T H E O R E M . The following are equivalent for a two-sided artinian 
ring. 

(a) R is quasi-Frobenius. 
(b) For every primitive idempotent e Soc(eR) and Soc(Re) are simple and 

in Soc{RR) resp. Soc(RR) all simple right resp. left R-modules occur up to 
isomorphism. 

(c) For every primitive idempotent e Soc(eR) and Soc(Re) are simple and 
we have Soc(RR) = Soc(RR). 

(d) (Definition of T. Nakayama). There exists a permutation n of 
{ 1 , . . . , k) so that for every / = 1 , . . . ,k we have 

Soc(eiR)R = ( ^ ( 0 ^ ) « , RSoc(Renii)) = R(Rei). 

Proof. " ( a ^ C b ) " : Let E be a simple submodule of eR. Since eR as a 
direct summand of R is injective, eR contains an injective hull of E which 
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is a direct summand of eR. Since eR is directly indecomposable, eR is an 
injective hull of E. Consequently as E eR we have E = Soc(R). Hence 
the hrst assertion is proved. Since RR and RR are cogenerators, all simple 
right R-modules resp. left R-modules occur up to isomorphism in Soc(RR) 
resp. Soc.(RR). 

"(b)=^(c)": Since in Soc (Ä Ä ) there is contained an ideal isomorphic to 
(e~R)R, we have (as ee = e) Soc(RR)e ^ 0. Since SOC(JR ä) is a two-sided 
ideal, Soc(RR) consequently contains a subideal ^ 0 of Re and hence also 
Soc(Re) (since this is simple and large in Re). Thus we have 
Soc(RR) Soc(RR) (as Soc ( Ä Ä) = Soc(®Reu) = © Soc(Reu)). Since 
analogously the reverse inclusion holds the assertion follows. 

" ( c ) ^ ( b ) " : If e is a primitive idempotent, then as 0^Soc(jRe) = 
Soc(Re)e we have 

0^Soc(RR)e=Soc(RR)e. 

Consequently there is an x e Soc(RR) so that xeR is simple. Hence we then 
have xeR =eR from which (b) holds. 

"(b) A (c)=£>(d)": Since Soc(e,i?) is simple, to every ie{l,..., k} there 
is a 7 r ( / ) e { l , . . . , k} with 

(*) S o c ( e * Ä ) s ^ ( 0 J ? . 

Since in Soc(RR) = © Soc(e i ; Ä) there are contained only simple ideals which 
are isomorphic to a Soc(e,i?), / = 1 , . . . , /c, and from (b) all isomorphism 
classes of simple right Ä-modules must be represented, {Soc(^i?) | / = 
1 , . . . , k} forms a set of representatives for these isomorphism classes. 
Since | / = 1, . . . , & } is also such a set of representatives, i*-*ir(i) (in 
the sense of (*)) is a permutation of { 1 , . . . , k). Let ^oc(etR) = et^R then 
it follows from Soc(eiR) = e^R that we have e/tf/e^o ^ 0, thus Soc(eiR) = 
eidie^R. As 

0 * eidte^t) £ Soc(RR) = Soc(RR) 
we have 

Retard) Soc(RR) n R e ^ o = Soc(Äew ( l-)) 

and since Soc(Ä^ w ( / ) ) is simple it follows that SocCRe^o) = Reiate^). Then 
the epimorphism 

Ret 3 re, retd^) e Soc(JRew(0) 

yields the isomorphism 

Äe/sSoc(Äe w ( l - ) ) , 

by which (d) is proved. 
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4 '(d)=>(b)": By the Krull-Remak-Schmidt Theorem it can be assumed 
that the idempotent e in (b) is one of the et in (d). Then the assertion is 
immediately clear. 

Hence we have demonstrated the equivalence of conditions (b), (c) and 
(d). 

"(b) A (c)=>(a)": By 13.3.2 it suffices to show that the dual module of 
every simple right Ä-module and left R-module is again simple. Since 
isomorphic modules have isomorphic dual modules it suffices to show that 
every Soc(e,i?) and SocCRe,-), / = 1 , . . . , k has a simple dual module, in 
which we can by the symmetry confine ourseives to Soc(e {Ä). We show 
first that every non-zero homomorphism 

(p:Soc(eiR)R^RR 

is induced by multiplication on the left by an element of Reim We use, as 
previously shown, Soc(e/£) = e-Aie^Ry then it follows that 

<P (e-Aie^r) = <p {eiate^e^r, rsR. 

Let q := ^(e/a^,-)) 5* 0, then qe^oR is simple and by the same inference 
as in the proof of (b)A(c)=>(d) (0*Rqewii)*+Soc(RR)nRevii) = 
SOC(JR^(/)) A simple Soc( JRe7 r ( l )) ^>Rqe^(i) = Soc(Re„(i))) it follows that 

Rqewa) = Soc(Re„(i)) = Re-Aid^. 

Thus an r 0£/ e Ret exists with 

qe^o = roetüie^i) 

and hence we have 

(pieiCLie^nr) = qe^r = r0e/a /e7r(/)r. 

