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Preface

This book has two predominant objectives. On the one hand, the funda-
mental concepts of the theory of modules and rings are presented, for
which the presentation is set out in detail so that the book is suitable for
private study. On the other hand, it is my intention to develop, in an easily
comprehensible manner, certain themes which so far have not been presen-
ted conveniently in a text book, but which however occupy an important
place in this area. In particular rings with perfect duality and quasi-
Frobenius rings (QF-rings) are considered.

In summary the book aims to put the reader in the position of advancing
from the most basic concepts up to the posing of questions and of consider-
ations which are of topical interest in the development of mathematics.
For this purpose numerous exercises of varying degrees of difficulty are
provided. Here the intention is not merely to give practice in the material
of the text, but also to touch upon concepts and lines of development not
otherwise considered in the book.

The structure of the book is determined by the conviction that the
concepts of projective and injective modules are among the most important
fundamental concepts of the theory of rings and modules and consequently
should be placed as far as possible at its very beginning. These concepts
can then also be used in the treatment of the classical parts of the theory.
For the same reason I have developed the fundamental concepts of gen-
erator and cogenerator as early as possible in order to have them always
available. If different finiteness conditions are added, then one has the
main theme of the book. This culminates, accordingly, in the theory of
rings which are injective cogenerators resp. injective cogenerators with
finiteness conditions (QF-rings).

In order to prevent the size of the book becoming excessive it was only
possible to take up categorical concepts as far as absolutely necessary.
Since there are numerous good books on categories the reader can easily
broaden his knowledge in this respect. In other areas too a choice of the
themes to be considered was obviously necessary. The basic principle in
such a selection was first to cover the fundamental concepts which are
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vi PREFACE

absolutely necessary but beyond that to focus as directly as possible on the
material of the last three chapters.

This-book has resulted from lectures and seminars which I have given
in different universities. The teaching experience which has been so gained
is incorporated in the book. Thus the expert in the subject will easily
recognize that I have not always chosen the “shortest” version of a proof,
occasionally calculating with elements where this might be avoidable. Also
I have not been deterred in places from repetitions or from the presentation
of a second proof. All of this is done to render the book more intelligible,
and in so doing I am aware that from a teaching point of view there can
be very different opinions.

It is my belief that in a textbook—as opposed to a scholarly monograph—
one is not obliged to state the authorship of all results in detail. I have
made extensive use of this freedom and have only provided a name in
places of particular significance. In many developments which derive from
several authors, precise assignment of responsibilities is often difficult.
From experience with other books it therefore seemed better to me to
make no statement rather than to risk introducing false attributions.

As well as a selection of textbooks on modules and rings some original
literature is given as suggestions for further reading in connection with the
last three chapters. This is very much a matter of individual choice which
does not imply any evaluation of the authors.

To numerous colleagues, collaborators and students I owe suggestions
and critical remarks for this book. To all I express my profound thanks.
I owe very particular thanks to W. Miiller, W. Zimmermann and H.
Zoschinger for their assistance. In particular, the later chapters have arisen
from discussion with H. Zdschinger who has also contributed numerous
exercises. Without the keen interest of those named in the ensuing
mathematical and didactic questions, the book would almost certainly not
have attained its present draft.

To the editors and the publisher I have to express my thanks for their
helpful and unbureaucratic co-operation.

Munich, Autumn 1976 _ F. KASCH



Translator’s Preface

The translator, in undertaking the task of translation, was initially moti-
vated by his belief that an edition in English would be very worthwhile
and was subsequently encouraged to embark upon the task by two reviews
of the German edition indicating that a translation would be of considerable
value. This English edition is a direct translation of the German text which
has been essentially unaltered with the exception of Lemma 5.2.4, Lemma
5.2.5 and Corollary 11.1.4, for which more succinct proofs are now pro-
vided, and with the addition of Section 11.7, which is entirely new.

In preparing this edition the translator is much indebted to Professor
Kasch for a list of the (few) corrections and for a careful over-seeing of
the translation. Thanks are also owing to various members of the Depart-
ment of German of the University of Stirling for their willingness to be
consulted and to offer advice. A profound debt is owing to Mrs. M.
Abrahamson, Secretary of the Department of Mathematics of the Univer-
sity of Stirling, for her unfailing cheerfulness and for the consummate skill
with which she produced a beautifully typed manuscript with the many
displayed formulae neatly inserted. Finally thanks are owing to Professor
P. M. Cohn for many suggestions towards an improvement of the final draft.

Stirling, Spring 1981 D. A. R. WALLACE
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Symbols

and

or (in the inclusive sense)

quantifier (‘“‘for all” resp. ‘“‘for every”)
quantifier (‘‘there exists”)

implication

equivalence

} definitions

contradiction

subset

proper subset

not a subset

sub-object in the sense of the relevant structure
proper sub-object

not a sub-object

is small in

is large (essential) in

divides (a|b means “a divides b”")
complementary set (A\B = {alae A nag B}
end of a proof

set of natural numbers (N={1,2,3,...})

field of rational numbers

field of real numbers

ring of integers

Le(M) composition length of module M

Ord(G) order of group G

[Note the difference between A, B, C,...and A, B, C, ... (e.g. M € Mg)]
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Chapter 1

Fundamental Ideas of Categories

The theory of categories has developed, since the year 1945, as a new
branch of Mathematics. This theory is not only of interest in itself, as having
produced essentially new ideas and methods, but it is also contributing to
an overall understanding of mathematics. Its significance rests on the
possibility that important concepts and considerations from different parts
of mathematics may be brought together and be developed uniformly. In
particular it furnishes the possibility of formulating and investigating com-
mon properties of different structures.

In this way it has given rise to new points of view and to the posing of
questions which are not only themselves of interest in the theory of
categories, but which have revealed new avenues for investigation in various
concrete categories. This analysis arises in the particular case of module
categories which have given, in their turn, the motivation for the develop-
ment of categories.

Finally it is evident that, increasingly, fundamental concepts from the
theory of categories are being accepted into the everyday jargon of mathe-
matics and are being employed in formulating concepts and in assembling
the relevant facts in other areas of mathematics. Such categorical modes
of expression are essential for module categories.

In the following, knowledge of such categorical language will be
provided. However we shall confine ourselves as much as possible to
developing the concepts only as far as it appears absolutely necessary
for their understanding.
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1 FUNDAMENTAL IDEAS OF CATEGORIES 1.1

1.1 DEFINITION OF CATEGORIES

We assume here the idea of set and class. To a first approximation a
class is understood to be a ‘‘very big set”, in which no operations, capable
of leading to an antinomy, may be performed. For example, and in contrast
to the set of all subsets, it is not permissible to form the class of all subclasses.
In an axiomatic theory of classes and sets, the sets are exactly the classes
which appear as elements of some classes. A class can also be conceived
intuitively as the ‘‘totality of all objects with a certain property”. The
relevant text books can be recommended for a more thorough treatment
of classes. Here, the intuitive concept of a class is enough for the understand-
ing of what follows.

1.11

L

IL

II1.

Definition. A category K is given by means of:

A class Obj(K), which is called the class of objects of K, whose
elements are to be called objects (of K) and to be denoted by
AB,C,....

For every pair (A, B) of objects there is a set Mork(A, B) such that
for different pairs of objects (A, B) # (C, D)

Mork(A, B)nMork(C, D)= .

The elements of Morg(A, B) are called morphisms from A to B and
are denoted by a, B, v, . . ..
To every triple (A, B, C) of objects there is a mapping

Mork (B, C)xMork(A, B)3 (B, a)— Ba e Morg(A, C)

which is called multiplication and for which we have:

(1) Associative law: y(Ba) = (yB)a for all @ € Mork(A, B), B €
Mor(B, C), v € Mork(C, D).

(2) Existence of identities: To every object A € Obj(K) there exists
a morphism 1,4 € Morg(A, A), called the identity of A so that for
all a e Morg(A, B), als=1pa =a.

We may now indicate some notations and simple properties. If no
confusion is possible we write

Mor(A, B) = Morg(A, B).

We write further

Mor(K):== U  wiorg(A, B)

A,BeObj(K)
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to denote the class of morphisms of K. We use also the abbreviated notation
AeK :& AeObjK)
a €K :© a e Mor(K).
Now let @ € Mor(A, B), then as in the case of a mapping we define
Domain of a = Dom(a) = A
Codomain of a = Cod(a) = B

Since the sets Mor(A, B) are disjoint for different pairs (A, B), Dom(a)
and Cod(a) are uniquely determined by a.
Instead of writing « € Mor(A, B) we also write

«:A>B or A->B.

The symbol
A->B

denotes an element from Mor(A, B) and an arrow - an element from
Mor(K).
The commutativity of the diagram

A—"_ B

pD—> ¢

indicates that Ba = Y.

If a,8 e Mor(K) we write Ba for the product, thereby incorporating the
assumption Cod(a)=Dom(a) which is required in Definition 1.1.1 for
multiplication.

1.1.2 PROPOSITION. The identity 14 (by virtue of the property given by
I11(2)) is uniquely determined.
Proof. Let e4 be another identity of A. Then there follows

€a =¢€a lA = 1A- D
1.1.3 Definition. Let K be a category and let « : A > B be a morphism
of K. Then the following nomenclature applies.

(1) « is a monomorphism &
VC e K Vy1, y2€Mor(C, A) [ayi =ay>v1= 72l
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(2) a is an epimorphism &
VCeK VB, B2eMor(B, C) [Bra = Bra > B1=B2].
(3) «a is a bimorphism &
a is a monomorphism A a is an epimorphism
(4) a is an isomorphism :&
HB € Mor(B, A) [Ba = 1A A CVB = 13]
(5) a is an endomorphism &
Dom(a) = Cod(a)
(6) «a is an automorphism &
a is an isomorphism A « is an endomorphism.

1.1.4 PROPOSITION. «a is an isomorphism = a is a bimorphism.
Proof. Let Ba =14 and aB = 1. It follows then from ay; = ay, that

Y1=1ayi1=Bayi=Bay,=1ayv2=17.
It follows analogously from B8,a = B, that

B1=PB11p =p1aB =Braf =B,1p = B. 0

We observe that the converse of 1.1.4 does not hold in general (examples
in exercises). Of course the converse is valid in several important categories,
e.g. in module categories, the proof of which we give later.

1.2 EXAMPLES FOR CATEGORIES

In each of these examples we understand by (I) the class of the objects,
by (II) the sets Mor(A, B) and by (III) the multiplication Ba for a €
Mor(A, B), B € Mor(B, C). The axioms are easily verified in each case.

1.2.1 S =CATEGORY OF SETS
(I) Obj(S)=class of all sets.
(II) Mor(A, B) =set of all mappings of A into B.
(III) Ba =composition of the mappings @ and B, @ being followed by 8.

1.2.2 G =CATEGORY OF GROUPS
(I) Obj(G)=class of all groups.
(II) Mor(A, B)=Hom(A, B) =set of all group homomorphisms of A
into B.
(III) Usual composition.
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1.2.3 A =CATEGORY OF ABELIAN GROUPS
(I) Obj(A) =class of all abelian groups.
(II) and (III) as for G.
In this case Hom(A, B) can itself be made further into an abelian group.

Definition. Let the group operations in B be written additively and let
ay, ar € Hom(A, B). Then we define a; + a; by

Dom(a; +az) = A, Cod(a; + ;) = B,

VaecAlla,+az)(a) = a(a) +az(a)].

From the definition we see immediately that Hom(A, B)is in fact an abelian
group. In particular the zero mapping of A into B is the zero element of
this group and for @« e Hom(A, B), —« is defined by

Dom(—a) = A, Cod(—a) := B, VaecAl(-a)(a) = —a(a)].

1.2.4 R =CATEGORY OF RINGS WITH UNIT ELEMENT
(I) Obj(R) = class of all rings with unit element.
(II) Mor(R, S) =set of all unitary ring homomorphisms of R into §
(Definition, see 3.2.1).
(III) Usual composition.

1.2.5 Mg =CATEGORY OF UNITARY RIGHT R-MODULES OVER A
RING R WITH A UNIT ELEMENT
(I) Obj(Mg) = class of unitary right R-modules.
(II) Mor(A, B) .= Homg(A, B) =set of module homomorphisms of A
into B (Definition, see 3.1.1).
(IIT) Usual composition.

As in the case of the category of abelian groups Homg (A, B) by the same
definition as in 1.2.3 turns into an abelian group, in general however not
again into an R-module! Relevant details follow later.

If S is also a ring with a unit element, we denote by sM and sMg the
categories of unitary left S-modules and unitary S—R bimodules respectively
(Definition, see 2.1.1, etc.).

1.2.6 T =CATEGORY OF TOPOLOGICAL SPACES
(I) Obj(T)=class of all topological spaces.
(II) Mor(A, B) =set of continuous mappings of A into B.
(III) Usual composition.
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In all of the categories so far considered the objects were sets with or
without (in S) an additional structure, and the morphisms were structure-
preserving mappings. We exhibit now some examples in which other
conditions are present.

1.2.7 S =A GROUP AS A CATEGORY
Let G be an arbitrary group and let * be an object. Then we obtain a
category G by
(I) Obj(G)={x}.
(IT) Mor(*, %)= G.
(III) Group operations in G.
Obviously, 1, is then the neutral element of G.

1.2.8 AN ORDERED SET AS A CATEGORY
Let (M, <) be an ordered set. A category M is then defined by the
following statements:
(I) Obj(M)=M.
1] for A B

(1) Mor(A, B) = { {(A<B)} forA<B.
This means, in the case A < B, that Mor(A, B) signifies the set whose
single element is the symbol (A < B).
III) (B=C)A<B)=(A<().
The identity of A is now 14, =(A<A).

1.2.9 THE DUAL CATEGORY
Let K be a given category. The category K° dual to the category K is
defined by:
(I) Obj(K®)=O0bj(K).
(I) VA, B € Obj(K°)[Mork-(A, B) =Mor(B, A)].
(III) Mork-(B, C)xMorg-(A, B) 3 (v, B)— By € Mork-(A, C),
where B is to be formed in Mor(K).

1.3 FUNCTORS

Functors play the same role for categories as do structure-preserving
mappings (= homomorphisms) for the usual algebraic structures or as do
continuous mappings for topological structures. A functor is accordingly
(in our definition) a pair of structure-preserving mappings of one category
into another (possibly the same as the first).
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1.3.1 Definition. A covariant, respectively contravariant, functor F of a
category K into a category L is a pair F = (Fp, Fys) of mappings satisfying:
(I) Fo:0bj(K)-> Obj(L),
(II) Fas:Mor(K)—>Mor(L),
with the following properties
(1) Ya e Mor(K)[a e Mor(A, B)=> Fy(a)e Mor(Fo(A), Fo(B))]
resp. [a e Mor(A, B)=> Fy(a) e Mor(Fo(B), Fo(A))];
(2) VA € Obj(K)[Fa(14) = 1r5a)l;
(3) Va, B e Mor(K)[Cod(a) =Dom(B)=> Fux(Ba) = Fum(B)Fa(a)] resp.
[Cod(a) = Dom(B)=> Fu(Ba) = Fy(a)Fu (B)].
In place of Fo and Fjs we write also simply F, thus F(A):= Fo(A),
F(a) = Fp(a). Condition (1) can then also be formulated as follows:
(1) a:A>B>F(a):F(A)> F(B)
resp.a:A->B=>F(a):F(B)>F(A)
or
(1) Dom(F(a)) =F(Dom(a)) A Cod(F(a))=F(Cod(a))
resp. Dom(F(a)) = F(Cod(a)) A Cod(F(a)) = F(Dom(a)).
In order to indicate that F is a functor from K to L we also write F: K> L.
If G:L - P is also a functor then the composition GF : K- P is obviously
also a functor. If both functors F and G are covariant or both functors
are contravariant then GF is covariant, if F and G are of different “‘vari-
ance” then GF is contravariant. We indicate now some examples of
functors.

1.3.2 FORGETFUL FUNCTORS
The forgetful functor F from Mg into the category A of abelian groups
is defined by:

Fo5:0bj(Mr)>A— A € Obj(A)

Fy; :Mor(Mg) 3a+—a € Mor(A).
This covariant functor ‘‘forgets” the R-module structure; it preserves only
the additive structure of a module. If the additive structure is also ‘“‘forgot-

ten” then we obtain the forgetful functor F from My into the category S
of sets

Fo: Obj(Mg) 3 A— A € Obj(S)
Fyi: Mor(Mg) 3 a—a e Mor(S).

The functorial rules are, in any given instance, trivially satisfied. Further
examples of forgetful functors are easily indicated.
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1.3.3 REPRESENTABLE FUNCTORS
Let now K be an arbitrary category and let A € K. Then we define

Mork(A, —): Obj(K) 3 X —Morg(A, X) e Obj(S)

Morg(A, —): Mor(K) 2 ¢ —>Mork(A, &) e Mor(S),
in which for X := Dom(¢), Y = Cod(¢), Mork(A, &) is given by

Mork (A, £): Mork(A, X)sa—éa eMorg(A, Y).

It is easy to verify that Mork(A, —) is a covariant functor of K into S.
Analogously we define for a fixed object B € K:

Mork(—, B): Obj(K) 3 X —Mork(X, B) € Obj(S)

Mork(—, B): Mor(K) 3 £ —Mork(¢, B) € Mor(S),
in which with X := Dom(¢), Y = Cod(¢) we put

Mork (& B): Morg(Y, B) 3 y— y¢ € Mork(X, B).

It is easy to verify that Mor«(—, B) is a contravariant functor of K into S.

So far we have considered functors of one argument, i.e. of one category
into another. Often, however, functors of more arguments also occur. These
can, indeed, with the use of product categories (and dual categories) be
reduced to (covariant) functors of one argument; nevertheless it is con-
venient for our purpose if we indicate functors of two arguments.

1.3.4 Definition. Let K, K', L be categories. A functor F of two arguments,
that is covariant, respectively contravariant, in the first and covariant in
the second argument of KXK' into L is a pair of mappings F = (Fp, Fyr)
for which we have
(I) Fo: Obj(K)x Obj(K")—» Obj(L)
(ID) Fps: Mor(K) xMor(K')-> Mor(L)
with the following properties
(1) For @ e Mor(K) A a'e Mor(K")
witha: A>BAra': A'> B’
we have Fy(a, a'): Fo(A, A")> Fo(B, B")
resp. Fa(a, a'): Fo(B, A")> Fo(A, B')
(2) Fry(la,14)= lFo(A,A’)
(3) Fm(Ba, B'a’)=Fu(B, B)Fum(a, a')
resp. Fy(Ba, B'a’) = Fu (e, B)Fum(B, a')
Correspondingly we define functors which are contravariant in the first
and second argument or which are covariant in the first and contravariant
in the second argument.
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1.3.5 THE FUNCTOR Mor

Associated with every category K there is the functor Mor =Morx of
K x K into S which is contravariant in the first argument and covariant in
the second. It is defined by:

Mor: Obj(K) x Obj(K) 3 (A, B)—Mor(A, B) e Obj(S)

Mor: Mor(K) X Mor(K) 3 (a, y)—Mor(a, y) e Mor(S),

in which Mor(e, y) for a: A > B, y: C > D is defined as follows
Mor(a, y): Mor(B, C) > 8> yBa € Mor(A, D).

It is easy to establish the validity of the functorial rules. As a special
case of the above we have the Hom-functor

Homg : Mg X Mg > S.

1.4 FUNCTORIAL MORPHISMS AND ADJOINT FUNCTORS

Let F and G be two given functors of the category K into L. In numerous
important examples these functors are not “independent’ of one another;
there exists between them a functorial morphism which we now wish to
define.

1.4.1 Definition. Let F:K->L and G:K—->L be two co-, respectively
contravariant, functors. A functorial morphism ®:F - G is a family of
morphisms

& =(Ds|PaseMor, (F(A), G(A)AAeK),
so that for all morphisms « : A > B from K we have:
G(a)Pa =DpF(a),

so that the diagram

LN

F(A)
A

F(a) Gla)

G(A)
A
:

¢B
F(B) —— > G(B)

is commutative, where the vertical complete arrows denote the covariant
and the vertical dotted arrows the contravariant case. It is important
moreover that &, depends indeed on F, G and A, and not, however, on a.
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A trivial example of a functorial morphism is the identity F > F with
®,4 =1fa) for every A € K. Further it is clear that the composition of two
functorial morphisms ®:F > G and ¥:G > H is again such a functorial
morphism. If ¥ = (¥,]A € K), then we define Y@ = (¥ ,D4|A € K).

Except for set-theoretical difficulties we can now define for two categories
K and L a new category Func(K, L), the functor category of K into L, whose
objects are the functors of K into L and whose morphisms are the functorial
morphisms of functors of K into L. According to our notation
Morgunck,1)(G, F) would be for instance the “set” of functorial morphisms
of F into G. Certainly we must here exercise caution since, for an arbitrary
category, this need not be a set. If we assume, however, that the object
class of K is a set (K is then called a small category) then for arbitrary
functors F and G—as we realise easily—Moreuncx)(F, G) is again a set
and Func(K, L) is in fact a category. Functor categories of this sort play an
important role in category theory. They are not, however, of significance
for us, so that we shall not consider them here any further.

1.4.2 Definition (notation as in 1.4.1). The functorial morphism ®:F - G
is called a functorial isomorphism when ®, is an isomorphism for all A € K.
If a functorial isomorphism exists between the functors F:K-L and
G : K- L, then we write briefly F =G.

All that we have so far established for functorial morphisms of functors
of one argument holds also, with appropriate modifications, for functors
of more arguments. For instance let F:KXK'>L and G:KxXK'>L be
two functors in two arguments, being contravariant in the first and covariant
in the second. A family of morphisms

&= (Pa,a|PaaneMor (F(A, A"), G(A, A)) A (A, A') e KxK')

is then a functorial morphism of F into G if for all morphisms a:B > A
from K and a': A'> B from K’ the diagram

F(A, A" L G(A,A)
Fla,a’) Gla.a’)
¢(B.B')

F(B’ B’) "G(ByB,)

is commutative. & is again called a functorial isomorphism between F and
G, F =G, if all ®4 4+ are isomorphisms.

We can now introduce the concept of adjoint functors which plays a
fundamental role in category theory. It is also convenient to have the
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concept at our disposal in module theory since only with its help can the
connection between the functor Hom and the tensor product be properly
understood, in which connection it is a question of adjoint functors.

Let F:K—>L and G:L - K be two given functors, for which therefore
G has the opposite direction to F. Let us consider now the ‘‘compound”
functor

Mor, (F—, —): KxXL > S.

Here we are dealing with the case of a functor in two arguments of KX L
into the category S of sets, contravariant in the first argument and covariant
in the second. This holds similarly for the functor

Mork(—, G =): KxXL > S.
Under these assumptions the following definition holds.

1.4.3 Definition. The functors F and G are said to be a pair of adjoint
functors, of which G is said to be right adjoint to F and F left adjoint to
G, if there exists a functorial isomorphism between Mor, (F—, —) and
MOI‘K(—, G—)

1.4.4 EXAMPLE OF A FUNCTORIAL MORPHISM

Let Mk be the category of vector spaces over the field K.

As is well known with regard to a vector space Vg, there are associated
two spaces, the dual

xV* = Homg(V, K)
and the bidual

V*% = Homg(V*, K).
If

a:V->W

is a linear mapping, and thus a morphism from Mk, then

a*  W¥sy—yaec V*
is the dual and

a¥¥. YE afr—m*fe Wk

is the bidual linear mapping to a (notice above the application of the linear
mapping is on the opposite side from K).
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PROPOSITION
(1) By means of the definition

A(V)=V*  Aa)=a™**
a functor
A MK -> MK

is obtained.
(2) ForveV,letd e V** be defined by

P:V*ap—opw)ek,
likewise let ®,, € Homg (V, V**) be defined by
by :Vovmide V¥

& = (®y|V e Mk) is then a functorial morphism between the identity functors
of Mx and A.

(3) If ® is restricted to the category of finite-dimensional vector spaces
over K then ® is a functorial isomorphism.

Proof. The simple proof may be left to the reader as an exercise. a

1.5 PRODUCTS AND COPRODUCTS

In the investigation of modules two distinct possibilities arise. On the
one hand we can analyse a given module by means of its submodules and
factor modules and from the knowledge of these we can make inferences
upon the structure of the module itself. On the other hand we attempt to
construct a new module out of given module in order to obtain information
about the category of modules. In connection with this second possibility
the formation of products and coproducts is of the greatest interest. In
order to make their significance more intelligible, we formulate these
concepts here for arbitrary categories.

1.5.1 Definition. Let K be a category.
(1) Let (A;]i €I) be a family of objects from K. A pair (P, (¢;]i € I)) is
called a product of the family (Ailiel) :&
(I) PeObj(K).
(I) (gi]i € I) is a family of morphisms from K such that

¢iIP—)A;, iel
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(IIT) For every family (v,]i € I) of morphisms v;:C > A, iel from K,
there exists exactly one morphism vy : C - P from K such that

Yi = @i iel

(2) Let (A;lieI) be a family of objects from K. A pair (Q, (n;|i e I)) is
called a coproduct of the family (A)lieI) :&
(I) QeObj(K).
(II) (m;)i € I) is a family of morphisms from K such that

T],‘:Ai—)o, iel

(III) For every family (a;|i € I) of morphisms «;:A; > B, ieI from K,
there exists exactly one morphism « : Q - B, from K such that

a; =an; iel

If (P, (¢:|i € I)) is a product of the family (A;|i € I), then we put

[lA:;=P

iel
and let [T A; denote the product. This can lead to misunderstanding, since

iel
the brief notation [] A; creates the impression that the product is uniquely
iel
determined and because, moreover, the reference to the family (¢;|i € I) is
omitted. Caution is therefore needed in the use of [] A;!
iel
If (Q, (n:]i € I)) is a coproduct of the family (A;|i € I), then we put

[[A=Q

iel
and let this denote the coproduct. The warning, mentioned above for the
product, is also applicable here. The requirement mentioned in (III) for
the product can, in the case of I ={1, 2}, be characterized by means of the
following commutative diagram:

N €m0

/
>

N

k41
/

A,
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Correspondingly we obtain for the coproduct the commutative diagram:

-----tm
<

\
O «--
>

N

Al
In a given category K products and coproducts do not necessarily exist. If,
in the event, they exist for an arbitrary family (A;|i € I), then K is called a
category with products, respectively coproducts. If these exist at least for all
finite index sets I, then K is called a category with finite products, respectively
finite coproducts.
Products and coproducts—if they happen to exist—are uniquely deter-
mined up to isomorphism. More precisely the following theorem holds.

1.5.2 THEOREM. Let K be an arbitrary category.
(1) If (P, (¢;li e I)) and (P, (@ili € I)) are products of the family (A;li e I),
then there is an isomorphism o : P> P' with

0 =Qio, iel
() If (Q,(niliel)) and (Q',(niliel)) are coproducts of the family
(Aili € I), then there is an isomorphism 7: Q - Q' with
ni =15 iel
Proof. (1) If we replace (y;|i e I) of 1.5.1 (III) by the family (¢;|i € I) and
replace C by P' then we obtain from the definition a
o' :P'>P with ¢;=¢0'.
Analogously there exists a o : P—> P’ with ¢; = ¢ ;0. From this it follows that
ei=@o'o, @i=eio0.

If in the definition of the product we put (¢;|i € I) for (y;lieI) then vy =1p
yields the desired result: ¢; = ¢;1p. Since vy is uniquely determined, and on
the other hand ¢; = ¢;0'c holds, it follows that 1 = ¢’'c and analogously
1p=0'0, as was to be shown.
(2) The proof for the coproduct results from dualizing (= reversal of the
arrow) and is left to the reader as an exercise. G
We shall meet examples of products and coproducts in the category Mrx.
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EXERCISES

@)
Let K be a category. Prove:

Bc is @ monomorphism = « is a monomorphism.

a, B are monomorphisms A Cod(a) =Dom(a)=>Ba is a monomorphism.
Bec is an epimorphism = B3 is an epimorphism.

B, a are epimorphisms A Cod(a) = Dom(8) = B« is an epimorphism.

)
(a) Show for the category S of sets and for the category T of topological
spaces: if @ is a morphism, then we have

a is a monomorphism& « is injective as a mapping of sets,
a is an epimorphism &« is surjective as a mapping of sets.

(b) Let T, be the category of Hausdorff spaces. Investigate whether (a)
also holds for 7.

3)
An abelian group A is called divisible : &> V¥neN[nA =A]. Let A, be the
category of divisible abelian groups. Give an example of a monomorphism
in A, which is not injective as a mapping of sets.
(Hint: use @ and Q/Z).

©))
Let G be a group with more than one element and let G be the associated
category in the sense of 1.2.7. Determine exactly the sets I for which
products and coproducts exist on the index set I.

C))
Let M be an ordered set and let M be the associated category in the sense
of 1.2.8.
(a) By use of the ordering on M give a necessary and sufficient condition
so that finite, respectively arbitrary, products and coproducts exist.
(b) Which morphisms from M are bimorphisms and which bimorphisms
are isomorphisms?

(6)
Define a category K such that Obj(K)=N={1,2, 3, ...} and in which also
the product of the family (A;Ji=1,2,...,n) with A;eK is the greatest
common divisor of Ay, ..., A, and the coproduct of (A;]i=1,2,...,n)is
the least common multiple of A,, ..., A,.



Chapter 2

Modules, Submodules and Factor Modules

2.1 ASSUMPTIONS

The reader is expected to have some familiarity with the simplest ideas
of rings and modules. At the least he should have already become familiar
with two special cases of modules: linear vector spaces and abelian groups.
Although the definitions of most of the basic ideas are here presented once
again—above all, in order to fix notation—yet in view of the expected
prerequisites these ideas are not especially motivated.

In consequence we shall be very brief. Motivations and examples are
then best exhibited whenever we pass beyond the basic ideas and whenever
the issue is not immediately concerned with a direct generalization of the
ideas of linear vector spaces.

In the following all rings, which are mostly denoted by R, S or 7T, are
to possess a unit element 1.

2.1.1 Definition. Let R be aring. A right R-module M is
(I) an additive abelian group M together with
(II) a mapping

M X R - M with (m, r)—>mr,

called module multiplication, for which we have
(1) Associative law: (mry)r, = m(r1ra).
(2) Distributive laws: (m,+mo)r = myr+mar, m(ry+ry) =mri+mr,.
(3) Unitary law: m1=m.
(In the above m, m;, m, are arbitrary elements from M and #, 71, 7, are
arbitrary elements from R).

16
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We point out explicitly that according to this definition all modules in
the following are unitary. If M is a right R-module, then we write also Mg
or M = My in order to indicate the ring which is involved. An analogous
definition holds for left modules. If S and R are two rings then M is an
S-R-bimodule if M is a left S-module and a right R-module (with the same
additive abelian group) and if, additionally, the following associative law
holds:

s(mr)=(sm)r forarbitrary seS, meM, reR.

We write also Mg for the S-R-bimodule.

If we speak of a module, respectively of an R-module, then we mean a
one-sided R-module, in which however the side is not fixed. Statements
on R-modules hold correspondingly both for right R-modules and for left
R-modules.

It is well known that an R-module is called a linear vector space over
R if R is a field (or skew field). Further the modules over the ring Z of
natural numbers are the abelian groups (written additively).

If M is a right R-module we denote the neutral element of the additive
group of M by 0r and that of the additive group of R by Og, as with linear
vector spaces it then follows that

Orr =Ong, mOg = Oay,

and also

—(mr)=(—m)r=m(—r) forarbitrary meM,reR.

In the following we write 0, as is usual, both for O,; and for Og.

2.2 SUBMODULES AND IDEALS

In regard to mathematical structures, the substructures, subgroups,
subfields and subspaces of topological spaces, generally play an important
role.

In the investigation of modules, the submodules, which are about to be
defined, are correspondingly important.

2.2.1 Definition. Let M be a right R-module. A subset A of M is called
a submodule of M, notationally A — M (or also Ag < Mpg) if A is a right
R-module with respect to the restriction of the addition and module
multiplication of M to A.
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We use the notation A < M for the submodule relationship, in order
to have available A < M for set-theoretic inclusion. Further we denote

A o M : & A is a proper submodule of M
A » M : & A is not asubmodule of M

We remark that from A «» M it does not necessarily follow that A< M.

2.2.2 LEMMA. Let M be a right R-module. If A is a subset of M and
A # @ then the following are equivalent:
1) A> M.
(2) A is a subgroup of the additive group of M and for all a € A and all
r € R we have ar € A (where ar is the module multiplication in M).
(3) Forall a;, a,e A, a,+ase A (with respect to addition in M) and for
allae A and all r e R, we have ar € A.

Proof. This follows exactly as for linear subspaces of linear vector spaces.
It is left to the reader as an exercise. a

Analogous assertions hold for submodules of left modules and bimodules.
We observe that we can think of a ring R as a right R-module Rg, as
a left R-module grR and as an R-R bimodule gRr respectively. A right
ideal, left ideal or two-sided ideal of R is then a submodule of Rg, of gRR
or of gRR respectively. If R is commutative then we need not distinguish
between right, left and two-sided ideals and we speak then only of ideals.

Examples and remarks

(1) Every module M possesses the trivial submodules 0 and M, where
0 is the submodule which contains only the zero element of M.

(2) Let M be arbitrary and let moe M. Then, as we see immediately
from 2.2.2,

moR = {mor|r e R}

is a submodule of M which is called the cyclic submodule of M generated
by mo.

(3) If Mg is a vector space over the field K then the submodules are
called (linear) subspaces.

(4) In the ring Z of natural numbers every ideal is cyclic.

(5) Cyclic ideals of a ring are called principal ideals and a commutative
ring is called a principal ideal ring if every ideal is a principal ideal.

(6) A field K has only the trivial ideals 0 and K.
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2.2.3 Definition
(1) A module M = My, is called cyclic : &

Amoe M[M = myR].
(2) A module M = My, is called simple : &
M#0AVA>M[A=0vA=M]

i.e. M #0 and 0 and M are the only submodules of M.
(3) Aring R is called simple : &

R#0AVA < gRr[A=0vA=R],

i.e. R#0 and 0 and R are the only two-sided ideals of R.
(4) A submodule A = M is called a minimal, respectively a maximal,
submodule of M : &

09> AAVB > M[Bs> A=>B=0]
resp. A > M AVB - M[A & B>B=M].

In the same way we speak of simple, minimal and maximal ideals. As
already mentioned, cyclic ideals are called principal ideals.

We emphasize in addition that the minimal submodules are previously
the simple submodules. The minimal (=simple), respectively maximal,
submodules of a module are, if they exist, evidently minimal, respectively
maximal, elements in the ordered set of non-zero, respectively proper,
submodules under the ordering by inclusion.

2.2.4 LEMMA. M is simple &
M#0AVmeM[m#0=>mR =M].
Proof. “=>": Let m #0,thenm =m1 e mR, so mR # 0, and hence mR =M.

“&”: let 0> A—> M and 0#acA, then aR =M, but aR = A, so
A=M. O

Examples

(1) Z contains no minimal (=simple) ideal, for if nZ # 0 then, for example,
2nZ is a non-zero ideal property contained within nZ. The maximal
ideals of Z are exactly the prime ideals pZ, p = prime number. The proof
of this follows from the fact that

mZ - nZ&n|m.

(2) Qz has no minimal and no maximal submodules.
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Let
0> A Qz
and let
acA, a#0,
then

0 2aZ < aZ > A - Q.

Thus A cannot be minimal. Reference to 2.3.7 shows that there are no
maximal submodules.
(3) Inavector space V = Vg the minimal (=simple) subspaces are just the
one-dimensional subspaces and these are given precisely in the form vK
by the elements v € V, v #0. If V is n-dimensional, then the maximal sub-
spaces are exactly the (n —1)-dimensional subspaces. If V is not finite-
dimensional, then there are likewise maximal subspaces (a fact which is
well known from linear algebra and which will here be shown later).
(4) If K is a skew field, then Kx is simple as also is K as a ring (i.e. xKx
is simple).

This follows immediately from the fact that every element #0 of K
possesses an inverse.
(5) Let R := K, be the ring of n X n square matrices with coefficients in
a skew field. Without proof we mention (proof follows later) that although
R is simple (as a ring) nevertheless Ry is not for n > 1.

We take this opportunity to recall the definition of an algebra.

2.2.5 Definition. An algebra is a pair (R, K), where
(I) R is aring.
(II) K is a commutative ring.
(IIT) R is a right K-module for which we have

Vri, rne RVk e K[(rira)k =ri(rak) = (rik)ra].

Our assumptions on rings and modules presuppose that R has a unit
element and that K operates unitarily on R. The algebra (R, K) will also
be called a K-algebra R or an algebra over K.

There is no significance in our defining R as a ‘‘right K-algebra™. Since
K is commutative we can from the definition

kr = rk, reR keK

pass over immediately to a ‘‘left K-algebra”.
If 1 is the unit element of R then 1K = {1klk < K} is a subring of thc
centre of R. Conversely every ring is an algebra over every subring of its
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centre. At the same time the centre of a ring is, as we know, the set of
those elements a € R, such that for every r € R we have: ar = ra. The centre
of R is a commutative subring of R, which contains the unit element of R.

2.3 INTERSECTION AND SUM OF SUBMODULES

2.3.1 LEMMA. Let T be a set of submodules of a module M, then
MNA={meMVAcIlmeA)}

Ael

is a submodule of M.

Proof. This follows with the help of 2.2.2 as in the case of subspaces of
linear vector spaces. 0

Remark. We note that when I' = J this definition yields
N A=M

Aed

From 2.3.1 there follows immediately the corollary.

COROLLARY [ ) A is the biggest submodule of M which is contained in all

Aell
Ael.

Examples
2ZN3Z=61Z, M pz=0.

p=prime

2.3.2 LEMMA. Let X be a subset of the module Mg. Then

A {{Zx,-r,lx,eXAr,-eR/\neN}, if X # <
=5

0 ifX=0
is a submodule of M.

Proof. For X = (J the assertion is clear. Let now X # J. The proof now
follows with the help of 2.2.2:

m n m n
T oxity, X Xiri€AD Y xin+ Y xjri€A,
i=1 j=1 i=1 j=1

Z x,~r,~eA, TER$Z x,-r,-reA. g
j=1 i=1
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2.3.3 Definition. The module defined in 2.3.2 is called the submodule of
M generated by X and is denoted by |X).

It is important that this submodule, which, if X # J, is the set of all
finite linear combinations Zx;7; with x; € X| can also be characterized by the
following property.

2.3.4 LEMMA. |X)=smallest submodule of M that contains X

= M C

CoMAXcC

Preof. If X =& and consequently |X) =0 then the assertion is trivially
satisfied.

If X # & and C is a submodule which contains X, then along with x; € X,
x;7; and all finite sums of such elements lie in C, and it follows that |X) - C.
Because X is also a subset of |X) (since x =x1€]|X)), |X) is in fact the
smallest submodule of M containing X.

Let

D= M C.
CoMarXceC
Since by definition X is a subset of D and D is a submodule it follows
that | X') = D. But on the other hand |X) occurs as a C in the intersection
and it follows that D < |X) thus |X) = D. a

In the case of an S-R-bimodule M the submodule generated by a subset
of M is given by

x): {Zs,x,r,lx,eXAs,eSAr,eRAneN}, it X #
=< =1

0, ifX=0.

As before it then follows: (X)=smallest submodule of ¢Mz which
contains X

= M C

CoMaXcC

A corresponding notation is used for ideals.

2.3.5 Definition. Let again M = Mg.
(1) Asubset X of a module M is called a generating set of M: & | X) =M.
(2) A module (or right ideal) is called finitely generaied : & ihere exisis
a finite generating set.
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(3) A module (respectively right ideal) is called cyclic (respectively
principal right ideal) : < there exists a generating element (see 2.2.3).

(4) A subset X of a module M is called free : & for every finite subset
{x1,...,xmc X (With x; #x; for i #j (i, j=1, ..., m)) it follows from

E xiri=0 with r,‘ER
i=1

that ,=0(3G=1,..., m).
(5) A subset X of amodule M is called a basis of M : <& X is a generating
set of M A X is free.
If X # (J is a generating set of M then this means that every element
m € M may be written as a finite linear combination
n
m=Y xt xieX, r,eR.
i=1
It is here obvious that n €N is not fixed in general but depends on m.
Further the coefficients 7; and, in fact, also the x; € X that occur are not
uniquely determined by m. Of course if X ={x,, ..., x;} is finite then every
element m € M can be written in the form
t
m= 3y xj
i=1
since the missing summands x;; can be added as x;0. Furthermore the
coefficients ; may not be uniquely determined. The coefficients are
however uniquely determined if a basis is being considered.

2.3.6 LEMMA. Let X # 3 be a generating set of M = Mg. Then we have:
X is a basis & for every m € M the representation
m=Y xp; withx;eX, r,eR
i=1
is unique in the following sense: If
m=3y xiti= Y Xt Nxi #x; fori#j,(i,j=1,...,n),
i=1 i=1
then necessarily
r=ri(j=1,...,n).

Proof. “=>"": If we have

m=

I M =

x,r;=_zlx,-r}Axi#x, fori#j(,j=1,...,n),

j=1 i=
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then it follows that

0= ‘zl x,-(r,—r;)
i=

and since X is free, it is immediate that r, —r; =0, thus r,=r; (=1, ..., n).
“&”: Let
Y xitri=0Ax; #x; fori#j(i,j=1,...,n).
i=1
Since also we have 0= Y x;0, it follows that ;=0 (j=1,...,n)ie. X is
i=1
free.
Remark. If X ={x,,- -, x,} is a finite generating set (with x; # x; for i # )

then we have: X is a basis < for every m € M the coefficients 7; € R in the
representation

r
m= Z Xl
j=1

are uniquely determined.

We point out that these statements on uniqueness do not make sense in
the case of an infinite basis X. For an infinite X we cannot replace the
missing indices by means of summands of the form x;0= 0, since infinite
sums—even of zero—are not defined! Statements of uniqueness must be
formulated in the sense of 2.3.6.

Examples

(1) Every module M has trivially M itself as a generating set (for every
m € M is a finite linear combination of the form m =m1, 1€ R).

(2) If R is a ring, then {1} is a basis of R (and of gxR).

(3) We now consider properties of Qz.

2.3.7 PROPOSITION. If finitely many arbitrary elements are omitted from
an arbitrary generating set X of Qg, then the set with these elements omitted
is again a generating set of Q.

Proof. 1t suffices to show that an arbitrary element x, can be omitted from
X, since the proposition then follows by induction for finitely many.
Since X is a generating set xo/2 can be represented in the form

x-
7°=xozo+ Y xizii, xieX, ziel.

xi#xo
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Then it follows that

Xo=x02z0+ Y xi2zixon= Y xi2z,

xi #xq xi#xqg

where n =1-2z0€ZAn #0. Let now

Xo
Z=x0z0+ ¥ xz} x;eX, z;eZ,
n

xj#x0

hence

Xo=Xonzo+ Y xnz;= Y x2zzo+ Y Xxnz|

Xxj# X0 Xi # X0 Xj# X0

= Y xzk, xx€X, zrel.
X # X0
Thus x, lies in the submodule generated by X\{xo}, and since X is a
generating set of Qz, then so also is X'\{xo}.

From this result it further follows: There is no finite set of generators
of Qy, since otherwise Qz would be generated by the empty set and it
would follow that Qz =04,

There is no maximal submodule of Qz. Suppose that A were to be one
such and that g € Q, q£ A, then from 2.2.2

qZ+A ={qz+alzeZracA}
is a submodule of Q. Since this contains A properly it follows that
qZ+A =Q.

Thus A U{q}, and then also A by itself, would be a generating set of Qz
from which it would follow that A =Q 4.

It has already been established previously that Qz does not also have a
simple (=minimal) submodule. Obviously @; does not have a basis for if
we omit an element from a basis then the remaining set of elements is no
longer a generating set (since the omitted element is not linearly represent-
able by the remaining elements).

(4) As the next example we prove the theorem that every vector space
over a skew field has a basis. For this we make our first application of
Zorn’s lemma, which is needed again later in other proofs. We shall
therefore formulate it here.

ZORN'S LEMMA. Let A be an ordered set. If every totally ordered subset of
A has an upper bound in A then A has a maximal element.
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We take this opportunity to remark upon the known fact that Zorn’s
lemma is equivalent to each of the following assertions:

1. Axiom of choice.

2. Principle of Well-ordering.

In this book we shall make use of Zorn’s lemma and of the Axiom of
Choice.

2.3.8 AxioM. Every vector space over a skew field has a basis

Proof. Let K be a skew field and let Vi be a vector space over K. Let ®
denote the set of all free subsets of V. Since the empty set is free, ® is
non-empty. ® is an ordered set under inclusion of subsets as order relation.
In order to apply Zorn’s Lemma, we must show that every totally ordered
subset I" of ® has an upper bound in ®. If I' = & then every element from
® is an upper bound of T'. Let now I'={X;|j e J} # O, then we show that

X =Ux,
jeJ
is free and hence represents an upper bound of I" in ®. Let x4,..., x, be
distinct elements from X. Since I is totally ordered, there is an X; e I" with
X1, ..., X%, € X Since X is free, {xi, ..., x,} is free and consequently X is
free.

By Zorn’s Lemma there exists then a maximal element Y in ®. We
show that Y is a basis of V over K. Since Y is free we only need
to show that |Y)=V. If V=0 then it follows that Y= and from
the definition of |Y) it follows that |Y)=V. If V#0 then it follows
that Y # J. Let now v € V with v£ Y, then by virtue of the maximality
of Y Yu{v} cannot be free. Thus there exist distinct y;,...,y.€Y
together with k, kq, ..., k, € K with

vk + z yikj =0,
j=1

in which not all k, k4, ..., k., are equal to 0. kK =0 is not possible since
then (because Y is free) it would follow that k; =0 (j=1,..., r). From
k # 0 it follows that
v=vkk™'= Y yi(~kk )el|Y),
i=1
thus V =]Y). 0

After examining these exampies we continue with our general
considerations.
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INTERSECTION AND SUM OF SUBMODULES

2.3
PROPOSITION. Let A ={A;|i e I} be a set of submodules A; = Mg. Then
{AZ ailaieAiAI’CIAI’isﬁnite}, ifA# O,
UA‘) — iel
iel
ifA=0,

0,
U A,~> is the set of all finite sums Y a; with a; € A..

iel

i.e., in the case A# O,

U A,~> is by definition the set of all finite sums

iel

Proof. In the case I # J,

air; with a; GUA,'.

1 iel

k]

1

If we bring together all summands a;; which lie in a fixed A; to form a
sum a; and if we treat with the remaining summands similarly then it

follows that
Z ar; = Z ax{,
j=1 iel
thus we have
UA,.) ;,{ Y ajla;e AinI'cInl'is fmite}
iel iel'
]

The converse inclusion is clear.

2.3.9 Definition. Let A={A;|i eI} be a set of submodules A; = M, then

YA = UA;)
iel iel
is called the sum of the submodules {A;|i € I}.
IfA={A,,...,A,} then every element from i A; can be written in the
form i
T a with aeA,

i=1

the missing summands a; can be added as a; =0. Generally it should be

emphasized that the representation Y q; of the elements of the sum need
iel
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not be unique. If it is unique then a particular case occurs with which we
have to concern ourselves in the next section.
We are now able to characterize the maximal submodules of a module.

2.3.10 LEMMA. Let A s> M. Then the following are equivalent:
(1) A is a maximal submodule of M.
2y VmeM [mgA>D>DM=mR+A]

Proof. “(1)=>(2)”: Let m£ A. Then A & mR + A and hence (2) holds.
“)=>1)’: Let A>»B—>M and let meB, méA. Then M=
mR+A < B+A < B < M and thus B = M. Hence (1) holds. 0

As we have seen, Q@ does not have a maximal submodule. In this
connection the following theorem is of interest.

2.3.11 THEOREM. If the module My is finitely generated then every proper
submodule of M is contained in a maximal submodule of M.

Proof. Let {m, ..., m,} be a system of generators of M. Let A & M, then
the set

®:={B|A > B> M}

is non-empty since A € ®. Moreover it is also ordered under inclusion. In
order to be able to apply Zorn’s lemma, we must show that every totally
ordered subset I' = ® possesses an upper bound in ®. To this end let

Cc=UB,
Bel
then it follows that A — C. Suppose C =M, then we should have
{my,...,m}<=C and it would follow that there must be a BeI with
{mi,...,m}< B, giving therefore B=M 4. Thus we have established
that C e ®. According to Zorn there exists then a maximal element D
in ®. In order to show that D is a maximal submodule of Mk, let
D - L < Mpg. Then it follows that L € ® and since D is maximal in & it
follows that D =L. a

If M #0 and if M is finitely generated then it follows with A =0 that
M has a maximal submodule.

2.3.12 COROLLARY. Every finitely generated module M #0 has a
maximal submodule.
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In order to be able to ‘‘dualize” the notion of finite generation, we must
first of all state an equivalent reformulation.

2.3.13 THEOREM. The module My is finitely generated if and only if there
is in every set {A;|i € I'} of submodules A; = M with

YA =M

iel

a finite subset {A;|i € Iy} (i.e. Io< I and I, is finite) such that

Z A,‘=M.

iely

Proof. Let M be finitely generated, i.e. M =m;R+...+m.R.

Since Y A; =M every m; is a finite sum of elements from the A;. Clearly
iel
there is a finite subset I < I such that

miy,...,me Z A,‘.

ielp

Then it follows that

M=mR+..+mR>> Y A;>M,
ielp
thus the assertion holds. .
To prove the converse we consider the set of submodules {mR|m € M}.
Then there is a finite subset {mR, ..., m;R} with

mR+...+mR=M,

thus M is finitely generated.
We can now formulate the dual notion.

2.3.14 Definition. The module My is said to be finitely cogenerated : < for
every set {A;|i e I} of submodules A; = M with [ ) A; =0 there is a finite

iel
subset {A;|i € I} (i.e. I, = I and I, is finite) with () A; =0.

ielp

We shall return later to this concept. For the present we may point out
two examples.
(1) Zz is not finitely cogenerated since
M pz=0,

prime p
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but for finitely many primes p;, . .., p. we have
M pZ=p:1...pnZ#0
i=1

(2) A vector space V over a field K is finitely cogenerated if and only
if it has finite dimension. The proof is left to the reader as an exercise.

As in the case of vector spaces the modular law holds also for modules
over an arbitrary ring.

2.3.15 LemMA (MODULAR LAWw). From A, B, C—> M and B C it
follows that

A+B)NnC=ANC)+(BNnC)=(AnC)+B.

Proof. Leta+b=ce(A+B)nC whereac A, be B, c € C. It then follows
fromB— Cthata=c—-beANnC thusa+b=ce(AnC)+B and hence
(A+B)nC>(ANnC)+B.

Let now de AnC, beB. Then since B = C it follows that d+be
(A+B)NC and thus also that ( ANC)+B <> (A+B)nC. O

We observe that for A, B, C = M and without the assumption B - C
we already have

ANC)+(BNnC)>(A+B)nC.

However the reverse inclusion does not necessarily hold.

2.4 INTERNAL DIRECT SUMS

2.41 M is called the internal direct sum of the set {B;iel} of
submodules B; = M, in symbols:

(1) M=} Bina
iel
M=@Bi:% g VjeI[B,-m'ZIBi=O].
i

M =@ B; is also said to be a direct decomposition of M into the sum of
iel
the submodules {B;|i € I'}.
In the case of a finite index set, say I ={1,...,n} M is aiso written as
M=B1@. . .@Bn.
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2.4.2 LEMMA. Let {Bi|i € I} be a set of submodules B; e M and let M =, B,.
Then (2) of the previous definition is equivalent to:
For every x € M the representation x = Y, b; with b;e B, I' < I, I' finite, is

iel'

unique in the following sense:

If
X = z b,‘ = 2 Ci with b,‘, Ci GB,‘,
ier el
then it follows that
Vie I'[b,' = Ci]-

Proof “=>: Let (2) hold andlet x = ¥ b;= Y ¢; then it follows that

iel iel’

VjGI’[bi—Cj = Z ci—b; GBfﬂ z B,]
= poy

Since

Bj mn z B,'“)Bi('\ Z B;=0
5
it follows that b; =c; for all je I'.
“&": Let

bGB,'f\ Z B,‘,
&

then b = b; € B; and there is a finite subset I' < I with j& I' so that

b=b,'= Z b,', bieB,'.
iel
If we add to the left-hand side the summands Oe B;, i€ I' and to the
right-hand side the summand 0 e B,, then the same finite index set I' U{;j}

appears on both sides and from uniqueness it follows that b =5, =0, i.e.
(2) holds. 0

2.4.3 Definitions

(1) A submodule B—M is called a direct summand of
M. &3C->MM=B®C].
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(2) A module M #0 is called directly indecomposable: <0 and M are
the only direct summands of M.

Examples and Remarks
(1) Let V = Vg be a vector space and let {x;|i € I} be a basis of V. Then
clearly we have
V=@ xK.
iel

Further every subspace of V is a direct summand, as we show later in
a more general context.
(2) In Zg the ideal nZ with n # 0, n # =1 is not a direct summand. Suppose
Z=nZ®mZ. Then nmenZnmZ. Hence m=0 and so Z=nZ, ie. n=
+14. From this it follows that Z is directly indecomposable.
(3) Every simple module M is directly indecomposable for it has only 0
and M as submodules.
(4) Every module M which has a largest proper submodule or, in the set
of non-zero submodules, a smallest submodule, is directly indecomposable.
The proof may be left to the reader.

2.5 FACTOR MODULES AND FACTOR RINGS

The definition of factor modules holds as in the case of factor spaces of
linear vector spaces since only properties of linearity are employed in the
definition.

Let C = Mpg. Then, in particular, C is a subgroup of the additive group
of M. Clearly the factor group M/C ={m+ C|m e M} exists under the
addition

(m1+C)+(m2+C) = (m1 +m2)+C.

A module multiplication can now be defined on M/C so that M/C
becomes a right module termed a factor module or a residue class module
of M modulo C or also of M by C.

2.5.1 Definition
(m+C)r=mr+C, meM, reR.

In order to show that M/C is indeed a right R-module, it is sufficient
to show that

M/CXxR->M/C with (m+C,r)y»>mr+C
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is a mapping, since the other module properties follow directly from those
of M.

Let m+C=my+C. Then my=my+c, ceC. Hence myr+C=
(ma+c)r+C=mar+cr+C=myr+C.

Factor modules of left modules and of bimodules are defined correspond-
ingly. Let now R be a ring and C a two-sided ideal of R. The factor group
of the additive group of R modulo C, R/C, can again be made into a ring

which is then called the factor ring or residue class ring of R modulo C (or
by C).

2.5.2 Definition
(r1+C)(r2+C) = r1r2+C, rl,r2€R.

As before, we see easily that this multiplication is independent of the
representatives of the residue classes, i.e. in fact it represents an operation.
The other ring properties of R/C again follow immediately from those of
R.

If R is a ring with a unit element 1—as is always assumed here—then
1+ C is the unit element of R/C. We have now to examine some relations
between the properties of two-sided ideals and properties of the associated
factor rings. For this we need some concepts and simple facts.

2.5.3 Definition. Let A, B be two-sided ideals of R. We put
AB = ({ablac ArbeB}),

i.e. AB is the additive group generated by all products ab with a € A,
beB; AB is easily seen to be an ideal and is called the product of the
ideals A and B.

We then deduce immediately the following.

Remark.

AB={ Z aibi|ai€AAb,€BAn€N}.
j=1

2.5.4 Definitions. Let C be a two-sided ideal of R.
(1) Let C be called a strongly prime ideal of R : &

C#RAVr,rneR[rrneC=>(rieCvrel)l
(2) Let C be called a prime ideal of R : &
C#RAVA,B > gRr[AB > C=>(A-> CvB>())],
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i.e. if the product AB of two two-sided ideals A, B lies in C then at least
one of these ideals lies in C.

(3) reR is called a left zero divisor : < r # 0 and there exists se R, s # 0
and rs = 0; analogously for a right zero divisor.

(4) R is said to have no zero divisors < there exists no right or left
zero divisor in R.

(5) Let reR; r'eR is called a right inverse, respectively a left inverse,
respectively an inverse element of r : &

rr'=1,resp.r'r=1resp.rr'=r'r=1.

We remark that from the existence of a right zero divisor it follows that
there is a left zero divisor (and conversely). If #' is a right inverse and r"
is a left inverse element of r, then it follows that

r=1r"="nr'=r(r)=r1=r"

It is also immediate from this that an inverse element (if it exists) is
uniquely determined. It is denoted by r .

2.5.5 LEMMA
(1) Cis a strongly prime ideal of R = C is a prime ideal of R.
(2) If R is commutative then the converse of (1) also holds.

Proof. (1) Let A, B = gRgr and let AB < C. Suppose A +» C. Then
HaoeA[aoE C]

Since agh e C Aaog C= b e C for all b € B it follows that B — C.
(2) Let ry, r,e C. Since R is commutative, 1R and R are two-sided
ideals. Since rir, € C it follows that

rnRrs,R=rir,R - C.
Since C is a prime ideal it follows that

rnR>CvrnR-=C andso rhneCvr,eC O

2.5.6 THEOREM. Let C be a two-sided ideal of R. Then the following hold :
(1) Cis a strongly prime ideal in R & R/ C has ro zero divisors.
(2) Cis a prime ideal in R & the zero ideal is a prime ideal in R/ C.
(3) Cis a maximal two-sided ideal in R<> R/ C is simple.
(4) Cis a maximal right ideal in R R/ C is a skew field.

Proof. (1) “=>: FoI brevity put R = R/C and 7 =r+C. Let ry, eR
and suppose F;7, =0. Then rirz+ C= (r,_+ CYry+C)=C and so rir,cC.
Hence ry,e C or e C,i.e. F;=0o0r 7, =0.
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(1) *“&”: Let r1, r,e R and suppose rir,€ C. Then Fif,=(r1 +C)(r2+
C)=rrn+C=C Thus 7;=00r 7/,=0,i.e.rne C or r,e C.

(4) “>: Let 0# Fe R. Then r¢ C and so R =rR +C, since, from r£ C,
rR +C is a right ideal properly containing C and, from the maximality of
C, must be equal to R. Consequently there is r'€ R and ¢ € C with

=r'+c>1=n'+C=0r+C)r'+C)=FF,

i.c. every element 540 of R has a right inverse. .

__From 1=7##0 it follows that 7 #0, thus there exists r"€ R with
r'r"=1. Hence 7=r" and so ' is an inverse of 7 and R is a skew
field.

(4) “«”: Let reR and r£C. Then 7#0 and so 3FeR[FfF =
77F=1]. Then r+C =1+ C and so, for some ceC, rr'+c=1. Hence
R =rR + C which implies that C is a maximal right ideal in R (from 2.3.10).
(2) and (3) are proved similarly to (1) and (4). The proof is remitted to the
reader as an exercise. Furthermore we shall later get to know of a precise
relationship between the lattice of ideals of R and of R/C, from which all
assertions of this theorem follow directly.

Examples
(1) Factor spaces of vector spaces are well-known.
(2)
field of p elements, if n = p prime
ring with zero divisors, ifn#p An#0
Z/nZ= An#xl
0 if n==1

Z (up to isomorphism), if n =0.

(3) Let K[x]be the polynomial ring in the indeterminate x with coefficients
in a field K. Let f(x) € K[x] and let f(x) be irreducible, then K[x]/f(x)K[x]
is a finite dimensional extension field of K (more precisely, an extension
field of an isomorphic copy of K).

EXERCISES

@)
Show that in the definition of a module the commutativity of the addition
follows from the other assumptions.
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(2)
Exhibit a module M without a finite set of generators in which every proper
submodule is contained in a maximal submodule.

(3)
(a) Let A, B, C = M = Mg. Show that from A < Bu C it follows that
A->BVAsC.
(b) Give an example of a module M and submodules A, B, C, D < Mg
such that

AcBUCUDANA» BANA» CANA<= D.

(4)
Let A be a two sided ideal of a ring R. Prove: A is a maximal right
ideal © A is a maximal left ideal.

)
Let

M=MgAxeMnarx#0rAA={A|A > MnrxgA}.

Prove:

(a) A is non-empty and A has a maximal element (with respect to
inclusion as ordering).

(b) If R =K is a field, then every maximal element from A is a maximal
submodule of M.

(6)
Exhibit in the set A :={A|A = QzA 1£ A} a maximal element B and a
submodule C < Q, with
B o C = Q.
(7
Let{B;]i=1,2,3,...} be aset of submodules of M = Mg with
Al = 2: l;p
i=1

Prove that the following are equivalent.

(1) Vj=1,2,...[B,-m > B,.=o].

i=j+1

(2) A4}= 69 lgp
i=1



2.5 FACTOR MODULES AND FACTOR RINGS 37

8
(a) Give an example of a module M with a maximal free subset which
is not a set of generators.
(b) Give an example of a module #0 which is not a vector space and in
which every maximal free subset is a basis. (Hint: use a suitable Z-module.)

9)
Let V = Vi be a vector space, let X be a free subset of V' and let Y be
a set of generators of V with X < Y. Show: there exists a basis Z of V
withXcZcY.

(10) \
(a) Exhibit a module M and a submodule A = M such that there exist
different submodules B, < M, B; <> M with

M=A®B;=A®B,.

(b) Obtain an example of a module M which is not simple and in
which for every submodule A = M there exists exactly one B = M with
M=A®B.

(11)
Let X be a finite set, X ={xy, ..., x,}, and let R := R* be the set of all
mappings f: X >R (where R is the field of real numbers). Prove the
following.
(a) R is a commutative ring under the following definitions:

(f+8)(x:)=f(x:)+g(x)
(feog)x)=f(x)) - g(x:)

(b) R is a principal ideal ring.

(c) Every ideal is an intersection of maximal ideals and the intersection
of all maximal ideals is 0.

(d) Every ideal is a direct summand.

(e) R is a direct sum of simple ideals.

(f,geR,i=1,...,n).

(12)
Let {A;|i € I'} be a set of submodules of a module M and let B = M.
(a) Prove Y. (A;NB) > ( Y Ai) N B.
iel

iel

(b) Prove (ﬂ Ai) +B <[ )(A;+B).

iel iel
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(c) Give an example for which there holds:

Z(A,-mB);é(Z A,.)mB.

iel iel

(d) Give an example for which there holds:

(ﬂA,»>+B¢ﬂ(A,-+B).

iel iel

(13)

Definition. A ring R is called regular (in the sense of von Neumann):

&VreRIAreR([r'r=r].

Prove: the following conditions are equivalent.
(1) R is regular.
(2) Every cyclic right ideal of R is a direct summand of Rg.
(3) Every cyclic left ideal of R is a direct summand of gR.

2.5

(4) Every finitely generated right ideal of R is a direct summand of Rrg.
(5) Every finitely generated left ideal of R is a direct summand of gR.



Chapter 3

Homomorphisms of Modules and Rings

3.1 DEFINITIONS AND SIMPLE PROPERTIES

The structure-preserving mappings of modules are called homomorph-
isms. These are defined in the same way as are linear mappings of linear
vector spaces.

3.1.1 Definition. Let A and B be both right R-modules or left S-modules
or S-R-bimodules respectively. A homomorphism a of A into B is a mapping

a:A->B
which satisfies

(1) Val, aje AVr, e R[a(alh +a2r2) = a(al)rl +a(a2)r2] or
(2) Va,, a,e AVsy, s, € S[a(s1a1 +52a,) = s1a(ay) + 52 (az)] or
(3) Va,, a EAVS], S2 € SVrl, rzeR[a(slalr, +s2a2r2) = s1a(a1)r1
+sza(a2)r2].
respectively.
The notation
a:Ag - Bgr

indicates that A and B are right R-modules and that « is a homomorphism.
Analogously for the other cases. To emphasize the ring and also the side
involved in a homomorphism a:Agr - Br we shall also speak of « as an
R-module homomorphism or a right module homomorphism. Instead of the
notation a(a) for the image of a € A by a we shall also write merely aa.
In the case of a:sA > sB let aa denote the image of a by «; then the
equation in (2) assumes the following form:

(s1a1+s52a2)a = s1(a ) + s2(aza).

39
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A homomorphism is thus written on the side opposite to the operation
of the ring. If there is to be any deviation from this notational rule we shall
especially indicate it. Generally for a mapping «: A - B we use the symbol
a—a(a) for the elements in correspondence; we combine a: A > B and
a—«a(a) in the following notation:

a:Asa—ala)eB,

which we have already used in Chapter 1. The following notions, which
are customary, are also used for homomorphisms:

Domain of a = Dom(a) = A.
Codomain of a = Cod(a) = B.

Image of & =Im(a) = {a(a)la € A}.
a is an injection : & Va,, a;€ Ala(a,)=a(a;)>a; =a,)
(i.e. a is one-one).
a is a surjection : < Im a = Cod(a)
(i.e. a is a mapping “‘onto”).
« is a bijection : & a is an injection A a is a surjection

In the following, if we speak of homomorphisms of modules without
indicating the side then the concepts and considerations are to be regarded
as holding for a one-sided module. All is exemplified only for right modules,
where it is clear that everything holding for right modules holds, as appropri-
ate, for left modules. In the main everything remains valid for bimodules,
but there is no need to pursue this in detail.

Examples of homomorphisms
(1) The 0-homomorphism of A into B:

0:A3a—0eB.
(2) The identity injection =inclusion of a submodule A - R
t:A>a—aeB.

(3) The natural (canonical) homomorphism of a module A onto the factor
module A/C, where C = A:

viAsa—a+CeA/C.

It is immediately clear in cases 1 and 2 that we are in fact considering
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homomorphisms; for v it follows directly from the definition of the module
A/C:
v(ain +azry) =(ari+azxr)+ C=(air;+C)+(azr; +C)
= (a1 + C)r1 + (a2+ C)"z = v(al)rl + V(az)rz.

The homomorphisms 0, ¢, v are used always in the following with the same
meaning but with changing notations for domain and codomain. For the
identity mapping of a module A, which is a special case of inclusion, we
write 14.

Let @ and B8 be homomorphisms with Cod(a) = Dom(8). Suppose

a:A->B, B:B->C,

then the composition of the mappings «, B8, denoted by Ba, is obviously
again a homomorphism in fact of A into C. For a€ A we then have
(Ba)a = B(aa).

As is easily seen, a mapping a: A —> B is a bijection precisely if there
exists a (uniquely determined) inverse mappinga ™ ': B> A witha 'a =14,
aa ' =1p.If « is a bijective homomorphism then a "' is also a homomorph-
ism: let by =al(a;), b»=a(a,) be arbitrary elements from B and let r;,
r, € R, then we have

a ' (biri+bar) =a”(a(a)r +alaz)rs)
= a"l(a(a,rl +a2r2)) =arhntaxr;
= a_l(bl)rl + a_l(bz)rz.

In the following let a: A - B always denote a homomorphism.
For U c A, V < B, there is defined:

a(U) = {a(u)|ue U}
a '(V)={alacAnra(a)e V}.
We remark that o' is itself in general not defined, if it is, then « is

bijective.

3.1.2 LeMmAa

(1) U>A>a(U)->B.

(2) Vo B>a (V) A.

Proof. (1) Let uy, u, € U, thus

a(u), a(uz)e a(U)Ary, rne R alu)r+a(ux)ra = a(urr + uzr) € a(U),

since uyry+ usr, e UL
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(2) Let ay, azea™'(V), thus
a(al),a(az)e V/\rl, rzeR =>a(a1r1+a2r2)=a(a1)r1+a(a2)r2€ \%

$a1r1+a2r26a—l(V). 0

3.1.3 Definition
Kernel of a =Ker(a) = a(0).
Image of @ =Im(a) = a(A).
Cokernel of a = Coker(a) := Cod(a)/Im(a)=B/a(A).
Coimage of & = Coim(a) ‘= Dom(a)/Ker(a) = A/a"'(0).

We had previously introduced Im(a). By virtue of 3.1.2 we know that
Ker(a) and Im(a) are submodules so that the definitions of Cokernel and
Coimage are meaningful.

For the category My of right R-modules, which was introduced in 1.2.5
(recall, that all modules are now unitary), we make use of all of the notation
from Chapter 1. In particular, by employing the concepts from 1.1.3, we
now wish to characterize injective, surjective and bijective homomorphisms.
First of all we repeat these concepts for the category Mk.

3.1.4 Definition. A homomorphism «: Ag > B is called
a monomorphism &

VC € MgrVy, v2€ Homg(C, A)lay=ay: > vi1=72];
an epimorphism &
VC e MrVYB,, B2 Homg (B, C)[Bia = Bra = B1 = B2];
a bimorphism &
« is an epimorphism A « is a monomorphism;
an isomorphism &

Ja'ce Homg(B, A)a’'a=14raa’'=15].

3.1.5 THEOREM. Let a: A > B be a homomorphism, then we have:
(1) « is an injection & a« is a monomorphism.
(2) «a is a surjection & a is an epimorphism.
(3) a is a bijeciion < « is a bimorphism
& a is an isomorphism.
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Proof. (1) “=": Let ay; = ayz with y,, v, € Homg(C, A). Suppose v; # v2
Then

Jc e Clyi(c) # ya(c)].
Hence
a(y1(c)) # a(y2(c))
and so
ay1#ay; 4.

Thus v, = ¥, must hold.
(1) “&”: Let a(a;) =a(a,). Then a(ai)—a(a,)=a(a;—a,)=0.
Let

yi=t:(a1—az)Ra(a,—a))r—(a,—a)re A
v,=0:(a;—az)Rs(a;—a)r—0eA,
Then
¥1, Y2€ Homg((a1 —a2)R, A)
and we have
a(yi((a1—az)r)=a((ai—ax)r)=alai—a)r=0
a(ys((a;—az)r)) =a(0)=0
i.e. ay1 = ay,. By assumption it follows that
i=v22vi@—a)=a—a;=vya1—a)=0>a;,=a,.
(2) “=>": Let B1a = Bra with B4, B, € Homg (B, C). Suppose
B1# B2=>3b € B[B1(b) # B2(b)].
Since «a is surjective, there exists a € A such that a(a)=5. Hencel
Bia(a)=B1(b) # B2(b) = Ba(a) > Bra # Bra 4.
Thus B; = B8, must hold.
(2) “&”: Let
Bi=v:B - B/Im(a)
B>=0:B - B/Im(a).
Then Bi, B>€ Homg (B, B/Im(a)) and B;a = B,a =0. By assumption it
follows then that 8, = 3, i.e. B=Im(a) and consequently « is surjective.

(3) “bijection<>bimorphism” follows from (1) and (2). Further it is clear
that every bijection is an isomorphism since, as we have previously shown,
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if « is a bijection then ' is a homomorphism. Conversely let a be an
isomorphism. Then it follows from a’'a =1, that « is injective and from
a'a = 1p that « is surjective. (Obviously, then, e '=a') 0

3.1.6 LEMMA. Let a: A-> B and B:B - C be homomorphisms. Then we
have:

a, B are monomorphisms => Ba is a monomorphism.

a, B are epimorphisms = Ba is an epimorphism.

Ba is a monomorphism = a is a monomorphism.

Ba is an epimorphism = B is an epimorphism.

Proof. (1) Let v, y,€ Homg(M, A). Since B8 and a are monomorphisms,
then we have: Bayi=Bay.>ayi=ay>y1=7v2; thus Ba is a
monomorphism. Analogously for epimorphisms.

(2) Let again vy, y2€ Homg(M, A). Since Ba is a monomorphism, then
we have: ay; = ay, > Bay, = Bay,=> y1 = ¥2; thus a is a monomorphism.
Analogously for epimorphisms. 0

3.1.7 Definition. Two modules A, B are called isomorphic, notationally
A =B : & there exists an isomorphism «: A > B.

REMARK. = is an equivalence relation of the class of all right R-modules.

Proof

(1) A=A, since 1, is an isomorphism.

(2) Leta:A - B be anisomorphism. Then a ~': B > A is an isomorphism,
i.e., from A =B it follows that B=A.

(3) Let a:A—>B, B:B- C be isomorphisms. Then so is Ba since
a 'B'Ba =1, and Baa 'B ' =1c, i.e. from A=B and B=C it follows
that A=C. 0

3.1.8. LEMMA. Let a: A > B be a homomorphism. Then we have:
(1) a is a monomorphism <Ker(a) =0.
(2) U A>a (a(U))=U +Ker(a).
(3) Vo B>a(a (V)= Vnlm(a).
(4) Let also B:B - C be a homomorphism. Then

Ker(Ba) = o~ (Ker(B)) A Im(Ba) = B(Im(a)).
Proof. (1) “=>"": @ is a monomorphism = « is an injection (from 3.1.5)=>

Ker(a) =0 (for a(0)=0).
(1) “&”: Let a(aq) = a(a»).
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Then a(a; —a;)=0=>a,;—a,cKer(a) =0=>a; = a,. Hence a is an injec-
tion = «a is a monomorphism (from 3.1.5).
() “a Y a(U)) > U+Ker(a)”: Let a € a *(a(U)). Then

a(a)ea(U) andso 3ueUla(a)=alu)]
Then
ala—u)=0>a—-uecKer(a)>ae U+Ker(a).
(2) “U+Ker(a) > a”'(a(U))": Let u € U and k e Ker(a). Then
alu+k)=aw)+ak)=a(u)+0=a(u)ec a(U).

Hence u+kea a(U)).
(3) Exercise for the reader.
(4) aeKer(Ba)oBa(a)=0a(a)eKer(B)a e a ' (Ker(B)).

Im(Ba) = Ba(A) = B(a(A)) = B(Im(a)). a

From the lemma there follows directly:

Let U—>A and let « be a monomorphism «:A->B. Thus U=
a '(a(U)), i.e. we obtain every submodule U of A in the form a™ (V)
with V < B (substitute V = a(U));let V = B and let a be an epimorphism
a:A-> B. Thus V=a(a"'(V)), i.e. we obtain every submodule V of B in
the form a(U) with U < A (substitute U =a~'(V)).

In the following use is made as need arises of both of these facts without
specific mention.

3.1.9 COROLLARY. If

A l >B
Y 8
C >D

8

is commutative, i.e. Ba =08y, and if y is an epimorphism and B is a
monomorphism, then we have

Im(e)=B8""(Im(8)), Ker(s)=y(Ker(a)).

Proof. From 3.1.8, since B is a monomorphism,
Im(a) = B7'(8(Im(a))=> Im(ar) = B~ (Im(Bax))
=B (Im(8y)) =B~ (Im(5))
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since vy is an epimorphism. Further from 3.1.8, since vy is an epimorphism
Ker(8) = y(y'l(Ker(é‘))). Thus from 3.1.8 Ker(6)=y(Ker(dy)) and so
Ker(8) = y(Ker(Ba)) = y(Ker(a)), since B8 is a monomorphism. 0

We apply ourselves now to the question of the behaviour of sums and
intersections of submodules with respect to homomorphisms and inverse
mappings (for this see also Exercise 1).

3.1.10 LeMMA. Let a homomorphism a:A - B be given together with a
set {A;lieI} of A; > A and a set {B;|i e I} of B; = B. Then we have

@  a(LA)=Ta@) (NB)=Na'B).

iel iel iel iel
® o (IB)era®) ofNA)>Naa)
iel iel iel iel
(c) Let now B; = Im(a) for all i e I, then we have
a—l( > Bi) =Y a—l(Bi)-
iel iel
Let now Ker(a) = A, for all i € I, then we have

a(ﬂ A;) = a(A).

iel iel

Proof. The assertions in (a) and (b) are easy to verify and are left to the
reader as an exercise. It remains to prove (c). From consideration of (a)
and 3.1.8 it follows that:

a_l( X Bi) =a—l( > (Biﬁlm(a))> - aﬁl(z aa_l(Bi))

iel iel iel

=a—1a(z a~1(3,.)) =(z a“(B,-))+Ker(a)

iel iel
=Y a '(B)
iel
and also

a(m A,') = a(ﬂ (A; +Ker(a))) = a(ﬂ a_la(A;))

iel iel iel

= aa‘l(m a(A,-)) = (ﬂ a(A,-)) nIm(a) =M a(A).

iel iel iel
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3.1.11 CoROLLARY. Let Ug = Mg, then we have: M/U is finitely
cogenerated (2.3.14)& in every set {A;|i € I} of submodules A; — M with

mA,=U

iel
there is a finite subset {A,|i € I} (i.e. I, finite) with
ﬂ A;=U.

ielg

Proof. *“="": Let v: M > M/ U denote the natural epimorphism. (A, =U

iel
implies that U = Ker(») — A; so that 3.1.10(c) can be applied. Therefore
it follows that

M@=+ A,~> = u(U)=0 N/U.
iel iel
By assumption there is then a finite subset Ip = I with

ﬂ V(Ai) =0.

ielp
Then it follows from 3.1.10(a) that
O =U=r"(N A)) =N v A= N A+ D) =) A
iely ielp ielp ielp

“&”: Let now {A;]i € I'} be a set of submodules A; = M/U with
m A,‘ =0.

iel
Then it follows from 3.1.10(a) that
v 0= U =v (M A) = w7 (A,
iel iel
By assumption there is a finite subset I, < I with

Ny '(A)=U.

ielp
From U =Ker(v) = v '(A;) it follows from 3.1.10(c) that
AN 27 (A0) = N (A0 = N ANImE) = ) A= (1) =0.

ielp ielp ielg ielp

A lattice, respectively a complete lattice, is an ordered set, in which every
two-element subset, respectively subset, has an infimum and a supremum.
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The set of all submodules of a module is, under <> as order-relation, a
complete lattice, in which the infimum is the intersection and the supremum
is the sum of the submodules. Let now Ag be given, then denote the lattice
of submodules of A by Lat(A). Let «: A -» L be a homomorphism, and let
C denote Ker(a), N denote Im(a). Then we consider the sublattice

Lat(A, C) = {U|C = U = A}
of Lat(A) and the sublattice
Lat(L, N) :={V|V < N}(=Lat(N))
of Lat(L). With these notations the following relationship holds.

3.1.12 LEMMA. A bijection & is defined by
@:Lat(A, C)sU—a(U)eLat(L, N)

with respect to which there holds:
(1) a(U+Uy)=a(Uy)+a(Us)
(2) a(UinUy)=a(U)na(U,),

which means that & is a lattice isomorphism between
Lat(Dom(a), Ker(e)) and Lat(Cod(a), Im(a)) =Lat(Im(a)).
Proof. For this proof we use 3.1.8.
“a Injective”: Let a(U;) = a(U,) hold for
U,, U, eLat(A, C).
Then
a”Ya(Uy) = U +Ker(a) = a '(a(U,) = U, +Ker(a).

From

Ker(a)=C=>U;, (i=1,2)

it follows that U, = U,.
“& Surjective”: Let V < N =Im(a).
Then
a'0)=Coa ' (V)oAra(@a (V) =VAN=YV,

ie da (V) =V.
(1) @¢(Ui+ Uy) =a(U,+ Us) =a(U) +a(U,) = a(Uy) +a(Uy).
(2) Trivially we have

a(UinUy) = &(Up)na(Uy).
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Let now x € a(U,)na(Us>), i.e. x =a(u;) = a(us) with

ure Uy, ue Us.
Then

a(uy—u)=0>u;—u=ceKerlfa)=C>>u;=u+c.
From C < U, it follows that

Uy =uU+ce Uin U,
and so

x=a(u1)€a(UlmUz)é&(Ul)n&(Uz)Q&(UlﬁU2). O

3.1.13 COROLLARY. Let C — A and letv: A > A/C. Then
?:Lat(A, C)sU—v(U)eLat(A/C)

is a lattice isomorphism.
3.1.14 CoROLLARY. Maximal C - A& A/C is simple.

As an exercise the reader may give a new and complete proof of 2.5.6.

3.2 RING HOMOMORPHISMS
We now make some remarks on ring homomorphisms.

3.2.1 Definition. Let R and S be rings. Then a ring homomorphism
p:R->S
is a mapping, for which for all r;, r, € R we have:
p(rit+r)=p(r)+p(r2),
p(rir2) = p(ri)p(r2).

p is called unitary, if—as is here always assumed—R and S are rings with
unit elements and p maps the unit element of R onto that of S.
For the category of rings we also use the concepts introduced in 1.1.3.

3.2.2 LEMMA. Let p: R —> S be a ring homomorphism. Then there holds:
(1) p is an injection = p is a monomorphism.
(2) p is a surjection = p is an epimorphism.
(3) pis a bijection & p is an isomorphism.
= p is a bimorphism.



50 3 HOMOMORPHISMS OF MODULES AND RINGS 3.2

Proof. As in the proof of 3.1.5. It should be stressed that the converse of
(1) does indeed hold but not the converse of (2) and (3) (see exercises).
In this respect the category of rings differs from that of modules.

We call two rings R and S isomorphic, notationally R = S, if there exists
an isomorphism of R with S. Obviously = is an equivalence relation in
the class of all rings. An isomorphism of R with R is called an automorphism.

As for modules there exist ring homomorphisms ¢ and » as well as 0,
in the case that the zero ring is admitted. Let C be a two-sided ideal in a
ring R, then v is defined by

v:Rar—»r+CeR/C

where R/C is the residue class ring (2.5.2). Further it is clear that the
image of a (unitary) subring with respect to a (unitary) ring homomorphism
p is again a (unitary) subring of Cod(p). In particular Im(p) is a (unitary)
subring of Cod(p).

For the most part the ideals of a ring are more important than the
subrings. Consequently we establish

3.2.3 LEMMA. Let p:R—>S be a ring homomorphism and let V be a
two-sided ideal in S, then p_](V) is a two-sided ideal in R.

Proof. Let u,, uZEp"](V) and r € R, then we have

p(ur+us)=p(u) +p(uz)e V> u +usep ' (V),
p(urr)=p(up(r)e V>urep (V)
and analogously
ruep” (V)p (V)
is a two-sided ideal in R. g
It follows from the lemma that Ker(p) is a two-sided ideal in R for which

the residue class ring R/Ker(p) exists. As a special case Ker(v)= C for
v:R - R/C. Itis now to be shown that to every unitary ring homomorphism

p:R->S
there exists a functor (see 1.3)
Fp : Ms -> MR.

For this purpose to every module My there is associated a module Mg
in the following manner: Let the additive group M " of Mg be equal to
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that of M, the structure of an R-module is defined by
mr = mp(r), meM™',reR.
Direct verification establishes that M is a unitary R-module. Let now
@:Ms > Ng
be given. Then evidently we have
p(mr)=pimp(r)) = (m)e(r) =e(m)r.

Thus every S-homomorphism is also an R-homomorphism. In order to
show that F, with F,(Ms)= Mg, F,(¢) = ¢ is a functor it remains only to
observe that

Fp(lMs)=1MRa Fp((z’ﬁo):(I’QD:Fp(‘//)Fp(‘P)-

Such a functor F, is usually known as a ‘“‘change of rings”’.

Since every S-homomorphism is an R-homomorphism it follows, as a
consequence, that Homg(M, N) < Homg (M, N). If p is surjective then we
have, in fact, Homgs(M, N) =Homg(M, N). The S-submodules of Ms are
evidently also R-submodules and in the case of a surjective p the S-
submodules coincide with the R-submodules.

Examples of ring homomorphisms
(1) Let R be a unitary subring of S and let p = be the inclusion mapping.
(2) To every ring S with unit element 1 there is a ring homomorphism

p:Z3z—21€S,

and the corresponding functor F, is the forgetful functor of Ms in the
category of abelian groups.
(3) Let C be a two-sided ideal of R and let

v:R->R/C

be the natural epimorphism. Then every R/C-module is also an R-module
and for MR/C, NR/C we have

Homg,c (M, N)=Homg (M, N).

3.3 GENERATORS AND COGENERATORS

Generators and cogenerators are categorical concepts, which play an
important role in the modern development of the theory of modules and
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also in other categories. We present here the definitions and some simple
consequences. We shall later return to these concepts several times.