If we write for the left multiplication of Soc(etR) = e Ia^ 7 r ( / )i? by xe» xeR, 
(xet)1, then it follows that <p = (r 0e/)'. Thus the mapping 

if/: Ret 3xei^>(xei)1 e(Soc(eiR))* 

is an epimorphism. Let N •= Rad(i?); as 

0 = N Soc(RR) = N Soc(RR) 

we have Afe, «-» Ker(t/0- Since i// # 0 and since by 11.4.3 Net is the unique 
maximal ideal in Ret it follows that Ker(^) = Nei thus 

Rei/Net = (Soc(eiR))* 

and consequently (Soc(e,-Ä))* is simple which was to be shown. • 
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13.4.3 C O R O L L A R Y . The following are equivalent for a two-sided artinian 
ring R: 

(1) R is a Frobenius ring. 
(2) Soc(RR) = (R/Rad(R))R and RSoc(RR) = R(R/Rad(R)) hold. 
(3) R is a quasi-Frobenius ring and either 

Soc(RR)R=(R/Rad(R))R or RSoc(RR) s Ä ( Ä / R a d ( Ä ) ) . 

hold. 

Proof. "(1)^>(2)": In definition 13.2.2(2) the condition "R is a Frobenius 
ring" was omitted. 

"(2)^>(1)": Since in (R/N)R resp. R(R/N) all simple right resp. left 
R-modules occur up to isomorphism, this holds also for Soc(RR)R resp. 
RSoc(RR). As 

®Soc(eijR) = Soc (Ä R ) - (R/N)R = ®etjR 

and since all e~ijR are simple, on the basis of number all Soc(ei}R) must 
be simple. Correspondingly this holds for the left-hand side. Hence 
13.4.2(b) is satisfied. Consequently "(2)z>(3)" also holds. 

" ( 3 ) ^ ( 1 ) " : Now let Soc(RR)R = (R/N)R be satished. By 13.4.2(d) this 
is evidently equivalent to having g, = for every / = 1 , . . . , k. Since by 
13.4.1 gi is independent of the side, it follows that RSoc(RR) = R(R/N) 
which was to be proved. • 

13.5 QUASI-FROBENIUS A L G E B R A S 

The principal aim of the following considerations consists in showing 
that a quasi-Frobenius ring, resp. a Frobenius ring in the case that it is an 
algebra over a held, can also be characterized by the classical dehnition 
for quasi-Frobenius algebras resp. for Frobenius algebras. 

Now let K be a held and let RK be a unitary ^-algebra (see 2.2.5). This 
implies that RK is a unitary Ä"-module, i.e. a ÄT-vector space. We call R a 
hnite-dimensional jKT-algebra if the dimension of R over K (as a vector 
space) is finite. Let A ^ RRy then we have for a e A , k e K, 

ak = (al)k = a(lk)eA, 

i.e. every right ideal is also a üT-subspace of RK. Now let B ^ RR, then we 
have for b eB, k eK, 

bk = (lb)k = (lk)beB, 

so that left ideals are also Ä'-subspaces. For the if-dimension of a K-
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subspace Uof RK we write dimK(U). I f dimK(R)<<x> then for ideals 

A B ^ RR resp. A B «-» 

it follows that 

dini/c (A) < d i m K ( £ ) < oo. 

Consequently R is then a two-sided artinian ring for a properly descending 
chain of ideals must break off after at most d\mK(R) Steps. 

We consider now the mapping 

K: K 3k*->lksR ( l e Ä ) . 

As l ( i t i + k2) = l * i + lk2 and 

Hkik2) = (lfci)fc
2
 = ( ( l k i ) l ) k

2
 = ( l * i ) ( l f c

2
) 

/c is a ring homomorphism. Let e be the unit element of K, then we have 
le = 1, thus K is not the zero homomorphism and consequently (since K 
is a field) is a monomorphism. We establish further that K(K) lies in the 
centre of R: 

r(lk) = (rl)fc = (lr)ifc = ( U ) r , reR,keK. 

By virtue of this S t a t e m e n t we can and do wish to assume in the following 
that K is a subfield of the centre of R (i.e. letting K(K) be replaced by K 
and calling K(K) again K). 

Let now dim^CR) = n. We consider the dual vector space to RK 

Ä * : = Horn* CR, HO, 

for which then we likewise have dim^CR*) = n (we notice that now the * 
refers to K and not as earlier to R!). By putting 

(<pr)(x) := ^ ( rx ) , < p € i ? * , r , x e Ä 

Ä * becomes a right i?-module. As n = dimK(R) = dimK(R*) R and R* are 
isomorphic as J^-vector Spaces. A n important question for the following is 
now whether JR and R* are indeed isomorphic as right R-modules. I t wil l 
turn out that this is the case if and only if R is a Frobenius ring. 

13.5.1 L E M M A . Let d\mK(R) = n. For (peR* the following are then 
equivalent: 

(1) Ker(<p) contains no non-zero right ideal of R. 
(2) Ker(<p) contains no non-zero left ideal of R. 
(3) f: RRBr^(preRR is an R-isomorphism. 

Proof "(1)4>(3)": Let <pr = 0, thus cp(rx) = 0 for all xeR, thus <p(rR) = 0. 
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By assumption it follows that r = 0, i.e. / is a monomorphism. As d im* (R) = 
dimjcCR*) / is then in fact an isomorphism. 

" ( 3 ) = > ( l ) n : From <p(rR) = 0 it follows that cpr = 0 and since / is an 
isomorphism r = 0, thus (1) holds. 