3.3.1 Definition
(a) The module By is called a generator (of Mg) : &

VM e MR[M= ¥ Im(<p)].

eeHompg (B,M)

(b) The module Cg is called a cogenerator (of Mg) : &

VM e MR[O = M Ker(<p)].

ecHomg (M,C)

For arbitrary modules B,M

Im(B, M) = ¥ Im(p)
¢eHomg(B,M)
is itself, as a sum of submodules of M, a submodule of M. The property
that B is a generator means that Im(B, M) is as large as possible for every
M and so equals M.
For arbitrary modules C, M

Ker(M,C):= ()  Ker(e)
¢eHomg(M,C)
is itself, as an intersection of submodules of M, a submodule of M. The
property that C is a generator means that Ker(M, C) is as small as possible
for every M and so equals 0.
An example of a generator of My is immediately available: Rg is a
generator. Namely let m € M, then the homomorphism

om:Ro3r—mreM
exists with ¢,,,(1) = m1 = m. From this it follows that

M= T Im(en)= Im(R,M)=> M,
meM
thus we have Im(R, M) =M.
Cogenerators of Mg also exist; however, examples can best be presented
later when we have injective modules at our disposal.

3.3.2 COROLLARY
(a) If B is a generater and if A is a module with Im{A, B) =B then A is
also a generator.
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(b) Every module which can be mapped epimorphically onto Rg is a
generator.

(¢) If Cis a cogenerator and if D is a module with Ker(C, D)=0 then
D is also a cogenerator.

Proof. (a) Evidently we have:

S Imley)= T o(m@) =5 ¢X Im(v))
YeHomg(A,B) X1 @ &
oeHomg (B,M)

=Y ¢(B)=YIm(p)=M.

(b) It follows from (a) that Ry is a generator.
(c) Evidently we have:

M Ker(e)=M ¢ ' Ker(y) = cp’1<ﬂ Ker(d/))
¢€Homg (M,C) "R @ [
yeHomg(C,D)

=M ¢ (0)=MKer(p)=0. 0

Generators and cogenerators can be characterized in the following manner
by properties of homomorphisms.

3.3.3 THEOREM
(a) B is a generator &

VueHomg (M, N), u #0 ¢ e Homg (B, M)[ue #0].

(b) C s a cogenerator C &

YA eHomg(L, M), A #0 3¢ e Homg (M, C)[@A #0].

Proof. (a) “=>>”: Since u #0 there is an me M with u(m)#0. As B is a
generator, there is a representation

k
m= Z ‘pi(bi), (PiEHomR(B, M)’ bi631
i=1

hence we have

k
0#u(m)= El nei(bi),

and consequently there is a ¢; with ue; #0.
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(a) “<”: Suppose Im(B, M) # M, then let

v:M->M Im(B, M)
be the natural epimorphism. Since » # 0 there is a ¢ € Homg (B, M) with
ve # 0, consequently we have Im(¢) »» Im(B, M) in contradiction to the
definition of Im(B, M).

(b) “=>":Since A # Othereisan /e L with A (/) # 0. As C is a cogenerator,
there is a ¢ e Homg (M, C) with A (/)€ Ker(¢). Hence we have @A (I) #0,
thus @A #0.

(b) “&”: Suppose Ker(M, C) #0, then let

. Ker(M,C)> M

be the inclusion mapping. Since ¢ #0 there is a ¢ € Homg (M, C) with
¢t #0. Consequently we have Ker(M, C) « Ker(¢) in contradiction to the
definition of Ker(M, C). a

3.4 FACTORIZATION OF HOMOMORPHISMS

It is often expedient to factorize a given homomorphism into a product
of two homomorphisms where at least one, or even both, factors are to
possess certain ‘“‘pleasant” properties. The homomorphism theorem is the
first and particularly important example of such a factorization.

3.4.1 HoMOMORPHISM THEOREM
(a) Every module homomorphism
a:A->B
has a factorization a = a'v where
v: A-> A/Ker(a)

is the natural epimorphism (see 3.1) and a' is the monomorphism defined by
a': A/Ker(a)sa+Ker(a)—a(a)e B,

a' is an isomorphism if and only if a is an epimorphism.
(b) Every ring homomorphism

p:R->S
has a factorization p = p'v where

v:R > R/Ker(p)
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is the natural epimorphism and p' is the monomorphism defined by
p': R/Ker(p)>r+Ker(p)—p(r)eS,

p' is an isomorphism if and only if p is surjective.

Remark. The equation a = a'v is exactly equivalent to the commutativity

of the diagram
A— B

A/Ker(a)
(analogously for the equation p = p'v).
Proof. It suffices to go through the proof of (a) since that of (b) proceeds
entirely analogously.

It is first of all to be established that ' is a mapping: Let a +Ker(a) =
a;+Ker(a). Then a; = a +u, u € Ker(a). Hence

a'(a1+Ker(a))=a(a)=ala+u)=a(a)+a(u)=ala)=a'(a +Ker(a)),

then a' is obviously a homomorphism. In order to see that a' is a
monomorphism, fet (as in 3.1.8)

a'(a; +Ker(a)) =a(a,) =0.
Thus a; € Ker(a) and so
a;+Ker(a)=0+Ker(a).

Hence Ker(a')=0.
Let now a € A be arbitrary, then we have:

a'(v(a))=a'(a+Ker(a))=ala).
Thus
a=a'v.
Since a' is a monomorphism and, as Im(a') =Im(a), @' is then precisely
an isomorphism if @ is an epimorphism. g
3.4.2 COROLLARY

(a) If a: A- B is a module homomorphism then

@:A/Ker(a)sa+Ker(a)—a(a)eIm(a)
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is an isomorphism, thus we have
A/Ker(a)=Im(a).
(b) If p: R > S is a ring homomorphism then
p: R/Ker(p)>r+Ker(p)—p(r)eIm(p)

is an isomorphism, thus we have
R/Ker(p)=Im(p) (as rings).

Proof. (a) We obtain & from «' by means of the restriction of Cod(a’) =
Cod(a) to Im(a).
(b) Analogously. a

Since the results on ring homomorphisms, which have so far appeared,
suffice for later considerations, we confine ourselves from now on to module
homomorphisms. Thus let A, B, C, as well as all homomorphisms, be from
a module category, in which right, left or bi-modules may be considered.
3.4.3 FIRST ISOMORPHISM THEOREM. Let B = A AC = A, then we have

(B+C)/C=B/(BNC).

Proof. For the proof we consider the homomorphisms

v:B+C->(B+C)/C
with Ker(v) = C and

@ =v|B:B>(B+C)/C
with Ker(a) = B~ C. We now apply 3.4.2:
(B+C)/C=Im(v)=v(B+C)=v(B)+v(C)=v(B),
B/(BNC)=Im(a)=a(B)=v(B)
> (B+C)/C=B/(BnC). 0
We can also prove this theorem without invoking 3.4.2 by verifying that
B/(BNC)3b+(BnC)—b+Ce(B+C)/C

is an isomorphism. This may be left to the reader as an exercise.
3.4.4 COROLLARY.A=B®C=>A/C=B.

Proof.
A/C=(B+C)/C=B/(BNnC)=B/0=B. C
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As a further deduction we give Zassenhaus’s Lemma which is used in an
essential way in the next chapter. It indicates that perhaps a modification
must first be achieved in order to be able to apply the first Isomorphism
Theorem.

345 LEMMA. LetU' > U > AAV'> V o A then we have

(U'+UnV)Y/(U+UnAVN=(V'HUNV)Y/(V+U NV)).

Proof. We show that the left-hand side is isomorphic to
UnV)((UAVY+H(V'AU)).

Since this expression is symmetric in U and V, the right-hand side is then
also isomorphic to it, from which the assertion follows.
AsUNnV's UnV we have

U+UnV)=UnV)+(U'+(UnVY),
and further according to the modular law (2.3.15)
UnVNnU+U~NV)=UNVAUY+HUNV")
=(U'nV)+(UnV").
From the First Isomorphism Theorem it follows therefore that
(U'HU~AV)Y/U+UNVY)
=(UnV)+(U+U~nVN)/(U+UNV))
=(UnV)/(UAV)n(U+(UnNVY)
=(UnV)/((UNV)Y+(UNV"). O

3.4.6 SECOND ISOMORPHISM THEOREM. Let C = B <= A, then we have

A/B=(A/C)/(B/C).

Proof. Let
vi:A->A/C
v2:A/C>(A/C)/(B/C),

where v, is well-defined, since, from C < B = A, B/C is also a submodule
of A/C.

Since »; and v, are epimorphisms, v, is an epimorphism (3.1.6) and
consequently 3.4.2 implies that

A/Ker(vav1)=(A/C)/(B/C).
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But according to 3.1.8 we have
Ker(vav1) =v1' (Ker(r2)) = »1 ' (B/C) = »1' (v1(B))
=B +Ker(vy)=B+C =B,

from which the assertion follows. 0
Example. Z/3Z=(Z/6Z)/(3Z/6Z).

Finally a result is to be presented which can be considered as the generaliz-
ation of the Homomorphism Theorem 3.4.1.

3.47 THEOREM. Let a.: A-> B be a homomorphism and let ¢: A > C be
an epimorphism with Ker(¢) < Ker(a). Then there exists a homomorphism
A:C - B with

(1) a=Aie.

2) Im(A)=Im(a).

(3) A is a monomorphism & Ker(g) =Ker(a)

Remark. (1) means that the diagram

A—" 5B

is commutative.

Proof. Since ¢ is an epimorphism, for an arbitrary ¢ € C thereisan ac A
with ¢(a) = c. Toevery c € C let there be chosen a fixed a. € A with ¢(a.) = ¢
(Axiom of Choice). Then a mapping is defined by

A:C->B with A(c) = ala.).

In order to show that A is indeed a homomorphism it must first of all be

established that A is independent of the choice of the a. with ¢(a.)=c.
Let c = p(a)=¢(a.) with a, a. € A.

Then

pl@a—a)=0
and so

a—a. € Ker(¢) = Ker(a) (by assumption).
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Hence
ala—a)=0>a(a)=ala.)=A(c).

It now follows immediately that A is a homomorphism: Let ¢, = ¢(ay),
¢>=(ay) with a,, a,€ A and let ry, 1€ R. Then

elairi+azr)=ela)r+e(az)r,=ciri+car,
> Alanitern)=alairn +azr)=ala)r+alal)r,
=Alc)ri+A(c)ra.

(1) and (2) follow directly from the definition of A. For the proof of (3)
first let A be a monomorphism. By assumption we have Ker(¢) <> Ker(a).

To prove that Ker(a) > Ker(p) let a € Ker(a), since 0 =a(a) =A(¢(a))
it then follows that ¢(a)=0, thus a € Ker(¢) holds. Suppose now that
Ker(@)=Ker(a), then it follows from A(c)=0 and ¢ = ¢(a) that a(a)=0
holds, thus a € Ker(a) = Ker(¢) and hence ¢ = ¢(a) =0. 0

We draw attention to two special cases of 3.4.7:
(1) Let a:A->B, A’ Ker(a), C=A/A', p=v:A->A/A' then the
diagram

A—— 5B
”
//
v /A
Ve
///
A/A'

is commutative where A(a+A')=a(a). For A'=Ker(a) this is the
Homomorphism Theorem 3.4.1.

(2) Let A" A' > A a=v:A>A/A,C=A/A", ¢ =v":A>A/A"then
the diagram

A—" SA/A"
A

A/A

is commutative, where A(a +A")=a+ A"
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Let now A = Ba be a given factorization of a given homomorphisin A.
A——>B

B

M.

We inquire into the relationship between the properties of A and the
“‘decomposition properties’’ of B. Before we begin with this, we recall the
definition of the (internal) direct sum (2.4), which is now needed for two
summands only. In this case we have:

B =Bo®B1©B =B0+Bl /\Bof\Bl =0.

3.4.8 Definition

(1) The submodule By < B is called a direct summand of B : & there
exists a submodule B; = B with B = Bo@ B,.

(2) A monomorphism «a:A - B is said to split : < Im(a) is a direct
summand in B.

(3) An epimorphism B:B - C is said to split : & Ker(B) is a direct
summand in B.

3.4.9 LEMMA. Let the diagram

A——— B

be commutative, i.e. A = Ba. Then
(1) Im(a)+Ker(8)=B""(Im()),
(2) Im(a)nKer(B) = a(Ker(A)).

Proof. (1) A =Ba=>Im(A) =Im(Ba) = B(Im(a))=> B~ (Im(A)) =
B~ (B(Im(a))) = Im(a)+Ker(B8) by 3.1.8.
(2) Ker(A) =Ker(Ba)=a '(Ker(8)) by 3.1.8

Sa(Ker(A)) = a(a ' (Ker(8))) = Im(a) n Ker(B)
by 3.1.8. a
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3.4.10 COROLLARY

(a) A is an epimorphism = Im(a)+Ker(B) = B_l(M) =B.
(b) A is a monomorphism > Im(a) nKer(8) = a(0) =0.
(c) A is an isomorphism =>Im(a)@Ker(B) = B.

Proof. Direct consequence from 3.4.9. 0

3.4.11 COROLLARY
(1) For a.: A - B the following are equivalent:
(a) « is a split monomorphism.
(b) There exists a homomorphism B: B > A with Ba =14.
(2) For B:B - C the following are equivalent:
(a) R is a split epimorphism.
(b) There exists a homomorphism y: C - B with By = 1¢.

Proof. (1) “(a)=>(b)”: Let B=Im(a)® B, and let 7: B ->Im(a) be the
projection of B onto Im(a) defined by

m(a(a)+b,) = al(a), a(a)eIm(a), b, € B;.

Further call @p: A 3a—a(a) e Im(a), i.e. let ay be the isomorphism defined
by the restriction of the domain B of « to Im(a).
For B8 = a5'm we then have

Ba(a)=ag'mal(a)=as' (@(a))=a, acA,

thus Ba =14.

(1) “(a)<«(b)”: Since Ba =14 a is a monomorphism which splits by
3.4.10 (c).

(2) “(a)=>(b)”: Let B=Ker(B)®B;, and let «:B;32b—beB be the
inclusion mapping of B; into B. Further let 8, denote the restriction of 8
onto B;, then B; is an isomorphism (since 8 is an epimorphism and
Ker(B)n B =0). For y = 187" we then have

By(c)=BB1 (c)=BBi () =c, ceC,

thus By =1c.
(2) “(a)<(b)”: Since By =1, B is an epimorphism, which splits by
3.4.10(c). 0

We point out, in particular, the special case, in which « is the inclusion
mapping of a submodule A B and B:B->B/A is the natural epi-
morphism.
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3.5 THE THEOREM OF JORDAN-HOLDER-SCHREIER
We now consider finite chains of submodules of a module A. Let

0=Bo“"B1“>Bz'—>...“>Bk_1“)Bk=A,
0=C0'—>C1'—>C2h>...‘—)cl_1‘—)C1=A.

We denote the first of these two chains by B and the second by C. Then
we have the following.

3.5.1 Definitions

(1) Length of the chain B = k.

(2) The factors of the chain B are the factor modules B;/B;-i,
i=1,..., k. The ith factor of B is B;/B;i_;.

(3) The chains B and C are said to be isomorphic, B = C : < there exists
a bijection § between the index set I of B and the index set J of C such
that we have:

Bi/Bi_1= Csi/ Cs(ir-1, i=1,...,k

(4) C is called a refinement of B and B a subchain of C : & either B=C
(trivial refinement) or B is obtained from C by omitting certain of the C;
from C.

(5) The chain B of A is called a composition series : &Vi=1,...,k
[B;-; maximal in B;] (& Vi=1,..., k [B/B;-; simple] by 3.1.14).

(6) The module A is said to be of finite length : <> A=0v A has a
composition series.

Remark. If B=C holds and if B; = B;_, for a fixed i, then there is a j so
that, if B; in B and C; in C are omitted, the chains, resulting in this way, are
again isomorphic.

Proof. The proof follows directly from the fact that B; = B;_; has the
consequence that first of all B;/B;_, =0 and thereby Cs)/Csi)-1 =0 thus
Csiy= Csi)-1. From the omission of B; resp. Bs(, precisely the factor
B;/B;_1=0=Cgs)/Cs)-1 is thus omitted whereas the other factors are
unchanged. a

We shall make use of this remark in the following without especial
mention. It is further clear that the isomorphism defined in (3) is an
equivalence relation in the set of all chains of A of the form B.
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Examples
(1) Let V = Vi be a vector space and let {x,, ..., x,} be a basis of V. Then

n—1 n
0o xi Kox K+xKo ... Y xKos Y x K=V
i=1 i=)

is a composition series of V.
(2) Every chain of Zz can be properly refined. If

0> B;>...o27Z

is such a chain with B; # 0 (which does not entail a restriction) then, since
Z does not contain a simple ideal, B; cannot be simple. Thus between 0
and B, an ideal different from both can be inserted. Consequently Zz does
not have a composition series.

(3) In Qz every chain

09319329...‘931(:02

with 0 # B; and B,-; # Q can be properly refined both between 0 and B,
and also between B, —; and @, since @z contains neither a minimal (=simple)
nor a maximal submodule. Accordingly @z does not have a composition
series.

We prove now the Jordan-Holder-Schreier Theorem, from which we
then obtain as a most important corollary that, if a module has a composition
series, the series is uniquely determined up to isomorphism.

3.5.2 JORDAN-HOLDER-SCHREIER THEOREM
Any two (finite!) chains of a module have isomorphic refinements.

Proof. Let B and C be given finite chains of the module A. The modules
Bi,j=Bi+(Bix1n (), j=0,...,1

are inserted between B; and B;.; (i=0,..., k—1), and so we obviously
have

B;=Big—=> B;1=...> B;;=Bi;;.
Analogously the modules
Ci=C+(CuinB), i=0,...,k
are inserted between C; and C;.1 (j=0,...,/—1) and we have

Ci=Coj=>Cri=...o Ci=Ch
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The refined chains are then denoted by B* and C*; they both have the
same length kl. From 3.4.5 it follows that

i=0,...,k—1
Bij+1/Bij=Civ1,/Cij { -1

i=0,...,

Since in these k/ isomorphisms precisely all of the kI factors of B* and
precisely all of the kl factors of C* appear, it follows that 8% = C*. 0

3.5.3 CoOROLLARY. Let A be a module of finite length. Then we have:
(1) Every chain B of the form

O=Bo%)Bl%)...%>Bk=A

can be refined to a composition series.
(2) Any two composition series of A are isomorphic.

Proof. (1) By assumption there is a composition series C of A. According
to the Jordan-Holder-Schreier Theorem B and C have isomorphic
refinements B* and C*. Since C, as a composition series, can only be
trivially refined, there is (from the remark following 3.5.1) a refinement
B° of B with B°=C. Since all the factors in C are simple, so also are the
factors of B°, consequently B° is a composition series.

(2) Let now B and C be composition series and let in the terminology
of (1): B°=C. Since B° is a refinement of B and both are composition
series, it follows that B = B° and therefore B=C. 0

3.5.4 Definition. Let A be a module of finite length. Then let the length
of A =Le(A):=length of one (and therefore of any) composition series
of A.

3.5.5 COROLLARY. Let A = M. Then we have: M is a module of finite
length if and only if A and M/ A are modules of finite length. If the length
is finite then we have

Le(M)=Le(A)+Le(M/A).
Proof. If 0=A or A =M then the assertion is clear. Let now 0 > A & M
and let M be of finite length. Then the chain
OoA>M
can be refined to a composition series:

0A .. 9A =A>... A, =M.
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The initial part of the chain up to A, = A is a composition series of A. We
claim that

0=A/A> A 1/JA> ... oA, /A=M/A

is a composition series of M/A. This holds, since according to the Second
Isomorphism Theorem

(Akrist/A)/ (Akrif A)=Apsinr [ A

is simple. From the preceding it follows that Le(M)=Le(A)+Le(M/A).
Let now A and M/ A be of finite length and let

0oA >.. A=A, Ogélg...9§1=M/A

be composition series of A and M/A respectively. Let v: M > M/A and
;= v~ '(B;). Then we have A = B, and v(B;) = B;/A = B,. Since B;.1/Bi; is
simple and as

(Bi+1/A)/(Bi/A)=B;.,/B,
B;.1/B; is also simple. Consequently

0>A;>... oA, =A>B;>...B =M

is a composition series of M, i.e. M is of finite length. 0

In particular the proof has shown how from composition series for A
and M/ A such a series for M can be manufactured.

Example. The Z-module Z/6Z has two composition series

0-527/6Z > Z/6Z, 0-3Z/6Z—>7Z/6Z.
The factors of the first are

22/62=2/32Z, (Z2/62)/(2Z2/6Z)=12/22,
those of the second are

3Z/6Z2=2/22, (z/62)/(3Z2/6Z)=12/3Z,
from which the isomorphism of the two chains follows immediately. The
significance of the Jordan-Holder-Schreier Theorem for modules of finite
length becomes clear from the following consideration. Let A be a module
of finite length, let B be an arbitrary submodule of A, let C be a maximal

submodule of B, then B/C is a composition-factor (=factor of a composi-
tion series) of A. Thus let us consider the chain

0>C>B=A
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(correspondingly the shorter chain in case that C =0 or B = A resp.). This
can be refined to a composition series, in which no module is inserted
between C and B since C is maximal in B. Consequently B/C is in fact
a composition factor of A, i.e. up to isomorphism one of the uniquely
determined finitely many composition factors of A.

3.6 FUNCTORIAL PROPERTIES OF Hom

As we have already observed in Chapter 1, Homg is a functor of the
category Mg (or sM or sMg), contravariant in the first argument and
covariant in the second, into the category S of sets:

Hompg: Obj(Mg) X Obj(Mr) 3 (A, B)—Homg(A, B) € Obj(S)
Hompg: Mor(Mg) X Mor(Mg) 3 (a, y)—>Homg(a, v) € Mor(S),

where Homg(A, B) is the set of homomorphisms of A into B and
Homg(a, v) is defined in the following manner: For

a:A->B, vy:C->D
let
Homg(a, v): Homg (B, C) 3 8+ yBa € Homg (A, D).
If R=K is a field, i.e. Mk is the category of K-vector spaces, then

Homg (A, B) becomes again a vector space over K in a well known manner
by means of the definition

(a1 +az)(a) = ai(a)+axa)
(ak)(a) = a(ak),

(with a1, a; € Homg (A, B), a € A, k € K) a vector space over K, and Homg
can now be considered as a functor in the category Mk itself (and not only
in S). This property is now to be generalized. Let now R be once more
an arbitrary ring with a unit element. By the following definition
Hompg (A, B)becomes an abelian group. For a;, a; € Homg (A, B),a,+ asz €
Homg (A, B) is defined by

(a1+aj)(a)=ai(a)+as(a), acA.

The group-theoretic properties of Homg (A, B), which follow from those
of B, are then easy to verify: in particular the zero mapping of A into B
is the zero element of Homg (A, B) and the mapping —a with

(—a)(a) = —al(a)

is the homomorphism inverse to « € Homg (A, B).
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With this interpretation of Homg(A, B), Homgr becomes a functor in
the category A of abelian groups. For this purpose we further establish
that Homg(a, v) is now a group homomorphism of Homg(B, C) into
HomR (A, D)

Homg (a, v)(B1+B2) = y(B1+B2)a
=vBi1a + YR
=Homg (e, v)(B1) + Homg (e, v)(B2),
since
(Y(B1+B2a)(a) = y((B1+ B2)a(a)))
= y(Bi(a(a)) +B2(a(a))) = y(Bi(a(a)) + v(B2(a(a)))
= (vBra)(a) + (yB2a)(a) = (yBra + yB2a)(a).

Let now S be also a ring with a unit element, let A = gAg and as before
let B = Br. Then Homg (A, B) becomes by the definition

(as)(a) = a(sa), a € Homg(A, B),ac A,s€S,

a right S-module, as is immediately verifiable.
Further let T be a ring with a unit element and let A=Ay and also
B = rBg. Then by the definition

(ta)(a) = ta(a), a€Homg(A,B),ac A, teT,

Homg (A, B) becomes a left T-module. If we have simultaneously A = gAg,
B = 1By then it follows that

Homg (A, B) = rHomg(A, B)s,

i.e. Homg (A, B) becomes a T-S-bimodule.

3.6.1 Definition. The centre of the ring R is
Z(R):={s|se RAVreR[sr=rs]}.

Remark. Z(R) is a commutative subring of R, which contains the unit
element of R.

If we put S = Z(R) and let A = Ag, then, by the following definition,
A becomes an S-R-bimodule,

sa = as, seS=Z(R),acA,
as is easily verified.

Since this holds for every R-module, it follows that Homgz (A, B) can be
considered as an § = Z(R)-module, right, left or two-sided. As we realize
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easily, Homg can then also be understood to be a functor in the category
Ms, sM, sMs respectively. If R is commutative, i.e. § =Z(R)=R, then
Homyg is a functor in Mg, as in the case of a vector space over a field.

In order to avoid confusion in complicated cases, we write, for example,
in the situation sAg, 7Br also

Homg (sAr, 7Br),

where the index R of the Hompg indicates that an R-homomorphism is
involved, and the indices $ and T imply that Homg(sAg, rBr) is to be
considered in the previously employed sense as a T-S bimodule. In the
situation grAs, gkBr then Homg (rAs, rBr) is an S-T bimodule, and from
our convention at the beginning of 3.1

a(sat) = (as)(at) = (asa)t = asat,

indicates that a € A is first of all multiplied by s € S; then « € Homg (A, B)
is applied to as and the image multiplies t € T.

If we consider Hompyz with respect to a fixed second argument Mg as a
functor of the first argument, then the following notational conventions
are used:

Hompg(—, M): Obj(Mgr)3 A—Homg(A, M) e Obj(S)
Hompg(—, M): Mor(Mg) 3a —>Homg(a, M) 3Mor(S),

in which we are to have
HomR(a, M) = HomR(a, 1M)

Analogously for the second argument.

3.7 THE ENDOMOCRPHISM RING OF A MODULE

As mentioned in the previous section, for every module A Homg(A, A)
is an additive abelian group. In addition we know that the composition B«
of two homomorphisms

a:A-> B, B:B->C

is again a homomorphism. Consequently in Homg (A, A) the product of
any two elements is defined by composition and this product is associative
(being the composition of mappings).
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3.7.1 THEeEOREM. Homg (A, A) is a ring with a unit element if addition
and multiplication are defined as:
(a1 +ax)(a) =ai(a)+az(a)
(@102) = ai(az(a)).
Proof. By virtue of the preceding explanation it remains to show that the
distributive law holds:
(a1 + ax)as)(a) = (a1 + az)(@s(a)) = ai(@s(a)) + ax(as(a))
= (a1as)(a) + (azas)(a) = (@1a3+ azas)(a)
> (1t ar)as=ajaz+azas.
(aslar +az))(a) = as((a; + a2)(a)) = as(ai(a) + az(a))
= a3(a1(a)) + as(az(a)) = (@say)(a) + (azaz)(a)
= (asa;+azaz)(a)
>  aszlart+ar) = aza; +aszas.

The unit element of Homg (A, A) is the identity mapping on A. 0

3.7.2 Definition. The ring given in 3.7.1 is called the endomorphism ring
of A (also called the R-endomorphism ring of A), and is denoted by
End(AR)

Example. If V = Vi is a vector space then End(Vk) is the ring of linear
mappings of V into itself.

Remark. If Vi isavector space of dimension n with 0 <n < oo then End(Vx)
is isomorphic as a ring to the ring of all n Xn square matrices with
coefficients in K. The proof of this fact is given later in a more general
context.

We wish now to determine End(Rg) for an arbitrary ring R. To this end
we consider for a fixed 7o € R the mapping

!
ry Rsxw—roxeR.

From the distributive and associative laws we have r)’ € Homr(Rg, Rg);
ry is said to be the left multiplication induced by ro. Let now ¢ € End(Rg),

then for an arbitrary x € R and the unit element 1 € R we have:

e(x)=0(x)=p(Lx=e(1)"x),
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i.e. @ =(1)"". Evidently End(Rg) consists precisely of all left multiplica-
tions, as a result of which we then write

R® =End(Rg).

3.7.3 LeEMMA. The mapping
p: R sr—r?eR®

is a ring isomorphism.
Proof. For ry, r;, x € R we have

(r1+ rz)(“(x) =(r+r)x=rnx+rnx
=r(x)+rY (x) = +r3)(x)
> (n+rn)? =P+
(rr)Px) = (rr)x =r(rx)=r (5 (x))
=(r{r9)(x)
> () =

Thus p is a ring homomorphism.
Let now rix =rox. Thenfor x =1: r;, =r;1=r,1 = r,. Thus we have r{" =
rS and so r; = r,, i.e. p is injective. It is clear that p is surjective. 0

Analogously we can consider the ring R"” of right multiplications of R,
and we have analogously

R =R"” =End(zxR).

There follows now an important result on the endomorphism ring of a
simple module. First of all we prove something more general.

374 LEMMA. Let A and B be two simple R-modules. Then every
homomorphism of A into B is either 0 or an isomorphism.

Proof. Let a: A > B be a homomorphism. From Ker(a) <> A we have either
Ker(a) = A, thus @ =0 or Ker(a)=0, i.e. « is a monomorphism. From
Im(a) = B we have either Im(a) =0, thus @ =0 or Im(a) =B, i.e. « is an
epimorphism. From both assertions: a # 0=« is an isomorphism. 0

3.7.5 LEMMA (ScHUR). The endomorpvhism ring of a simple module is a
skew field.
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Proof. From 3.7.4 every non-zero endomorphism is an automorphism and
thus has an inverse element in the endomorphism ring. Consequently the
endomorphism ring is a skew field. g

We return once more to the general situation in which an arbitrary
module Ay is given, and let S := End(Ag). In our notation the endomorph-
isms operate on the left of A. If we write for a € S, a € A instead of a(a)
merely aa, we may verify easily that A is a left S-module. From

al(ar)=ala)r=(aa)r, a€S,acA,reR

A is in fact an §-R-bimodule. We shall come back later many times to this
bimodule structure, the relationship between the structure of Ag, sA and
sAr will indeed play a role in certain considerations.

3.8 DUAL MODULES

As in the special case of vector spaces the concept of the dual module
and the consequential relationships play an important role in the theory
of modules. The main result of the following considerations consists of
showing that (as with vector spaces, see 1.4.4) the passage to the bidual is
a functor A, and that a functorial morphism exists between the identity
functor and A.

We prove at once the following more general theorem:
3.8.1 THEOREM. Let rLg be given. Then
(1) Homg (-, rLgr): Mg > M
with
Homg(—, rLgr): Obj(Mgr) 3> A—Homg(A, rLg) € Obj(rM)
Homg(—, rLr): Mor(Mg) 3 & —Homg(a, 1, ) € Mor(rM)

is a contravariant functor.
(2) Let

A, =Homr(rHomg (-, tLRr), L),
then
ALZ MR -> MR

is a covariant functor.
(3) For A € Mg let

Du:A-AL(A)
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with

®,4(a): Homr(A,L)3p—>e(a)elL,
then

O =(PalAcMz)

is a functorial morphism between the identity functor 15, and A;.

Proof. (1) As already established earlier, Homg (AR, rLg) is a left T-module,
and for « e Homg (A, B) we have

Homg(a, 1;): Homg (B, L) 3 ¢~ ya € Homg (A, L).

It remains to be established that Homg(a, 1) is a left 7-homomorphism;
this follows immediately from

tea=t- ga, teT.
Finally we have

HomR(lA, 11_) = lHomR(A,L),

Homg(Ba, 1,) = Homg(a, 1, )Homg (B, 1.),

and so everything is proved.
(2) The functor A, is the composition of the functors

Homg (-, vLr): Mr > M
and (of the analogously defined functor)
Hom~(—, rLr): M - M.
(3) &4 is an R-homomorphism. Let
a,, a,€A, r, 1€ E, ¢ e Homg(A, L),
then we have
o®(air, +azxr)=@(airi+asr)
=g¢(a)rn+e(ar
= o®(a)r1 +eD(az)r,
= @(P(ai)r +D(az)ra),

which was to be shown.
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It remains to be proved that the diagram

A—220 LA (A)

@ A (a)

B——>——A.(B)
is commutative. For a € A, ¢ Homg (B, L) we have on the one hand

YyPglaa)=y(aa),

and on the other hand
YAL(a)Da(a) =vada(a)=da(a)=¢(aa),

which was to be shown. O

Of particular interest is the special case 7 = R and 7Lr = rRr. We assume
this in the following definition.

3.8.2 Definition
(1) For Agr

A* = Homg(A, R)
is called the dual and
A** = A(A) = Ar(A) =Homg(rHomg (Ag, Rr), rR)

the bidual module to Arg.
(2) For a:Ar > Bgr

a* = Hompg(a, R)=Homg(a, 1g)
is called the dual and
a** = Homg (Homg(a, R), R)

is called the bidual homomorphism to a.

(3) For ac A a** = ®4(a) is called the bidual element to a.

For many considerations it is of interest to know which properties are
possessed by the homomorphism

ba: Asa—a*te AY*,

If Ar is a finite-dimensional vector space then it is well known that ®, is
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-
an isomorphism. In general this is dot the case. Different possibilities are
characterized by particular denotations:

3.8.3 Definition. Let ®,: A 3a—>a*tec A*,

(1) Ag is called torsionless : & ® 4 is a monomorphism.

(2) Ag is called reflexive : < ®,4 is an isomorphism.
Since later we have to consider numerous applications of these ideas, we here
omit examples.

3.9 EXACT SEQUENCES

In homological algebra, complexes and exact sequences play an important
role. They are a part of the fundamental concepts and are used, in particular,
in the definition of the functors Ext and Tor. Although in this book we do
not go further into homological concepts, nevertheless at least complexes
and exact sequences are to be presented. Their usefulness appears sub-
sequently in an application in Chapter 12 of this book.

Let R be a ring and let

X2 i1 @

A= .. Ay A —s Ay~

be a sequence of homomorphisms of right R-modules A; 3 A;., finite or
infinite on one or other or both sides. For example A can have the form

A=0-A,—Ar—>As— ...

or
A=, . —5A—5A ,—5A_-0
or P
A=0ASMS W0
where

0-A resp. W0

is, as appropriate to the case, an unambiguously determined R-
homomorphism. Finally the enumeration can also be inverted as for
example in

aq ay (=31

A=, .. A3

Az A1—)O

3.9.1 Definition (a) A sequence A is called a complex : & for every
subsequence of the form
A,'_l _al:l‘) Ai _ai_) Ai+1y
Im(ai_l) > Ker(a,-)
holds.
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(b) A sequence (or complex) A 15 called exact : & for every subsequence
of the form

A5 A5 Ay,
Im(a;_1) =Ker(a;)

holds.
(c) An exact sequence A is called a split exact sequence : & for every
subsequence of the form

i—1 @
A1 — A —> A,

Im(a;-1) =Ker(a;)
is a direct summand of A,.
(d) If A is a complex then the sequence
..., Ker(e;)/Im(a;-1), Ker(ai1)/Im(a;), . . .

is called the homology of A and Ker(a;)/Im(a;-1) is called the ith homology
module of A.
(e) An exact sequence of the form

05ASMSES W0

is called a short exact sequence.
We point out that a sequence A is a complex if and only if (for all
occurring index pairs 7, i — 1)

a1 = 0

holds (for a;a;—; = 0 Im(a;—1) = Ker(a;)).

All of these concepts are mentioned for the sake of completeness; in
this book (in Chapter 12) we shall however only have short exact sequences
to consider. We confine ourselves now to what we need there.

We begin first of all by making clear what it means for the short sequence

0-ALME W0
to be exact. Since the first mapping 0> A has image 0, the exactness of
f
0-> A — M indicates that f is a monomorphism. Since the last mapping

W -0 is the zero mapping with Kernel = W, the exactness of M S woo
indicates that g is an epimorphism. From Im(f)=Ker(g) it then follows
that M/Im(f)=W.
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If A — M then we obtain in particular the short exact sequence
0-A>M5>M/A-O,

where ¢ is the inclusion mapping and v is the natural epimorphism.
The following lemma is needed later.

3.9.2 LeEMMA. Let all modules be right R-modules and let all homomorph -
isms be R-module homomorphisms. Let

0—A-DLMEBW—0

0—B-—>N-—>X—0

be a commutative diagram (i.e. uf = ha and wg = ku are to hold) with exact
rows and let a, u, w be monomorphisms. Then u is an isomorphism if and
only if a and w are both isomorphisms.

Proof. First let u be an isomorphism. Let b € B. Then h(b)€ N and so there
is me M with w(m) = h(b), thus wg(m)=ku(m)=kh(b)=0. Since w is a
monomorphism it follows that g(m) =0, thus m € Ker(g) = Im(f) = there
is an ae A with f(a)=m. Hence ha(a)=uf(a)=u(m)=h(b) and so
h(a(a)—b)=0, and since s is a monomorphism, it follows that a(a) = b,
i.e. a is also surjective and, in consequence, an isomorphism.

Let now x € X be given. Then there is n € N with k(n) =x and so there
is meM with u(m)=n, thus wg(m)=ku(m)=k(n)=x>w is likewise
surjective, thus an isomorphism.

Conversely let now a and w be two isomorphisms and let n € N be given.
Then there is w e W with w(w) = k(n). Consequently an m € M exists with
gm)=w>ku(m)=wg(m)=ww)=k(n)=>k(n—un(m))=0

= there is b € B with A(b)=n—u(m);

= there exists an a € A with a(a) =b;

> uf(a)=ha(a)=h(b)=n—u(m);

= u(f(a)+m)=n, thus w is surjective and consequently is an isomorph-

ism. 0

This proof is a typical example of so-called diagram-chasing. It is clear
that, without the notation of diagrams, this proof would be very obscure.
We direct our attention now to split short exact sequences. Let

0>ADMSWo0
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be an exact sequence. Obviously the splitting of the subsequences
0>A5M and M5 W-o0

is already given, so that the splitting of the given short exact sequence
depends only on the splitting of
AbmEw

i.e., on whether Im(f) = Ker(g) is a direct summand in M.

f
393 LEMMA. Let A=0-A — M — W0 be a short exact sequence.

(a) The following are equivalent:
(1) A splits.
(2) There exists a homomorphism fo: M > A with fof =1 a.
(3) There exists a homomorphism go: W > M with ggo=1w.
(b) If A splits, then fo and g, exist as in (2), (3) resp. so that

0« A ei— ME_weo
is exact and splits.

Proof. (a) “(1)&(2)7: 3.4.11 (1).
“(1)e(3)7:3.4.11 (2).
(b) Let fo: M - A with fof = 1,4 chosen arbitrarily. From 3.4.10 it follows
that

M =Im(f)®DKer(fo) = Ker(g) ®Ker(fo).

From this g|Ker(fo) is an isomorphism.

Let now h: W - Ker(f,) be the inverse isomorphism and let ¢ : Ker(fo) > M
be the inclusion mapping, then let go = th. As M =Ker(g)@Ker(fy) and
since g is an epimorphism every element from W may be written in the
form g(x) with x € Ker(fy). It then follows that

880(g(x)) = gu(hg(x)) = g(x),

thus ggo = 1w and also gog(x) = x, thus Im(go) = Ker(fo). Consequently
0cALME Wweo

is exact and, from ggo = 1w, fof = 14, splits by (a). 0
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EXERCISES

(1)
LetA, LeMg,a:A>L,B>A C>A M>L N<L.

(a) Prove: The following statements are equivalent:

1) aBNnC)=a(B)na(C).

(2) (B+Ker(a))n(C +Ker(a))=BnC+Ker(a).

(3) (BnKer(a))+(C nKer(a))=(B+C)nKer(a).
(b) Prove: The following statements are equivalent:

(1) a " (M+N)=a " '(M)+a \(N).

(2) M nIm(a))+(NnIm(a))=(M+N)nIm(a).

3) M +Im(a)) (N +Im(a)) =M nN)+Im(a).

(2)
Construct an example in which the conditions in 1(a), 1(b) resp. are not
satisfied.

3
(a) Let a module homomorphism ¢:M - N be given and also A = M,
V < N.
Show: ¢ @A)+ V)=A+¢ (V).
(b) Let a module homomorphism ¢: M - N be given and also B = N,
U-—M.
Show: (¢ '(B)nU)=B ne(U).

(4)
(a) Prove: In the category of unitary rings every monomorphism is
injective. (Hint: Use Z[x]= polynomial ring in x with coefficients in Z).
(b) Prove: .:Z—~Q is an epimorphism in the category of unitary rings.

(8)
Determine all composition series of Z/30Z and exhibit all isomorphisms
between them.

(6)

(a) Determine the following groups:

Homz(Q, Z), Homz(Q/Z, Z)
Homz(Q, Q), Homz(Z/nZ, Q)

(b) Show for M e Mr: Homg (R, M) =M.

forneN.
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)
Let A be an additive abelian group and let End(A) be the endomorphism
ring of A, where for @ € End(A) and a€ A aa is the image of a by a.
Further let R be a ring and let

p:R - End(A)

be a ring homomorphism, unitary ring homomorphism resp.
(a) Show: By the definition

ra = p(r)a, acA,reR,

A becomes a left R-module, unitary left R-module resp.

(b) Show: Every left R-module, unitary left R-module resp., rRA with
A as additive group is obtained in the manner outlined above.

(c) Construct an example of an additive abelian group A and a ring R
so that A is a unitary left R-module in two different ways.

(d) Formulate the corresponding relations for right R-modules without
altering the multiplication in End(A).

(8)
Prove: For every vector space Vi the endomorphism ring End(Vk) is
regular (for the definition see Chapter 2, Exercise 13).



Chapter 4

Direct Products, Direct Sums, Free Modules

In the structure theory of modules we attempt, on the one hand, to
reduce a given module to simpler modules by means of additive decomposi-
tion or residue class decomposition. On the other hand we endeavour to
construct new modules from given modules. Obviously this construction is
not arbitrarily undertaken; a guiding principle is the question of modules
with known universal properties. We have already become acquainted with
such universal properties in respect of products and coproducts in categories
(1.5). Products and coproducts are now to be investigated in the category
of modules.

4.1 CONSTRUCTION OF PRODUCTS AND COPRODUCTS

We begin by recalling some known set-theoretic concepts. Let (A;|i e I)
be a family of sets A; with index set I # J. Then the product [[ A; of the
family (A;|i € I) is the set of the mappings iel

a:I->|JA;

iel

with a(i)e A, forall ie I.

Notation
(1) a; = a(i) is called the ith component of «.

(2) (@) = (a(i)) = a.
Thus we obviously have for (a;), (a;) e [] A::

iel
(a;))=(a})eViella;=ai]l
80
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We observe that I need not be countable. If however I is countable, say
I={1,2,3,...}, then the notation

(a1a2a3 L) = (ai) =a
is also used. If I is finite, say I ={1,2, ..., n}, then let
(a]az e au) = (ai)za‘

If now A; € Mg holds for all i € I then, by a componentwise definition, [] A;
iel
becomes a unitary right R-module.

4.1.1 Definition. Let (a;), (b;)e [1 Ai, reR.
iel
Addition: (a;)+(b;) == (a; + b;).
Module multiplication: (a;)r = (a;r).
If again we write a = (a;), B = (b;) then instead of the above we have

(a+B)i)=a)+pG), iel

(ar)(i) = a(i)r, iel

The proof, that with respect to this definition [[ A; is an object from Mg,
iel
is trivial. In particular the zero mapping

I>i ’—)O,‘ € U A,‘,
iel
where 0; is the zero of A,, is the zero element of [|A; and —a = (—a;) is
the element inverse to a = (a;) with respect to addition.

4.1.2 Definition. An element (a;)e[] A; is said to be of finite sup-
iel
port: & the set of the ieI with a; #0 is finite (where the empty set is
considered also as finite).
We see then from the criterion for submodules that the set of all elements
from [] A; of finite support is a submodule of [] A..

4.1.3 Definition
(1) If (A;li e I) is a family of objects from Mg then [] A; e Mg is called
the direct product of the family (A;|i € I). el
(2) The submodule of all elements of finite support of [] A; is called
iel
the external direct sum of the family (A;|i € I') and is denoted by [ A..

iel
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4.1.4 Remark. If I is finite then we have

HA,'ZLIA;.

iel iel

In 1.5 we had defined in an arbitrary category the product and coproduct
of a family of objects. We now have to show that the direct product, direct
sum resp., is, together with a certain family of homomorphisms, the product
in Mg, coproduct in Mg resp.

For je I we consider the following mappings:

mi: [1 Ais(ai)—a;e A

iel

o: 11 Ais(a)—(a)ell A

iel iel
0 fori#j
tAisa—acl]] A, with a; (i ={ ..
i 5= 4 Iiléll i) a; fori=j

We then easily verify the following properties.

4.1.5 LemMA
(1) m; and mo are epimorphisms.
(2) m; and om; are monomorphisms.

1Ai fork=j
(3) ”""’7":{ 0 fork#j

@) (onm)’ = onym, (nymo)’ = nmo.

5) If1={1,2,...,n}then

2 n
()" = mym; Al pa, = 'Zl N
P

4.1.6 THEOREM

(1) (H A, (mlie I)) is a product of the family (A;|i e I) in the category
iel
Mg, i.e. for every object C from Mg and every family (yiel) of
homomorphisms
Vi C- A,‘, iel
there exists exactly one homomorphism

‘y:C-»HA,-

iel
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satisfying
Yi = mY, iel

(2) ( I A, (nilie I)) is a coproduct of the family (A;|i € I) in the category

iel
Mg, i.e. for every object B from Mg and every family (BilielI) of
homomorphisms

B,'IA,'")B, iel

there exists exactly one homomorphism
BI H A, -»B
iel
satisfying
Bi=PBn, i€l

Proof. (1) We exhibit the desired y: C > [] A;: Let

iel
y(c) = (vi(c)) e [T Aq forceC.
iel

Then vy is a homomorphism and we have

(miy)(c) = m(v(c)) = v,(c), ceC,

thus y, =myy, jel
Uniqueness of y: Let also y': C - [] A; with y;(c) = (my')(c) = m;(¥'(c)),

iel

then it follows that
y'(c) = (vi(c)) = v(c),

thus y'=y.
(2) We can again give the desired 8: [| A; - B explicitly: Let
iel

B((a))) =¥ Bi(a:) e B,

where the sum runs over only the i € I with a; # 0; from the definition of
11 A; the sum is thereby meaningful (the sum over the empty index set is,
as always, put equal to 0).

The B is a homomorphism, and we have

(Bni)(a;) = B(a;) =B;(a;),
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thus
Bi = B"]i, je I

Uniqueness of B: Let also 8': [[ A; » B with 8; = B, then it follows that
iel
B(a;) = Bi(a;) = B'n;(a;) = B'(a;)
and since every element from [] A; is a sum of finitely many a;, we deduce
that 8 =3". 0

The following notational device is common and we also employ it.

4.1.7 Notation. Let I be a non-empty set and let A € Mg. Then let
Al =T] A with A;=A foreveryiel

iel

A":=1] A  withA,=A foreveryiel
iel
We call A', A" resp., the direct product, the direct sum resp., of I copies
of A.

4.2 CONNECTION BETWEEN THE INTERNAL
AND EXTERNAL DIRECT SUMS

In 2.4 the internal direct sum was introduced and in the preceding chapter
we have defined the (external) direct sum. We are about to show that these
concepts are not essentially different from one another so that in what
follows they can mostly be identified without leading to misunderstanding.

Thus we have the monomorphism

ni: Ajsa;—ael] A,

iel

where
(0 fori#j
a;(i) ={ L
a; fori=j
following on from 4.1. Let A} = n;(A;), then A; is a module isomorphic
to Ai'
In the case that [ is the set {1,2, 3, ..., n} it follows that

a,~=(0...0a,0...0),
1 jth place
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and also
A;={0...0a0...0)a eA;}

4.2.1 THEOREM. Let (A;|li € I) be a family of R-modules. Then we have:
A =PA, and A,=A),
iel iel

in other words, the external direct sum of the A; is equal to the internal
direct sum of the submodules A; of 11 A; isomorphic to the A..
iel

Proof. From the definition of the A; we have Y A< [] A, Let now
iel iel
0#(a;)ell A;andleta; #0,...,a; #0, whereas a; =0 for all other i € I,
iel

then it follows that

(a,‘)e./4;l +.. .+A;", thus z A; = ]_I A,‘.

iel iel
Let
(a;)eA}nZ.A§:>a,~=0 fori#j
it
and
a; =0:>(a,) =0.
As asserted above, we have finally A; = A}, where a;— n:(a;). a

Warning. In the following the isomorphic modules A; and A; are usually
identified and so A; is written in place of A;. Moreover on account of
Theorem 4.2.1, the distinction between internal and external direct sums
is often dropped and in both cases @ A, is written and called the direct
sum. In the absence of any indication it is to be determined from the
context which particular direct sum is being considered.

4.3 HOMOMORPHISMS OF DIRECT PRODUCTS AND SUMS

Let (A;|i € I), (B:]i € I) be two families of A;, B; € Mr. Further let (a;|i € I)
be a family of homomorphisms

a,-:A,-)B;, iel
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Under these assumptions we have

4.3.1 'LEMMA.The mappings defined by,
[T a:: [T Ai 3 (ai)—=(ai(ai)) e [] B,
iel

iel iel
Pai: DA >(a)—>(ai(a;)e® B
iel iel iel
are homomorphisms with
(1) 1 @; is mono @ a; is mono Vi eI [a; is mono];
(2) [T aiis epic>P a; is epi>Viel [a; is epil;
3) Maiis isoo@ a; is isoViel [a; is iso).

Proof. Exercise for the reader.

4.3.2 LEMMA. Assumptions as above. Let further

u: Ker(a;)3a;7—>a; € A, .
U:Ima)sb—obeB, T
then the following are isomorphisms:

(1) TI Ker(ay) 3(a,-)'——>(L;(a,~))€Ker(H ai).

iel iel

(2) @D Ker(a)3(a)—>(ula) e Ker(@ a,-).

iel iel

(3 T Im(e)3 (6 (! (b)) e Tm( T a).

iel iel
(@) @lmla)3 (b (b)) € Im( D).
iel iel
Thus
iIGII Ker(a;) = Ker(il;ll a;) , 163 Ker(a;) = Ker(@ ai)
I Im(a) =Im( I ), @ Im(a) =1m(@ ).

Proof. Exercise for the reader.

4.3.3 LEMMA. Let the families (A;|i € I), (B,|j € J) be given, then
Homs(@ A, 1 B) 3¢ (men)e Tl Homa(4, B)

iel jeJ (i.jleIxJ

is a group isomorphism.

4.3
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Proof. 1t is clear that a group homomorphism is involved. It remains to
prove:

“Mono”: Let 0 # ¢ € Homgr (D A; [] B;). Then there exists
(a)e@A; with ((a;) #0.

Since (a;))= Y a; we have o((a))) =@ (X a;)=Y ¢(a;)) #0

a;#0
= there exists { with ¢(a;) = ¢n:(a;) =0;
= there exists j with men;(a;) # 0= mien; # 0.
“Epi”: Let (a;;) €[] Homg(A;, B;). To a fixed i€l and to the family
(ajilj € J), where a;;: A; > B, there is then associated by 4.1.6 a homomorph-
ism B;: A; > [] B; so that

jeJ

A,
B,l i
1B,— B,

; U

is commutative.
To the family (B;|i € I') there then corresponds by 4.1.6 a ¢: P A;>[] B;,
so that

@A,'——w—) rIB,

is commutative. Then follows a;; = m;8; = mjpm; from which the assertion
follows. a

Special cases

Home(@ A, B) =TT Homg(4, B),  where o> (en).

iel iel

HomR(A, 1 Bi) =[] Homg(A, B;), where ¢ —(mp).

jeJ jeJ
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4.4 FREE MODULES

In 2.3.5 a basis of a module was defined as a free generating set. Modules
that possess a basis can be characterized in the following manner.

4.4.1 LEMMA. Let F = Fg. Then the following conditions are equivalent:
(1) F has a basis.
(2) F=@AiAVi€I[RREA1].

iel

Proof. We remark first of all that (1) and (2) are satisfied for F =0, in fact
with & as basis and I = (. This follows by convention that the sum

over the empty set is equal to 0. We can therefore assume that F # 0,
“(1)=>(2)”: Let X be a basis of F and let a € X. Then

@a:Rror—areRr

is evidently an epimorphism. Further, from the property of a basis, it follows
from ar = 0 = a0 that r = 0 and so we obtain an isomorphism. We claim that

F=@® aR.

aeX

Since X is a basis, X is also a generating set and so we have F= Y aR.

aeX
For ape X let
ceaoRnN Y aR,

aeX

a#ag
then there exist distinct a,,...,a,€X, a;#ao and rg, 1, ..., r, € R with

n
c=aoro= Y airn, > aoro+Yai(-r)=0.

i=1

Thus from the property of a basis 2.3.5 (4):

r0=r1=...=r,,=0$a0Rr\ Z aR=O,
hence
F=@ aR.
aeX

“(2)=>(1)”: Let ¢: Rg = A; be the isomorphism which we are supposing
to exist. We claim that {¢;(1)|i € I'} is a basis of F. From

A; = 40:‘(R) = <Pi(1 “R)= <Pi(1)R
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we have
F=@ A =@ ¢:(1)R,

iel iel
thus {@;(1)|i € I} is a generating set of F. Let I' = I, I' be finite and
X @i(Hri=0.

iel'
Then it follows from 2.4.2 for all i e I
ei(Dri=¢i(r)=0

and, since ¢; is an isomorphism, 7, = 0, thus {¢;(1)|i € I} is in fact a basis of
F. O

4.4.2 Definition. A module F, which satisfies the conditions of 4.4.1, is
called a free module.

4.43 LEMMA. Let I be a set. Then R is a free R-module with a basis
having the cardinality of 1.

Proof. We consider the family (A;|i € I) with A; = Rg for all i e I. Then it
follows from 4.2.1 that

@i
RP=11A;=@A, with Rp=A,=A.

iel iel
As shown previously it follows that R ' is free and has {e:(D]iel} as a
basis.
It is pertinent to recall (see 4.2) thatin the case I ={1, 2, ..., n} we have

0i(1)=(0...010...0)

i.e. {¢:(1)]i=1,..., n}is then the “canonical basis of R

nsy

4.4.4 CorROLLARY. Every module My is the epimorphic image of a free
right R-module. If My is finitely generated, then Mg is an epimorphic image
of a free right R-module with a finite basis.

Proof. Let Y be a generating system of M. Then we consider the free module

R =@ @(1)R.

beY
From

R 3Y ¢y(1)ry—>Y brye M

and by virtue of the uniqueness of the representation by the basis in R‘*’
an epimorphism is then defined. O
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4.4.5 Notation. We have denoted the basis of R’ by {¢;(1)|i € I} but in
the following we are not to be confined to this notation. Obviously it can
also be denoted by any other set, which has the cardinality of I, e.g. by I
itself.

M=@IR.

iel

We point out another important property of free modules which later
(in the case of projective modules) plays a fundamental role.
4.4.6 THEOREM. If

@:Ar~>Fr
is an epimorphism and if Fy is free then ¢ splits. (Definition see 3.4.8).
Proof. Let Y be a basis of Fr and to every b € Y let a, € A be chosen with
¢@(ap) = b. Then the mapping
@' F3Y bry—Y ayrcA

is an R-homomorphism (since Y is a basis).
Thus we have

0" (X bry) = (X avrs) =X @(ap)r, =% brs,
thus ¢¢' = 1 and consequently
A =Im(p")®PKer(p). O

4.5 FREE AND DIVISIBLE ABELIAN GROUPS

Every abelian group can be considered in a natural sense as a Z-module,
so that all module-theoretic concepts are applicable to abelian groups.
Accordingly an abelian group is called free if it is free as a Z-module, i.e.
if it is a direct sum of copies of Zz.

If, in the following, the discourse concerns groups, then it is always to
be additive abelian groups that are involved.

4.5.1 Definition. A group A is called divisible : &
VzeZ[z#0>Az=A]

4.5.2 LEeEMMA. Every epimorphic image cof a divisible group is divisible and
consequently every factor group of a divisible group is divisible.
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Proof. Let A be divisible and let
®.A->B

be an epimorphism. Then we have for 0# 2z € Z,

Bz =®(A)z =P(Az)=D(A)=B,
thus B is divisible. 0

4.5.3 LEMMA. The direct product and the direct sum of divisible groups
are divisible.

Proof. Let (A;JieI) be a family of divisible groups. Then we have for
0#zeZ

(ma):=11a=)-11 4,

iel iel iel
(@ Ai)z =@ (Az)=D A,
iel iel iel

as we immediately deduce from the definition of the direct product and
the direct sum. a
Examples: @ and Q/Z are divisible groups. Z is not divisible.

4.5.4 THEOREM. Every abelian group can be mapped monomorphically
into a divisible group.

Proof. Let A be an abelian group. From 4.4.4 there is a free abelian group
F and an epimorphism.

b:F->A.
If we put x == x + Ker(®) then
®:F/Ker(d)sx—P(x)e A
is an isomorphism (3.4.1). Let Y be a basis of F = Fz, then we consider

D=Q"=@ »Q.
beY
Since Qz = bQz, bQ7 is divisible and then from 4.5.3 so also is D. Since F =
@ bZ F is a subgroup of D. Then Ker(d) is also a subgroup of D and
from 4.5.2 D = D/Ker(®) is also divisible.
Let now
¢ F/Ker(®)sx—xeD
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be the inclusion mapping, then @' ' is the desired monomorphism of A
into the divisible group D. a

We now prove the theorem dual to 4.4.6 which shows that divisible
groups are injective Z-modules (definition in next chapter).

4.5.5 THEOREM. If
¢:Dz~> Bz

is a monomorphism and if Dy is divisible, then ¢ splits (i.e. Im(p) is a direct
summand in B).

Proof. By 4.5.2 Im(¢) is divisible, so that without loss we can consider D
to be a submodule of Bz and ¢ =¢ to be the inclusion mapping. Let then

I''={UlU>BADNU-=0}.

Since we have U =0¢€T, I'# J; since further the union of every totally
ordered subset of I' (under inclusion) is again an element of T', there is by
reason of Zorn’s Lemma a maximal element in I', which is again to be
denoted by U. As a result we then have

D+U=D®U - B,

and it is to be shown that B=D® U.

For an arbitrary b € B we consider the ideal z¢Z consisting of the ze€Z
with bze D+ U. Let bzo=d+u. Since D is divisible there is a d, with
dozo=d=>(b—do)zp = u. Evidently z,Z is then also the ideal of the ze€Z
with (b —dy)ze D+ U.

We claim that

Dﬁ(U"i‘(b—d())Z):O.

Assume
di=u1+(b—dy)z1e D (U +(b—dy)2).
Then
(b—do)zi=di—u,eD+U
and so
zZ1=2z¢t tel.
Then

(b —d())Zot =ut= dl —U.
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Then
0=d1—(u,+ut)=>d1 =0.

From the maximality of U it follows that (b —do)Z > U=>b—-doe U>be
D + U. Thus we have in fact, B = D @® U, which was to be shown. 0

4.6 MONOID RINGS

As a further example of the application of free modules we introduce
here the monoid ring. Let G be an arbitrary, multiplicatively written,
monoid, i.e. G is a set with an operation G X G 3(a, b)-> ab € G, which is
associative and in which there exists a neutral element e. Further let R be
an arbitrary ring.

In the sense of 4.4.5 let

GR = @ gR,
geG
where G is itself thus taken as a basis. We observe that then g1 =g for
g€ G, 1eR holds (g stands in the place of ¢,(1) in the sense of 4.4.5).

By means of a definition of a multiplication GR is now to be made into

a ring (with unit element).

4.6.1 Definition. Let T, T' be finite subsets of G. For
Y & Y g'ryeGR

geT g'eT’

let then

( ) grg)( X g'r;') = ¥ gg'rere.
geT g'eT’ geT

geT
This definition means: In GR for a product of elements from G the product
is taken in G and for such a product of elements from R the product in
R is taken; in other respects we calculate distributively and the elements
from R and G are permutable.

Remark. On the right side the same monoid element in ) .gg’r,r; can occur
many times in the form gg’; in general this is therefore not a representation
by a basis. A representation by a basis ensues if by distributivity we collect
together basic elements:
Y gg'rge= Y bs, with s,= ¥ rgre.

beTT'

geT 8g'=b
g'eT geT.g'eT’
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For a finite monoid G ={g,, ..., g.} the definition can be written in the
following form:

n n n n
13 12 .
(Z gm)(Z gi"i)= Y oggrri= Y gSk With sg= Y rr.
i=1 j=1 ij=1 k=1 8igj =8k
ij=1,..., n

It is easy to verify that, under the given definitions, GR is a ring. The
associativity follows from that in G and in R and the distributivity follows
from that in R. Let ¢ be the identity (=neutral element) of G, then e =¢1
is the unit element of GR, as follows immediately from 4.6.1.

4.6.2 Definition. GR is called the monoid ring of G with coefficients in
R. If G is a group then GR is called the group ring of G with coefficients
in R.
If we consider the subring eR of GR then the mapping
eR3er—reR

is a ring isomorphism, and ¢R is usually identified with R ; for the 1-element
of the group ring e1 (with 1 € R) we then write 1.
Finally we point out that by putting

ry.gro=ery gro=2y grr, rerR
GR becomes a left R-module, for which G is again a basis. Since GR is
an eR-GR-bimodule, GR is also an R-GR-bimodule. If R is commutative
GR is then an R-algebra (see 2.2.5).
Ring-theoretic, module-theoretic, group theoretic and—for deeper con-
siderations—also arithmetic concepts are involved in the investigation of

group rings. This many-sidedness makes this area particularly interesting
and stimulating.

4.7 PUSHOUT AND PULLBACK

Let:
a:A-> B, ¢:A->M
be two given homomorphisms with the same domain.
With respect to many problems, which we shall later encounter, the
question arises as to whether we can incorporate these homomorphisms
in a commutative square:

A—* B

*) e 8
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We wish to show that this is possible in a non-trivial way and indeed with
a “‘universal” pair ¢, B i.e. with a pair such that over the pair every other
commutative ‘“‘completion of the square” of «, ¢ can be factorized.

Obviously the dual question also arises as to whether for a given ¢, B
with the same codomain there exists a ‘“‘universal” commutative ‘“‘comple-
tion of the square’. Here, too, the answer is positive.

In the first case the solution is called a pushout, in the second case a
pullback.

4.7.1 Definition. Let the commutative diagram (*) be given.

(1) The pair (¢, B) is called the pushout of the pair (¢, a) : & for every
pair (¢', B") with ¢': M > X, B': B> X and ¢'¢ = B'a there is precisely one
o:N->X with¢' =0y, B'=0pB.

(2) The pair (¢, ) is called the pullback of the pair (¢, B) : & for every
pair (¢, @'y with ¢": Y > M, a': Y > B and o' = Ba’ there is precisely one
T:Y> A with o' =971, a' =ar.

We clarify the situation in the corresponding diagrams:

A
M

Before we prove the existence of pushouts and pullbacks, we establish
their uniqueness.

.—a_)B

Bl
‘ SN
AN

—_—

M—Y N

4.7.2 Remark. Pushouts and pullbacks are for given (¢, a), (¢, B) resp.,
uniquely determined up to isomorphism.

Proof. Let (¢, B) and (¢', B') be two pushouts for (¢, a). Then in addition
to o: N - X there also exists p: X > N with ¢ =py’, 8 =pB’. For po:N >N
we have ¢ =py'=poy, B =pB' =poB. Accordingly from the prescribed
uniqueness it follows that po = 1, correspondingly we obtain op = 1y, thus
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o and p are isomorphisms inverse to one another. The statement for the
pullback follows dually. 0

In the following we denote elements from M @ B by (b, m) and elements
from (M @®B)/U by (m, b).

4.7.3 THEOREM
(1) Let the pair (¢, a) be given with
¢:A->M, a:A->B.
Let
N:=M®B)/U with U ={(¢(a),-a(a))lacA}
and let v
v: M>3m—(m,0)eN, B:B3b—(0,b)eN,
then (¢, B) is a pushout of (¢, a).
(2) Let the pair (i, B) be given with
Y:M-> N, B:B - N.
Let
A={(m,b)lmeMnrbeBnAy(m)=B(b)}
and let
¢:As(m,b)y—»meM, a:A>s(m,b)—beB,
then (¢, @) is a pullback of (¢, B).
Proof. (1) First of all it is clear that U is a submodule, that N is a factor
module of M @B and that ¢ and 8 are homomorphisms with ¢ = Ba.
Let now ¢', B' be given as in 4.7.1. We define o:N->X by

a((m, b)) = ¢'(m)+B'(h). In order to prove that o is a mapping it suffices
to show that for (m, b) € U we have o ((m, b)) =0:

o((e(a), —a(a)) =y'¢la)-B'ala)=0

since ¢'¢ =B'a. It is again immediately clear that the mapping o is a
homomorphism and that o = ', o8 = B'. It remains to show the unique-
ness of o. Suppose we also have ¢' = o1y, B' =018 for o1: N > X. Then it
follows that

(oc—o)y¥ =0, (o0—01)B =0,
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thus
0=(oc—a)y(m)=(o—0o1)((m,0)),

0=(o—-01)B(b)=(0—-01)((0,b)).

Since {(m,0), (0, b)lme M rbe B} is a generating set of N, for which
o — o is the zero mapping, it follows that o —o; =0. This completes the
proof for the pushout.

(2) The proof for the pullback proceeds dually. We merely put7: Y > A:

T(y) = (¢'(y),a'(y)), yeY
and establish the uniqueness of 7. Let (7 —,)(y) = (m, b), then it follows
that

O=@(r—1)(y)=¢(m,b)=m
O0=a(r—7)(y)=a(m,b)=b,

thus (r—7)(y)=0,i.e. 7—7,=0. O

In the following we use the pushout and the pullback as they are already
given explicitly in the theorem. The following theorem is of use for the
definition of injective modules in the next chapter.

4.7.4 THEOREM. Let (¢, B) be a pushout of (¢, a). Then we have:
(1) a is mono=> ¢ is mono, « is epi=> ¢ is epi;
¢ is mono=>B is mono, ¢ is epi> B is epi.
(2) Let a be a monomorphism, then we have: Im(y) is a direct summand
in N &there exists a k: B> M so that ¢ = ka:

(4.7.5) A————B

M———>N

Proof. (1) Let @ be a monomorphism and let ¢(m)=(m,0)=0. Then
there is a € A with (m, 0) = (¢(a), —a(a)). Hence —a(a)=0>a=0>m =
¢(a)=0.
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Let a be an epimorphism and let (m, b)e N, then there is a € A with
b =—a(a) and so
y(m—e(a))=(m—e(a),0)
=(m—¢(a),0)+(p(a), —a(a)) = (m,b),

thus ¢ is also an epimorphism.
Correspondingly for the second line in (1).
(2) Let Im(¢) be a direct summand in N:

Since a is a monomorphism, from (1) ¢ is also a monomorphism and
consequently ¢ induces an isomorphism ¢o: M - Im(¢). Let : N > Im(¢)
be the projection arising from N = Im ¢ @ Ny, then « = ' 73 fulfils what
we require:

ra(a)=yo mBa(a) = o mbe(a) = s m(e(a), 0) = ¢(a).
Conversely let « be given with ¢ = ka. Then we consider
& Na(m,by—»m+x(b)eM.

As &(e(a), —a(a)) =¢(a)—«a(a) =0 this is a mapping and then also a
homomorphism. As &p(m)=¢£&((m,0))=m we have &f =1, thus we
deduce as asserted: N = Im(¢) @D Ker(¢). ]

We come now to the dual theorem which leads on to the definition of
projective modules.

4.7.6 THEOREM. Let (¢, @) be pullback of (¥, B). Then we have:
1)
B is mono = ¢ is mono, B is epi= ¢ is epi,
¢ is mono=> « is mono, Y is epi=> «a is epi.

(2) Let ¢ be an epimorphism, then we have: Ker(a) is a direct summand
in A& there exists a «: M - B so that B = Y« :

4.7.7) A—" B
. Y e
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Proof. Since the proof proceeds dually to that of 4.7.4, we shall be brief.
(1) Let ¢ be an epimorphism. Let b € B, then there is an m € M with
Y(m) = B(b). Thus it follows that (m, b)c A and a((m, b))=>b, i.e. a is an
epimorphism. Correspondingly in the other cases.
(2) Let Ker(a) be a direct summand in A:

A =Ker(a)PA,.

Since, like ¢, « is also an epimorphism, a¢ = «|A is an epimorphism. Let
t: Ag— A be the inclusion, then k ‘= ¢tag ! fulfils what we require:

Y (b) = Yo (v’ (b)) = Bawag' (b) = B(b).
Conversely let k¥ with ¢« = 8 be given. Then we have for
n:B3b—(k(b),b)eA
an = 1g from which A = Ker(a)®Im(n) follows. ]

4.8 A CHARACTERIZATION OF GENERATORS
AND COGENERATORS

In 3.3 we became acquainted with generators and cogenerators. For
these a further characterization follows.
We preface these considerations by a lemma which is also itself of interest.

4.8.1 LeMMA. Notations as in 4.1

(a) For every homomorphism ¢: [] A; > M we have:

iel

Im(y) = ZI Im(ym;).

(b) For every homomorphism : M - [] A; we have

iel

Ker(y) = Ker(my).

iel

Proof. (a) As a consequence of the finiteness of the values of the

elements of the coproduct every element from [ A; may be written as a
iel
finite sum

Z’ n,-(a,-) with a; EA,'
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Then it follows that

¢ ni(a)) =Y ymi(ay),

thus we have

Im(¢) = X Im(yn,).

iel

Conversely if m € Y Im(¢m;) then m may be represented as a finite sum

iel
m=Y"¢mi(a;) = Q' nia:)), a, €A,
From this it follows that m € Im(y), thus we also have

‘ZI Im(yn,) < Im(¥).
(b) If meKer(y), then it follows immediately that m € Ker(my) for
every i € I, thus we have

Ker(¢) < (" Ker(map).

iel

Conversely let m €( ) Ker(m). Then this implies that all components of
¥ (m) are equal to 0, thus we have (m) =0 and it follows that

M Ker(map) = Ker(y). a

iel
We come now to the characterization of generators and cogenerators.

4.8.2 THEOREM
(a) The following conditions are equivalent:
(1) Bg is a generator.
(2) Ewvery direct sum of copies of B is a generator.
(3) A direct sum of copies of B is a generator.
(4) Every :nodule My is an epimorphic image of a direct sum of copies
of B.
(b) The following conditions are equivalent:
(1) Cr is a cogenerator.
(2) Every direct product of copies of C is a cogenerator.
(3) A direct product of copies of C is a cogenerator.
(4) Every module Mg can be mapped monomorphically into a direct
product of copies of C.
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Proof
(a) (1)), (1)e(3) follow from 3.3.2.
“(1)=>(4)": Let

B, with B,=B forall ¢<cHomg(B,M),

¢eHomg(B.M)

then we consider the homomorphism

/8 B,-> M,
¢eHomg(B,M)
which is defined by

w((b,)) = ) @(by).

b, component in (b,,)
by #0
Since in (b,) only finitely many b, # 0, the sum appearing on the right is
meaningful. There then follows from 4.8.1
Im(y) = z Im(¢) =M,
eeHomg (B,M)
thus ¢ is an epimorphism.
“(4)=>(1)": Conversely if there is an epimorphism
¢: 11 Bi-M, with B;=B forall iel
iel
and if n; is the ith inclusion of B in [] B;, then we have ¢n; € Homg (B, M)
as well as, from 4.8.1,

M=Im@)= % Im@m)> 5 Im(g) M,

¢eHomg(B,M)
thus
> Im(e) =M,
¢e€Hompg(B,M)
i.e. B is a generator.
(b) (1)(2), (1)(3) follow from 3.3.2.
“(1)=>>(4)”: Let now

C, withC,=C forall ¢e€Homg(M,C),

¢eHomg(M,C)

then we consider the homomorphism

d/:M_> H C‘Pa

¢eHomg (M.C)

which is defined by
Y(m)=(c,) with ¢, :=¢(m) forall ¢e€Homg(M,C).
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For m € Ker(¢) it follows that
me M Ker(p)=0,

¢eHompg(M,C)
thus ¢ is also a monomorphism.
“(4)=>(1)”: Conversely if there is a monomorphism

Y:M->J] C, with C=C forall i€l

iel

and if 7; is the ith projection, then we have 7y € Homg (M, C) as well as,
from 4.8.1,

M Ker(p) > Ker(my)=Ker(¢) =0,
iel

¢eHomg(M.C)

thus
M Ker(e)=0,
¢eHompg(M,C)
i.e. C is a cogenerator. u]
EXERCISES
1)
Show:

(a) For a homomorphism a: A - B the following are equivalent:
(1) Ker(a) is a direct summand of A and Im(«) is a direct summand
of B.
(2) There is a homomorphism B: B - A with @ = afa.
(b) How is the equivalence simplified if « is a monomorphism or an
epimorphism?

(2)

Give examples for a family of modules (A;|i € I) and a module M with

HomR(H A, M) £ [] Homg (A; M)

iel iel
resp. HomR(IVI, EBA;) z@HomR M, A))
(# means ‘“‘not isomorphic as additive groups”’).
3)

(a) Let Mg # 0 be a module with Mz =Mz @ Mg and let § := End(My).
Show: For every n €N a basis of Ss exists with n elements.
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(b) Construct an example of a module M # 0 with M =M @M and for
every n € N a basis of Ss with n elements.

(4)
Show: A ring R # 0 is a skew field if and only if every right R-module is free.

(5

Show: 4.4.6 holds also for direct summands of free modules.

6)

(a) Show: If B:Br—>Cg is an epimorphism, if ¢:Fr->Cgr is a
homomorphism and if Fx is a free module, then there is a ¢': Fr - Bg with
¢ =B

(b) Show: (a) holds also if Fx is replaced by a direct summand of a free
module.

(M
(a) Show: If

A———— 5B

M—————— N

is a pushout of (¢, @) then there is an isomorphism 7: B/Im(a)-> N/Im(y),
so that

B———— B/Im(a)

N———— N/Im(y)

is commutative (v is, as appropriate, the natural epimorphism).
(b) Formulate and prove the dual statements.

8)
Let R be an integral domain with quotient field K. A module M is called
divisible if, for every 0# r € R, Mr = M holds. Show:
(a) The class of divisible R-modules is closed on taking factor modules,
products and coproducts.
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(b) The only divisible submodules of K are 0 and K.
(c) R # K > every divisible, cyclic R-module is 0.

9)
Let R be an integral domain. Show:

(a) Mg is then divisible if and only if to every cyclic ideal A < R and
to every homomorphism ¢ : Ag - Mz there is a homomorphism ¢': Rg > Mg
with ¢'|A = .

(b) If for fixed Mg and arbitrary Ng every homomorphism ¢: Mg > Ng
splits, then My, is divisible.

(10)
(a) Let T be a divisible abelian group.
(1) Show: If finitely many, arbitrary elements are omitted from an
arbitrary generating set of T over Z, then the set of the remaining
elements is still a generating set (see also 2.3.7).
(2) Show that T contains no maximal subgroup.
(b) Show: an abelian group which has no maximal subgroup is divisible.
(c) Give an example of a divisible abelian group, which contains a simple
subgroup.

11)
For an abelian group A the torsion subgroup T(A) is defined by
T(A)={alacAr3zeZ[z#0nraz=0]}.

Show:

(a) A is divisible=> T(A) is a direct summand in A.

(b) A is divisiblea T(A)=0=> A is Z-isomorphic to a direct sum of
copies of Q.

(Hint: A may be made into a Q-vector space.)

12)
Let p be a prime number and let

Q, = [%lZEZAnEZ}.

Show:
Q/z= & Q,/z.

Prime p

13)
Let G be a group, R aring and GR the group ring of G with coefficients
in R.
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(a) Show: For Ygr,, Y.g'r'»€ GR a new left GR-module structure is
defined on GR by

(ere) o (Sg'r'e) = Tgg'g ' rer's.
(b) Use (a) in order to give an example of a module which as well as

being a left GR-module is also a right GR-module but which is not a
GR-GR-bimodule.

(14)
A module My is called (von Neumann) regular if every cyclic submodule
is a direct summand. Show:

(a) In a regular module every finitely generated submodule is a direct
summand.

(b) Rr is regular<> Rg regular&to every r€ R there is an r'€ R with
r=rr'r (see also Chapter 2, Exercise 13).

(c) If R is regular then every free right R-module is regular.

(Hint: If {x,|i € I} is a basis of Fr and if x € Fx, consider the left ideal of
R which is generated by the coefficients of x in the representation of the
basis and which from (1) and (2) is of the form Re with e = ¢; this is used
to find a projection F - xR.)



Chapter 5

Injective and Projective Modules

Injective and projective modules or, more generally, injective and projec-
tive objects in a category, play an important role in the later development
of algebra. It is therefore advisable to become familiar with these concepts
at the earliest opportunity in order to give due emphasis to the resulting
point of view in further considerations. Here we shall present the general
properties of injective and projective modules. We shall return many times
to these concepts.

As a tool for the investigation of injective and projective modules we
need large and small submodules as well as complements. These concepts
are essentially needed also in other respects (as e.g. with respect to the
radical and the socle) and are to be investigated here somewhat further
than would be necessary for the considerations of this chapter.

5.1 BIG AND SMALL SUBMODULES

5.1.1 Definition
(a) A submodule A of a module M is called small (= superfluous) in
M, notationally A < M, respectively large (= essential) in M, notationally
ASM: &
VU>M[A+U=M>U=M]
resp. VU > M[AnU =0=>U =0).

(b) A right, left or two-sided ideal A of a ring R is called small resp.
large in R : & A is a small, resp. large, submodule of Rg, rR or gRg.
(¢) A homomorphism « : A > B is called small, resp. large : &

Ker(a) © A resp. Im(a) ¢ B.

106
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Remark. We obtain immediately from the definition:

(1) ASMOSVU o> M[A+U » M].

2) ASMSOVU >M U#0ANU#0].
3) M#0AASM>A#M.

4) M#AOAADBM>A#0.

5.1.2 Examples
(1) For every module M we have: 0% M, M & M.
(2) A module is called semisimple if every submodule is a direct summand
(see Chapter 8).

M is semisimple =0 is the only small submodule of M and M is the only
large submodule of M.

Proof. A > M => there exists U > M with AQU =M. If A< M then
U=MandsoA=0.If A% M then U=0andso A=M. O

(3) Let R be a local ring (see Chapter 7), but not a skew field and let A
be the two-sided ideal consisting of the non-invertible elements of R. Then
A #0 (since R is not a skew field) and A is the largest proper right, left
or two-sided ideal of R (see 7.1.1). It follows therefore that A is small
and (since A # 0) large in Rg, rR and xRy resp.

Example of a local ring:

R=2/p"Z, A=pZ/p"Z, p = prime.

(4) In a free Z-module only the trivial submodule 0 is a small submodule.

Proof. Let
F= @ X,'Z
iel
be a free Z-module with basis {x;|i € I}, A>F, ac A and let
a=x,zy+t...+X; Zm, el

with z; #0. Let n € Z with GCD (z;, n)=1and n>1 (e.g. let n be a prime
p not dividing z,). Put

U= @ x,-Z+x,-an,
i
then it follows that aZ + U = F, hence certainly A+ U = F with U # F.
In particular the only small ideal of Z is 0. However every ideal #0 is
large in Z, for if aZ and bZ are two ideals #0 then we have 0#abe
aZ~bZ.
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(5) Every finitely generated submodule of Qj is small in Qz. For the proof
letgi,...,q,€Q and let U <= Qz with

G1Z+...+q.2+U=Q,

then {qi, ..., g.}u U is a generating set of Q, consequently from 2.3.7 U
is already a generating set of Q, thus we have U =Q.

We come now to simple deductions from the definition.

5.1.3 LEMMA
(@ A B>MS>SNABSM=>>ASN.
b) A;iSM,i=1,...,n> Y A, S M.

i=1
(c) AS>MArpeHomg(M,N)=>¢(A) > N.
(d) If a : A> B, B:B - C are small epimorphisms then Ba : A - Cis also
a small epimorphism.

Proof. (a) Let A+U=N. Then B+U =N and so B+(UnM)=M (by
the modular law). Hence U "M =M (since B > M) and so M < U and
since by assumption A =< M we deduce that U = A + U = N which was to
be shown.

(b) Proof by induction on n. For n = 1 the assertion holds by assumption.
Let

A=A +.. .+An_.1 S M,
and suppose we have for U & M
A+A,+U=M

>A,+U=M,since A > M andso U =M, since A,, > M.
(c) Let ¢(A)+ U =N with U = N. Then we have for arbitrary m € M :
@(m)=¢(a)+u with

acAucU>Dpm—a)=u>m—-ace (U)DSmeA+¢ (U)
SA+e ((U)=M>M=¢"'(U),

since ASM=>pM)=¢p (U)=UnIm(p). Thus ¢(A)> oM)> U
and hence U = ¢(A)+ U = N, which was to be shown.

(d) Let Ker(Ba)+ U = A with U = A, then, as Ker(8a) =a ' (Ker(3))
it follows that

a(Ker(Ba))+a(U)=Ker(B)+a(U)=a(A)=B.
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Since by assumption we have Ker(8) < B, we obtain «(U)= B and con-
sequently
Ker(a)+ U = A.

As Ker(a) = A it follows therefore that U = A, which was to be shown. 0

Before we direct our attention to dual properties with regard to large
submodules, we have a further important statement for cyclic submodules
which are not small.

5.1.4 LEMMA. For a € Mg we have: aR is not small in M Sthere is a
maximal submodule C < M with ag C.

Proof. “<": If C is a maximal submodule of M with ag C then it follows
that aR + C = M, thus aR is not small in M.
“="": Proof by the use of Zorn’s Lemma. Let
I''={B|B< MraR+B=M}.
Since aR is not small, thereisa Bel,ie. I'# J.
Let A # & be a totally ordered (wrt — ) subset of I'. Then

B0:= U B

is an upper bound of A. Suppose a € By, then a must already be contained
in a B; from which it would follow that aR < B, thus

B=aR+B=M \4.
From ag B, it follows that By <> M. Since B — B, for Be A>
aR +B()=M,

thus we have ByeT, i.e. A has an upper bound in I'. Zorn’s Lemma implies
then that I" contains a maximal element C.

We claim that C is in fact a maximal submodule of M. Let C & U — M,
then it follows that UgTI, since C is maximal in I From M=
aR +C > aR + U = M it follows that aR + U =M and as U£T" we must
have U =M which was to be shown. O

We now direct our attention to large submodules. For these we have
first of all the statements dual to 5.1.3.

5.1.5 LEMMA
(@) Ao Bo>MoS>SNANASNSBS M.

b) AidMi=1,...,.n>( A SM
i=1
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(c) B N ageHomg(M,N)=>¢ '(B)® M.
(d) Leta:A—> B, B:B - C be large monomorphisms. Then Ba:A-> Cis
also a large monomorphism.

Proof. (a) From U—> M ABn U =0 we obtain AnU =0 and so U =0,
sincc A NAU > M= N.

(b) Proof by induction on n. For n = 1 the assertion holds by assumption.
Let now

n-1
A= m A,‘ &S M
i=1

and we have for U>M:AnA,nU=02A,nU=0, since A M.
Then U =0 follows since A,, < M.
(c) Let

UsMae ' (B)nU=0>Bne(U)=0>¢(U)=0,
since B % N. Then it follows that
UsKer(@)=¢ '(0)> ¢ '(B)>U=¢ (B)nU=0.

(d) Let U= C and Im(Ba)n~ U =0. Since B is a monomorphism it
follows that

0=87'(0)=8""(Im(Ba)) "B~ (U) =Im(a) n g~ (V).

As Im(a) % B we deduce therefore that B'I(U ) =0, thus this yields that
Im(B)~ U =0 and from Im(B) & C it follows that U =0, which was to be
shown. 0

The following criterion for large submodules is important for applications.

5.1.6 LEMMA. Let A = Mg, then we have
ASMegOVmeM, m#03reR[(mr#0amre Al

Proof. ““=>"": From m # 0 we have mR # 0 andso A nmR # 0, since A & M
we have the assertion.

“& Let B>MAB#0. ThenthereismeB, m#0.Letmr#0Amre
A,then0#mrc AnB andso A & M. 0

5.1.7 COROLLARY. Let M =Y M;, M; > M, A; % M, for every i €I and
let iel

A = Z Ai=@A,‘,

iel iel
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then it follows that

ASM and M=@M.

iel

Proof. A % M : Since every element from M lies in a sum of finitely many
of the M, it is sufficient from 5.1.6 to establish the assertion for a finite
indexset I, say I ={1,...,n}.