"(2)=M3)": <pR is a üT-subspace of R*. Suppose, <pR*R* then there 
is 0¥=• x eR with <p(rx) = 0 for all reR (if we take x from the orthogonal 
complement of <pR in Ä) , thus (p(Rx) = 0, contradiction to (2)! Con­
sequently we have cpR =R*, i.e. / is epimorphism and thus, on account of 
dimension, is an isomorphism. 

"(3)4>(2)": For every O^xeR there is an £ e Ä * with €(x)*0. Let 
f = <pr, then it follows that cp(rx) * 0, thus <p(Rx) * 0, i.e. Rx<£Ker(<p). • 

13.5.2 Definition. A linear function <p on Ä^, which satishes the condi­
tions of 13.5.1, is called non-degenerate. 

13.5.3 C O R O L L A R Y . Let d\mK(R) < oo, then the following are equivalent'. 
(1) There exists a non-degenerate function on RK. 
(2) RR =RR. 

Proof. ' t ( l )4>(2 )" : By 13.5.1. 

"(2)=>(ir: L e t / : RR =R% and let <p := / ( l ) , then it follows that 
/ ( r ) = / ( l r ) = / ( l ) r = ^r, 

thus / : R 3r>-+(preR* and by 13.5.1 cp is non-degenerate. • 

13.5.4 Definition. Let dimA:(Ä)<oo. 
(a) JR is called a Frobenius algebra :<ä>RR =RR. 
(b) R is called a quasi-Frobenius algebra :<=> the directly indecomposable 

direct summands of RR and R% coincide up to isomorphism and number 
(i.e. for every directly indecomposable direct summand of RR there is a 
corresponding isomorphic copy of R% and conversely). 

In this dehnition we have retained the classical formulation also in order 
to make the older literature in this area more easily accessible. What this 
means in modern terms is to be explained immediately. The foundation 
for everything is the fact that for an arbitrary hnite-dimensional algebra 
RK the dual space R% as a right Ä-module is an injective hull of 
( Ä / R a d ( Ä ) ) Ä , from which it follows immediately that R% is an injective 
cogenerator. Hence (b) is then equivalent to saying that RR is also an 
injective cogenerator thus a quasi-Frobenius ring and (a) implies addi-
tionally that 

S o c ( Ä Ä ) = S O C ( Ä £ ) = ( Ä / R a d ( Ä ) ) Ä , 



348 13 Q U A S I - F R O B E N I U S RINGS 13.5 

from which R is then in fact a Frobenius ring. A l l of this is now to be 
explained precisely. 

To prove that R R is an injective hull of ( Ä / R a d ( Ä ) ) Ä it must first of all 
be shown that every finite-dimensional semisimple algebra is a Frobenius 
algebra. Here an algebra is called semisimple if it is semisimple as a ring 
(see 8.2). 

13.5.5 C O R O L L A R I E S 
(1) / / R K is a Frobenius algebra, if SK is a K-algebra and if R^S is a 

K-algebra isomorphism then SK is also a Frobenius algebra. 
(2) If RK is a K-algebra and if 

R=AX® ...®Am 

is a direct decomposition into two-sided ideals ^ 0, then we have: R is a 
Frobenius algebra if and only if every A„ / = 1 , . . . , m is a Frobenius algebra. 

(3) Let L be a skew field which contains K in its centre, for which 
d\mK(L) < oo holds, then the ring of all nxn Square matrices (for neN) with 
coefficients in L is a Frobenius algebra over K. 

(4) Every finite-dimensional semisimple algebra is a Frobenius algebra. 
(5) / / G is a finite (multiplicative) group and K is a field then the group 

ring GK is a Frobenius algebra over K. 

Proof. (1) A n algebra isomorphism p.R^S is a ring isomorphism for 
which we have: p(x)k -p(xk) for all x e R, k e K. Let <p be a non-degenerate 
linear function on RK. Then cpp~l is a non-degenerate linear function on 
SK, for from 

0 = <pp-\s0S) = <p(p-\s0)p-1(S)) = cp(p-1(s0)R) 

it follows that p (s0) = 0, thus s0 = 0. 
(2) Let cp be a non-degenerate linear function on RK, then <p\Ah i = 

1,..., m is a non-degenerate linear function on A, . This implies immedi-
ately, if we take note, that we have A / A ; = 0 for / ^ / and consequently 
aAi - aR for a e A(. Conversely let <p( be a non-degenerate linear function 
on Ah i = 1,..., m, then cp = (<p\,..., <pm) is a non-degenerate linear func­
tion on R for from 

0 = « p ( ( a i . . . a m ) Ä ) 

it follows that 0 = ^/(fl /A,) for all /, thus by assumption axf = 0, / = 1 , . . . , m. 
(3) Let H>I, . . . , wm with wx = 1 be a basis of L K over K and let du be 

the matrix with 1 in the 0 , / ) th place and 0 elsewhere. Then di}wi 
(i, ; = 1 , . . . , n; l = 1 , . . . , m) is obviously a basis of the matrix ring L n over 
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K. Define <p : L n -> K by 

then is a non-degenerate linear function. Namely let 

r = I di/W/fcJy^O, 

then fe{§y0 # 0 exists. Consequently we have also 

m 
x := Z w / / t j o / o # 0 

and it follows that 

<p(rdioiox ) = 1. 