Proof by induction on n. The initial induction step » = 1 holds by assump-
tion. Let the assertion be valid for n — 1 summands, i.e., suppose

A+ +A S M+, +M,_,.
Let now
O¢m=m,+...+mn_1+mn with m;eM,.

If indeed m+...+m,_1=0 then m=m, #0=> there is reR, 0# mr=
m,r € A,. Let therefore m; +. ..+ m,_; #0, then, by induction assumption,
there is an r € R with

O#(m1+...+m,._1)reA1+...+A,,_1.

If for this r we have further m,r =0 then we are finished. Thus let m,» # 0.
Then there is an se R with 0#m,rse€A,, and it follows that mrse
Ai+...+A,; from the directness of the sum of the A; we have moreover
mrs # 0. Therefore we have shown that A & M.

M =@ M;: 1t is still also sufficient to assume that I ={1,...,n} and to

iel

suppose that
n—1
O#Fm,=m+...+m_1eM,n Y M.
i=1
Then there exists an r € R with
n—1
0#(m+.. .+m,,_1)re Z A,
i=1
thus
n-1
0#Fmyr=(m+...+m,_JreM,n Y A.
i=1
Let then s € R with 0 # m,rs € A, then it follows that

n—1
O#murs=(mi+...+m,_DrscA,n Y A
i=1

in contradiction to the assumption. ]
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5.1.8 COROLLARY. Let M =@ M, M; > M, A; % M, for every i € I. Then
we have ief
A:=2Ai=®A,’ and A S M.
iel iel
Proof. From M =@M, and A; = M; it follows that A =@PA;. Then A & M
follows from 5.1.7.

5.1.9 COROLLARY. Let M =@ M, and let B > M then the following
conditions are equivalent: iel

(1) VielI[BnM; % M.

2) BBAM)S M.

iel

(3) B> M.

Proof. “(1)=>(2)”: From 5.1.8.
“(2)>(3)”: From @ (BN M;) = B and 5.1.5(a).
iel
“(3)=>(1)": Let 0# m,; € M,, then there is, from 5.1.6, an re R with
0 # m;r € B. But also m;r € M; and it follows that 0 # m;y € B n M, thus (1)

holds. A 0

5.2 COMPLEMENTS

We are here concerned with weakening the concept of the direct sum

of two modules. A direct sum
A®B=M
is, as we know, determined by the two conditions
A+B=M, AnB=0,

which are weakened in the following way by the definition of complements.
5.2.1 Definition: Let A -> M.

(a) A" M is called an addition complement, briefly adco,of A in M <

(1) A+A =M.
(2) A'is minimalin A+A =M ie.

VB o> M[(A+B=MArB—> A)=>B=A"].

(b) A' > M is called an intersection complement, briefly inco, of A in
M &
(1) AnhA'=0.
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(2) A’is maximalin AnA'=0, i.e.
VCoSM[(ANC=0rA"SC)DA'=C].
First of all the preliminary remark has to be justified.

5.2.2 COROLLARY.LetA =< Mand B = M. Then we have: A@®B=M&
B is an adco and inco of A in M.

Proof. ““&"": This follows directly from the definition.

“2>": Let A+ C=M and C - B. By the modular law it follows that
(ANnB)+C =B, and as A nB =0 we deduce that C = B. Accordingly B
is adco. Let now AnC=0 and B> C>A®C=M=>B=C by the
previous conclusion on interchanging the roles of B and C. Thus B is also
an inco of A. 0

The question now arises as to the uniqueness and existence of such
complements. Already in the case A@ B = M (with respect to fixed M and
A) B is in general only uniquely determined up to isomorphism. With
respect to complements even this is no longer the case (see the example
in Exercise 6(d)); nevertheless a certain uniqueness statement does arise
later.

Now we address ourselves to the question of the existence of comple-
ments. As Zz shows, adcos need not exist: Let n, meZ with (n, m)=1,
then we have

nZ+mZ-=12.

For n#0, n#=+1 and (n,q)=1, g>1 yields (n,gqm)=1 as well as
gmZ <> mZ, thus there is no adco to nZ.

On the other hand, examples of modules, possessing adcos, are easy to
construct, such as artinian modules and semisimple modules. In contrast
to adcos, incos always exist and these can moreover be chosen in a particular
way.

5.2.3 LEMMA. Let A, B = M with A~ B =0. Then there is an inco A’ of
A with B = A’ and consequently an inco A" of A" with A - A".

Proof. By the use of Zorn’s Lemma. Let

'={C|ICo>MAB<>CrANC=0},

then I' # J since B €T. Since the union of every totally ordered subset in
" lies evidently again in T, every totally ordered subset from I' has an
upper bound in I'. By Zorn there is then a maximal element A’ in I". With
A’ in the place of A and A in the place of B it follows that A — A", 0
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The fact, that there is indeed always an inco but not always an adco is
of great significance for the entire theory of modules. For example, it
follows from this that there is always an injective hull (definition later) but
in general not always a projective cover. The reason for this stems from
the fact that in the category of modules Zorn’s lemma cannot be applied
in the dual case.

Between the concepts small and adco, resp. large and inco, there exists
an important connection which will now be explained.

5.2.4 LEMMA
(a) Let M = A+ B, then we have:

Bisadcoof AinM<&ANB S B,

(b) If A" is adco of A in M and A~ is adco of A" in M then A’ is also
adco of A" in M.

(c) If A" is adco of A in M and A" is adco of A" in M with A" —> A’
then we have AJA" < M/A".

Proof

(a) “=>”: Let U - B with (A nB)+ U =B, then it follows that M =
A+B=A+(AnB)+U=A+U. Since B is adco of A, it follows that
U =B, hence we have AnB & B.

(a) “€&”: Let M=A+U with U= B, then it follows that B=
(AnB)+U. As AnB > B we deduce therefore that B = U, thus B is
adco of A in M.

(b) By assumption we have M = A"+ A". Let U - A" with M =A"+ U,
then it follows that A'=(A"~nA)+U. As M=A+A we obtain M =
A+(A"nA)+ U From A"nA < A" it follows that A"~ A" &> M. We
deduce that M =A+(A"nA)+U=A+U. Since A" is adco of A and
U = A’ it follows that U = A". Thus A" is adco of A" in M.

(c) Let (A/A")+(U/A")y=M/A" with A" = U <= M, then it follows that
A+U=M As M=A"+A and A" U we have further that U =
A"+(A'nU). Hence we deduce that M=A+U=A+A"+(A nU)=
A+(A nU).Since A isadcoof A, it followsthat A \n U =A",thus A" > U
and we deduce that M = A"+ A = U - M, thus we have U =M and it
follows that U/ A" = M/A", which was to be shown. a

We come now to the dual statement.

5.2.5 LEMMA
(a) Let A and B be submodules of M with 0= A "B, then we have: B
isincoofAinM&(A+B)/B 4 M/B.
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(b) If A" is inco of A in M and A" is inco of A’ in M, then A’ is also
inco of A" in M.

(c) If A’ is inco of A in M and A" is inco of A’ in M with A — A" then
we have A & A".

Proof

(a) “=>”: Let (A+B)/BnU/B=0 with B — U <= M, then it follows
that (A +B)n U = B. Hence we have ANU < B, thus AnU <> AnB.
Since B is inco of A, we have AnB =0, thusalso AnU=0andas B - U
and B is inco of A it follows that B = U. Thus we have U/B=B/B =0,
which is to say (A + B)/B is large in M/B.

(a) “€&”: Let now AnU=0 with B> U > M. Let xe(A+B)n U,
then it follows that x =a+b =u with ac€ A, be B, ue U, thus we have
a=u—-beAnU=0 and consequently a =0 and x =b € B. Hence we
have (A+B)nU =B and it follows that (A+B)/BNnU/B=0. As
(A+B)/B < M/B we must have U/B =0, that is to say B = U holds.
Consequently B is inco of A in M.

(b) By assumption we have A"nA'=0. Let A'> U > M with
A"nU =0. From (A"+A")/A" % M/A" it follows that A"+ A’ % M (by
5.1.5()).Letxe(A"+A)n(An U), thenitfollowsthatx =a"+a'=a=u
witha"e A", a'e A',ac A, ue U Hencewehavea"=u—-a'e A"nU=0,
thus a” =0 and it now follows that x =a’'=a € A’'n A =0. Thus we have
(A"+AYN(ANU)=0. As A"+ A’ % M we must then have AnU =0.
Since A’ is inco of A and A’ = U was assumed, it follows that A'= U,
which was to be shown.

(c) Let U > A" with AnU=0. Forxe An(A'+U) we have x =a =
a'+u withaeA,a'eA’, uelU Wededuce thata—u=a'e A"nA'=0,
thus x =a=u€ AnU=0. Consequently we have An(A'+ U)=0, thus
A'+U=A', thus U= A’. By observing that U — A" it follows that
U A"nA'"=0and so U =0. We deduce that A & A, 0

5.3 DEFINITION OF INJECTIVE AND PROJECTIVE
MODULES AND SIMPLE COROLLARIES

5.3.1 THEOREM
(a) The following are equivalent for a module Qg:
(1) Every monomorphism

£:Q->B

splits (i.e. Im(¢) is a direct summand in B).
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(2) For every monomorphism «a:A - B and for every homomor-
phism ¢ : A > Q there is a homomorphism k : B > Q with ¢ = ka.
(3) For every monomorphism a : A - B

Hom(a, 10): Homg (B, Q)> Homg(A, Q)

is an epimorphism.
(b) The following are equivalent for a module Pg:
(1) Every epimorphism

¢&:B->P

splits (i.e. Ker(¢) is a direct summand in B).

(2) For every epimorphism B:B - C and for every homomorphism
¢ : P C there is a homomorphism A : P> B with ¢ = BA.

(3) For every epimorphism 8:B - C

Hom(1p, B):Homg (P, B)-» Homg(P, C)

is an epimorphism.

DIAGRAM FOR (a), (2):

¢ = ka (i.e. the diagram is commutative).

DIAGRAM FOR (b), (2):

B——C

¢ = BA (i.e. the diagram is commutative).

Proof of 5.3.1. (a) “(1)=>(2)”: This follows from 4.7.4 since by assumption
¢ splits in 4.7 4.
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“(2)= (1)”: By assumption there is a « : B - Q so that the diagram

Q— B

is commutative, i.e. we have 1o = k¢, thus ¢ splits by 3.4.11.

(a) “(2)<(3)”: By considering the definition of Hom(a, 1) (see 3.6) it
is clear that (3) is an equivalent reformulation of (2).

(b) “(1)=>>(2)”: This follows from 4.7.6, since, by assumption, a splits
in 4.7.6.

(b) “(2)=>(1)”: By assumption there is a A : P> B so that the diagram

B——P

is commutative, i.e. we have 1p = &), thus £ splits by 3.4.11.
(b) “(2)<(3)”: Equivalent reformulation.

5.3.2 Definition

(a) A module Qg, which satisfies the conditions of 5.3.1(a), is called an
injective R-module.

(b) A module Pgr, which satisfies the conditions of 5.3.1(b), is called a
projective R-module.

This definition of an injective, resp. of a projective, module refers to the
category of unitary right R-modules, since all monomorphisms « : A > B
resp. all epimorphisms B : B > C are allowed. Thus, appropriately, the issue
concerns a categorical definition by means of universal mapping properties.

The question then arises whether we can also characterize injective and
projective modules by means of ‘“‘inner” properties. For projective modules
this is—as we shall soon see—easily possible: An R-module is projective
if and only if it is isomorphic to a direct summand of a free R-module.
For injective modules there is in general no correspondingly simple charac-
terization by inner properties. For R = Z we have however such a charac-
terization: a Z-module is injective if and only if it is divisible. The general
case can be reduced to this one.

We come now first of all to some simple consequences of the definition.
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5.3.3 COROLLARY
(a) Q is injective A Q =A > A is injective.
(b) P is projective A P=C => C is projective.

5.3.4 THEOREM
(a) Let Q =1]] Q,, then we have:
iel
Q is injective Vi e I [Q; is injective].
(b) Let P=1] P, or P=@ P, then we have:
iel

iel

P is projective &Vi e I [P; is projective].

Proof. Notation for injections and projections corresponding to the direct
product and the direct sum as in Chapter 4.

(a) “>": Let Q be injective, and let « : A > B be a monomorphism and
let : A - Q, forj eI be ahomomorphism. For on;¢ there then corresponds
by assumption an w : B » Q with onj¢ = wa:

«@

A — B
-
wl PR
- Ve
-
Q; @7
j - P
| T
-~
© S K=TT.w
ol o
w.l 7
! s
©
i

The desired homomorphism « with ¢ = ka is then « ‘= 7w since we have:
¢ =lo¢=(mon;)e = mi(onjp) = mi(wa) = (Tw)a = ka.

(a) “€&”: Let now the monomorphism a : A » B and the homomorphism
¢ :A->Q be given. To every mip there then exists by assumption a «; with
mip = k. By 4.1.6 there is then a « : B > Q with «; = mik:

[+ 3

A —B
e
-7
< v
7
K /
® 27
7
'
5
7%
/
’
"Iv /
/
’
a3
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We claim that ¢ = ka. From m¢ = ki and «; = mk it follows that 7o =
mika, thus by 4.1.6 (uniqueness) ¢ = ka.
(b) By 5.3.3 it suffices to consider the case P = || P;. The proof follows

dually to (a); hence we can be brief. iel
(b) “=>"": The following situation is now given:
P;
Ve
s "
7
Ve
A= // P } 1Pl
=om; , P e
7 - o
7 P !
/ b
7w
e - P;
Ve e
s o ¢
" v
B
B= C

But w exists with Ym0 = Bw, since P is projective, and A ‘= wn; yields the
desired result since we have

¢ =¢1lp =¢mon; = (mo)n; = (Bw)n; = Bwn;) = BA.
(b) “&": In the diagram

s/
/s s
K

BE C
there exist A; with ¢m; = BA;, by assumption, and A with A; =An, since
P =]][ P.. It remains to show that ¢ = BA. From ym; = BA; and A; = A7, it
follows that ¢m; = BAn;, thus by 4.1.6 (uniqueness) ¢ = BA. a

7
-

In particular, according to this result, every direct summand of a projec-
tive module is again projective and—since for finite index sets direct sums

are also direct products—every direct summand of an injective module is
again injective.

5.4 PROJECTIVE MODULES

We are now in a position to produce the previously announced ‘“‘inner”’
characterization of projective modules.
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5.4.1 THEOREM. A module is projective if and only if it is isomorphic to
a direct summand of a free module.

Proof. By 4.4.6 every free module is projective and by 5.3.4 and 5.3.3 so
also is every module which is isomorphic to a direct summand of a free
module. In order to show the converse, let P be a projective module and
let

¢&:F>P

be an epimorphism of a free module F onto P, existing by 4.4.4. Since P
is projective, ¢ splits:

F=Ker(¢)®F,

and F, is then isomorphic to P. a
By this theorem, to which there corresponds no dual theorem with respect
to injective modules, the theory of projective modules is reduced to the
question of the properties of free modules and of their direct summands.
Since, as is well known, every submodule of a free Z-module is again
free (see Exercise 10), we obtain the corollary.

CoOROLLARY. Every projective Z-module is free.

An important lemma for the investigation of projective modules is the
so-called Dual-basis Lemma, which serves in a certain manner with regard
to arbitrary projective modules in the place of the basis property of free
modules.

5.4.2 THEOREM (DuAL-BASIS LEMMA). The following properties are
equivalent:
(1) Pg is projective.
(2) To every family (y;|i € I') of generators of P over R there exists a family
(@ili € I) of ¢; € P* :== Homg (P, R) with
(a) VpeP [i(p)#0 only for finitely many i € I,

®) YpeP[p= T vep)]
‘Pi(‘:)#()

(3) There exist families (y;|i € I) with y; € P and (¢;)i € I) with ¢; € P*, so
that (a) and (b) hold.

Proof. “(1)=>(2)": As established in 4.4 there is a free R-module F with
a basis {x;|i € I} and an epimorphism & : F - P with £(x;) = y.. Let

m:F3 Y xiri>r€R, jel
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(where we put r; =0 in the case that the index j does not appear in ), x;r;),
then we have for a =Y x;r;€ F: mj(a) # 0 for only finitely many jeI and
a=Y xma).

Since P is projective, there exists A : P> F so that 1p = ¢éA:

F——>P

Define ¢; := A, i € I, then we have ¢; € P*, and for p € P we have ¢;(p) =
mA(p) # 0 for only finitely many / € I. Further we have for pe P

p=&(p)=¢ X xm(A(p) =X &(x))mA(p) =X yipi (D),

thus (a) and (b) hold.

“(2)=>(3)”: Clear.

“(3)=>(1)”: From (b) (y;Ji eI) is a family of generators of P. Now let
¢:F > P be again an epimorphism as in the proof of (1)=>(2). Further let
7:P - F be defined by 7(p) := ¥, xip:(p), then firstly 7 is a mapping, since
the ¢;(p) are uniquely determined and by (a) almost all ¢;(p) are equal to
0. Obviously 7 is in fact an R-homomorphism. Then we have

é&r(p)=¢ X xi0i(p)) =2 yiei(P) =p,

thus 1, = 7, i.e. € splits and by 5.4.1 P is then projective.

5.5 INJECTIVE MODULES

In general a characterization of injective modules by “inner” properties
is not possible in as simple a manner as in the case of projective modules.
For R =Z there is nevertheless such a characterization and this has also
considerable significance for the case of an arbitrary ring R, it is in fact
used to show the existence of injective extensions.

5.5.1 THEOREM. A Z-module (= abelian group) is injective if and only if
it is divisible.
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Proof. Let Dz be divisible, then 4.5.5 states that D is injective. Now let
Qz be injective. Let go€ Q, 0 # zo€ Z; if we consider the homomorphisms

2l ———Z

where ¢ is the inclusion mapping and ¢ is defined by ¢(z¢) = ¢v, then there
is, since Q is injective, a « with ¢ = kt. Thus we have «(1)zp=«(1z0) =
k(z0) = (ke )(z0) = @(20) = qo. Since go € Q was arbitrary, it follows therefore
that Qzo = Q, i.e. Q is divisible. 0

Let now R be again an arbitrary ring. Since every module is an epimorphic
image of a free R-module and as free R-modules are projective, every
module is an epimorphic image of a projective R-module. We address
ourselves now to the dual question and wish to show that we can map
every module monomorphically into an injective module.

5.5.2 LEMMA. If D is a divisible ( = injective) Z-module then Homgz(R, D)
is injective as a right R-module.

Proof. Let a : A > B be an R-monomorphism and let ¢ : A > Homz (R, D)
be an R-homomorphism. Let o be the Z-homomorphism defined by
o:Homz(R,D)>f-f(1)eD.

Then we consider the diagram

A— B

wJ w o ;/

7 - /
k/ /

Homz(R,D) /-
/

l /
4 ’
/

¥

D

If we regard a and ¢ only as Z-homomorphisms, then there is, since D is
Z-injective, a Z-homomorphism 7:B - D with o¢ = ra. Now let x : B>
Homgz(R, D) be defined by

k(b)(r) = 1(br), beB,reR.
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Then for fixed b € B, obviously «(b) e Homz(R, D) and we have
w (bri)(r) = 7(brir) = k(b)(r1r) = (k (b)r1)(r),
i.e. k(br1) =« (b)ry, thus « is an R-homomorphism. Therefore we have
ka(a)(r)=r(ala)r)=1(a(ar)) = ra(ar) = op(ar)

=g(ar)(1) = (p(a)r)(1) = ¢(a)(r)

and consequently xa = ¢. 0
5.5.3 THEOREM. For every module there is a monomorphism into an
injective module.
Proof. Let Mg be given. By 4.5.4 there is 2 Z-monomorphism

w:M->D

into a divisible abelian group. By 5.5.2 Homz(R, D)r is injective as an
R-module. If we define

p:M->Homz(R, D)

by p(m)(r) == uw(mr), m e M, r € R, then p is evidently an R-homomorphis-
m and, since u is a monomorphism, even a monomorphism. a

5.5.4 COROLLARY. Qg is injective < Qg is isomorphic to a direct summand
of a module of the form Homz(R, D)g with D a divisible abelian group.

Proof. ““=>”: In proof of 5.5.3.
“&”: By 5.5.2 and 5.3.4. a

Corollary 5.5.4 can be considered as an “inner” characterization of
injective modules.

5.5.5 COROLLARY. Every module is a submodule of an injective module.
We formulate the proof as an independent lemma.

5.5.6 LEMMA. Let p:Mgz—> Nr be a monomorphism. Then there is a

module N' with M < N’ and an isomorphism 7:N'> N so that p =7,

where ¢ is the inclusion mapping of M in N'.

Proof. Let D be a set of the same cardinality as the complement N\p (M)
of p(M) in N with DM = and let 8:D - N\p(M) be an injective
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mapping. Then define a set N' := M uD and let
T:N'>N
be the bijective mapping defined by
T(m) = p(m), meM
7(d) = B(d), deD.

In order to make N’ into an R-module containing Mz and to make 7 into
an R-module homomorphism, we put:

x+y =1 (r(x)+7(y)), x,yeN'
xr=1""(r(x)r), reR.
As is immediately seen, all assertions are then satisfied. a

Then 5.5.5 follows from this lemma since Homz(R, D)r and the isomorphic
module N’ are both injective.

5.6 INJECTIVE HULLS AND PROJECTIVE COVERS

Now that we have seen that every module can be mapped, on the one
hand, monomorphically into an injective module and is, on the other hand,
an epimorphic image of a projective module, we turn to the question
whether in a certain sense there are “‘smallest’ such modules.

5.6.1 Definition. Let Mg be given.

(a) A monomorphism n:M - Q is called an injective hull of M :& Q
is injective and 7 is a large monomorphism (see 5.1.1).

(b) An epimorphism £¢:P-> M is called a projective cover of M :& P is
projective and ¢ is a small epimorphism (s. 5.1.1).

If n:M - Q is an injective hull then, if no misunderstanding can arise,
we designate Q simply as the injective hull of M without expressing the
7. This holds correspondingly in the case of the projective cover.

With this interpretation we denote an injective hull of M also by I(M)
and a projective cover of M by P(M). We note however that (M) and
P(M) are not thereby uniquely determined but only up to isomorphism
(see 5.6.3).

Example. Z3 — Qg is an injective hull of Z, for ¢ is a monomorphism, Q;
is injective = (divisible) and by 5.1.6 Z is large in Q.
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5.6.2 COROLLARY
(@) Ifni:M;>Q;fori=1,2,...,nisan injective hull of M; then
E_Bl Ni: 6_91 M;~> 6—91 Q;

is an injective hull of @ M.
i=1

(b) If&:P;>M,fori=1,2,...,nisa projective cover of M, then

@fﬁ@ﬂ"@%

n
is a projective cover of @ M..

i=1

Proof. (a) This follows from 5.1.7 and 5.3.4.
(b) This follows from 5.1.3 and 5.3.4. 0

Two questions now arise immediately, namely the uniqueness and
existence of hulls and covers. We begin with the question of the uniqueness
and at once prove a somewhat more general result.

5.6.3 THEOREM

(a) Let ¢ :My—> M, be an isomorphism, let n,: M, Q, be an injective
hull and let n,: M, > Q, be a monomorphism with Q; injective. Then there
exists a split monomorphism

d/ : Ql -> 02)
so that the diagram

*®

M,

M,

Q—mmQ,
is commutative and
N2: Mz 3m > ny(m) e Im(y)

is an injective hull of M,. n is an injective hull of M, if and only if ¢ is an
isomorphism.
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(b) Let ¢ : M- M, be an isomorphism, let &,: Py -> M, an epimorphism
with P, projective and let &, : P, > M, be a projective cover. Then there exists
a split epimorphism

Y:Py> P,
so that the diagram
Pl_‘—w—’ P,
& &

@

M1 M2

is commutative and, if P, =Ker(y)® P, (note Po=P,/Ker(y)) & = &|P,
is a projective cover of M. &, is a projective cover of M, if and only if
¢ is an isomorphism.

Proof. (a) In the commutative diagram

n
M1 : Ql
e
wl //
s

s’

M2 "
Ve
Ve
n s’
l )
¥

Q;

Y exists, since Q; is injective. Since n2¢ = ¢n; is a monomorphism it follows
that Ker(¢) nIm(n;) =0. Since Im(n,) is large in Q, it follows that Ker(¢) =
0, i.e. ¢ is a monomorphism. Since Q, is injective, ¢ splits and Im(y) is
injective.

Since Im(n2) = Im(¢) the definition of 7, is meaningful. 7, is, along with
72, a monomorphism and Cod(7,) =Im(¢) is injective. It remains to be
shown that Im(7;) = Im(n,) is large in Im(¢). Let

g: Qi3g~y¢(q)eIm(y),
then ¢ is an isomorphism and we have
dm(My) = 720 (My) = 712(M).

Since n1(M,) is large in Q;, it follows therefore from 5.1.5(c) (with ¢ = ¢ ™),
that 77,(M;) is also large in Cod(¢) = Im(y).

If m, is an injective hull of M, then Im(7n.;) % Q; holds and as
Im(n,) = Im(y) it follows that Im(¢) < Q,. Since however Im(y) is a direct
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summand in Q,, this is only possible with Im(¢) = Q,, i.e. ¢ is an isomor-
phism. Conversely if ¢ is an isomorphism, then it follows that 1, = 7, thus
7, is now an injective hull of M.

(b) In the commutative diagram

Py

/
/
/ &
/
/

v M,

/
/
/ L4
/
¢ £

P, -2 M,
¢ exists, since P, is projective. Since ¢£; = &4 is an epimorphism it follows
that Im(y)+Ker(¢;) = P,. Since Ker(£,) is small in P,, it follows that
Im(y) = P,, i.e. ¢ is an epimorphism. Since P, is projective, ¢ splits:

Py =Ker(y)® Po,

and Po=P,/Ker(y) is prgjective.
As Ker(¢) = Ker(¢y), &, = &|Po is, along with &1, an epimorphism. Since
P, is projective, it remains to be shown that Ker(¢;) < P,. Let

b: Posp->y(p)eP,,

then c/; is an isomorphism and as <p£‘1:£21/; and since ¢ and tfz are
isomorphisms

Ker(£)) = ¢~ (Ker(£)).

Since Ker(¢£,) is small in P, it follows from 5.1.3(c), that Ker(él) is small
in §~'(Py) = P,.

If ¢, is a projective cover of M, then Ker(£) < P, holds and as
Ker(¢) — Ker(£,) it follows that Ker (¢) < P;. Since however Ker(¢) is a
direct summand in P; this is only possible with Ker(¢)=0, i.e. ¢ is an
isomorphism. If conversely ¢ is an isomorphism then it follows that &; = fl,
thus £; is now a projective cover of M. O

Once more we point out explicitly that from 5.6.3 the injective hull and
the projective cover (if they exist) are uniquely determined up to isomor-
phism. For example if we put in the injective case M = M, =M, and ¢ = 1
then 7, is an injective hull of M if and only if ¢ is an isomorphism.

We come now to the question of the existence of projective covers and
injective hulls. Whereas—as is shown subsequently—to every module there
exists an injective hull, the dual statement does not hold. Thus there are
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modules which do not have projective covers. For example no Z-module,
which is not itself already projective (= free), has a projective cover, for
as we have earlier shown in 5.1.2, the trivial submodule 0 is the only small
submodule of a free Z-module.

The interesting question then arises of characterizing the rings R for
which every R-module has a projective cover. These are the perfect rings
which are treated later.

5.6.4 THEOREM. Every module has an injective hull. More precisely: If
u:M-> Q is a monomorphism into an injective module Q and if Im(u)" is
an intersection complement of an intersection complement of Im(w) in Q
with Im(n) = Im(w )", then

A M —>TIm(u)

with fi(m) = u(m) for all m € M (restriction of the codomain of u to Im(n)"),
is an injective hull of M.

Proof. Let A :=Im(u). As shown in 5.2.5(c), A is large in A”. It remains
to be shown that A" is injective. To that end we prove that A" is a direct
summand of Q; since Q is injective, this follows then from 5.3.4 also for
A". We consider the diagram

AII@AI ¢ Q

B8

Q/A'®Q/A"

where ¢ is the inclusion mapping. In order to define a and B, we write the
elements of Q/A'@ Q/A" as pairs. Then for a"+a’'€e A"@ A’ let

B(all+al) := (all+aI+Al’ all+al+AN)=(aH+Al, al+AH)
and also
alq) =(q+A',qg+A").

Then the diagram is commutative, i.e. we have B =a¢ from which
Im(B) = Im(a) follows. As A”n A’ =0 a and B are monomorphisms. Since
Q is injective and « is a monomorphism, a splits.
We assert that Im(8) is large in Q/A'®Q/A". Since from 5.2.5
A"+A/A" S Q/A'and A"+ A'/A" 2 Q/A", the assertion follows by 5.1.7.
As Im(B) = Im(a) then Im(a) is also large in Q/A’®@Q/A". Since «
splits, it follows that Im(a)=Q/A'@Q/A", i.e. a is an isomorphism. To
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an arbitrary q € Q there is thereforeag, € Q with(g +A’, 0+ A") = (q: + A,
q1+A") from which firstly g€ A" and then ge A"+ A’ follow. Thus
A"®A'= Q holds. 0

We now summarize, once again, how we have produced the injective
hull for a module Mg:

(1) Embedding (monomorphism) of M as an abelian group in a divisible
abelian group D.

(2) Embedding u : Mg » Homz(R, D)g, where the module Homz(R, D)r
is injective.

(3) Let Im(w)" be an intersection complement of an intersection comple-
ment of Im(x) in Homz(R, D)z with Im(u) <= Im(u)”, then

g:Masm->u(m)elm(u)"
is an injective hull of M.

It is clear that, by this complicated construction, it is hardly to be expected
in general that we can infer directly from the properties of M those of the
injective hull of M. The question of which properties of M remain preserved
or become lost on passing to the injective hull of M is in any event an
interesting question which has been explored from different points of view
and assumptions.

An injective hull, which is itself a ‘““minimal injective extension’’ can also
be characterized as a ‘“‘maximal large (= essential) extension”".

5.6.5 Definition. Let a : A > B be a monomorphism.

(1) a is called a large extension of A :& Im(a) % B.

(2) a is called a maximal large extension of A :& «a is a large extension
of A and every large extension of B is an isomorphism.

5.6.6 THEOREM. Let yv:M -> W be a monomorphism. Then we have: v is
a maximal large extension of M if and only if v is an injective hull of M.

Proof. Let n:M - Q be an injective hull of M, then we consider the

commutative diagram

Me— W
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in which ¢ exists, since Q is injective. As Im(y) < W and Im(y) nKer(¢) =
0, we have Ker(¢) =0, i.e. ¢ is a monomorphism. As Im(n) — Im(¢) and
Im(n) % Q it follows that Im(¢) > Q. Let now y be a maximal large
extension, then it follows that ¢ is an isomorphism, thus y is an injective
hull.

The converse that every injective hull is a maximal large extension,
follows from the fact, that every monomorphism

a:Q->B

with injective Q splits and proper direct summands are not large in a
module containing them. 0

We now direct our attention once again and briefly to the projective
cover. As we know this need not exist. If we assume however that the
corresponding addition complements exist then we can dualize Theorem
5.6.4. The intersection complements used in the proof of Theorem 5.6.4
exist by virtue of Zorn’s lemma, whereas the dual addition complements
exist only under appropriate assumptions. The exact formulation is not to
be given here. Later, in the treatment of semiperfect and perfect modules,
the question of the existence of projective covers will be thoroughly investi-
gated.

5.7 BAER’S CRITERION

In order to establish whether a module Q is injective we have to test
whether to every monomorphism « : A -» B and to every homomorphism
¢:A - Q there is a homomorphism « : B > Q with ¢ =«a. This prompts
the question whether we can restrict the class of ‘“test monomorphisms”
a:A - B. This is in fact possible and indeed it suffices to consider all
inclusions of right ideals U <= Rg.

5.7.1 THEOREM (BAER's CRITERION). A module Qg is injective if and
only if to every right ideal U — Rg and to every homomorphism p:U - Q
there exists a homomorphism 1: Rg - Q with p = 1, where v is the inclusion
mapping of U into R.

Proof. That the condition is necessary for injectivity is clkear. The converse
proof, that it is sufficient, follows in two steps.

Step 1. Let a : A > B be a monomorphism and let ¢ € Homg (A, Q). Let
C o B with Im(a) = C and let y: C » Q with ¢(a)=vya(a) for all a € A.
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Assertion. There is a C; = B with C s C; and a y;: C, » Q with y,|C =y
(hence also ¢(a) = y1a(a)).

To prove this assertion let be B, bg C; put C;=C+bR. If we had
C bR =0 then immediately we could extend vy trivially to C;. The
difficulty stems from the fact that we can have C n bR # 0. Let

U={ulueRabueC},
then U is obviously a right ideal in R and
& U>su->bucC

is an R-homomorphism. Let p = y¢, then we have p : U - Q, and by assump-
tion there isa 7: R > Q with p = 7¢:

U——5R

We now define y;:C, > Q by
v1: C+bR 3c+br->y(c)+7(r)e Q.
To establish that v, is a mapping, let
c+br=c,+br, c,c1eC,r,neR.
Then
c—c1=b(n—-rnNeCnbR>r—neU>>yt(r—r)=1(r—r)
>v(lc—c)=ybn-r)=vrn-r=rn-r=
y(e)+7(r)=y(c1)+7(r).
Since y and 7 are R-homomorphisms, vy, is also an R-homomorphism and

by the definition of y,; we have v,|C = .

Step 2. Let Cp = Im(a) and let @ be the isomorphism of A onto C,
induced by a. In addition let y, == ¢ago ! then we have ¢(a) = yoa(a) for
all a € A. The homomorphism v, is now extended to the whole of B with
the help of Step 1 and Zorn’s Lemma. For this let I" be the set of all
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pairs (C, y) with Im(a)=Cy = C = B and y:C- Q with y|Cy=v,. As
(Co, v0) €T this set is not empty. An ordering is defined in I" by

1. C‘—)Cl
Cv)s(C, &
(Cy)=(C,n) {2- ‘YllC=Y-

Now let A be a non-empty totally ordered subset of I" and let
D= U C

(Cy)ea

then we have Cy = D < B. Further let

8:D3d-»vy(d)eQ,

for d € C with (c, y) € A. Then by 2 this is a homomorphism with §|C, = .
Consequently (D, 8) is an upper bound of A in I". Hence by Zorn’s Lemma
there exists a maximal element in I, which, from Step 1, must be equal to
a (B, k) with ¢ = ka. This completes the proof. O

Further, following this, we point out that this theorem remains valid if
in it we replace Rg by an arbitrary generator (see exercise 21). The
correspondingly dual assertion does not hold however.

An important application of Baer’s criterion follows in the next chapter,
where it is shown that a ring R is noetherian if and only if every direct
sum of injective R-modules is again injective.

5.8 FURTHER CHARACTERIZATIONS AND PROPERTIES
OF GENERATORS AND COGENERATORS

In 3.3 as well as in 4.8 we have introduced and characterized generators
and cogenerators. These considerations are here to be carried forward. In
particular a characterization of cogenerators is given which makes it possible
for them to be constructed and so to demonstrate their existence. Moreover,
in addition, a ‘“‘minimal’’ cogenerator can be given.

5.8.1 THEOREM

(a) The module Br is a generator if and only if for every projective module
Pr a direct sum of copies of B exists which contains a direct summand
isomorphic to P.

(b) The module Cr is a cogenerator if and only if for every injective
module Qr a direct product of copies of Cr exists which contains a direct
summand isomorphic to Q.
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Proof. (a) Let Br be a generator. By 4.8.2(4) there exists an epimorphism
of a direct sum of copies of B onto P. Since by 5.3.1 every epimorphism
onto a projective module splits, the condition follows. The converse follows
likewise from 4.8.2(4) if we observe that every direct summand of a module
is an epimorphic image of the module and every module M, by 4.4.4, is
an epimorphic image of a projective (indeed free) module.

(b) Dual to (a), in which 5.5.3 now appears in the place of 4.4.4. 0

5.8.2 COROLLARY

(a) Let P be a projective generator, then we have: The module B is then
a generator if and only if there is a direct sum of copies of B which contains
a direct summand isomorphic to P.

(b) Let Q be an injective cogenerator, then we have: The module C is
then a cogenerator if and only if there is a direct product of copies of C which
contains a direct summand isomorphic to Q.

Proof. (a) If B is a generator, then the condition follows by 5.8.1. Conversely,
if the condition is satisfied, i.e.

B =P®L  B=B, P=P

iel

then this module can evidently be mapped epimorphically onto P, thus is
a cogenerator and by 4.8.2 this follows also for B itself.
(b) Dual to (a). a

A projective module P is defined by the fact that for every epimorphism
B:B - C Hom(1lp, B) is also an epimorphism. A generator D can now
conversely be characterized by the fact that for every epimorphism
Hom(1p, B), B is also an epimorphism. This holds correspondingly in the
dual case.

5.8.3 THEOREM
(a) The module Dy is a generator if and only if every homomorphism
B :B - C for which Hom(1p, B) is an epimorphism is itself an epimorphism.
(b) The module Cr is a cogenerator if and only if every homomorphism
a : A > B for which Hom(a, 1¢) is an epimorphism is a monomorphism.

Proof. (a) Let D be a generator, then we have

C= ) Im(ep).

¢eHomg(D,C)
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Since Hom(1p, B) is an epimorphism, there is to every ¢ € Homg(D, C) a
¢’ € Homg (D, B) with ¢ = B¢’. Then it follows that
C= z Im(p) = > Im(B¢") = Im(B) = C,
¢eHomg (D,C) ¢'eHomg(D,B)
thus Im(B) = C, i.e. B is an epimorphism.
To prove the converse let Mg be arbitrary. We define
B = I D,

¢€Homg(D.M)

with D, =D for every ¢ € Homg(D, M) and also 8:B > M by
B(d.)= ¥ e(d.).
d,#0

Then for ¢o€ Homg(D, M), ¢o = Bn,, oObviously holds, where 7,,:D -
I D,, is the canonical monomorphism. Hence it follows that Homg (1p, B8)
is an epimorphism. By assumption 8 is then an epimorphism. Consequently

we have
M =Im(B)= ) Im(e),

eeHomg(D,M)

thus D is a generator.
(b) Since the proof runs dually, we can be brief. If C is a cogenerator,
then the assertion follows from the relations

0= U Kerlp)= [ Ker(p'a)

¢eHompg(A,C) ¢'eHomg (B,C)

=N a (Ker(¢") < a~'(0)=Ker(a) « 0,

thus Ker(a) =0, i.e. « is a monomorphism.
To show the converse, let Mz be arbitrary. We define

B = 1 C, with C, = C for every ¢ € Homg (M, C),

¢eHomp(M.C)
as well as a : M > B by
a(m)=(¢(m)), meM.
Then, for ¢o€ Homg (M, C),
P = T, &

where 7, [1C, » C,, = C is the canonical epimorphism. Hence Hom(a, 1¢)
is an epimorphism and by assumption « is then a monomorphism. Con-
sequently we have
0=Ker(a)= N Ker(op),
eeHomg (M,C)
thus C is a cogenerator. 0
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5.8.4 COROLLARY
(a) Let Pg be a projective generator and let B:Bgr —»> Cr be a homomor-
phism. Then:

B is an epimorphism <Hom(1p, B) is an epimorphism.

(b) Let Qgr be an injective cogenerator and let a:Ar—>Bgr be a
homomorphism. Then:

a is a monomorphism & Hom(a, 1¢) is an epimorphism.

Proof. “=” This holds since P is projective, resp. Q is injective.
“&” By 5.8.3. O

We now direct our attention in particular to cogenerators. Let Eg be a
simple module and I(Er) an injective hull of E, for which we assume
E - I(R). Let Cg be a cogenerator, then as

Ker(e)=0

¢eHomg (I(E),C)

there must be given a homomorphism ¢e€Homg(I(E), C) with
E + Ker(e). Since E is simple it follows that E nKer(¢)=0. Since E is
large in I (E) it follows therefore that Ker(¢) =0, i.e. ¢ is a monomorphism.
Obviously (by 5.6.3)

¢ E3x->¢(x)eIm(ep)

is also an injective hull of E where the module Im(¢), isomorphic to I(E),
is an injective submodule of C. As an injective submodule it is in fact a
direct summand of C. We have therefore established that the cogenerator
C to every simple module E contains an injective hull. Henceforth it is
crucial that this property is characteristic for cogenerators.

5.8.5 THEOREM

(a) The module Cr is a cogenerator if and only if for every simple module
it contains an injective hull.

(b) Let {E;|j € J} be a system of representatives for the classes of isomorphic
simple R-modules, and let I(E;) be an injective hull of E;. Then

Co =11 I(E)
jeJ
is a cogenerator.

(c) A module Cg is a cogenerator if and only if it possesses a submodule
isomorphic to Cy.



136 5 INJECTIVE AND PROJECTIVE MODULES 5.8

Proof. (a) We have previously determined that a cogenerator for every
simple module E contains an injective hull. Conversely let this now be
satisfied for C. Let 0# me M, then mR is finitely generated and has
therefore by 2.3.12 a maximal submodule A. Then E = mR/A is simple.
Let

v:E->I(E)

be an injective hull of E with I(E) — C, which exists by assumption. Since
v is a monomorphism, y(m+A)#0. Let v:mR >mR/A be the natural
epimorphism then yv(m)=y(m+ A)#0. Since I(E) is injective, there is
a y':M - I(E) so that the diagram

mR———> M

4
-,
-,
4
yul 2y
-
k

I(E)

is commutative. Consequently we have y'(m) # 0. Then let ¢ be defined by

e:M>3x->vy'(x)eC,

thus it follows that ¢ (m) # 0, i.e. m# Ker(¢). Thus altogether we have
M Ker(e)=0,

¢eHompg(M,C)
i.e., C is in fact a cogenerator.
(b) From consideration of 5.6.3 it follows by (a) that Co =[] I(E;) is a
cogenerator. iet
(c) If we have C, = C with C; =, then it follows by (a) that C is a
cogenerator. Now conversely let C be a cogenerator, then there is by (a)
to every E; an injective hull Q; — C, which by 5.6.3 is isomorphic to I(E;);
let v;: I(E;) = Q;. We assert that
X Q=00,
jeJ ieJ

where the sum is to be taken in C. Let E; = y;(E;), then E; is isomorphic
to E; and E; % Q,. To prove the assertion it suffices by 5.1.7 to show that

LE=@DE;
jel jeJ

If we suppose that this sum is not direct then there is a finite sub-sum # 0
which is not direct. Of all finite sub-sums # 0, which are not direct, let {(with
respect to new indices) E} +. ..+ E, be one with the smallest n.
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Then we have

E,+.. +E,=E,®...®E.,,
and also E; N (E;®...®E,)#0. Since E| is simple it follows that
Ei > E,® .. ®E.

Let 7; be the projection of E5®...@®E, onto E}, i=2, ..., n, then there
isanioe{2,..., n}with m, (E}) #0. Since E} and E;, are simple, it follows
that E; =m,(E})=E|, thus also E, =E| =E| =E,,, in contradiction to

the assumption concerning {E;|j € J}. Thus we have in fact

X Q=00,

jeJ jeJ
and hence the isomorphisms vy;: I(E;)= Q; can be assembled to give an
isomorphism

y: 1 I(E)~>®D O

jeJ jeJ
(see 4.3.1) for which we have y((a;))=Yv,(a;), where (a;) el I(E)),
Y yi(a;) e® Q;. 0

Condition (b) of this theorem provides us with a “‘minimal’ cogenerator
Co which is injective for finite J (for this see also Exercise (28)). For an
arbitrary J, Cy is injective in the case that Ry is noetherian (see 6.5.1).

In the general case to obtain an injective cogenerator, we take an arbitrary
injective module containing [] E; as for example I(]_[ E,).

ieJ jeJ

Later we shall be closely concerned with injective cogenerators, where

the preceding theorem is essentially used.

5.8.6 Example. For R =27, Q/Z is an injective cogenerator. Since Q/Z
is divisible Q/Z is firstly injective. For an arbitrary ring R every cyclic
R-module M =mR is isomorphic to a module R/A with Agx &> Rp (A=
Ker(a), if a: R3r—mreM). Consequently every cyclic and thereby in
particular every simple Z-module is isomorphic to a module of the form
Z/nZ (with n € Z). Since for n #0

Z/nZsz‘»—>§+ZeQ/Z

is obviously a monomorphism, Q/Z contains for every simple Z-module
an isomorphic copy. Consequently Q/Z is also a cogenerator.
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EXERCISES

1

Let A =< B < M. Show:
(a) BSM&SB/AS M/ANA S M.
b)) ABMESAS BABS M.
(c) Let A beadcoof AinM.ShowforT>M: TSM>D>TNA S A,
(d) Let A" be inco of A in M. Show for ToM: TS M>
(T+A") /A &S M/A'.

2)
Let A and B be submodules of M.
(a) Show: A+B=MAANB > B=>Bisadcoof A in M.
(b) Show: ANB=0A(A+B)/B % M/B=>B isinco of A in M.

3)
Show: For A — M the following properties are equivalent:

(a) ASM.

(b) For every generating set (x;|ieI) of M and every family (a;lieI)
with a; € A, (x; —a;|i € I) is also a generating set of M.

(c) There is a generating set (x;lieI) of M so that for every family
(a;lie I) with a; € A, (x;—a;|i € I) is also a generating set of M. (Note the
special case Mg = Rr with 1 as generating family.)

(d) If from a generating set of M all elements of A are omitted then
a generating set of M is again obtained.

4@
For m € My let
rr(m)={rlre R nmr=0}.
Show
Si(M) = {m|m e M A rg(m) % Rz}
is a submodule of Mg (Si(M) is called the singular submodule of M).

($)
Show:
(a) Let R be a commutative ring, A = R, and A" an adco of A in R.
Then there isa B = A with A@B =R.
(b) If R is an integral domain and A « Ry has an adco in R then A is
small in R.
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(6)
A submodule X <> My is called closed in M if from X & U = M it always
follows that X = U. Show:

(a) For X the following are equivalent:

(i) X is closed in M.

(ii) X is an intersection complement of a submodule of M, i.e. there
isan A &> M with X =A".

(iii) From X < V & M it always follows that V/X % M/X, i.e. the
natural mapping v : M » M/X ‘“‘contains” large submodules.

(b) Additionally let M < Qg with Qg injective (thus injective hull of
M). Then we have: X is closed in M if and only if there is a direct summand
Y > Qwith YnM=X.

(c) Every submodule in My is a direct summand (= Mg semisimple) if
and only if every submodule is closed.

(d) Construct an example in which a closed submodule is not a direct
summand (say in Mz = (Z/82)®(Z/27)).

(e) If R is an integral domain then in every R-module M the torsion
submodule

TM)={mlmeMamr=0 foranreR,r#0}

is closed.

)
For R =12, i.e. in the category of abelian groups, the closed submodules
are to be characterized. Show for X — Mjz:

(a) If X is an intersection complement of A in M and if we have m e M,
mg X, mp € X for a prime number p, then there is an x € X with mp = xp.
(Show that (mZ + X)/X is simple and (X + A)/X is large in M/X so that
it follows that me X + A.)

(b) If X & U — M, then there is a u € U and a prime number p with
ug X, up € X. (Show that U/X has a simple subgroup.)

(c) A subgroup X is closed in M if and only if for every prime p we
have: Xp = X N Mp.

(d) A subgroup X is closed in M if and only if:

Soc(M/X) = (Soc(M)+ X)/X.
Here Soc(M) is the sum of all simple subgroups of M.

(8)
Let 0# e # 1 be an idempotent (e = ¢?) from the centre of R. Show: The
right R-module eR is projective but not free.
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)
Let B;:P,> M, B,: P, > M be epimorphisms and P,, P, projective. Show:

P, ®Ker(B,) =P, ®Ker(B)).

10)
Let U = F where F is a free right R-module with a basis (¢;|i € I). Let
the set I be well-ordered (by <) and to every j € I let there be defined:
Fi=@eR, F=@QeR, U=UnF, U=UnF,
i<j i<j

and also A; = ;(U;) where ; is the jth projection of F onto R. Show:

(a) If the right ideai A; is projective, then there is a V;=A; with U, =
U@V, _

(b) If there is for every ie I a V; with U; = U;® V; then it follows that

U=@V.
iel

(To show that X =Y V; coincides with U one shows that the set {i|ie I A
U; + X} is empty.)

(c) If in R every right ideal is projective then every submodule of a free
right R-module is a direct sum of right ideals (up to isomorphism).

(d) Over a principal ideal domain every submodule of a free module is
again free.

an
Let (T;|i e I) be a family of rings and let
R=]]T.
iel
R itself becomes a ring, if addition and multiplication are defined com-
ponentwise, R is then called the ring product of the family (T;|i e I). Let
A = U 7""9
iel
then obviously we have A < R. For k € I denote by e, that element from
A whose kth component is 1 and whose remaining components are 0. Show:
(a) A is a two-sided ideal in R with Agx =@ e;R and Ag % Rr.
(b) Ag is projective. iel
(¢) Homg((R/A)r, Rr)=0 and (R/A)r is not projective for infinite I.
(d) For jeI we have: (¢;R)r is injective > (T;)1, is injective.
(e) If all (T;)r, are injective and I is infinite then Ag is a direct sum of
injective modules but Ay is not itself injective.
(f) Rg is injective >V, eI [(T;)1, is injective].
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a12)

Let R be an integral domain with quotient field K # R. Show:

(a) Homg (K, R)=0.

(b) Kk is not projective.

(c) If a projective module Pr has a finitely generated large submodule,
then P is itself finitely generated.

(d) Every (as R-module) projective ideal is finitely generated.

(Hint: For (c) use the Dual Basis Lemma.)

a13)
Show in the category of abelian groups (i.e. R =2Z):
(a) If P is projective (=free) and if A, B are two direct summands in
P then A N B is also a direct summand in P.
(b) If Q is injective (=divisible) and if A, B are two direct summands
in Q then A + B is also a direct summand in Q.

14)
Show: A module P is projective if and only if to every epimorphism
B : Q- C with injective Q and to every homomorphism ¢ : P> C there is
a homomorphism ¢': P> Q with ¢ =B¢’.

as)
In the following let I(M) always be an injective hull of M with M — I(M).
(a) Show: Every endomorphism ¢ of I(M) with ¢(m)=m forallmeM
is an automorphism.
(b) Show that the following conditions are equivalent:
(1) Every endomorphism ¢ of I(M) with ¢(m)=m for all me M
is the identity of I(M);
(2) Homg(I(M)/M, I(M))=0.

(16)

Let always M < I(M), and X < I(X) resp. Let M be called X-determined
if Homg(I(M)/M, I(X))=0. Show:

(a) M is X-determined &to every homomorphism ¢ : M - X there is
only one homomorphism ¢': I(M) - I(X) with ¢(m) = ¢'(m) for allm e M.

(b) M is injective VX € Mg [M is X-determined].

(c) VxeX[{rlreRaxr=0}% Rr=>x =0]<VM e Mg [M is X-deter-
mined].

(d) M is [] X;-determined < Viel [M is X;-determined].

iel

(e) Mi®M, is X-determined ©M; and M, are X-determined.
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(f) Mi®M,; is M, D M,-determined M, is M;-determined for i, j =
1, 2.

(g) Let C be a cogenerator and X an arbitrary module. Precisely the
injective modules are C @ X-determined. In particular we have: C@®X is
C @ X-determined< C and X are injective.

a7
Show: If Q;, Q, are injective and u;:Q;>Q;, u2:Q,->0Q;, are
monomorphisms, then we have: Q;=Q,. (Hint: Without loss we can

assume that Q, < Q4, u1:Q; > Qy and u, is an inclusion mapping. Let
Q,=Q,;PA, then let

B=A+u(A)+ul(A)+ul(A)+...

and let C be an injective hull of BN Q,=u,(B) in Q,. By using the
homomorphism B 3 b+ u1(b) € C it may be shown that A@C=C))

(18)

Let S := End(Mg) where M is considered as an S-R-bimodule sMg. Show:

(a) Let x e M, let xR be simple and let xR be contained in an injective
submodule of Mg. Then Sx is a simple left S-module.

(b) Let x, ye M, xR=yR and let xR be contained in an injective
submodule of Mg. Then Sx is isomorphic to a submodule of Sy.

(c) Let x, ye M, xR =yR and as well let xR and yR be contained in
injective submodules of M. Then it follows that I(Sx)=I(Sy).

19)
For an integral domain R show:
Every divisible torsion-free R-module is injective.
(Mg is divisible . >VreR, r#0[Mr=M];
My is torsion-free : >VmeM, m #0VreR, r#0 [mr#0].)

(20)
Let R be an integral domain with quotient field K. In the lattice Lat(Kg)
of R-submodules of Kz a multiplication is defined:

U-V:={ u;viluieUAvieVAneN}.
=1

This multiplication is commutative and associative and has R as unit
element. Show:
(a) For 0# U < Ky the following are equivalent:
(1) Thereisa V<= Kg with U - V=R.
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(2) Uk is projective and finitely generated.
(3) Ug is projective.
(Hint: Use the Dual Basis Lemma.)
(b) If 0# Ugr = Rr holds then the three conditions are further equiv-
alent to
(4) For all divisible Mg the mapping

Hom(¢, 15¢) : Homg (R, M)->Homg (U, M)

is surjective.
(c) The following are equivalent for R:
(1) Every ideal is projective.
(2) Every divisible R-module is injective.
An integral domain with property (c) (1) is called a Dedekind ring. In
particular every principal ideal domain is a Dedekind ring.

(1)
Let Mg be called Xg-injective:<>for every monomorphism a : A > X

Hom(a, 1) : Homg (X, M) > Homg(A, M)

is surjective. Show:

(a) Let &:X;~> X be a monomorphism and let &: X > X, be an epi-
morphism with Im(¢,) =Ker(&,). If M is X-injective then M is also X, -
and X,-injective.

(b) Let M be X-injective and let M, be large in M. Then we have : M,
is X-injective &for every ¢ € Homg (X, M) we have Im(p) = M,.

(c) If M is X;-injective for every X; of the family (X;|i e I) then M is
also (]_[ X,~>-injective. (Hint: Use (b) with an injective hull of M.)

iel

(d) Let M be X-injective and let X be a generator, then M is injective.

(Generalization of Theorem 5.7.1.)

(22)
Let Mg be called Yg-projective :& for every epimorphism 8:Y » B

Hom(1a4, 8): Homg (M, Y)-> Homg (M, B)

is surjective. Show:
(a) Let R=7Z. Qg is Zz-projective, but not Z™-projective (ZN= 1 z.

neN

withZ,=Zforallne N).

(b) If every simple right R-module is X-projective, then X is semisimple
(= sum of its simple submodules).
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(23)
Show:

(a) If R is a Dedekind ring (see Example 20) with quotient field K # R
then K/R is an injective cogenerator of Mg.

(b) If R is a principal ideal domain and with exactly one maximal ideal
PR # 0, then the K/R-projective modules (see Example 22) are precisely
the torsion-free R-modules.

(Hint: Use the following two facts concerning R:

(1) If an R-module M is not torsion-free, it has a direct summand
which is isomorphic to K/R or R/(p") forann=1.

(2) The R-modules A, :=R/(p") have the following property:
A, = BABJ/A, torsion-free=>> A, is a direct summand in B.)

(24)
Let S := End(Cg) and consider C as an S-R-bimodule sCg. For U < C let

Is(U)={s|seSra(U)=0}
and alsofor T < S
re(T)={clce Cat(c)=0 forall rteT},

then Is(U) is a left ideal of S and rc(T) is a submodule of Cr. Let the
other annihilators be analogously formed.

Show for a cogenerator Cg:

(a) B Cr > rcls(B)=B.

(b) A= Rr>rrlc(A)=A.

(c) S is a cogenerator = Cpg is injective.

(Hint: Let n : C » I(C) be an injective hull; by using the left ideal L — S,

L = {An]A e Homg (I(C), C)}

we show that n splits.)
(d) If R is a cogenerator on both sides then R is injective on both sides.

(25)
Let Qg be injective, S = End(Qg) and let U = Q, V = Q. Show:
(@) Is(UnV)=Is(U)+Is(V).
(b) Isro(I) =1 for all finitely generated left ideals I — sS.

(26)
Let S = End(Mg). For U = M we define in S the right ideal

As(U) = {s|s € S AIm(s) = U},
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for T = S we define in M the R-submodule
pm(T) = Zrhnul

Show:
(a) Mg is a generator> ppAs(U)=U for all U < Mg.
(b) My is projective > As(U + V) =As(U)+As(V) forall U, V < Mg.
(c) Mg is projective = Aspps(I) =1 for all finitely generated I — Ss.

27
Let R = K[x, y] be the polynomial ring in the indeterminates x and y over
a field K. For fixed n e N let A denote the ideal generated by the elements

{x'y"'o<isn+1}
and let S := R/A. Show:
(a) Ss is not injective.
(b) The R-module
M= ( xiyn—iR)/(xn+1R +yn+1R)
i=0

is also an S-module (i.e. MA =0) and possesses exactly one simple sub-
module Es.

(¢) The inclusion Es — M is a maximally large extension.

(d) Ms is an injective cogenerator.

(28)
Let the cogenerator Cy, introduced in 5.8.6, be injective and let D be also
a cogenerator of Mg to which in every cogenerator of M there is an
isomorphic submodule.
Show: Co=D.



Chapter 6

Artinian and Noetherian Modules

One of the starting points in the historical development of ‘‘non-commu-
tative” rings and of modules over such rings was the theory of algebras
over a field K. The algebras themselves, their ideals as well as modules
over such algebras are also K -vector spaces. Consequently it was possible
to draw upon the theory of vector spaces for much of what was done in
the initial stage of the development. If a finiteness assumption is needed
then it is clear that finite dimension is required of the underlying K-vector
spaces.

The further development aimed, as far as possible, at removing the
assumption of an algebra. If we only have a ring (which is not an algebra),
then certainly in such a case we do not have the linear theory available
and in particular the question arises as to a substitute for the finiteness
condition of an algebra which is now no longer applicable.

Here, above all, Emmy Noether provided the appropriate notions and
interpretations and thereby sowed the seeds for the further development.
As finiteness assumptions she introduced maximal and minimal condition
which can also be formulated as chain conditions. In other parts of algebra
these have turned out to be just as significant and natural. These conditions
are now about to be provided so that in the following considerations we
can always refer back to them. From the considerations of this chapter the
investigation of artinian and noetherian modules is not in any way concluded
but, as further concepts and lemmas present themselves, we shall return
to the theme many times.

In order to avoid misunderstanding it is to be emphasized that in the
following it is a question of finite or countable chains of submodules with
inclusion as order relation.

146
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6.1. DEFINITIONS AND CHARACTERIZATIONS

6.1.1 Definitions

(1) A module M = My, is called noetherian resp. artinian :< every non-
empty set of submodules possesses (with respect to inclusion as ordering)
a maximal resp. minimal element.

(2) AringR is called right noetherian resp. artinian :<> Rg is noetherian
resp. artinian.

(3) A chain of submodules of M

...“)A;_]gAigA,‘.‘.l‘-)...

(finite or infinite) is called stationary :< the chain contains only finitely
many different A,.

Remarks. (a) These properties are obviously preserved under isomorphism.
(b) A noetherian resp. artinian module is also called a module with
maximal resp. minimal condition.

6.1.2 THEOREM. Let M = Mg and let A — M.

(I) The following properties are equivalent:
(1) M is artinian.
(2) A and M/ A are artinian.
(3) Every descending chain A, «> A, « As < ... of submodules of M
is stationary.
(4) Every factor module of M is finitely cogenerated.
(5) In every set {A;|ieI}# & of submodules A; = M there is a finite
subset {A, | i€ I()} (te ﬁnite Iy I) with

ﬁA,: ﬂ A,

iel iely

(IT) The following properties are equivalent:
(1) M is noetherian.
(2) A and M/ A are noetherian.
(3) Every ascending chain A, = A, = As— ... of submodules of M
is stationary.
(4) Every submodule of M is finitely generated.
(5) In every set {A;|i e I} # & of submodules A; = M there is a finite
subset {A;|i € I} (i.e. finite Io< I) with

ZA,-= Z A

iel iel,
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(III) The following properties are equivalent:
(1) M is artinian and noetherian.
(2) M is of finite length (see 3.5.1).

Proof. (I) “(1)=>(2)”: Since every non-empty set of submodules of A is
also such a set of M there is therefore a minimal element, thus A is artinian.
Let v:M > M/A and let {Q;|i eI} be a non-empty set of submodules of
MJ/A.

We claim that if »~'(Q;,) is minimal in {¢ ' (€;)|i € I} then Q;, is minimal
in {Q;|i e I}. Suppose Q; = Q,,. Then »~ (%) = v (Q,)
and so, from the minimality of Q,;;:

v Q) =v" 1 (Qy),

and we have Q; = v» }(Q)) = VV—I(Q,-O) = ();,. This follows also directly from
3.1.13.

I “(2)=>(3)": Let Aj«< A, < Az« ... be a descending chain of
A; = M and let again v : M > M/A. Let

r={Ali=123,..}, v(D)={r(A)]|i=1,2,3,..},
Fa={A;nAli=1,2,3,...}.

Since T is not empty, »(I') and I'4 are not empty. By assumption there is
therefore a minimal element in v(I'), say v(A,) and a minimal element in
I'4, say A,, "A. Let n = Max(/, m), then we have

V(An)=V(An+i)1 AnmA=An+imA’ i=0’ 1’21-'-

We claim that A, =A,.1,i=0,1,2,...so that the given chain is in fact
stationary.
From v(A,)=v(A,+;) we have

A+ A=v""0(A,) =1 W(Au) = A+ A,

ie. A, +A=A,,;+A. Further we have A, "nA =A,,; A as by assump-
tion A, « A, .. By the modular law it now follows that

An =(An +A)nAn = (An+i+A)mAn =An+i+(A mAn)
=Ait(ANA, ) =Ausi

(I) “(3)=>»(1)”: Indirect proof. Suppose the non-empty set A of sub-
modules contains no minimal element. For every U € A there is then a
U'e A with U' « U. For every U let such a fixed U’ be chosen (Axiom
of Choice). For arbitrary Uyge A

UyeUye Usjse...

is then an infinite, properly descending chain in contradiction to (3).
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(I) “(4)<>(5)”: This follows immediately from 3.1.11 (if in (5) we write
U= mie[Ai)'

I “(1)=>(5)”: By (1) in the set of all intersections of any finitely many
of the A, i €I there is a minimal element; let this be D = [} A..

iely
By the minimality of D it follows for every jeI: D nA;=D and hence
D > (A thus D= A,

jel jel
M “5)>B)": Let A; « A, < Az < ... be given, then from (5) there
is an n with

ﬂ A= ﬂ A;
i=1,2,3,... i=1,.., n
and consequently we have A, = A, for i =n.
(II) The proof follows dually to the artinian case up to (4)&(5): this
equivalence was shown in 2.3.13 (with M in the place of ), A; in (5)).

iel
(IID) “(1)=>(2): Since M is noetherian by (II) every submodule is
noetherian. Consequently there is in every submodule A — M (including
M itself), A#0, a maximal submodule A’. To every such A let a fixed
submodule A’ be chosen. Then consider the chain

MeMeMeM"e...

Since M is artinian this must break off and then it represents a composition
series, i.e. M is of finite length.

(III) “2)=>(1)": Let A:= A, > A, —> A3 = ... be an ascending chain
of submodules of M.

Let [ be the length of M (=the length of a composition series of M).

We claim that in A at most / +1 different A; occur. Suppose there were
more than [+ 1, then a subchain of A of the form

14,'l %')A;2%> e %')A,'“_z

would exist. This could be refined to a composition series of M (see 3.5.3)
and consequently M would have to have a length =/+1. But if A has only
finitely many different A; then A is stationary, thus M is noetherian.
Analogously it follows that M is artinian. O

The condition (I), (3) resp. (II), (3) in 6.1.2 is called the descending resp.
ascending chain condition. Thus by 6.1.2 we conclude that a module satisfies
the minimal resp. the maximal condition if and only if it satisfies the
descending resp. ascending chain condition. This statement remains valid
if we consider not all submodules but only the finitely generated submodules
resp. the cyclic submodules resp. the direct summands of a module. Thus
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by way of example we have: a module then satisfies the minimal conditions
for finitely generated submodules (that is to say, in every non-empty set
of finitely generated submodules there is a minimal one), if and only if the
descending chain condition for finitely generated submodules is satisfied
(that is to say, every descending chain of finitely generated submodules is
stationary). The easy proof of this and of the other corresponding statements
is left to the reader as an exercise. The reader will also notice that in place
of the set of all finitely generated submodules resp. all cyclic submodules
resp. all direct summands an arbitrary set of submodules can appear. Of
course only the three given cases are of interest here.

6.1.3 COROLLARY

(1) If M is a finite sum of noetherian resp. artinian submodules then M
is noetherian, resp. artinian.

(2) If R is a right noetherian resp. artinian ring and M = Mg is finitely
generated then M is noetherian, resp. artinian.

(3) Every factor ring of a right noetherian resp. artinian ring is again right
noetherian resp. artinian.

Proof. (1) let M= Y A; with A; = M. We obtain the proof by means of
i=1

induction on the number n of the summands. For n =1 the assertion
coincides with the assumption. Let the assumption be valid for » —1 and let

n

M=73 A; with A; noetherian resp. artinian for all i.
i=1

i=

Then

L=Y A is noetherian resp. artinian.

By the First Isomorphism Theorem (3.4.3) we have
M/A,=(L+A,)/A,=L/LnA,.

From 6.1.2 whenever L is noetherian resp. artinian so also is L/L N A,
and hence also M/ A,. Since A,, is also noetherian resp. artinian the assertion
now follows from 6.1.2.

(2) For x € M consider the mapping

ox: Ror—>xreM.

This is immediately a homomorphism of Rz into Mg. From the
Homomorphism Theorem we deduce that

R/Ker(p,) =Im(¢,) = xR
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as right R-modules. If Ry is artinian resp. noetherian then it follows from
this by 6.1.2 that this also holds for xR. If x,, ..., x, is a generating set of
Mg then the assertion follows from Corollary (1) as

M= z X,'R.
i=1

(3) Let A = grRpg, then whenever Ry is noetherian resp. artinian so also
is (R/A)g. Since (R/A)A =0 the submodules of (R/A)r coincide with the
right ideals of R/A from which the assertion follows. 0

6.2 EXAMPLES

(1) Every finite-dimensional vector space is of finite length. In order to
see this let Vi be a vector space over the skew field K and let {x,, ..., x,}
be a basis of Vk. Then

O x1 Keox 1 K+xKe.. o2 K+.. +x,K=V

is a composition series of V since from
(x1K+...+xiqnK)/(x:K+...+xK)=x;. K=K

every factor is simple.

(2) Every finite-dimensional algebra R over a field K is on both sides of
finite length since every right or left ideal is a subspace of R considered
as a K-vector space.

(3) A vector space Vg of infinite dimension is neither artinian nor no-
etherian. Let {x;|i € N} be a set of linearly independent elements, then we
may consider the chains

Z xK Z xK « Z xK ...
i=1 i=2 i=3

and
x1 Ko xi K+xK o2 x1K+x:K+x:3K= ...

neither of which is stationary.
(4) Zz is noetherian but not artinian. Since every ideal is a principal ideal
and so finitely generated Zz is noetherian.

Since

227 <27 < ...

is not stationary, Zz is not artinian.
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Remark. In Z we have a ring which (on each side) is in fact noetherian
but not artinian. The converse situation is with respect to a ring (with a
unit element!) not possible! Actually we shall show later that every artinian
ring is also noetherian. In order to obtain an example of an artinian module,
which is not noetherian (see next example), we can in consequence not
refer to a ring.

(5) Let p be a prime number and let

a
Qp = {17

i.e. the set of the rational numbers, whose denominator is a power of p
(including p®=1). Then Q, is a subgroup of Q (as additive group) and
Z-Q,.

anAieN}

ASSERTION. Q,/Z is artinian but not noetherian as a Z-module.

1 1
Proof. Let |;+ Z) be the Z-submodule of Q,/Z generated by ;)—,.+ Z2eQ,/Z.
Then
0= }l+ Z) o
p

is a properly ascending chain for

1
?+Z) >

1

1)
p p

thus Q,/Z is not noetherian. In order to show that @Q,/Z is artinian we
show that in the chain given above all proper submodules of Q,/Z occur.
In every non-empty set of submodules there is evidently then a smallest
submodule (not only a minimal one!).

We consider firstly:

1
© @p)=1|5+2)=|+2)
p p
As (a, p) =1 (coprime) there are b, c € Z with

i b 1
ab+p'c= 1:>a—,»——,-=—ceZ
p p
thus

Q+z=%+z:>'li+z)e—> li,.+z).
P T p p p

Since on the other hand |a/p' +Z) < |1/p’ + Z), the assertion follows.



6.2 EXAMPLES 153
Let now B = Q,/Z, then there are two distinct cases.

Case 1. For every neN there is an i e N with i=n and an a/p' +Ze B
with (a, p) =1 (i.e. there are elements of arbitrarily high order in B).
From (*) it then obviously follows that B =Q,/Z for every z/p" +Z < B.

Case 2. There is a maximal i € N for which there exists an a/p’'+Z e B
with (a, p) =1 (i.e. there is no element of arbitrarily high order in B). From
(*) it then follows that

|ii+z) - Il,.+z) -B. 0
p p

(6) Example of a ring which is artinian and noetherian on one side, thus
of finite length, but which is neither artinian nor noetherian on the other
side. Let R and K be fields and let R be an infinite dimensional extension
field of K. Example: R and Q.

Let S be the ring of all matrices of the form

k
( ") with k € K, r,, r€ R.
0 ra

As we see immediately, S is a ring with unit element

(o 7

S is neither left artinian nor left noetherian. Let {x;|i €N} be a set of
elements from R which are linearly independent over K. Let

— 0 Xi) .
si-—(o 0/’ ieN,

then we have

(k fl) _(0 kxi)
0 " \o o)

thus it follows that the left ideal generated by s; is

0 KX,‘)

S“:(o 0

Then

Ss; > 851+ 8529 Ss1+S5,+Ss39 ...
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is a properly ascending chain of left ideals and

Y Ssie@ Y Ssie@ ) Ssiw...
i=1 i=2 i=3

i=

is a properly descending chain of left ideals.
To see that Ss is of finite length a composition series of Ss will be explicitly
given. For this it is useful to have the product of two elements of S in view:

(h a,)(k r1> _(hk hr1+a1r2)
0 az 0 I 0 asr
Let now

0 1 0 R 00 0 0
A= (o 0)5 - (0 0)’ Az= (0 1)5 - (0 R)’
then these right ideals are obviously simple (since R is a field) and we have
Al N A2 =0.
Then it follows that A;+ A,/A ;= A, is also simple.

We claim that 0> A; > A;+ A, = § is a composition series of Ss. It
remains only to be shown that A; + A, is maximal in . Let

(h al)éAl‘f'Az,
0 as

then it follows that & # 0. For

B:=A1+A2+(h a‘)s
0 as

we then have

S RN G R

thus B=S.

6.3 THE HILBERT BASIS THEOREM

The Hilbert Basis Theorem can be considered as the principle of construc-
tion for certain noetherian rings. It has important applications in algebraic
geometry.

6.3.1 THEOREM. Let R be a right noetherian ring. Then the polynomial
ring R[x] (in which x commutes with the elements from R) is right noetherian.
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COROLLARY. R[xy,...,x,]is right noetherian.

Proof of the theorem. We show that every right ideal A from R[x] s finitely
generated. For the proof we assume A # 0. We obtain the proof in three
steps.

Step 1. Let P(x)=x"r, +x" 'ra_i+...+ro€ R[x] with r, #0, then 7, is
called the highest coefficient of P(x); the highest coefficient of the zero
polynomial from R[x] is put equal to 0. Let Ay:= the set of the highest
coefficients of polynomials in A.

ASSERTION. Ay <> Rg.

Proof. Let a,be Ay, a #0, b #0 then there are

Pix)=x"a+x""'am_1+...€A,

P(x)=x"b+x"""bor+...€A.

Let further ry,r,€ R with ar,+br, #0, it follows that Py(x)x"r,+
P,(x)x™r, € A, thus ar, + br, € Ao and consequently Ay = Rk.

Since Rpg is noetherian, Ay is finitely generated. Let a,,...,ax be a
generating set of Ay, where all a; # 0, then there are P (x),..., Pi(x)e A
with ai, ..., a; as the highest coefficients (in the given sequence). By

multiplication by powers of x it can be arranged that all P;(x) have the
same degree, say n; which we now assume. Let now

B = i P;(x)R[x],

then B is finitely generated and we have B — A.
Step 2. Now let F(x)e A.

ASSERTION. F(x) can be written in the form
Fx)=G(x)+H(x)
where G(x) € B and H(x) =0 or the degree of H(x) is <n.
Proof. If F(x)=0 or if the degree of F(x) is <n the assertion holds with

F(x)=H(x). Thus let the degree of F(x) be t>n. If b is the highest
coefficient of F(x) then b can be represented in the form

b=a1r1+...+akrk, r,'ER.
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The polynomial
Fi(x)=F(x)— (X Pi(x)r)x""
then has a degree <t—1 or F;(x) =0. Thus putting
Gi(x) = (X Pi(x)r)x"™"
we then have
F(x)= Gi(x) + Fi(x),

where G,(x) € B. In the case that the degree of F,(x) = n we may decompose
F,(x) correspondingly:

Fi(x) = Ga(x) + F,(x)

with G,(x)e B and F,(x) =0 or the degree of Fy(x)<t—2. From this it
follows that

F(x)=G(x)+ Ga(x) + Fy(x)

with G1(x)+ G,(x) € B and F,(x) =0 or the degree of Fp(x)<t—2.
After at most ¢ —n steps (i.e. using induction) the desired decomposition
is obtained

(%) Fx)=G(x)+H(x).
Since F(x)€ A and G(x)e B = A it follows that
H(x)=F(x)-G(x)eAn(R+xR+...+x"R).

Step 3. Now consider the right R-module
An(R+xR+...+x"R).

This is an R-submodule of the finitely generated right R-module R + xR +
...+x"R, over the right noetherian ring R. By 6.1.3 and 6.1.2 this is
then also finitely generated. Let, say,

ANn(R+xR+...+x"R)= i Q;(x)R.
j=1
ASSERTION
k {
A= ; P(x)R[x]+ ;1 Q;(x)R[x].

Since P;(x), Q;(x)€ A the right side is contained in A and from (*) A is
also contained in the right side. This completes the proof. a
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6.4 ENDOMORPHISMS OF ARTINIAN AND
NOETHERIAN MODULES

First let M = Mg be an arbitrary module and let ¢ be an endomorphism
of M, i.e. a homomorphism of M into itself. Then ¢", n €N, is also an
endomorphism of M and we have

Im(g) « Im(p®) « Im(p®) < ..

Ker(p) = Ker(p?) = Ker(¢?) = . ..

In case M is artinian resp. noetherian, the first, resp. second of these chains
must be stationary. This yields interesting corollaries.

6.4.1 THEOREM. Let ¢ be an endomorphism of M.
(1) M is artinian >3noeNVn=no [M =Im(e")+Ker(e")].
(2) M is artinian A @ is a monomorphism = ¢ is an automorphism.
(3) M is noetherian > 3AnoeNVn =no [0=Im(ep") nKer(e")].
(4) M is noetherian A ¢ is an epimorphism = ¢ is an automorphism.

Proof. (1) By the preceding remark there is an noe N with Im(¢ ") = Im(e")
for n = no. For n = ny it then follows that Im(¢") = Im(¢>"). Let x € M, then
¢"(x)eIm(e™) =Im(¢>")>there exists yeM with ¢"(x)=¢>"(y)>
P x—@" (YN =0k =x-¢"(y)eKer(¢")>x =" (y) +k e Im(e") +
Ker(¢"), which was to be shown.

(2) If ¢ is a monomorphism then obviously so also is ¢" for every n €N,
i.e. Ker(¢")=0. Then it follows from (1) that M =Im(¢"), thus also
M =1Im(e), for Im(¢") = Im(¢). Consequently ¢ is an epimorphism, thus
an automorphism.

(3) Here there is an noe N with Ker(¢ ™) =Ker(¢") for n = ny. For n = n,
itthenfollowsthatKer(¢") = Ker(¢>"). Letx € Im(¢") nKer(¢"), then there
isa y e M with x = ¢"(y), and we have

0=0"(x)=¢"(y).

Consequently we have y e Ker(¢>")=Ker(p"), from which we have x =
¢"(y) =0, thus we obtain 0 =Im(¢" )N Ker(¢").

(4) If ¢ is an epimorphism then so also is ¢" for every neN, i.e.
Im(¢")=M. From (3) it then follows that 0=Ker(¢™), thus since
Ker(p) = Ker(p™) we have also Ker(¢)=0. Consequently ¢ is a
monomorphism, thus also an automorphism. 0

6.4.2 COROLLARY. Let M be a module of finite length and let ¢ be an
endomorphism of M. Then we have

(5) InoeNVn =no [M =Im(p") @ Ker(o™)].
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(6) ¢ is an automorphism & ¢ is an epimorphism & @ is a monomorphism.

Proof. (5) For ny we now take the maximum of the numbers ng in (1) and
(3). (6) follows from (2) and (4). ad

By means of 6.4.2 well known properties of finite-dimensional vector
spaces are generalized.

6.5 A CHARACTERIZATION OF NOETHERIAN RINGS

We give here a characterization of noetherian rings which is of funda-
mental significance for a comprehensive theory of modules over noetherian
rings. The proof is based essentially on Baer’s Criterion.

6.5.1 THEOREM. The following conditions are equivalent for a ring R:
(1) Rg is noetherian.
(2) Every direct sum of injective right R-modules is injective.
(3) Every countable direct sum of injective hulls of simple right R-modules
is injective.

Proof. “(1)=>(2): Let Q =@ Q: be an internal or external direct sum of
iel

injective right R-modules Q.. By Baer’s Criterion 5.7.1 it suffices for the

proof of injectivity to show that for every right ideal U — Rr and every

homomorphism p: U - Q there exists a homomorphism 7:R > Q with

p =71, where ¢: U - R is the inclusion mapping. Since Ry is noetherian,

U is finitely generated:

U= Z u,R.
i=1

The images p(u;), i=1,...,n, of the u; under p have components
different from zero for only finitely many of the Q;, say for the Q; with
i € Iy, where I, is a finite subset of I.

Let

L05® Qi_)@Oi

iel, iel

be the inclusion mapping and let po be the homomorphism.induced by the
restriction of the domain of p to @ Q.. Then we have p = (po.

iely
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Since I, is finite, @ Q; is injective and there exists a homomorphism 7,

iely

so that the following diagram is commutative:
U————R

o %

to

4
g0
Consequently we have p = topo = toTot = 7t if we put 7 = (o7o.

“(2)=>(3)”: (3) is a special case of (2).

“(3)=>(1)”: The proof is obtained indirectly.

Let Rr be non-noetherian, then there is a properly ascending chain of
right ideals of R:

A :=A1‘=‘)A2‘:>A3%)...
Then -
A= Ul A;
is also a right ideal of R and to every a € A there is an n, e Nso that a € A;
foralli=n, Foreveryi=1,2,3,...letc;€ A, ¢;2 A;. In the cyclic module
(iR +A;)/A; by 2.3.12 there exists a maximal submodule N;/A;; then

E;=((ciR+A)/A)/(Ni/A)

is a simple right R-module. Let »;: (c;R +A;)/A; - E; denote the natural
epimorphism. Let I(E;) be the injective hull of E; with E; < I(E;) and let
;. E; > I(E;) be the inclusion mapping. Then there exists a commutative
diagram

(R +ANA — 5 A/A,
//
v; //
/7
E, ,
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where ¢; is the corresponding inclusion mapping and we have 7,(¢)=
L,'V,‘(Ei)?fo fori= 1, 2, 3, e
We now define

a:Asa- 3 mla+A)e D IE),
i=1 i=1
in which n;(a + A;) is thus the ith component of a(a). Since a € A; for i = n,,
a(a) lies in fact in the direct sum. (If we consider @ I(E;) as an external
direct sum then we put a(a)=(n;(a +A;)). Since by assumption @ I(E))

i=1
is injective, there is a B so that the diagram

A——R
o //B
//
I
© 4
® I(E)

i=1

18 commutative. Let b; be the ith component of B(1) in P I(E;), then
there is an n €N with b; =0 for i =n. Since a(a)=8(a)=B(1)a, ac A it
follows that n;(a + A;) = b,a, thus n;(a+A;)=0for i=n and all a € A. But
n.(cn +A,) # 0 by the definition of n;, contradiction! Hence 6.5.1 is com-
pletely proved. O

Remark. If we are only interested in 6.5.1 (1)<(2), then the proof can
be simplified. We need (3)=> (1) for a later theorem. The simplification in
the proof of (2)=>(1) as opposed to that of (3) = (1) will be indicated briefly.
The proof now follows directly by first starting from an arbitrary chain of
right ideals

Ao Ay > Ay . ..
Again let
A= QA,-.
Now let 7; be the inclusion mappings
ni:AJA;2a+A;—~a+A;el(A/A))
and let

a:A->PIA/A)
i=1
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be defined by

n

a(@)=Y (a+A), acA.
i=1
Then it follows that n; =0 for i =n and consequently A = A, for i =n.
If R is an arbitrary ringand n; : M; > I(M;),i =1, ..., n, are finitely many
injective hulls of R-modules, then

@‘UHE_BIM"’@I(M)

is also an injective hull. If Rz is now noetherian then it follows from 6.5.1
and 5.1.7 that the corresponding result also holds for an arbitrary index set.

6.5.2. COROLLARY. Let Rg be noetherian and let (M;|i € I) be a family
of right R-modules. If

ni :M; > 1(M))

is any injective hull of M then

D ni : DM, >DI(M)

iel iel iel

is an injective hull of P M.

iel

6.6 DECOMPOSITION OF INJECTIVE MODULES OVER
NOETHERIAN AND ARTINIAN RINGS

In order to explain the issues to follow we need some definitions.

6.6.1 Definitions

(a) Mg is called directly decomposable resp. directly indecomposable:
& Mg =0 or there is a direct summand of M different from 0 and M resp.
Mg # 0 and there is no direct summand of M different from 0 and M. (See
2.4.3)

(b) Let U Mgr. M is called irreducible (meet-irreducible) over
U :& for arbitrary submodules A, B <> M with U & A, U = B we have
U#AnNB.

(c) M is called irreducible (meet-irreducible) :& M is irreducible over 0.

One of the fundamental questions of the theory of modules concerns
the decomposition of a module into a direct sum of submodules. The utmost
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possible such decomposition is then obviously achieved if all submodules
of the decomposition are themselves indecomposable. In this connection
there arise three questions:

(1) Under what assumptions does a module admit a decomposition into
a direct sum of directly indecomposable submodules?

(2) Is such a decomposition (if it exists) uniquely determined?

(3) What properties do directly indecomposable modules have?

Questions (1) and (3) are answered here for injective modules over no-
etherian and artinian rings. An answer to question (2) is given in the next
chapter by the Krull-Remak-Schmidt Theorem.

We ‘begin by investigating directly indecomposable, injective modules
for which, first of all, the ring R is arbitrary.

6.6.2 THEOREM. Let Qr be injective, Qr #0. Then the following con-
ditions are equivalent:

(1) Q is directly indecomposable.

(2) Q is the injective hull of every submodule #0.

(3) Every submodule #0 of Q is irreducible.

(4) Q is the injective hull of an irreducible submodule.

Proof. “(1)=>(2)”: Let U = Q, U #0 and let I(U) = Q be the injective
hull of U. Since U # 0 we also have I(U)# 0. Since I(U) as an injective
module is a direct summand of Q it follows that I(U) = Q.
“QD=>B):Let M >Qandlet A,B—> M, A#0, B#0. Since Q is an
injective hull of A, A is large in Q and it follows that A~ B # 0.
“(3)=>(4): As an irreducible submodule we may take Q itself.
“(4)=>(1)’: Let Q be an injective hull of the irreducible submodule
M #0 of Q. Suppose Q=A®B, A#0, B#0. Since M is large in Q it
follows that M n A #0, M A B #0. Since M is irreducible, it follows that
(M nA)n(M nB)#0 in contradiction to A nB =0. Thus Q is directly
indecomposable. 0

6.6.3 COROLLARIES

(a) The injective hull of a simple R-module is directly indecomposable.