Thus the kernel of contains no right ideal 9* 0. 
(4) On account of 8.2.4 and (2) we can conhne ourselves in the proof 

to a simple hnite-dimensional algebra RK. For this we have 8.3.2 at our 
disposal. Let E be a simple right ideal of R and let L := End(J5Ä), then 
L £" is a hnite-dimensional vector space over L . Let u i , . . . , Ü„ be a basis 
of LE, then by 8.3.2 we obtain a ring isomorphism 

holds. Since K is contained in the centre of R, K is a subheld of L and as 
c even a subheld of the centre of L . Thus L n is also a Ä~-algebra in 

which {lij)k = Uijk) for keK and //;/c is the multiplication in L . For rk it 
then follows that 

thus we have p{rk)-p(r)k, i.e. p is a üT-algebra isomorphism. Then the 
assertion follows from (1) and (3). 

(5) Let Ord(G) = n and let G = {gi = e, g2,..., g„}. Then 

p'.RBr^il^eL, 

in which 
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is a non-degenerate linear function for if in £ g/&i it happens that k, ^ 0, 
/=i 

then it follows that 

^((igi^gj^k^o, 

thus Ker(<p) contains no right ideal ^ 0 . • 

13.5.6 T H E O R E M . Let K be a field and let RK be a K-algebra with 
dimjeCR)<oo. Then we have: 

(a) JR/Rad(Ä) = S O C ( Ä £ ) as right R-modules. 
(b) R R is an injective hull of ( Ä / R a d ( Ä ) ) Ä . 
(c) R% is an injective cogenerator. 

Proof. The proof follows in several steps. 
(1) R R is injective. The proof of this follows completely analogously to 

that of 5.5.2. In place of Z in 5.5.2 K now appears and KK now appears 
in place of £> 2 . To the Z-injectivity of Dz corresponds now the if-injectivity 
of KK- With these replacements the proof of 5.5.2 can be taken over word 
for word. 

(2) By 9.3.5 we have Soc(Ä$) =/ Ä *(RadtR)) . We claim that £ G 
/Ä*(RadCR))<=>RadCR) Ker(f) . To this end let 

( f K ) ( * ) = f ( l « ) = 0 

for all u G Rad(Ä) and all x G R. For x = 1 it follows that Rad(jR) Ker(f ) . 
Conversely if this is the case then it follows, since Rad(JR) is a right ideal, 
that 

Q = €(ux) = (fr)(x) 

for all u GRadCR), xeR; thus we have £ e / Ä * ( R a d ( Ä ) ) . 

(3) For £ G Soc(/?£) I " be the linear function induced by 

g: Ä / R a d ( Ä ) B X + R a d ( Ä l ^ f W e l 

We claim that 

<A: S o c ( Ä j ) 3 f 6 H o m Ä ( Ä / R a d ( Ä ) , ü : ) 

is an R-isomorphism. I t is clear that this is an R-monomorphism. Let now 
g G Horn*(Ä/RadCR) , K) and let 

* : Ä - * Ä / R a d ( Ä ) , 

then it follows that gv G SOC(JR^) and gv=g, thus is an isomorphism. 
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(4) Since R/Rad(R) is a finite-dimensional semisimple if-algebra, by 
13.5.5 there is an R/Rad{R)-isomorphism 

A : Horn*(R/Rad(R), K)-+ R/Rad(R), 

which can and is to be considered also as an -isomorphism. In short we 
have the isomorphism 

A^:Soc(ÄS) Ä -^(Ä /Rad(Ä)) Ä . 

Let / be the inverse isomorphism. Thus (a) is satished. 
(5) Let L:SOC(RR)^RR denote the inclusion. Since SOC(R%)^RR 

(because it is artinian) and R% is injective, 

t / : ( Ä / R a d ( Ä ) ) * - > * £ 

is an injective hull. Hence we have shown (b). 
(6) Since all simple right R-modules occur in (Ä/RadCR)) Ä up to 

isomorphism, R% is a cogenerator, thus (c) also holds. • 

We come now to the aforementioned characterization. 

13.5.7 T H E O R E M . Let RK be a finite-dimensional algebra over the field 
K. Then we have: 

(1) R is a quasi-Frobenius algebra ifand only ifR is a quasi-Frobenius ring. 
(2) R is a Frobenius algebra if and only if R is a Frobenius ring. 

Proof. (1) In regard to this we recall that a module is a cogenerator if and 
only if for an injective hull of any simple module it possesses an isomorphic 
submodule. This is then a directly indecomposable direct summand of the 
cogenerators. Since R% by 13.5.6 is an (injective) cogenerator, we have 
consequently: RR is then also a cogenerator (and then also injective) if and 
only if RK is a quasi-Frobenius algebra. 

(2) I f RK is a Frobenius algebra then RK is also a quasi-Frobenius algebra 
and consequently by (1) a quasi-Frobenius ring. Further by 13.5.6 and as 
R%=RR we have 

(R/Rad(R))R =SOC(RR) = SOC(RR), 

thus by 13.4.3 R is a Frobenius ring. Conversely let Ä be a Frobenius 
ring, then R is a quasi-Frobenius ring and by dehnition we have 

( Ä / R a d ( Ä ) ) Ä s S o c ( Ä Ä ) . 