(b) A directly indecomposable, injective module Q contains at most one
simple submodule.

(c) If Ry is artinian then every directly indecomposable, injective module
Qg #0 is the injective hull of a simple R-module.

Proof. (a) Every simple module is irreducible.
(b) Let E, E; be simple submodules of Q. From E & Q it follows that
EﬁE] #0, thus E=E(WE1 =E1.
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(c) Let0#qe€ Q, then by 6.1.3 gR is artinian. Thus a simple submodule
E exists in gR < Q. By the theorem Q is an injective hull of E. a

We come now to the following interesting theorem which yields a new
characterization of noetherian resp. artinian rings.

6.6.4 THEOREM

(a) The following conditions are equivalent:
(1) Rg is noetherian.
(2) Every injective module Qg is a direct sum of directly indecompos -
able submodules.

(b) The following conditions are equivalent:
(1) Rg is artinian.
(2) Every injective module Qg is a direct sum of injective hulls of
simple R-modules.

By 6.6.3(a) the injective hulls of simple R-modules appearing in the
characterization of artinian rings are likewise directly indecomsposable.
From the theorem we have in particular: If Ry is noetherian but not artinian
then there is a directly indecomposable injective R-module which contains
no simple submodule.

The proof of the theorem is now only indicated for noetherian rings in
the direction (1)=>(2). In order to obtain (1)=>(2) for artinian rings, we
need the fact that every right artinian ring is also right noetherian, which
will be proved in Chapter 9. For the proof of (2) = (1), further lemmas are
required, and in particular the fact of the uniqueness (up to isomorphism)
of the decomposition of a semisimple module into a direct sum of simple
modules. As soon as the necessary lemmas become available we shall obtain
the complete proof (in 9.5). Thus now we prove only

6.6.5 PROPOSITION. If Ry is noetherian then every injective module Qg
is a direct sum of directly indecomposable submodules. If, moreover, R is
artinian (it is shown later: artinian Rgr = noetherian RRr) then every one of
the directly indecomposable summands is an injective hull of a simple
R-module.

For the proof of 6.6.5 we need two lemmas which are also of interest.

6.6.6 LEMMA. Let I be a set of submodules of a module Mg. Then among
all subsets A of T with
(%) Y U= U
UeA UeA
there is a maximal set Ao.
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o}
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Proof. By the help of Zorn’s Lemma. Let
G = {A|A =T a(+) is satisfied},

then G is ordered by inclusion and G # & for Je G (since 0= ) U=

Ued

&) U). Let H be a totally ordered subset from G and let
Ued

Q= J A,
AeH
then QcT'. Assertion: (e G, i.e., () is satisfied for (). Suppose that were
not the case, then the sum of the submodules from ) would thus not be
direct. Consequently there must be in fact a finite subsum of the sum which
is not direct. But finitely many submodules from ( lie already in a Ae H
(since H is a totally ordered subset) so that their sum is direct. Consequently
we have in fact Qe G and so () is an upper bound of H in G. Consequently
by Zorn there exists a maximal element Ay in G. 0

6.6.7 COROLLARY

(a) Forevery module Mg there is a maximal set of directly indecomposable,
injective submodules whose sum is direct.

(b) For every module My there is a maximal set of simple submodules
whose sum is direct.

Proof. This follows from 6.6.6 if I' =set of directly indecomposable, injec-
tive submodulesin case (a)andif I = set of simple submodulesincase (b). [

6.6.8 LEMMA. If Ry is noetherian then every module Mg # 0 contains an
irreducible submodule #0.

Proof. We show that every finitely generated submodule B < M, B # 0,
which is noetherian by 6.1.3, contains an irreducible submodule # 0. Let
{X|X s« B A X is inco in B} be the set of proper submodules of B which
are intersection complements of a submodule of B in B. This set is not
empty since O is an inco of B. Since B is noetherian there is a maximal
element X in this set. Let X, be an inco of U, <= B. Clearly then Uy # 0.

We claim that every submodule 0# C < U, is large in U, and con-
sequently U, is irreducible. Suppose, for L — U, we have C L =0, then
it follows that C n(X,+ L)=0. From the maximality of X, and as C #0
(thus C'# B) it follows that X,+ L = X, thus L — X, and consequently
L>UynXy=0. From CnL=0 it follows therefore that L =0, i.e.
C & U,. g
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Proofof 6.6.5. Consider a maximal set of directly indecomposable, injective
submodules of Q, whose sum is direct (6.6.7). Let this direct sum be

Q, =P Q. Since all the Q; are injective by 6.5.1 Q, is injective. Con-

iel

sequently Qq is a direct summand of Q:

Q=0Qo®Q:.

Suppose Q;#0, then Q; contains an irreducible submodule M #0
(6.6.8). Let I(M) be an injective hull of M in Q, then I(M) is a direct
summand in Q;, Q:=I(M)®Q,, and by 6.6.2 I(M) is directly in-
decomposable. But then Qy =@ Q; would not have been maximal, since

iel
Qo®I(M) is also a direct sum of directly indecomposable, injective sub-
modules of Q. This contradiction means that already Q = Q, =@ Q; holds.

iel
If Rgr is not only noetherian but also artinian then by 6.6.3 all Q; #0
are injective hulls of simple submodules. 0

EXERCISES

@
Let R, be the ring of all n X n square matrices with coefficients from R.

Show: R, is right artinian resp. noetherian<& R is right artinian resp.
noetherian.

)

Show: Every right artinian ring without zero divisors is a skew field.

3)
Let L := k(ty, 12, t3, . . .) be the field of rational functions in the indetermin-
ates f1, 12, 13, . . . with coefficients in the field k. The elements of L are then
P(t) .
th P,(t;) #0).
Py(1) (wi 5 () )
Let K = k(t3, 13,13, ...), then K is a subfield of L.

quotients of polynomials

N AR A
(a) Show T:L BP_z(ti) ——Pz(t,-z)e

is a ring isomorphism.
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(b Show: The product set R = L X L becomes by the definitions
(1, L) +(my, my) = (1 + my, [+ my),
(I, )(my, my) = (limy, [Lma + l1(my)),

a ring with a unit element.

(c) Show: gR has length 2 (i.e. it has a composition series of the form
0—=> A< R).

(d Show: Rp is neither artinian nor noetherian.

4)
A ring is called a principal right ideal ring :& every right ideal is principal
(= cyclic). Let R be a principal right and left ideal ring without zero divisors
and let A = Rg, A #0. Show: (R/A)g is artinian.

S

(a; If a module Mg satisfies the maximal conditions for finitely generated
submodules then it is already noetherian.

(b Give an example of a module Mg which satisfies the maximal condi-
tion ‘or cyclic submodules but which is not noetherian.

(c) Show that for an abelian group M =M; the following are
equivalent:

(1, M satisfies the minimal condition for cyclic subgroups.

2 TM)=M,ie.VmeM 3zeZ, z#0[mz=0).

(3, M satisfies the minimal condition for finitely generated subgroups.

(6)
Let A, B be rings and 4Mp an A-B-bimodule. Then define

R= {(g Z’)’ aeA,meM,be B} with componentwise addition

and
(a, ml)(az m2> __ (alaz a1m2+m1b2>
0 b/\0 b/  \ 0 b1b, '
. L 1 0
The 1nit element of this ring is then (0 1).

Show:

(a) Rr is noetherian (resp. artinian) Rg <& A4, Bg, Mg are noetherian
(resp. artinian).

(b) rR is noetherian (resp. artinian) & 4 A, pB, 4M are noetherian (resp.
artinan). (Hint: Consider the ring homomorphism p:R > A XB with
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P(g ’:> =(a, b) and show for the kernel K = Ker(p) that Kr and Mjp

(resp. rK and 4M) have isomorphic submodule lattices).

N
Show:

(a) LetM=U®U,= V@ V;with U = V.Then U has a direct comple-
ment in M, which contains V; (i.e. M = U@ W with V; = W), and V has
a direct complement in M, which is contained in U,.

(b) My satisfies the maximal condition for direct summands if and only
if it satisfies the minimal condition for direct summands.

(c) Let Mg satisfy the maximal condition for direct summands. Show
that for ¢ € Endgr (M) the following are equivalent:

(1) ¢ is left invertible (i.e. split monomorphism).
(2) ¢ is right invertible (i.e. split epimorphism).
(3) ¢ is invertible (i.e. isomorphism).

G

Give an example of a ring R and a module Mg which does not have finite
length and with the property that for every ¢ € End(Mg) there holds:

(a) FnoeNVn=no[M =Im(e")®Ker(¢")]; and

(b) ¢ is an automorphism&¢ is an epimorphism&¢ is a
monomorphism.

(Hint: For Mg use a direct sum of infinitely many non-isomorphic simple
R-modules).

)
Show: If By is artinian and Bgr # 0 then there is an indecomposable factor
module # 0 of B.
(M, is called indecomposable if Mg # 0 and the sum of any two proper
submodules is again a proper submodule of Mg.)

10)
Show that for a commutative ring R the following statements are equivalent:
(1) For every x € R the series xR « x’R « xR < ... is stationary.
(2) For every cyclic module Mg the injective endomorphisms are already
automorphisms.
(3) Every prime ideal in R is already a maximal ideal.
(Hint: For (3)=> (1) consider the multiplicative subset

S, ={x"(1-xr)|n=0,reR})
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11)

For 2 module Mg show the following are equivalent:

(1) Every set of submodules, whose sum is direct, is finite.

(2) Every submodule satisfies the maximal condition for direct sum-
mancs.

(3) Every sequence U; < U, = Uz — ... with U; - M and U, a direct
summnand in U;, is stationary.

(4) Every sequence M« U, « Uy« Us <« ... with U, a direct
summnand in U; is stationary.

(5) Every submodule has a finitely generated large submodule.

(6) M satisfies the maximal condition for incos (= intersection comple-
ments).

(7) M satisfies the minimal condition for incos.

(8) The injective hull of M satisfies the maximal condition for direct
summands.

a12)
As ir Chapter S, Exercise 4 let the singular submodule of a module Mg
be defined by

Si(M) = {m e M |rg(m) * Rg}.

Show that for a ring R with Si(Rgr) = 0 the following are equivalent:
(1) I(RR) satisfies the maximal condition for direct summands.
(2) For every family (Q;|i e I) with Q; injective and Si(Q;)=0 [] Q; is

iel
injective.
(H:nt: Use the equivalent statements in Exercise 11 and show firstly with
respect to (2) > (1) that in an ascending sequence

A =>A,> ... 2> Rp

of intzrsection complements from Si(Rg) = 0 it follows that Si(R/A;) =0).

13)
(a) Show that the following are equivalent for a module Mg:
1) M?P s injective for every index set L.
(2) M™ is injective.
(3) M is injective and R satisfies the maximal condition for right
ideals which are annihilators of subsets of M.
(b) Show that the following are equivalent for a ring R:
(1) Rk noetherian.
(2) For every injective module Qg, Q™ is also injective.



Chapter 7

Local Rings: Krull-Remak-Schmidt Theorem

In Chapter 6 it was shown that every injective module over a noetherian
ring is a direct sum of directly indecomposable submodules. The question
arises as to whether and in what sense such a decomposition is uniquely
determined. This question is answered by the Krull-Remak-Schmidt
Theorem. The proof of the Krull-Remak-Schmidt Theorem assumes that
the endomorphism rings of the direct summands are local rings. Hence we
have, first of all, to introduce local rings and then to state sufficient
conditions in order that the endomorphism ring of a directly indecompos-
able module is local.

7.1 LOCAL RINGS

An element r of a ring R is called right resp. left invertible, if there is
an r'eR with rr'=1 resp. r'r=1, and r' is then called the right inverse
resp. left inverse of R. If we have rr' =r'r =1 then r is said to be invertible
and r' is said to be the inverse of r. If there are a right and a left inverse
of r then these are equal and consequently there is then an inverse of r
(see 2.5.4). As examples show there are right resp. left invertible elements
which are not invertible.

We now have to consider rings in which the set of all non-invertible
elements have a particular structure. For convenience we assume always
that R #0.

7.1.1 THEOREM. Let A be the set of all non-invertible elements of R, then
the following properties are equivalent:
(1) A is additively closed (Va,, a;e Ala;+a € A))

169
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(2) A is a two-sided ideal.

(3r) A is the largest proper right ideal.

(31) A is the largest proper left ideal.

(4r) In R there exists a largest proper right ideal.

(41) In R there exists a largest proper left ideal.

(Sr) For every r € R either r or 1 —r is right invertible.
(51) For every r € R either r or 1 —r is left invertible.
(6) For every r € R either r or 1 —r is invertible.

Proof. *“(1)=>(2)”’: We show first that every right resp. left invertible element
is invertible. Let bb' = 1.
Case 1. b'b¢ A. Then there is s € R with 1 =sb'b. Hence

b'=sb'bb' = sb'
and so

1=5'b,

which was to be shown.

Case 2. b'be A. Then 1—-b'b& A must hold, since otherwise
1-6'b+b'b=1€A L.
Let now
1=s(1-50"b).
Then
b'=s(1-=b'b)b'=s(b'=b'bb")=s(b"'-b")=0

in contradiction to bb' = 1.
Since A, by assumption, is additively closed, we require only to show:

Vaec AVreR[are Anrac Al
Suppose ar £ A, then there is s € R with ars = 1. By the preliminary remark
(with a =5b and rs = b') it follows that rsa =1 in contradiction to a € A.
Analogously for ra.
“(2)=>(@3r)’: Since A= xRz we have A = Rg. Since 12 A, A#R. Let
B RrabeB.
Then
bR = B = Rp
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so b has no right inverse. Therefore b has no inverse; hence b € A and so
b A.

“(3r)=>(4r)”: Clear.

“(4r)=>(5r)”: Let C be a largest proper right ideal (which is then uniquely
determined). Let r€ R; suppose r and 1—r are not right invertible. Then

'R <> Rg A(1—r)R = Rg,

hence
rR>CA(l1-r)R=>C

and so

1lerR+(1-r)R>C>C=R A.

“(5r)=>(6): It suffices to show that every right invertible element is
invertible. Let bb' = 1.

Case 1. b'b right invertible, hence there is s€ R with 1=5"bs so b =
bb'bs = bs therefore 1 =5b'b.

Case 2. 1-b'b right invertible, hence there is s € R with 1 =(1-5'b)s so
b=b(1-b'b)s=bs—bb'bs =0

in contradiction to bb'=1.

“(6)=>>(1)”: Suppose, for a,, a; € A that a; + a, is invertible, then there
is s€ R with (a;+as)s =1; hence a,s =1—a,s. Since (6)=>(5r) holds we
can (as shown in the proof (5r)= (6)) use the fact that every right invertible
element is invertible. Hence it follows from a € A Are R that are A (for
if ar € A then ar right invertible and so a right invertible, i.e. a € AY). Then
it follows that a,s € A A a,s € A; in contradiction to which we obtain from
a,s € A by (6)

ais=1—asgA 4.

Analogously we obtain the left-sided assertions. 0

7.1.2 Definition. A ring, which satisfies the equivalent properties of 7.1.1,
is called a local ring.

7.1.3 COROLLARY. Let R be a local ring and A the ideal of the non-
invertible elements of R. Then we have

(1) R/A is a skew field.

(2) Every left resp. right invertible element is invertible.

(3) Every non-zero ring, which is the image of a local ring under a surjective
ring homomorphism, is itself local.

In particular: every isomorphic image of a local ring is local.
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Proof. (1) Every element not contained in A has an inverse.

(2) This is contained in the proof of 7.1.1.

(3) Leto:R - S be asurjective ring homomorphism. We show that 7.1.1
(6) is satisfied for S. Let se S, then there is re R with o(r)=s and
consequently o(1—-r)=0(1)—o(r) =1-s. By assumption either r or 1 —r
is invertible. Let r be invertible, then o(r~') is an inverse element of s,
for from rr ' =r"'r=1 it follows that o(r)o(r " N=so(r V=o' s =
o(1)=1€S. If 1—r is invertible then a((1=r)"") is an inverse element
of 1-s. a

7.1.4 Examples of local rings

(1) The power series ring K[[x]] over a field K is local, for the non-
invertible elements are precisely those with constant term =0 and the set
of these elements is additively closed.

(2) Localizations of commutative rings at prime ideals are local. We give
briefly the definition of localization: Let R be a commutative ring and let
P # R be a prime ideal in R, where P is thus defined by the property

Va,beR[abe P>(acPvbeP)]
which is equivalent to
Va,beR[(aé PAbé P)>abe P).

Let now
I'={(r,a)lre RnaeR\P}.

In I" an equivalence relation ~ is introduced
(r1, a1) ~(r2, a2) : < Ja € R\P[ria2a =r,a,a].

The equivalence class with the representative (r, a) is denoted by r/a. Let
R p) be the set of the equivalence classes, i.e.

R(P)={;’|reR AaeR\P}.

Then by the definitions
r1+r2. ria;+ra; r r — rra
a, a; aa, a, a; aiaz

R p) becomes a ring, as is easily verified. The zero resp. unit element of
Rp) is the element (0/1) resp. (1/1) with 0=zero element and 1= unit
element of R. The mapping

r
(P:R Bf’—‘)TGR(p)
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is a ring homomorphism and Im(e) is often identified with R (e.g. Z is
considered as a subring of @). In Rp) precisely the elements of the form
r/a with r € P are non-invertible, as is immediately verifiable. The set of
these elements is however additively closed and consequently R p) is local.
As an exercise the reader may carry through the proofs in detail, in
particular the demonstration of the independence of the definition of
representatives.

In an integral domain R, 0 is a prime ideal and R, is the quotient field
of R. Z constitutes an example of this with Z;, = Q.

If R is a principal ideal ring and P = (p) then R, is written instead of
R(p). Note Qp # Z(p)!

7.2 LOCAL ENDOMORPHISM RINGS

Conditions are now to be given so that the endomorphism ring of a
module is local. A necessary condition for this is that the module is directly
indecomposable. This condition is however not sufficient in general, as the
example Zz shows. Hence we have to set down additional properties which
ensure that the endomorphism ring is local.

We begin therefore by considering ring-theoretic properties which are
of interest in this connection.

7.2.1 Definition. Let R be a ring and let e R.
(1) ris called nilpotent : & 3n e N[r" =0].
(2) ris called idempotent : < r* =r.

7.2.2 COROLLARY
(1) If r is nilpotent, then r is not invertible and 1—r is invertible.
(2) If ris idempotent, then 1—r is also idempotent.
(3) If ris idempotent and invertible then r = 1.

Proof. (1) Suppose rs =1. Let no be the smallest n €N with #" =0. Then
r"o 120 and so 0 =r"os =" lpg =p""1. 1 =,""1 £ 04. Further we have
A=A +r+...+ro Y =Q+r+...+r° H1-r)=1.

2 A-nA-=r=1—r—r+r’=1—=r—r+r=1-r.

(B) P=ram=1>r=r-r'=r’r=r'=1. g

Examples
(1) Let R be the ring of all n X n matrices with coefficients in a field (or
ring). Let d; be the matrix which in its ith row and jth column has the
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entry 1 and whose other entries are 0. Then we have

0 forj#k,
Gucls = Ol = {d,- for j = k,
in particular:
d;=0 fori#j ie.d,;isnilpotent
dii=d; i.e. d; is idempotent.

(2) Let G be a finite group of order », let K be a field and let GK be the
group ring. Let

y= 2 g

geG

then we have yg = y for every g € G and consequently y> = yn.
If the characteristic y(K) of K is a divisor of n then it follows that
y>=vyn =0, i.e. y is nilpotent. If x(K) is not a divisor of n then we have

2

1 ,1  n 1
(‘Y‘) =Y Y 2V
n n

1.
and consequently y — is idempotent.
n
In the following lemma some decomposition properties of rings are listed,
these are also needed later on other occasions.

7.2.3 LEMMA. Let R be a ring and let

Rr =®Ai

iel

be a direct decomposition of R into right ideals A,, i € I. Then we have:
(a) The subset

Io={l|l€I/\A,?é0}
is finite; consequently

R=@A1.

iely
(b) There exist elements e; € A, for i € I, so that for i, j € Iy we have:
(1) Ai=¢eR, iel,,
(2 1=3 e,

iely
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e, fori=j
i€j = ’ ) i I )
(3) e {O fori#j (/€ Lo)
i.e., {eili € Io} is a set of orthogonal idempotents.
(¢) If the A;, i €I, are two-sided ideals, then the elements e;, i € Iy in (b)
are from the centre of R (i.e. e;r =re; for all r € R).
(d) Conversely if orthogonal idempotents e, . . ., e, € R with

1=

i

I ™M s

€;
1

are given then it follows that
R = @ e,~R,
i=1

and the e;R are in fact two-sided ideals, in the case that the e; are contained
in the centre of R.

Proof. Let 1 =3 e, e;€ A;, and let
iel
Io={ilieIne #0}.

Then I, is finite and we have

1=Ze,-

iely

and also e; # 0 for i € I,,. Since ¢; € A; it follows also that A; #0 for i € I,.
Let now a; € A; for arbitrary j € I, then from

1=Z€,'

iely

by multiplication by a; on the right we obtain

a; = Z €,a;.
iely

As Rr =@ A, and e,q; € A, there follow therefore:

iel
(1) For jelp:a;=0>A;=0>I,={iliecInA;#0}>R =@ A, from
which (a) is proved; ielo
(2) For jelp:a;=ea;>A;=¢A; > ¢R > A;>A;=¢R, and also 0=
e;a; for i # j. If we now restrict ourselves to 4, j € I then we deduce for ¢; = a;

e =eje;, ee; =0 fori#j,
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from which (b) is entirely proved. From re R and 1= } ¢; it follows that
iely

r=Y er and r= Y re.
ielg ielp

If the A; are two-sided ideals, then we have re; € A; and as

Y er=Y re

ielp iely
the assertion e;r = re; of (c) follows. For the proof of (d) first of all we obtain
R= é eiR from 1= _:le e
on multiplying by R on the right. Let now
ree,Rn '_il eR,
iio

then it follows that r = ¢;,r and

thus

r=eyr= 2 eyeri=0.
i=1
i#*ig

Consequently we have
R= @ e,‘R.
i=1

If the ¢; lie in the centre of R, then, as re;R = erR — e;R, e;R is a two-sided
ideal. Thus the lemma is proved. O

7.2.4 CoROLLARY. The following are equivalent for a ring R
(1) Rg is directly indecomposable.
(2) rR is directly indecomposable.
(3) 1 and 0O are the only idempotents in R.

Proof. “(1)=>(3)”: Let e be an idempotent, then e, 1 —e¢ are orthogonal
idempotents with 1 = ¢ + (1 —¢). Thus it follows from 7.2.3 that

R=eR®(1-¢)R.
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As (1) holds either eR =0, thus ¢ =0 or eR = R. In the latter case we have
(1-e)R=(1—-e)eR =0,
thus
(1-e)l=1-¢=0.

“(3)=>(1)": Assume Rg = A® B, then by 7.2.3 there is an idempotent
e with A =¢eR. From (3) it follows thate =10ore =0,thus A=R or A =0,
i.e. Rg is directly indecomposable.

Analogously we show (2)<(3). 0

7.2.5 THEOREM. Let S := End(MR), then the following are equivalent:
(1) Mg is directly indecomposable.
(2) Ss is directly indecomposable.
(3) sS is directly indecomposable.
(4) 0 and 1 are the only idempotents in S.

Proof. By 7.2.4 (2), (3) and (4) are equivalent.
“(1)=>(4)”: Let e € S be an idempotent, then we have

M =eM)D(1-e)M),

since for m e M it follows that m =e(m)+(1—e¢)(m) and if we suppose
e(m,) =(1—e)(m;) then applying e to this equation yields

e’(my) =e(my) =e(1—e)(my) =0.

From (1) it must be that e(M) =0, thus e =0 or (1—-¢)(M) =0, thus 1=e.
“(4)=>(1)”: Assume Mg = A®@B, then

nM>sa+b—aeM

is an endomorphism with > = , thus is an idempotent in S. By assumption
it follows that n =0 or n = 1. If n =0, then it follows that A =0; if n =1,
then it follows that A =M, i.e., M is directly indecomposable. 0

7.2.6 COROLLARY. Let S :=End(Mg) be local, then Mg is directly
indecomposable.

Proof. By 7.2.5 it is sufficient to establish that 0 and 1 are the only
idempotents in S. Let e € S be an idempotent, then 1—e¢ is also an idem-
potent. Suppose e #0, e # 1 then we also have 1 —e #0, 1—¢ # 1. Since e
and 1—e are both not invertible, in the case of a local ring 1=e+1-¢
must be also not invertible 4. 0
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The converse of this statement holds under additional assumptions, as
we shall show in two cases.

7.2.7 THEOREM. Let Mp # 0 be a directly indecomposable module of finite
length, then End(MR) is local and the non-invertible elements from End(Mg)
are precisely the nilpotent elements.

Proof. Let ¢ € End(Mg). Then by 6.4.2 we have
In eN[M =Im(p")PKer(e")].

Since M is directly indecomposable it follows that either Ker(¢")=0 or
Im(e")=0.

Case 1. Ker(¢")=0>Ker(pr=0=>¢ is a monomorphism. Hence ¢ is
an automorphism by 6.4.2, i.e. ¢ is invertible.

Case 2. Im(¢")=0=>¢" =0=>1—¢ invertible by 7.2.2 (1).

We have thus established: Either ¢ or 1—¢ is invertible; by 7.1.1
End(MR) is then local. If ¢ is not invertible (Case 2) then ¢ is nilpotent.
Conversely if ¢ is nilpotent, then by 7.2.2 ¢ is not invertible. 0

As a special case we can deduce from this theorem the result, already
known to us, that the endomorphism ring of a simple module is a skew
field; for the only nilpotent endomorphism of a simple module is the zero
mapping.

A further interesting case is given in the following theorem.

7.2.8 THEOREM. Let Qg # 0 be a directly indecomposable injective module,
then End(Qg) is local.

Proof. Let ¢: Q- Q be a monomorphism, then Im(¢) is injective, thus a
direct summand in Q. Since Q is directly indecomposable, it follows that
Im(p)=Q, i.e., ¢ is an automorphism and hence invertible in End(Qg).
Hence every non-invertible endomorphism of Q has a kernel different
from zero.

Let now ¢, ¢, be two non-invertible endomorphisms of Q, then we
thus have Ker(¢;) # 0, Ker(g,) # 0. Since Q is irreducible by 6.6.2, it follows
therefore that

0# Ker(¢1) nKer(g2) = Ker(e1 + ¢2),
i.e. @1+ @3 is also not invertible. By 7.1.1 End(Mp) is then local. O
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In view of the Krull-Remak-Schmidt Theorem that follows, it is of
interest to ask which modules may be decomposed into a direct sum of
submodules with local endomorphism rings. There is a positive answer to
this question above all in the important cases which here follow:

(1) M is an injective module over a noetherian (or artinian) ring.
(2) M is a module of finite length.

(3) M is a semisimple module.

(4) M is a projective, semiperfect module.

Case 1 was already answered for us by 6.6.5 and 7.2.8. Case 2 is to be
handled immediately below. We treat Case 3 resp. 4 in Chapter 8 resp. 11.

7.2.9 THEOREM. Let Mr #0.
(a) Let M be artinian or noetherian, then there are directly indecomposable
submodules My, . . ., M, of M with

M=® M.
i=1

(b) Let M be of finite length (i.e. artinian and noetherian), then there ate
directly indecomposable submodules My, . . ., M,, of M with

M=@ M; where End(M,) islocal fori=1,...,n.
i=1

Proof. (a) Let M be artinian. Let I" be the set of the direct summands B # 0
of M. As M#0 and M=M®0 we have M €T, thus I'# . Let By be
minimal in [, then By is directly indecomposable (since otherwise By would
not be minimal in I'). Now let A be the set of submodules C < M, so that
finitely many directly indecomposable submodules B; #0, .. ., B; # 0 exist
with
M=B,®.. ®B®C.
Owing to the existence of By, A # J. Let Cy be minimal in A and let
M=M1®. . @Mn@CO

be the corresponding decomposition. We assert that Cy=0. Otherwise,
since C, is again artinian as a submodule of an artinian module, by the
first remark, C, would split off a directly indecomposable direct summand
#0 in contradiction to the minimality of C,.

Let now M be noetherian and let I' be the set of the direct summands
A#M of M. Since 0eT’, we have I'#2 J. Let Ay be maximal in I" and
suppose we have

M =A,®B,.
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From the maximality of Ay, it follows that By is directly indecomposable
and as Ao # M we have By # 0. Let now A be the set of all submodules of
M which are direct summands of M and are finite direct sums of directly
indecomposable submodules.

As {0}e A, we have A # . Let

Bi+...+B,=B®...®B:
be a maximal element in A with directly indecomposable B;. Let further
M =Bl®. . @Bk®Co

Suppose C, # 0, then by the earlier consideration the noetherian module
Co must contain a directly indecomposable direct summand #0. This
contradicts the maximality of B;®...®@Bi. Thus Cy=0 and the proof is
complete.

Remark. The “symmetry” of both proofs depends on the fact that in the
first only the minimal condition and in the second only the maximal
condition for direct summands is required. By Exercise 7, Chapter 6, these
two conditions are however equivalent.

(b) follows from (a) 6.1.2 and 7.2.7. 0

7.3 KRULL-REMAK-SCHMIDT THEOREM

We come now to the important uniqueness theorem of Krull-Remak-
Schmidt.

7.3.1 THEOREM. Let
Mr =@ M; where End(M,) is local foralliel

iel
and Mgr =@ N; where N; is directly indecomposable and N; # 0 for all j € J.
jeJ

Then a bijection B: I - J exists with M; = Np;, forall i€ L

We obtain the proof in several steps, which we formulate in part as
lemmas.

7.3.2 LEMMA. Let
M =@M, where End(M,) is local forallicl

iel
and
o, reEndM) with 1y=0+7.
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Then to every j €I there exists a U; > M and an isomorphism ¢;: M; > U;
which is induced by o or 7 (i.e. ¢;j(x) = o (x) for all x € M; or ¢;(x) = 7(x) for
all x e M;), so that we have

M=U,~@(§BM).

Proof. Let m;: M > M; be the projections, ¢;: M; > M be the injections for
all j e I (in the sense of Chapter 4).
From 1,; = o + 7 it follows that

1, = 71wt = mi(0 + 1)y = moy; + .

Since in the local ring End(M;) the non-invertible elements form an ideal
and 1,4 is invertible, at least one of the elements o, 7; must be
invertible, i.e. must be an automorphism of M;.

Let, say, mot; be an automorphism. Then we define:

U; = ov;(M;) = o (M),
¢ Mjax—o(x)e U,
tj:Udsy—>yeM.
Accordingly ¢; is an epimorphism. For x € M; we then have
Liei(x) = ¢;(x) = o (x) = 0 (x) D ij¢; = 0y > T g, = o,

Thus we have the following commutative diagram

mioy

Since mot; is an automorphism, it follows from the commutativity of the
lower triangle by 3.4.10 that

M = Im(¢;) ®Ker(m,) = U,@(EBI M) 0

7.3.3 LEMMA. Assumptions as in 7.3.2. Let further E ={i\,...,i}<1I.
Then there are C;, > M, j=1, ..., t and isomorphisms

‘Yi,' . Mi -> Gi’
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which are induced either by o or 7, so that we have:

M=G@...@C.~,@(§I3M).
i2E

Proof. The C;, are determined successively with the help of 7.3.2. For i; =
in 7.3.2 let C;, = U,,, for which we then have

M=C.0(@ M).
i
As M; = C,, End(C,) is also local. In this decomposition we now exchange
by 7.3.2 M,, for a C,,. Note: C,, need not be equal to U,,, since now another
decomposition of M appears! After ¢ steps (i.e. by induction) we obtain
the desired result. 0

7.3.4 LEMMA. Let

M=@M; where End(M,) is local forallicI
iel
and let M = A@ B where A # 0 and directly indecomposable, w': M - A the
corresponding projection. Then a k € I exists so that ' induces an isomorphism
of My onto A and M = M, ® B holds.

Proof. Let .: A > M be the inclusion and let 7 := «7'. As Iy =7+ (1pr — )
we can use 7.3.2 with o=7 and r=1—7. As A#0 thereis 0#acA,
from which we have 7 (a) = a. Then it follows that (1,; —)(a)=0. Let

t
a=y m, with 0 # m; e My, ije I
j=1
be the unique representation in M = M.
iel

In the sense of 7.3.3 now let the modules C; and the isomorphisms v;,
be determined. Suppose the v;, were all induced by 1, — 7, then it would
follow that

0=(ly=m)(@)= ¥ (Lng=m)om;)

with (1p — 7)(m;) = v,(m;) € C;. Because the sum of the C; is direct, this
implies v;,(m;)=0, thus m; =0 and finally a =04. Thus there is at least
one i, so that vy, is induced by ; let this be denoted by k. Then

Y+ M, BXH‘F(X)G Ck
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is thus an isomorphism. By 7.3.3 C; is a direct summand of M; let thus
M = C, @ L. Further we have that

Cr=m(M)>m(M)=A.
Then it follows that

A=MnA=(CiO®L)NnA=CD(LNA),

and since A is directly indecomposable and C # 0 (as M, # 0) we deduce
finally that A = C,.

From the commutative diagram

in which ¢: M, -» M is the inclusion mapping, it follows then from 3.4.10 that
M =Im(.)®Ker(7w) =M, DB,

from which the lemma is proved. g

Proof of 7.3.1. By 7.3.4 (with A = N;) every N; is isomorphic to an M;; thus
End(X;) is local and the assumptions are symmetric. We now introduce
into any I and J an equivalence relation and in fact let

i1~i22<=>MlEM2 (ilaiZEI)s
h~j2: &N, =N, (71, 2€J).

For i1 let 7 be the equivalence class determined by i and let T be the
set of all equivalence classes. Analogous notation for J.

Definition. Let ®:I - J be defined by ®(i) =j, if M; =N

® is a bijective mapping. ® is defined on I, since by 7.3.4 (for A =M,
and M =@N, in place of M =PM, in 7.3.4) a jeJ exists with N; =M,
Since the isomorphism is an equivalence relation, ® is independent of the
representative (in I and J), i.e. it is in fact a mapping.

& is injective, for from ®(7,) =, =J, = ®(1,) it follows M; =N, =N,, =
M, thus 71 =1,. By 7.3.4 (with A = N;) ® is also surjective.

It still remains to show that for every i € I a bijection B;: 7 -» ®(T) exists.
Then B:I3i—pB:(i)eJ is the desired bijection with M;=Ng,. By the
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Schrdoder-Bernstein Theorem (to be found in any text book on set theory)
it suffices to show:
There are injective mappings 7 -» ®(7) and ®(7) > 1.

From the symmetry of the assumptions only the existence of an injection,
say ®(I') > 7, needs to be demonstrated.

Case 1. T is finite. Let the number of elements of 7 be ¢ say. Let further
E={j,...,Js}=®(). By 7.3.4 (with A =N,) there is then an M; with
M; =N, ie. ijel and

/
M=M,®( D M).

jeJ
i#it

By 7.3.4 (with A=N, and B = Mﬁ)( &) N,)) there is once again an
jeJ
M,, with M;,=N,,, i.e. i;e T and i#ivira

M-M0M( @ N)
f?*ille.iJ#iz

We obtain successively

M=M,®.. .®M,@(69 N,) AM,=N, for I=1,...,s.
jeJ
jEE

Since the sum is direct, the M, ..., M, are pairwise different, thus we
must have s < (. Consequently the number of the elements of ®(7) <t and
the assertion is clear.
Case 2. 7 is infinite. Let 7;: M - N; be the projection and let for ke
E(k):={j|jeJ n#'j induces an isomorphism of M, onto N;}.

Assertion. E(k) is finite for all k e L.

Let
O#meMyam= 3 nj, 0#n,eN,>m(m)=n;;
=1

in order that #; induces an isomorphism, we must have m;(m)#0, i.e.
j€ljn, ..,k
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Assertion. ®(7) = E(k).

ket

“®d(7)> | J E(k)’: Let ke and je E(k).

kel

kefiMkEM _ ) B
feE(k):MkzN,}i’Mf—M=>IG¢(t>-

“d(i)c U_E(k)”: je®(i)=> M, =N, By 7.3.4 there is a ke, so that
i inducI:s' an  isomorphism of M, onto N,o>My=N,>M,=
Mi>keinjeE(k). Let U_E(k) be the disjoint union of the sets E(k),
then there is an injectionkcebl(t’)= U_E(k)—> U_E(k). Since every E(k) is
finite, for every E(k) there is an i;;el:ction inlt((E)lN. Then an injection exists

\J E(k)~> T xN.

kel
Since 7 is infinite, by a known result of set theory there is a bijection
T XN~ 1. All injections together yield an injection ®(7)—> 7. Hence the
Krull-Remak-Schmidt Theorem is proved. 0

7.3.5 COROLLARY. Let M =@ M; where End(M,) is local forall i€ I. Let

iel

N =@ N; where N; is directly indecomposable and N; #0 for all jeJ and
jeJ

M = N. Then a bijection B:1 - J exists with M; = Ng;, forall i € L.
Proof. Let o: N » M be an isomorphism then we have

M =@ a(N)

jeJ

with directly indecomposable o (N;) and by 7.3.1 (with M = @ o (N;) in the
place of M=® M) it follows that M E0'(1\’3(,‘)) ENQ(,’).

7.3.6 COROLLARY. The decomposition of an injective module over a
noetherian ring resp. of a module of finite length into a direct sum of directly
indecomposable submodules is uniquely determined in the sense of the Krull-
Remak-Schmidt Theorem.

Proof. This follows from 6.6.5 and 7.2.8 resp. 7.2.9. 0
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EXERCISES

(1)
Let o: R - S be a surjective ring homomorphism and let S # 0. Show: If
R is local and if A is the ideal of the non-invertible elements of R, then
o(A) is the ideal of the non-invertible elements of S.

()

(a) Let R be a local ring. Show that the following are equivalent for Mx:

(1) The lattice of submodules of M is totally ordered.

(2) The set of cyclic submodules of M is totally ordered.

(3) Every finitely generated submodule of M is cyclic.

(4) Every submodule of M generated by two elements is cyclic.

(b) Give an example of a ring R and a module Mgz such that (3) is
satisfied but not (1).

3)

(Continuation of Exercise 11, Chapter 6.) Show that the following are
equivalent for an injective module Qg:

(1) Q satisfies the maximal condition for direct summands.

(2) Q is a direct sum of finitely many directly indecomposable sub-
modules.

(Hint: With respect to (2)=> (1) show first that every non-zero submodule
of Q contains an irreducible submodule).

(4)

A module M, which satisfies the equivalent conditions of Exercise 11,
Chapter 6, is called finite-dimensional, and the number of the directly
indecomposable summands in a decomposition of I(M) (Uniquely deter-
mined by the Krull-Remak-Schmidt Theorem) is then called the dimension
of M (=dim(M)). Show:

(a) dim(M)=0M =0, dim(M) =1 M is irreducible A M # 0.

(b) M is finite-dimensionalA U - M => U is finite-dimensional A
dim(U) <dim(M).

(c) If M is finite-dimensional and U < M then U -* M &dim(U) =
dim(M).

(d) M, M, are finite-dimensional => M; ® M, is finite-dimensional and
dim(M, ® M) =dim(M,;) +dim(My).

(e) If X - M and X and M/X are finite-dimensional then M is also
finite-dimensional and dim(M) < dim(X) +dim(M/ X).
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()
(a) Exhibit a nilpotent element #0 in Z/360Z.
(b) Exhibit seven different idempotent elements #0 in Z/360Z.
(c) Decompose the ring Z/360Z into a direct sum of directly indecompos-
able ideals.

(6)
Show:
(a) Qg is directly indecomposable.
(b) Qz is the sum of two proper submodules.
(c) The endomorphism ring of @z is ring-isomorphic to Q as a field.
(d) @z possesses a factor-module which is not directly indecomposable.

)]
Let R be an integral domain and let K be the quotient field of R. Let V
and W be K-vector spaces and let M resp. N be an R-submodule of V
resp. W.Letxy,...,xmeM, ky,...,kneK, Y xkieM, pc Homg(M, N).
Show =1

o X xiki) = £ otk
(Note that we may have neither k; € R nor x;k; e M)

(8)
Let R be an integral domain, K the quotient field of R, V = Vg an
n-dimensional vector space over K, U = Urg an R-submodule of V = V.
Show: There are directly indecomposable R-submodules Uy, ..., U, of
U with m <n and with

U=U,®... ®U,.
(Hint: Let a decomposition U = U;®...® U, be given and let u; € U,

u; #0, then uy, ..., u, are linearly independent over K.)
9
Let V = Vg with a basis xy, . .., X4, in Which m, n =2. Let p;, g; be prime
numbers for 1sism+n, 1<jsm+n—1, and let
Ai:=0pi={§zeZAneZ}, 1<sism+n,
YA
Bj=—, I1sjsm+n-1,
qi

Y = X+ Xj41, l<sjsm+n-1.
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(a) Show: Let py, ..., Pu 41, - - ., Gu—1 be pairwise different, then

n n—1
U= Y xAi+ Y yB;
i=1 j=1

is a directly indecomposable Z-module.
(Hint: Suppose U = U'® U" with projections 7' and #". Show success-
ively 7'(x))A; = U, 7'(x;)exiA;, m'(x;))=0 or #"(x;)=0, U is directly

1
indecomposable with the help of the elements y; ZI_)
i

(b) Letp; for2<i<n+m,i#n+1andgq for 1<j<n+m—1 be pair-
wise different and let p; = p,+; hold. Show

n 1
U, = _Z:l XA+ Z yiB;

i=1

and
m+n m+n—1
U= Y xAi+ ¥ ybB;
i=n+1 j=n+1

are directly indecomposable.
Define ¢: U@ U, > U, ® U, for
n+m n+m-—1

u= 3y xa+ Y yb,a€A;bjeB;
=1 i=1

i=

j#n
by
eu) = (gq1(a1+b1)+ gue1(@n+1+ bps1))(x1— Xn41).