Consequently the injective hull RR of (R/Rad(R))R is isomorphic to the 
injective hull RR of Soc(RR), thus RK is a Frobenius algebra. That in fact 
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RR is the injective hull of Soc(RR) follows from the injectivity of RR and 
since in an artinian ring Soc(RR) RR. • 

13.6 C H A R A C T E R I Z A T I O N O F Q U A S I - F R O B E N I U S RINGS 

In conclusion we return once again to the general case of quasi-Frobenius 
rings and State an interesting characterization of them. It is particularly of 
interest for the reason that set-theoretic considerations come essentially 
here into the proof of algebraic results. For this we need to use some 
set-theoretic facts, which are not proved here but which however are to 
be found in any text-book on set theory. 

13.6.1 T H E O R E M ( F A I T H - W A L K E R ) . The following are equivalent for a 
ring R: 

(1) R is quasi-Frobenius. 
(2) Every projective right R-module is injective. 
(3) Every injective right R-module is projective. 

Proof. We go through the proof in the following Steps: (1)=>(2), (1)4>(3), 
(2)=>(1), (3)4>(1), in which the first two implications are easy to prove 
whereas we must delve deeper for the last two. 

" ( l ) z>(2 )" : Since RR is injective and noetherian, by 6.5.1 every free 
right R-module is injective and hence also every direct summand of a free 
right JR-module. Consequently every projective right R-module is injective. 

" ( l ) z>(3 )" : Let QR be an injective R-module, then by 6.6.4 Q is the 
direct sum of submodules which are injective hulls of simple right R-
modules. I t suffices therefore for such a module to show that it is projective. 
Since RR is a cogenerator then the injective hull of every simple right 
Ä-module occurs up to isomorphism as a direct summand in RR and is 
therefore projective. • 

We preface the rest of the proof by a lemma. 

13.6.2 L E M M A . For an arbitrary ring R and a module MR we have: If 
Mm is injective then R satisfies the ascending chain condition for right ideals 
of the form rR(U) with U<^M. 

Proof. Indirect proof. Suppose we have for [// C M , / G N 

rR(Ui) rR(U2) , 
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then it follows (as rRlMrR(U) = rR(U)) that 

IMTR(UI) lMrR(U2) 

For every / e let 

Xi e lMrR(Ui), Xi£ lMrR(Ui+i)f 

then there is an element ai+x e rR(Ui+i) with JC/fl,-+i ^ 0. Let 

ieN 

then we have A RR and for every aeA there is an na e 1̂1 with 

aerR(Ui) for all 

Then it follows that 

xxa - 0 for all / ^ n a , 

thus for an element x : = (JCIX 2 X 3 . . . ) e M 1 ^ we have 

= (jcn3jc2a . . . jc^aOOO . . . ) e Mm. 

Consequently 

<px: Aaa^xae Mm 

is a homomorphism. Since Mm by assumption is injective a commutative 
diagram exists: 

A >R 

s 
y 

M(N)iC 

Let p ( l ) = ( z i z 2 . . . z„000 . . . ) then it follows for all a e A that 

«^(a) = = p(a) = p ( l ) f l = (zxa ...zna.. .z„a000 . . . ) , 

thus xxa — 0 for all / > n and all aeA, thus in particular jc,a;+i = 0 for / > n. 
Contradiction! • 

We continue now with the proof of Theorem 3.6.1. 

"(2)=>(1)": Since by assumption R m is an injective right Ä-module, 
13.6.2 can be applied in the case MR - RR. Thus R satishes the ascending 
chain condition for ideals of the form rR(U) with U^R. Since RR is 
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injective it follows therefore by 1 2 . 4 . 2 that R satisfies the descending chain 
condition for finitely generated left ideals and in particular for cyclic left 
ideals. By 1 1 . 6 . 3 RR is then perfect. 

Let N := Rad(Ä) , then the chain 

rR(N)^rR(N2)^rR(N3)... 

is stationary, i.e. there is a t e N with 

rR(Nt) = rR(Nt+i), i&O. 

Since Nl is a two-sided ideal, rR (Nl) is a two-sided ideal. Suppose rR (N') # JR, 
then it follows from 11 .6 .3 that 

Soc(R(R/rR(N')))*0. 

Let x be a non-zero element of this socle, then it follows that x^rR(N!) 
and, since the socle is semisimple, Nx = 0, thus Nx c rR(Nl). Consequently 
we have 

N'Nx=Nt+1x=0, 

thus x erR(Nt+i) = rR(Nl), contradiction! This contradiction shows that 
rR(N') = R thus we must have Nl = 0, i.e. TV = Rad C R ) is nilpotent. Con­
sequently RR is also perfect. By 1 1 . 6 . 3 every right -module # 0 then has 
a non-zero socle. Thus Soc(RR) RR. Therefore 1 2 . 5 . 2 (6) is satisfied and 
it follows that RR is a cogenerator. By 12 .4 .1 we then have rRlR(A) = A 
for every right ideal A of R and consequently RR is noetherian. Since 
moreover RR is injective, by 13 .2 .1 R is quasi-Frobenius. Hence (2 )=>(1) 

is shown. 
" ( 3 ) z > ( l ) " : Since every injective right R-module is projective every 

injective module can be mapped monomorphically into a free module. 
Since every right R-module can be mapped monomorphically into an 
injective module, by 4 . 8 . 2 RR is a cogenerator. We now show that RR is 
noetherian. To this end let QR be an injective hull of RR. Since RR is a 
cogenerator QR is also a cogenerator. First of all we assume that Q m is 
injective and complete the proof for ( 3 )=>(1) ; we put the proof of the 
injectivity of Q m at the end. By 1 3 . 6 . 2 (with MR = QR) R satisfies the 
ascending chain condition for right ideals of the form rR(U) with U<^Q. 
Since by 12 .4 .1 every right ideal of R is of this form, RR is noetherian, 
from which the proof is complete up to the injectivity of Q(N\ 

While the proof was obtained so f ar in the context of the usual arguments, 
use must be made in the following of essentially set-theoretic considerations. 
We formulate separately particular steps of the proof which are of indepen­
dent interest. 
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The next aim of our consideration consists in proving the Theorem of 
Kaplansky which says that every projective module is a direct sum of 
countably generated submodules. Here "countable" is to include "hnite". 

13.6.3 L E M M A . Let R be an arbitrary ring and M an R-module. Suppose 
we have 

A f = 0 M / = A © B , 
jeJ 

where every Mj is countably generated. Then to every set H^J with the 
property that for 

U := © Mh 

jeH 

U = {An U)®(B n U) holds we have a set I with H^I^Jso that for 

/ e r 

W = (A n W)®(B n W) holds and AnW = (An U)®Q where C is a 
countably generated submodule. 

Proof. L e t a and/3 (= \ M - a)be the projectionsbelongingto the decompo­
sition M = A®B. Let i0eJ\H. Since M , is countably generated, a(Mio) 
and ß(Mio) are countably generated. Hence there is a countable set 7i<=/ 
with 

A 4 ^ a(Mi0) + ß(Mi0) ^ © M, 
/ € / i 

Since every Mj is countably generated and I is a countable set © Mj is 
/ e / i 

countably generated. Consequently there is a countable set J 2 <=/ with 

© Mj ^ J ® M ) +ß( © M\ © Mj. 
je II V ' e / i / V e / i / jel2 

We continue inductively. We obtain therefore a sequence of countable sets 

h := 0*o}, Iu h>.. 

with 

© M y ^ a ( © A 4 y W ( © A f y W © Mj. 

As Im(a) = A and Im(/3) = 5 this means that 

(*) © M 7 ^ ( A n © A f / ) + ( B n © My). 
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Then both 

L ••= U In 
« = 0 , 1 , 2 , . . . 

and L\H are countable sets. Let now / H\JL and 

W ®M} = U®V. 
jeL\H 

Then V is also countably generated. 

Assertion. W = (A nW)®(B nW). 

For the proof it is first of all clear that (A n W)®(B n\V)^> W. For the 
reverse inclusion we establish that every M ; with jel is contained in 
( A n W)®(B nW). For jeH this holds by assumption. Let j e L\H and 
let je I m then this holds by (*). 

From W=U®V = (AnU)®(BnU)®V 

it follows by the modular law that 

C := ((BnU)®V)nA, D := ((AnU)®V)nB. 

Therefore we deduce that 

W = (An W)®(B n\V) = (An U)®(B n U)@C®D = U®C®D. 

Since also = U® V it follows that 

V=W/U = C®D. 

Thus C is an epimorphic image of the countably generated module V and 
hence is itself countably generated. • 

13.6 .4 T H E O R E M . Let R be an arbitrary ring and M an R-module. If we 
have 

with countably generated submodules Mh then A and B are also direct sums 
of countably generated submodules. 

Proof. I t suffices evidently to prove the assertion for A. Let { A A | A e A} be 

AnW = (AnU)®C, BnW = (BnU)@D, 

with 

M = ®Mj=A®B 



13.6 C H A R A C T E R I Z A T I O N O F Q U A S I - F R O B E N I U S R I N G S 357 

the set of all countably generated submodules of A. Let 

X := I (H, D\H<=J A T<= A A 0 MT = (A n 0 M)@(B n 0 Af) A 

A n 0 M ( = 0 A A 1 . 

Since ( 0 , 0 ) e X , X 5* 0 . Further AT is ordered by 

( H U r i ) (H2, r 2 ) o / / x cH 2 Ar,c r 2 . 

If Y <= AT is a totally ordered subset then 

(//',D with / / ' : = U H and T := U T 
( H . D e y ( H , D e y 

is an upper bound of Y in X , as is easily conhrmed. Zorn's Lemma ensures 
then a maximal element (H, T) e X. I f we now suppose H T*J, 13.6.3 yields 
a properly larger element from X ^ . Thus H = / must hold. • 

13.6.5 C O R O L L A R Y . For an arbitrary ring R we have: Every projective 
R-module is a direct sum of countably generated submodules. 

Proof. Since every projective R-module is isomorphic to a direct summand 
of a free R-module the assertion follows from 13.6.4 in the case M = R(J). • 

13.6.6 L E M M A . Let R be an arbitrary ring and AR a finitely generated 
R-module. Then we have: If an injective hull of A is also projective then it 
is finitely generated. 

Proof. Since all injective hulls of A are isomorphic it can be assumed 
without loss that A is a submodule of the injective hull Q of A. Since Q 
is projective there is a monomorphism 

into a free Ä-module. Since A is hnitely generated there is a hnite subset 
J 0 <= / with 

fjL(A)^R(J^^R(J). 

Denote the projection of RiJ) onto RUo) by TT, then it follows that irp, \A 
is a monomorphism. Since A Q then rrp, is also a monomorphism. 
Consequently 7rp(Q) as a direct summand of RUo) is hnitely generated and 
hence also is Q. • 
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1 3 . 6 . 7 C O R O L L A R Y . For an arbitrary ring R we have: Every R-module 
which is simultaneously projective and injective is a direct sum of finitely 
generated submodules. 

Proof. By 1 3 . 6 . 5 it suffices to prove the assertion for a countably generated 
projective and injective R-module Af. Let 

M= I XlR 
ieN 

be one such. Let Q i ^ Af denote an injective hull of X\R. Since Q i is a 
direct summand of Af, Q i is also projective and consequently by 1 3 . 6 . 6 

finitely generated. Let 

Af = O i 0 5 i , 

then Bi is also projective and injective. Suppose Qu . . . , Qn and Bn with 

Af = < ? ! © . . . ®Qn@Bn 

and 

n 

xu . . ., xn G © Qi 
/ = i 

have been inductively determined, then let 

n 

xn+i = an+i + bn+i with an+i €©(?,•, bn+ieBn 

i = \ 

and let Qn+1^Bn be an injective hull of bn+\R. For the sequence, so 
obtained, of finitely generated direct summands 

Qu Qi, Q 3 , . • • 

n 

with X ] , . . . , x„ G © O, we then obviously have 
J = I 

i e N 

We wish now to show in the sense of the proof ( 3 ) = ^ > ( 1 ) of 1 3 . 6 . 1 that 
Q m is injective, where Q is an injective hull of RR. By assumption Q is 
also projective and hence by 1 3 . 6 . 6 finitely generated. Now let r be an 
infinite cardinal which is properly bigger than 2 where \R \ is the cardinality 
of R. I f AR is a finitely generated i?-module then r is bigger than the 
cardinality of the set of all submodules of AR for this is a subset of the 
power set of AR (for reasons see a book on set theory). 
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Now let I be a set of cardinality r (or bigger), then let 

M:=Qr = UQi with 0 , = Q for all iel. 
iel 

Since Q is injective, M is injective and thus also projective. Let Q] be the 
image of Q, = Q under the canonical monomorphism 0-77, (in the sense of 
4.1.5). On the other hand by 13.6.7 M is a direct sum of hnitely generated 
submodules: 

M = © Mj. 
jeJ 

Now let i^el be arbitrary. Since QJ, is hnitely generated there is a hnite 
subset Ji aj with 

Oi, © Mj. 
jeJy 

If we now put 

O d ) O - and Dx := © Mh 
jeJi 

then D \ is hnitely generated and there is a £ 1 <-» £>i with 

D i = O d ) e Ä i . 

We now consider the set 

{ D i n O | | / 6 / A i V / i } . 

This is a set of submodules of the hnitely generated module D. By choice 
of the cardinality r oi I not all of the D \ n O ! can be different from one 
another (transhnite box principle). Let / 2 , k e /2 ̂  k with D i n 0 ! 2 = 
£ > i n O * . 

As 0 ; 2 n Q'k = 0 it follows that 

D i n O ! 2 = D , n f t = 0 . 

Consequently 

0 ; 2 — © M y — © Mj 
jeJ / G / U I 

is a monomorphism (where t 2 resp. 7r2 is the inclusion resp. the correspond-
ing projection and we have Ker (7r 2 t 2 ) = D \ n 0 ! 2 = 0 as Ker(7r 2) = D i ) . Since 
0 ! 2 is hnitely generated there is a hnite set 

/
2
c/Ui 

with Im (7r 2 t 2 ) <-* D2'-= © M 7 . 
/ e J 2 
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By choice of J2 we have J\ n J 2 = 0 . Now let 

0 ( 2 ) *.= Im (7r 2 t 2 ) , 

then it follows that 

o(2)=o;2=o 
and there exists a B2 with 

D2=Q(2)®B2. 

Inductively we dehne Q'in, in . . . , in-i} by 

( D i 0 . . . © Z ) „ - i ) n O ; N = O 

and 

O L — © M , - ^ © Mj 
jeJ jeJ\(Ji^>...<uJn-i) 

as well as /„ <= / \ ( / x u . . . u/„_i) with /„ finite and 

lm(jrNLN) <-» Dn := © Mr 

Further we have 

Jn n ( / i u . . .u/„_i) = 0 . 

I f we put 

(?(„) := Im(7r„t n ) , 

then we have again 0 ( n ) = Q and there exists a # n with 

Dn = Qin)®Bn. 

For the inductively resulting sequences 

Ju h, h . . . . £>i, £>i, D 3 , . . . 
O ( l ) , Q(2h Q(3h ' ' • > ^ 1 » ^ 2 » # 3 , 

we then have, if we put 

H := U / / 

(*) 0 M = e O ( l ) ( a s O , „ a O ) , 

© MY=e (e M,) = e D , = © (Q„>©B,), 
/ e W ( G ^ J V e J , / ieN ieN 
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thus 

M = ( © Q ( „ W © B , W © M,). 

Consequently 

© Qw 
ieN 

is a direct summand of the injective module M and hence in any case 
injective. By (*) Q m is then also injective which was to be shown. Hence 
the proof (3)=>(1) is complete. • 

EXERCISES 

(1) 
Show: 

(a) A commutative artinian ring is a quasi-Frobenius ring if and only if 
it is a direct sum of ideals with simple socle. 

(b) Every commutative quasi-Frobenius ring is a Frobenius ring. 
(c) If R is a commutative principal ideal domain and 0 5* A RR then 

R/A is a Frobenius ring. 

(2) 
Let K be a held and let R be the ring of all matrices of the form 

(a b\ 

J with a,b,ceK. 

Show: 

(a) For x = * j e i ? w e have: 

(1) x is left invertible O JC is right invertible <=> ac 5* 0. 
(2) x is n i l p o t e n t 2 = O O Ö = c = 0. 

< 3 ) * i , . n i d e m p o t e n t o , e { ( ° °),(* J),(° *)). 

(4) xi? is s i m p l e ^ x # 0 A a = 0; i?jt is s impleOx * 0 A C = 0. 
(b) (1) RadCR) = ( ° S O C ( Ä R ) = ( ° 

(2) r R ( R a d ( Ä ) ) = Soc(„Ä), / „ (Rad(Ä)) = Soc(Ä„), rR(Soc(RR)) = 
S o c ( R Ä ) , / „ ( S O C ( Ä R ) ) = 0, r R ( S o c ( R Ä ) ) = (), / R ( S o c ( £ R ) ) = S o c ( £ R ) . 
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(3) Soc(RR) as a left ideal is a direct summand, however as a right 
ideal it is not cyclic (thus not a direct summand). 
(4) Soc(RR) as a right ideal is a direct summand, however as a left 
ideal it is not cyclic. 

(c) For the determination of the lattice of the right ideals of R show: 
(1) L e ( Ä Ä ) = 3. 
(2) The maximal right ideals of R are Soc(RR) and Soc(RR). 

(3) The simple right ideals of R are RadCR) and also Ek := ^ ^ Ä , 

keK. 
(4) The lattice of the right ideals has the following picture 

Soc( Ä Ä) • 

Rad(i?) 

(d) For the determination of the injective hull of RR show: 
(1) For all k e K, Ek =Rad(i?) =R/Soc(RR) as right Ä-modules. 
(2) The only injective right ideals of R are 0 and Soc(RR). 

( K K\ <• 
is an injec­

tive nun Ol K R . 

(3) 
Show: 

(1) Let R be a quasi-Frobenius ring. If e e R is an idempotent, for which 
eR is a two-sided ideal, then e lies in the centre of R. 

(2) Let A and B be rings, let AMB be a bimodule and let R :== ^ \ 
V 0 B ) 

then we have: R is quasi-Frobenius<=>A and B are quasi-Frobenius and 
M = 0. 

(Hint for (1): Show that the factor ring R/eR is again a quasi-Frobenius 
ring and thereby deduce the assertion.) 

(4) 
Let K be a field and let R be the commutative i£-algebra with the basis 
1, a, 6, c and the multiplication \r = r\ = r for r € R, ab = ba = 0, a2 = b2 = c, 
ac = ca = bc = cb = c2 = 0. 
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Show: 
(a) For x = l /ci + ak2 + bk3 + ck4€R (ki eK) we have 

(1) x is invertible<=>fci ^ 0 . 
(2) x is nilpotent<=>JC3 = 0<=>fci = 0<£>x € RadCR). 
(3) xeSoc(R)<^>kl = k2 = k3 = 0. 

(b) Let N : = RadCR). Then N2 = Soc(R) = cR and 0~>cR~>aR~> 
N «-> R is a composition series of In particular SocCR) is simple, thus 
R is a quasi-Frobenius ring. 

(c) If we dehne Ak := (afc 4-6)JR for every keK then we have: 
(1) cR Ak AT; and A f c * Afc< for k * k'. 
(2) I f t / is an ideal of R of length 2, then U = aR or U = Ak for a 
i e K (Hint: Show hrst that U is cyclic.) 
(3) Determine the lattice of ideals of R. 

(d) The factor ring R/N2 is not a quasi-Frobenius ring. 

(5) 
Let the ring R be commutative and artinian. Show: 

(a) If A is a maximal ideal of R then the injective hull of R/A is hnitely 
generated. 

(b) For every hnitely generated .R-module the injective hull is again 
hnitely generated. 

(c) If C is a minimal cogenerator of MR then the ring S •= I d ( C Ä ) , 
dehned in Chapter 12, Exercise 10, is a quasi-Frobenius ring which has a 
factor ring isomorphic to R. 

(Hint for (a): I f Q is an injective hull of R/A and if B( : = / Q ( A ' ) then 
show hrst that Bi+\/Bi is hnitely generated.) 

(6) 
Let RR be noetherian and let every cyclic left R-module be reflexive. Show: 

(a) R is artinian on both sides. 
(b) Every maximal right ideal B is an annihilator ideal (i.e. B = rRlR(B)). 

(Hint: If E is a simple left R-module and if AR is simple with AR E% 
then it follows that RA=RE). 

(c) If RR MR and if M/R is simple then RR is a direct summand of MR. 
(d) R is a quasi-Frobenius ring. 

(7) 
Show: Every ring with perfect duality, if perfect on one side, is a quasi-
Frobenius ring. 

(8) 
Show: A l l reflexive modules over a quasi-Frobenius ring are hnitely gen­
erated. 
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