Show: ¢ is an R-homomorphism. Determine g, g,+1 so that ¢* = ¢ holds.

Deduce: U,® U, may be written in two ways, different not only up to
isomorphism and order, as direct sums of directly indecomposable sub-
modules.

(10)
Let M = Mg. For neNlet M" = M2 Let

AAR:=€B‘4h <BR::69£h
iel jeJ
Let End(A;) be local for i € I, and B; be directly indecomposable for jeJ.
Show:
(a) Let neN. From A" =B" it follows that A =B.
(b) Let I be finite and let S, T be non-empty sets. From A®=ATD it
follows that § and T have the same cardinal number.



Chapter 8

Semisimple Modules and Rings

8.1 DEFINITION AND CHARACTERIZATION

There are two immediate and important generalizations of the concept
of a vector space. These are:

(1) Free modules and direct summands of free modules, the projective
modules with which we have already become acquainted.

(2) Modules, in which every submodule is a direct summand; these are
called semisimple modules. They provide the theme for the following
considerations. First some lemmas are presented.

8.1.1 LeEMMA. Let M = Mg be a module, in which every submodule is a
direct summand. Then every non-zero submodule contains a simple sub-
module.

Proof. Let UM, U #0 and U finitely generated. By 2.3.12 there is a
maximal submodule C < U. By assumption we have M = C®M;; hence
it follows with the help of the modularlawthat U =M " U = C® (M, u U),
thus we have U/C =M, nU. Since C is maximal in U, U/C is simple.
Thus M; N U is a simple submodule of U. O

8.1.2 LEMMA. Let M =Y M,; with simple submodules M, Further let
iel
U — M. Then we have:

(a) There isJ < I so that M = U@(@ M)

ieJ

(b) There is K =1 so that U =@ M,

ieK

189
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Proof. (a) Proof with the help of Zorn’s Lemma. Let

F:={L|LCIA U+y M=U@(@ M)}

ieL ieL

As @ M; =0 we have JeT, thus I'# & and I is ordered by <. Let A
ied
be a totally ordered subset in I". We claim that

L*=UL

LeA

is an upper bound of A in I'. It is clear that L* is an upper bound. It
remains to be shown that L*eT.
Let E = L*, E finite, then there is an L € A with E< L. Let now

u+ Y m;=0, ue U, m;eM,
ieE

then it follows from E < L that: u = m; =0 for all i € E. Thus we have
U+ 5 M-US( D M),
ieL* ieL*

and consequently L* e T'. By Zorn’s Lemma there is then a maximal element
JeTl. Let

N=U+Y M,~=U®(EBM,~>.

ieJ iel

Now consider N + M;, for arbitrary ioe I. N + M, = N ® M, is not possible
for then we must have

Thus it follows that N n M, # 0. But since M, is simple, we must have
N nM,;,=M,, thus M;,— N holds. Then it follows that

M=Y Mi>N-M,

iel
ie. N=M.
(b) Let now M =U (—B(@ 1\4,-0). Then (a) is applied to the submodule
ieJ

@D M; (in the place of U in (a)). Accordingly K =I exists with M =

ieJ
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(@ 1\/[,) @( &P M) By the First Isomorphism Theorem it follows that
ieJ ieK
U=M/GM =D M. O

ielJ ieK
We come now to the main theorem on semisimple mouules.

8.1.3 THEOREM. For a module M =My the following conditions are
equivalent:
(1) Every submodule of M is a sum of simple submodules.
(2) M is a sum of simple submodules.
(3) M is a direct sum of simple submodules.
(4) Every submodule of M is a direct summand of M.

Proof. ““(1)=>(2)”: (2) is a special case of (1).
“(2)=>(3)": 8.1.2 (a) for U =0.
“(3)=>(4)”: 8.1.2 (a).

“(4)>(1)”: Let U > M. Put
U= Y M.

simple M;
M,"-PU

Then Uy U and by (4) Uy is a direct summand of M:
M=U®ON>U=M~nU=U;®NnNU).

Case 1. NnU=02U=Upy=>(1).

Case2. N U #0=>By8.1.1 there is asimple submodule B>N nU >
B < Uy, by definition of Uy we have B>Uyn (NN U)=0 4.
Thus only the first case can occur. a

8.1.4 Definition

(a) A module M = My, is called semisimple :<> M satisfies the equivalent
conditions of 8.1.3.

(b) A ring R is called right resp. left semisimple . Rgr resp. grR is
semisimple.

We observe that the module 0 is semisimple for

0=Y M,  semisimple M,
ied

but 0 is not a simple module, since it was assumed that, for a simple module
M, M #0.

We shall show later: Rg is semisimple < rR is semisimple so that with
regard to a semisimple ring the statement of sidedness can be omitted.
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Examples
(1) Every vector space V = Vg over a skew field K is semisimple:

Vk =Y xK, xK is simple for x # 0
xeV

(2) Z/nZ with n #0 is semisimple as a Z-module &n is square-free (i.e.
n is the product of pairwise different prime numbers) or n = +1.

Proof. Exercise for the reader. The proof follows later in a more general
context.
(3) Zz and Q7 are not semisimple since they have no simple submodules.
(4) Let V = Vi be a vector space. Then we have: End(Vk) is a (two-sided)
semisimple ring<>dimg (V) <o,

Proof. Later (in 8.3.1).

8.1.5 COROLLARY

(1) Every submodule of a semisimple module is semisimple.

(2) Every epimorphic image of a semisimple module is semisimple.

(3) Every sum of semisimple modules is semisimple.

(4) Two decompositions of a semisimple module into a direct sum of simple
modules are isomorphic in the sense of the Krull-Remak-Schmidt Theorem
(7.3.1).

Proof. (1) This follows immediately from 8.1.3.

(2) Let A be simple and let a : A - B be an epimorphism, then it follows
that A/Ker(a)=B. If Ker(a) =0, then B is simple; if Ker(a)=A, then
B =0. Since A is simple there are no further possibilities for Ker(a). The
image of a sum of simple modules with respect to a homomorphism is
hence a sum of simple and zero modules, of which the latter can be omitted,
and therefore by 8.1.3 is again semisimple.

(3) Since by 8.1.3 every semisimple module is a sum of simple modules,
a sum of semisimple modules is also again a sum of simple modules and
hence by 8.1.3 again semisimple.

(4) Since the endomorphism ring of a simple module is a skew field and
thus is local, the Krull-Remak-Schmidt Theorem holds in this case. a

The following theorem shows that for a semisimple module all finiteness
conditions are equivalent.

8.1.6 THEOREM. For a semisimple module M = Mg the following con-
ditions are equivalent:

(1) M is a sum of finitely many simple modules.

(2) M is a direct sum of finitely many simple modules.
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(3) M has finite length.

(4) M is artinian.

(5) M is noetherian.

(6) M is finitely generated.
(7) M is finitely cogenerated.

Proof. Since all statements are trivial for M =0 we can assume that M # 0.
“(1)=>>(2)”: By8.1.2.

“2)>3)”: Let M=@ M, M; simple. Then Oo>M,->M®
i=1

M, ... @ M, =M is a composition series because M, ®. .. OM,/M,®
i=1

...@®M,;_=M; is simple.
“(3)'—‘>(5)”}
: By6.1.2
“5)= ] Y
“(6)=>(1)”: By2.3.12
“(3)=>(4)”}
: By6.1.2
s>
“(7)=>(2)”: Suppose that M were the direct sum of infinitely many
simple submodules M, then a submodule of M exists of the form M; DM, D
... with countably infinitely many submodules M1, M,, ... Let

Ai=BM, ieN,

j=i

then obviously we have () A; =0 for
i=1

(M]@...@Mn)ﬁA,H.l:O, thus (M1®@Mn)ﬂ ﬁAi=O
i=1

for arbitrary n € N. But the intersection of any finitely many of the A; is
evidently equal to the A; with largest i, thus unequal to 0.

Let now Mg be semisimple and let I' denote the set of all simple
submodules of M: I'={E|E < M A E is simple}.

Then = is an equivalence relation on I'. Let the set of equivalence
classes, which are now called isomorphism classes, be {);|j € J}, so that (),
is thus an isomorphism class. Therefore we then have

Q'iomQh:@ forjo,j1€J andjo;éj].

8.1.7 Definition B;:= ), E is called a homogeneous component of M.
EecQ;
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8.1.8 LEMMA. Let Mg be semisimple and let B; be a homogeneous com-
ponent of M. Then we have
(@) U B;AUis simple=> U € (),

(b) M=@BI"

jeJ

Proof. (a) This follows from 8.1.2(b); there is accordingly an E € (); with
U =E, for more summands cannot appear in E since U is simple.

(b) Since M is a sum of simple submodules and every simple submodule
is contained in a ), it follows that M = ). B;. Suppose for j, € J that we had

jeJ

D=Bj,n ¥ B;#0.
o
Then by 8.1.1 there is a simple submodule E of D. Since E — B, it follows
by (a) that E € ;. Since E— Y B, itfollows by 8.1.2(b) thata j; € J, j, # o

i#io

exists with E € ();,. Then it would follow that Q;, " Q; # & XK. 0

If we have to determine in a concrete case whether a module is semisimple
then this can be difficult and depend on very special properties. From this
point of view an interesting and important example for semisimple modules
(and rings) is to be considered. Let R :=GK the group ring of a finite
group with coefficients in a field (see 4.6.2).

8.1.9 THEOREM (of Maschke). Rg and gR are semisimple if and only if
the characteristic of K is not a divisor of the order of G.

Proof. Let the characteristic of K be not a divisor of n:=Ord(G). Then
for 0#keK, nk:=k+...+k (n summands) is invertible. For the inverse
of nl with 1€ K we write 1/n. Let the elements of G be g4, ..., g.. If we
consider R only as a right K-module then R is a vector space over K. For
every ¢ € End(Rk) a mapping ¢ : R - R is defined by

A

1 -
¢(N==1 ¢lrg)si’, reR.

We require to show that ¢ € End(RRg). For arbitrary k € K we have

R 1 _ 12 _ .
plrky==Y o(rkg)g:’ =(— Y o(rg)g: 1>k=¢>(r)k.
ni=1 ni=1
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Letnow g€ G, as {gg1, ..., 88} ={g1,- .., g} We have

é(rg) =% ‘Zl (reg)g:’ =% ,-Zl o(rgg:)(gg) g = (g
Hence it follows that @(rx)=¢@(r)x for arbitrary elements r, x € R, i.e.
¢ € End(RR).

Let now A = Rpg, then A is also a vector subspace of Rg. Consequently
a B = Rk exists with Rx = A@B. Let 7 : Rx > Rx be the projection of R
onto A, i.e. let m(a+b)=a for ac A, be B hold. As A< Ry it follows
for a € A that

S |-

. 1~ _ n _ 1
ma)== Y ﬂ(agi)gi1= ) agigil=—na=a,
ni=1 i=1 n

and for r € R we obtain

A

12z .
#(n=1 L 7(re)ei 'eA,

since m(rg;) € A. Therefore 7 is a projection of Rg onto A and it follows that
Rr=#(R)®(1-7)(R)=AD(1-7)(R).

Thus Ry is semisimple (analogously for xR ; see also 8.2.1).

Let now the characteristic of K be equal to p and let p be a divisor of
n. Then we show that for ro:=g,+...+g, the ideal roR is not a direct
summand of Rg. For ge G we have first rog =ro, thus it follows that
ré=nro=0aswellas roR = roK. Suppose Rr = roR ® U, then an idempotent
e must exist with eR =roR =roK. But it would follow from e = rok, with
ko€ K that e = e*=r3k§=0, thus o=0 X. 0

8.2 SEMISIMPLE RINGS

If a ring possesses a certain property on one side then it need not possess
it on the other side. For example we have established that there are rings
which are only one-sidedly artinian. With regard to all ring-theoretic
properties which depend on the side, the question naturally arises as to
whether they are in fact one-sided or whether their validity on one side
implies their validity on the other side. With regard to semisimple rings
the latter is the case.

8.2.1 THEOREM. For a ring R we have:

Ry is semisimple & gR is semisimple.
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Proof. 1t suffices to show: gR is semisimple = Ry is semisimple for the
converse implication follows analogously.
By 7.2.3 (with change of side) the semisimple ring kR has a decomposition

rRR=@ L= @D Re, simple L; <> gR
i=1 i=1

with
e #0, ee; = 8;¢;, L; =Re, =% e

By 7.2.3(d) the decomposition
R = @ e,'R,
i=1

follows and we only have to prove that all ¢;R are simple. To prove this

let e be one of the ¢; and let 0 # a = ea € eR. Then it follows that aR <= ¢R.

We wish to show aR = eR, from which it follows at once that eR is simple.
As ea # 0 and since Re is simple

¢:Resre—rea=racRa
is an isomorphism. Let xR = Ra ® U, then
Y:R=Ra®U>sra+u—¢ '(ra)=reeR

is an endomorphism of gR, which is given by right multiplication by an
element b € R (for R = End(zR), see 3.7). Thus it follows that

e=y(a)=ab,
hence ec€aR, i.e. eR = aR, and so

eR =aR. ]

8.2.2 COROLLARY

(a) R is semisimple < every right and left R-module is semisimple.

(b) R is semisimple =>> Rr and gR have the same finite length.

(¢) R is semisimple and surjective ring homomorphism p: R->S=>
S is semisimple.

(d) R is semisimple > Rr and rR are cogenerators.

(e) R is semisimple & every right and every left R-module is injective &
every right and every left R-module is projective.

(f) R is semisimple & every simple right R-module and every simple left
R-module is projective.
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Proof. (a) “=>": If Rg is semisimple and if M = Mg, m € M, then by 8.1.5
mR is semisimple as an epimorphic image of Rg. Consequently
M= Y mR
meM

as a sum of semisimple modules is again semisimple. Analogously for the
left side.

(a) “<&": Special case.

(b) This is contained in the proof of 8.2.1 since, for simple Re; &R is
also simple.

(c) Ss can also be considered (see also 3.2) as an R-module if we put

sr=sp(r), seS, reRrR

and thereby the ideals of Ss coincide with the submodules of Sk. Since Sg
is semisimple, then Ss is also semisimple.

(d) In order to show that Ry is a cogenerator let m € Mg, m #0. Since
Ry, is semisimple the epimorphism

Rsr—»mremR

splits, consequently mR is isomorphic to a right ideal of R; thus there is
a monomorphism

Q. mRR -> RR.
Since mR is a direct summand in Mg, there is a homomorphism
¢:Mp->Rr with ¢|mR=¢.

Then it follows that m & Ker(¢) which was to be shown.

(e) Rpg is semisimple = every right R-module is semisimple =>every sub-
module is a direct summand=>every right R-module is injective, resp.
projective = every right ideal of R is a direct summand in Rr = semisimple
Rr. Similarly for the left side.

(f) “=>": Clear by (e).

(f) “<&”: Let Soc(Rg) be the sum of all simple right ideals of R (detailed
investigation of Soc(Mg) in next chapter), then it is to be shown that
R =Soc(Rg). Suppose R # Soc(Rg), then by 2.3.11 Soc(Rg) is contained
in a maximal right ideal A of R. Since R/A is a simple right R-module
and thus projective by assumption, a homomorphism ¢ exists so that

R/A

e
© -
.7 Ir/a
7
I'4

R—R/A
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is commutative. It then follows that ¢ # 0 and
R =Im(p)DA.
But since Im(g) is simple, in contradiction to this we must have
Im(¢)= Soc(Rr)—= A.
Thus in fact it follows that R = Soc(Rg). 0

The next step in our investigation consists in decomposing a semisimple
ring into a direct sum of directly indecomposable two-sided ideals. Thus let
R be semisimple and let

R=B®...®B.

be the decomposition of Rg into homogeneous components (in the sense
of 8.1.8). By 7.2.3 the number of the homogeneous components, which
by definition are right ideals, is finite. We wish to show that the B; are
two-sided simple ideals which mutually annihilate one another.

As a preliminary we prove first a result for an arbitrary ring R.

8.2.3 LEMMA. Let A= Ry and let A be a direct summand of Rg, then
the two-sided ideal RA generated by A contains all right ideals of R which
are epimorphic images of A.

Proof. Let RR =A@®B, let B> Rz and let 7: R > A be the projection.
Further let « : A > A’ be an epimorphism, let A'’<> Rg and let .': A'> Rg
be the inclusion. Then it follows that 'a7m € Homg (Rg, Rr). As established
in 3.7, every endomorphism of Ry is by left multiplication. Thus there is
a c € R with ¢ = /'am. Then it follows from 7(R) = 7(A) that

A'=tamr(R)=am(A)=cAcRA,
which was to be shown. a
We prove now the first part of the classical Theorem of Wedderburn,
which Wedderburn had originally proved for algebras.
8.2.4 THEOREM. Let R #0 be a semisimple ring and let
RR =Bl®. . @Bm
resp. RR=C1@...®C,,

be the decomposition of R resp. of rR into homogeneous components (8.1.8).
Then we have:
(@) The B, j=1,...,m, are simple two-sided ideals of R.



8.2 SEMISIMPLE RINGS 199

(b) n =m and (with respect to an appropriate ordering)
B,=C'j,j=l,...,m.

(C) B,'B,' = 8,‘,’B,‘, i,j= 1, R UB

(d) B, considered itself as a ring, is a simple ring with a unit element.

(e) The decomposition of R into a direct sum of simple two-sided ideals
is (up to ordering) uniquely determined.

Proof. (a) We show that: If E< B; and E is simple then it follows that
RE =B, ForreR

Esx—rxerE

is an epimorphism. Since E is simple this is either the zero mapping, i.e.
tE =0, or an isomorphism, i.e. E =rE. In both cases it follows that rE < B,.
Conversely let E = E’, then we infer from 8.2.3 that E' has the form E' = rE,
from which it follows that B; < RE. Altogether this yields RE = B..

From B;= Y E it then follows that
Ee);

RB,'= Z RE= z B,'=B,‘,
EeQ; EeQ;
thus B is a two-sided ideal. Let now A # 0 be a two-sided ideal contained
in B, then Ay is semisimple and consequently there is a simple right ideal
E with
E— Ar-B.
Then it follows that
B;=RE-—+>RA=A-B,
thus A = B, i.e. B; is simple as a two-sided ideal.

(b) Correspondinglythe C,,j =1, ..., n, are also simple two-sided ideals.
Since B;C; is a two-sided ideal, which is contained in B; as well as in C,
and these are simple, we have either

Biq=0 or Bi=B;C‘i=Q.
For fixed ip=1, ..., m at least one j, with B,, = B;,Cj, = C;, must exist,
since otherwise it would follow that B;,R =} B; C; = 04. But there can also
j

exist only one such jo, for from B, =B, C;, = C; it would follow that
C;,= Cj,4. Since also correspondingly to every C;, jo=1, ..., n, an i, with
B, = C;, must exist, the assertion (b) follows.
(c) From R = @ B it follows that RB; = B; = @ B;B;, from which (c) is
i=1 i=1
obtained.
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(d) According to (c) the two-sided R-ideals from B; coincide with the
two-sided B;-ideals from B;. Thus B; is simple as aring. Let 1 =) f;, f; € B,
then we have (7.2.3) B; =f;R and the f; are idempotents from the centre
of R. For b = f;r € B, it then follows that bf; = f:b =f2r=fr=>b, thus f; is the
unit element of B,.

(e) As in the proof of (b). a

8.2.5 Definition. The simple two-sided ideals B;, i=1, ..., m, in 8.2.4
are called the blocks of R.

8.2.6 COROLLARY. Let R be semisimple, then we have: The number of
the blocks is equal to the number of the isomorphism classes of simple right
R-modules and equal to the number of isomorphism classes of simple left
R-modules.

Proof. Every simple right resp. left R-module is isomorphic to a right resp.
left ideal of R (since every epimorphism of R onto a cyclic right R-module
splits). Consequently it suffices to consider the simple right, resp. left ideals.
For these the assertion follows from 8.2.4. 0

8.3 THE STRUCTURE OF SIMPLE RINGS WITH A
SIMPLE ONE-SIDED IDEAL

In order to elucidate entirely the structure of a semisimple ring, we now
address ourselves to the investigation of the two-sided simple ideals B; in
8.2.4. By definition the B; are right ideals of the semisimple ring R, thus
semisimple right R-modules. Therefore it follows from 8.2.4(c) that the
B; are also semisimple rings. We are here dealing with rings that are both
simple and semisimple. Examples show (see Exercise 8) that not every
simple ring is semisimple. Since the B, are semisimple and it was assumed
that B; # 0, they are therefore simple rings which possess a simple right ideal.

Conversely every simple ring R, which possesses a simple right ideal E,
is also semisimple, as we wish to establish immediately. Let B be the
homogeneous component corresponding to E in Rg, i.e. the sum of all
right ideals of R isomorphic to E, then, as a sum of simple right ideals Br
is semisimple. Further for r€ R and for a simple right ideal E'— Rg, rE’
is either a right ideal isomorphic to E' or is equal to zero; thus B is a
two-sided ideal #0 in R. Since R is simple, it follows that B = R. Thus
finally it is established that Ry is semisimple (see also 8.2.4(a)).

For rings of this sort the structure is now to be determined. It will emerge
that every such ring is isomorphic to the endomorphism ring (=ring of
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linear transformations) of a finite-dimensional vector space V over a skew
field K, which is again itself isomorphic to the ring of n Xn matrices
(n =dimg (V) with coefficients in K and hence can be regarded as known.

8.3.1 THEOREM. Let V = ¢V be a vector space over the skew field K. Then
we have

(a) If 1=dimg(V)=n <o then End(xV) is a simple and a semisimple
ring.

(b) If dimg (V) =00, then End(x V') is neither simple nor semisimple.

Proof. First of all we point out that we have here—with a view to the
following theorem—fixed upon a left vector space V = ¢V and we wish to
write the endomorphisms of V on the right of the argument: For ¢ €
End(xV) and x € V let x¢ be the image of x by ¢. The result holds naturally
also for the right vector spaces.

(a) Let vy, ..., v, be a basis of ¢V and denote

V(‘.)l=i1Kv,~, i=1,...,n;
iz
jti
S =End(xV).
Then
Ei={¢loeSrVP>Ker(p)}
is a simple right ideal in § and we have
Ss=E®...®E,;
E;=E; forall i,j=1,...,n.

Consequently S is semisimple, and since all E; are naturally isomorphic,
Ss consists only of one homogeneous component, thus § is a simple ring.
The above assertions on the E; will not be proved here. It is a matter of
simple assertions of linear algebra which are left to the reader as an exercise.
The proof can also be obtained with the help of the ring of n X n matrices
with coefficients in K and isomorphic to S. In this ring every row is a simple
right ideal (and every column a simple left ideal), and the ring is the direct
sum of its rows (resp. columns) which are all isomorphic.
(b) Let again $:=End(xV).

Definition. ¢ €S is said to be of finite rank :&dimg (Im(g)) <o0. Then it
is easy to verify that the set of endomorphisms of finite rank is a proper
two-sided ideal A#0 in S. Thus S is not a simple ring. If S were a
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semisimple ring, then there would have to exist a B — S with
Ss=A®B.
Since A is two-sided, it would follow that
BA—>BnNnA=0, thus BA=0.

Let Be B, B#0 and let ve V with vB8 #0 and let

V=KvB®U, Uo V.
Finally for k € K, u € U let the mapping a be defined by

a: VaokvB+u—kvBeV.
Then it follows that « € A (for Im(a) = KvB) and that vBa = vB # 0, thus
Ba #0 in contradiction to BA =0. 0

Theorem 8.2.4 contains the first part of the familiar and important
Wedderburn Theorem on semisimple rings. We come now to the second
part of this Theorem.

8.3.2 THEOREM. A simple ring R, which possesses a simple right ideal, is
isomorphic to the endomorphism ring of a finite-dimensional vector space
over a skew field.

In particular: Let E be a simple right ideal of R and let K '=End(ER),
then K is a skew field, E = kE is a left vector space of finite dimension over
K and we have

R= EI‘ld(KE)
Proof. By Schur’s Lemma (3.7.5), K is a skew field and E can be considered

as a left K-module. Then E is a K-R-bimodule. For y € E we consider
now the mapping

yﬁ-):Eax»—)yer,

i.e. the left multiplication of E by y. Then obviously we have y¥ e K. For
reR let

re:Esx—xreE,

then it follows that r2 € End(xE), since for k € K we have k(xr) = (kx)r.
It is now to be shown that

®: R 3r—rY e End(kE)

is a ring isomorphism.
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First of all ® is obviously a ring homomorphism. Since Ker(®) is a
two-sided ideal in R, which, as 1 & Ker(®), is not equal to R and since R
is simple, it follows that Ker(®)=0, thus ® is a monomorphism. There
remains to be shown: & is an epimorphism. As E # 0 and since RE is a
two-sided ideal it follows that RE = R, which yields

1) ®(R) = D(RE) = D(R)P(E).

It is further to be shown that ®(E) is a right ideal in R":=End(xE). Let
£€ R" and let x, y € E, then

r)

y(xP8) = (yx)€ = (yEx)e =y (x¢) = y(x£) =y (x£) ¥

hence

xE€=(x6)g e D(E)
and so
(2) D(E)R"=D(E).
Finally as ®(R)— R" and 19 =1 e ®(R) we have:
3) R"=®(R)R".

From (1), (2), (3) it then follows that
R"=®(R)R"=P(R)DP(E)R"=DP(R)DP(E) =P(R),

thus in fact ®(R)=R".
Since R is simple and R = R", R" must be simple. By 8.3.1 it then follows
that dimg (E) <00, by which all is proved. O

Besides this direct proof we obtain a second proof as a corollary of the
Density Theorem in the next section.

We formulate the main contents of Theorems 8.2.4 and 8.3.2 once more
in a somewhat different form:

8.3.3 COROLLARY. A semisimple ring (with unit element) is a direct sum
of simple rings, which mutually annihilate one another and every one of

which is isomorphic to a complete finite-dimensional matrix ring over a skew
field.

8.3.4 COROLLARY. Let R be a simple ring with a simple right ideal E and
let R be a finite-dimensional algebra over a field H. Then there exists a
subfield Ko K '=End(ERr) with dimg,(K) <0 and which is isomorphic to
H.

If H is algebraically closed then we have H = K = End(ERg).
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Proof. For he H let
he:Esx—xheE,

then, as (xh)r = (xr)h for re R, it follows that 4% € K and therefore

Y:Hah—hP ek

is a ring homomorphism. Let Ky:=Im(y). By assumption Ry is finite-
dimensional and so also is Ej.

As h¥x =xh for he H, x € H, a basis of Ey over H is also a basis of
k,E over Ko. Hence g, FE is finite-dimensional and consequently x, K must
also be finite-dimensional (for dimg,(K) - dimg (E) = dimg,(E)).

Since K is a finite algebraic extension field of K| it follows, in the case
that A and thus also K are algebraically closed, that Ko = K thus H =K, =
K. O

8.4 THE DENSITY THEOREM

In our considerations so far we have mostly taken as a basic start a right
R-module My and have written the R-homomorphisms on the left side of
the arguments from M. Let S:=End(Mg) be the endomorphism ring of
Mp, then in particular M can be considered as an S-R-bimodule. This
convention is in fact appropriate for many considerations, but not for all.
In particular not for such considerations, as is the case in the following, in
which initially we are provided with an abelian group M and the ring
T := End(M3z) of endomorphisms of M.

In order to show how the previously employed convention may be used
in the following and to show what is the importance of the following results,
we make some remarks, in which at first nothing further is assumed.

8.4.1 Definition. Let R resp. R° be a ring with the multiplication
resp. °. R° is called the inverse ring to R :&
(1) The additive group of R is equal to the additive group of R® and
2) Vr,seR[r-s=s°r].

8.4.2 REMARKS
(a) There is exactly one ring R° inverse to R.
(b) R*°=R.
(c) R is commutative &R = R°.
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Proof. (a) Existence of R°: Define (R°, +):=(R, +) together with
sor=r-s, r,seER,

then R°is an inverse ring to R.

Uniqueness: Let R* with the multiplication * be also an inverse ring to
R, then it follows by definition that

(R*,+)=(R, +)=(R°, +).
Further we have s xr=r-s=sor, r, se€R, thus R*=R°,

(b) and (c) may be left to the reader as an exercise. 0

From the definition it follows further that all properties of R are carried
over to R° on interchanging the sides.
8.4.3 REMARK. Let M = Mg. By means of the definition
rom=mr for meM and reR°
M becomes a left R°-module r-M. Precisely those additive subgroups of M,
which are also submodules of Mg, are also the submodules of r-M.
Proof. For the proof of M = g-M we confine ourselves to the associativity
law.
rie(rzom)=ryo(mry)=(mr2)r,
=m(rary) = (rari) e m
=(ryor)em forall r,rneR, meM.
Let U <= Mpg. Then
roU=UrcU forall reR>Us g-M.

In the same way it follows that: U < geM = U <> M.
All properties of Mg carry over accordingly to g-M (on interchanging
the sides). 0

Since we have clarified the significance of the change of sides, we shall
now assume that M = gM. Further let T := End(M2) (=ring of all group
endomorphisms of M) in which the endomorphisms are to be applied on
the left, so that we have M = M. For every r € R the left multiplication

' MsxrsrxeM



206 8 SEMISIMPLE MODULES AND RINGS 8.4

is then an element from 7 and the mapping
v:Rar—rPeT

is, as is directly verified, a ring homomorphism.
R“:=Im(y) is called the ring of left multiplications of the module gM.
Ker(y) is a two-sided ideal in R and consists of all € R with rM =0.

8.4.4 Definition. The module M is called faithful :&
VreR[rM =0=>r=0]<Ker(y¢) =0.

In the case of a faithful module we can identify R with R so that R~>T
holds.

8.4.5 Definition. Let T be an arbitrary ring and let A< T (A subset of
T). Then

Cenr(A)={t|te TaVac Alat=1ta]}

is called the centralizer of A in T.
As we see immediately, Cenr(A) is a unitary subring of T and Cenr(T)
is the centre of T.

8.4.6 LEMMA. Let M = gM, T :=End(My), S :=End(zgM) (all applied on
the left), then:

(a) S=R'=Cenr(R").

(b) R < R":=Cenr(Cenr(R™)).

() R'=R":=Cenr(Cenr(Cenr(R"))).

Proof. (a) S— Cenr(R™): Let oeS, then we have for all reR, xe€
M:o(rx) = r(ox),thus or'’ = o >0 e Cenr(R™). Cenr (R S. Let r €
Cenr(R")=2>m=r"rforallre R>7(rx) =r(rx)>r€S.

(b) and (c) follow by the definition of centralizer. a

On account of this situation the interesting question arises as to the
assumptions under which R"” = R" holds and as to the relationships which
exist in case R # R" between R" and R". We observe moreover that
R and R" evidently depend on M = gM which is not apparent from the
notation.

8.4.7 Examples
(1) f M=gM#0 is a free R-module then gM is a faithful R-module
and we have R'"” = R". Prove as an exercise.
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(2) Let )M = ,Q, then we have Z=Z" and $ =7'=2Z"=Q. Prove as an
exercise.
(3) Let V= Vg be an infinite-dimensional vector space. Let R be the
subring of T :=End(Vk) which is generated by the identity mapping of V
and by all linear mappings of Vi of finite rank. We claim:

(a) V =xrV is asimple R-module.

(b) R'=End(rV)=K"(=K).

() R“=R #R"=End(Vg).

(d) For any finitely many elements vy, ..., v, € V and o € R" there is an
reR withov,=rv;, i=1,..., ¢

Proof of (a), (b), (c) is an exercise for the reader; (d) is a special case of
the Density Theorem to follow.

8.4.8 Definition. Let R and S be rings and let as well kM and sM be
modules with the same additive group. gkM is called dense in sM :&for
any finitely many elements x;, ..., x,€ M and s € S there is an r € R with
sxi=rx,i=1,...,t

8.4.9 THEOREM. Every semisimple module gM is dense in g-M.

Proof. The proof follows in three steps.

(1) First let N =gN be an arbitrary module with U a direct summand
of N, thus N =U®@®N,. Let now R"=R{ be the double centralizer of R
with respect to N. We claim that R"U = U, i.e. U is an R"-submodule of
r-N. For the proof let 7 be the projection of N onto U, and 7 the inclusion
of U in N, then it follows that n7 € R'=Homg(N, N) and Im(n#)=U.
For r"e€ R" and u € U we obtain therefore

r"u=r"nm(u)=nmr"(u)=nm("u)e U,

which was to be shown.

Let now N be semisimple and let x € N, then Rx is a direct summand
in N and it follows (for U = Rx) that Rx = R"Rx. Since, by 8.4.6(b), we
also have R"Rx = R"x we deduce that Rx = R"x. Thus to every x e N and
r'" € R" there is an roe R with rox = r"x.

n

(2) Let now M = xM be semisimple and let N :== [| M, with M; = M for
i=1

i=

i=1,..., n. Then we have (see Chapter 4)

N=[IM=@B M; with M;=M,=M.
i=1 i=1

Consequently N is a direct sum of the semisimple modules M; and therefore
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(by 8.1.5) is itself again semisimple. Let now the double centralizer of R
with regard to M resp. N be denoted by Rys resp. Ry.

Assertion. For r"€ Ry; and (x4, ..., x,) € N by means of the definition

an

Pxy..ox)=0"x,...r"x,)
N becomes an R yr-module and the mapping
P'"N3(x1...x,)—=>("xy...r"x,)eN

is an element of R{. (Indeed Ry, r"— 7" € R} is a ring monomorphism.)
The module property is clear. It remains to be shown that 7" € RX. Let

mi: N> M;resp. ni: M;> N
be the projection resp. the inclusion (see Chapter 4), then we have
rm(xy. .. x)=rxi=m#f'(x1...x.),
P'ixi=7"(0...0x0...0)=mnr"x,
i.e.

" an

rm=mr and ;"17,‘ = 1’],"’”.

As Y mym =15 we have for arbitrary ¢ € Homg(N, N)
i=1

¢=lvely=X Y mmenm,
i=1j=
in which (as M; = M) mien; € Homg (M, M).
Hence it follows that

o

P =F" L L mimenym; =L L nir" (mion;)m;
i g L

=L X ni(men)r'm = (Z X "1i7Ti<PVIi‘”i> P'=of",
i g

which was to be shown.
(3) Letnow xy, ..., x, € N and r" € R be given. By (1) applied to

N=] M with M;=M for i=1,...,n
i=1

and withx = (x4, ..., x,)€ N and 7"€ R{ (7", in the sense of (2) correspond-
ing to r") there is an ro € R with

rox =(rox1...roxn)=Fx=("x1...r"x,);
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thus we have

rox; =r"x;, i=1,...,n 0

8.4.10 COROLLARY. Let gM be simple and let M be finite-dimensional
over K =End(zxM), then we have R"" = R".

Proof. Let x;, ..., x, be a basis of xkM, then to every o € R" there is an
reR with ox;=rx;, i=1, ..., n. Since o and r* are linear mappings, it
follows that o = r”, thus R”— R". Since, on the other hand, R"’ > R" it
follows R’ =R". O

8.4.11 COROLLARY. Let gRM be simple and grR be artinian. Then M is
finite-dimensional over K and we have R’ = R".

Proof. By 8.4.10 we have only to show that xM is finite-dimensional.
Suppose that that were not the case, then there would exist a countably
infinite set of linearly independent elements in xM:

X1y X2y X3y 00 00
Let
A,.={alaeRnrax,=...=ax, =0},

then A, is a left ideal in R. Since an a, € A with a,x,.; #0 exists (from
8.4.9), A, « A, .1 holds, and we would obtain the infinite chain of left ideals

Al"al’Az(—;!’A:;(-J’. ..

which contradicts the fact that xR is artinian. 0

As a corollary from 8.4.9 we prove once more the structure theorem
for simple rings (8.3.2).

8.4.12 COROLLARY. Let R be a simple ring with a simple left ideal. Then
R is isomorphic to the endomorphism ring of a finite-dimensional vector
space over a skew field.

Proof. As established at the beginning of 8.3, R is semisimple and hence
by 8.1.6 (two-sided) artinian. Let rkM be a simple left ideal in R. Then
y:R->RY

is an isomorphism, since Ker(¢) as a two-sided ideal in a simple ring must
be equal to 0, for 1& Ker(¢). By 8.4.11 the assertion follows. 0
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EXERCISES

@
(a) Letp be aprime number and let n € N. Which is the largest semisimple
Z-submodule of Z/p"Z?
(b) Which is the smallest Z-submodule U of Z/p"Z, so that (Z/p"2)/ U
is semisimple?
(c) Give an example of a module M and a U< M so that M is not
semisimple but M/U and U are semisimple.

2)

Let R be a ring and let Jk(R) denote the number of isomorphism classes
of simple right R-modules. (In the class of all simple right R-modules =
is an equivalence relation; the isomorphism classes are the equivalence
classes with respect to =).

(a) For every n €N give an example of a ring R with Jk(R) = n.

(b) Give an example of a ring R with Jk(R) = co.

(c) Does the case Jk(R) =0 occur?

(K))
Let e be an idempotent element of a ring R. Show:
(a) End(eRgr)=¢eRe.
(b) Let R be simple and let eRe be a skew field, then eR is a simple
right ideal of R.

)

LetR,i=1,...,nberingsandlet R := [| R; with componentwise addition
i=1

i=

and multiplication.
(a) Show: R is a semisimple ring&<Vi=1, ..., n. [R; is semisiple.]
(b) Does (a) hold also for infinite products?

C))
(a) Let Vx be a vector space of countably infinite dimension. Show: The
ideal of all endomorphisms of Vi of finite rank is the only proper two-sided
ideal # 0 in End(Vk).
(b) Does (a) also hold if the dimension of V is greater than countably
infinite?

(6)
Let M = My be semisimple and let S := End(Mg). Show: sM is semisimple.
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)
Let M be a semisimple R-module with only finitely many homogeneous
components:
MR = @ Bi'
i=

Show:
(a) S'=End(Mg)= & S;, where the S; are two-sided ideals in S and
j=1

S,' = End(B,R).

(b) If My is finitely generated, then S is semisimple.

(c) If Mg is finitely generated and all simple submodules are isomorphic,
then S is simple and semisimple.

(d) If Mg is not finitely generated, then S is neither simple nor semi-
simple.

(8)
Let K :=R(x) be the field of rational functions in x with real coefficients,
and let for ke K

Y
k=2 (k)

be the usual derivative. Further let R := K[y] be the additive group of all
polynomials in y with coefficients in K. Define in K[y]a (non-commutative)
multiplication by induction over n =0, 1, 2, ... for fixed m=0, 1, 2, ...

(ay®)(by™):=aby™, a,bek,
(ay")(by™)=ay" ‘(by™" ' +b'y™)  forn>0,

and further require that the associative and distributive laws hold. Show:
(a) R is a simple ring. (Hint: If a polynomial of degree n with n =1 lies
in a two-sided ideal then so also does a polynomial of degree n —1.)
(b) R contains no simple right or left ideal, thus R is not semisimple.

9

Prove the assertions in 8.4.7.

(10)
Show for a module Mg:
(a) M is semisimple<> M has no large proper submodule.
(b) Let M be finitely generated. Then we have: M is semisimple M
has no large maximal submodule.
(c) Construct a non-semisimple module which possesses no large
maximal submodule.



Chapter 9

Radical and Socle

In the historical development of the theory of rings it had already been
early established that in every finite-dimensional algebra A a two-sided
nilpotent ideal B exists such that A/B is a semisimple algebra. (B is
called nilpotent if B" =0 for some natural number 7.)

This result yields three avenues for the investigation of A:

(1) the investigation of the semi-simple algebra A/B (for which the

theory of semisimple algebras is at our disposal);

(2) the investigation of the nilpotent ideal B;

(3) the investigation of the relation between A/B and A, which is given

by the epimorphism A - A/B; in particular the question arises as
to whether properties of A/B can be “lifted” to A.

Since the formulation of these questions was very fruitful for the investi-
gation of algebras, the desire arises of having at our disposal an object
corresponding to B in an arbitrary ring or module. We cannot enter here
into the interesting historical development of this question. It would lead
in any case to current concepts of the radical which are to be developed
in this paragraph. The radical of a module Mg, denoted by Rad(Mg), is
accordingly the intersection of all maximal submodules of Mg or is
equal to the sum of all small submodules of Mg. In consequence we
then have Rad(M/Rad(M))=0 and Rad(M) is contained in every sub-
module U = M with Rad(M/U)=0. The three possibilities, listed
above, have also to be reconsidered if M/Rad(M) is in general no longer
semisimple.

The concept dual to that of the radical is the socle. The socle of the
module My, denoted by Soc(Mg), is the sum of all minimal (=simple)
submodules of My and therefore is the largest semisimple submodule of
Mpg. It is equal to the intersection of all large submodules of Mg.

212
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9.1 DEFINITION OF RADICAL AND SOCLE

9.1.1 THEOREM. Let M = My, be given. Then we have
(a)
Y A= () B= [  Ker(o)

ASM BoM semisimple Ng
maximal B eeHomg (M,N)

N A= Y B= Y Im(p).

ASM Bo>M semisimple Ng
minimal B ¢eHompg (N,M)
(=simple B)

Proof. (a) In the order written the submodules of M, for which the equality
is to be shown, are denoted by U, U,, Us.

“U, = U;”: Let a € U,. Suppose aR were not a small submodule of M,
then there would be by 5.1.4 a maximal submodule C of M with a¢ C,
thus a¢ U. Consequently aR is small and hence a € aR - U;.

“Us = U,”: Let B be maximal in M and let vg: M > M/ B be the natural
epimorphism onto the simple module M/B. Then Ker(vg) = B and it follows
that

Usc m Ker(VB)= m B= U2.
B->M BoM

maximal B maximal B

“Up = Us”: By 5.1.3(c) we have ASM=>¢p(A) N for every
homomorphism ¢: M - N. If N is semisimple, then 0 is the unique small
submodule of N, then we must have ¢(A)=0, i.e. A <= Ker(¢) holds.
Consequently we have U; < Us.

(b) Let the submodules again be denoted in order by U,, U,, Us.

“U, = U,”: If B is a simple submodule of M and A ¢ M. Then AN B #
0so AnB=B, B~ A and hence U, = U;.

“Us= U,”: Since the image of a semisimple module under a
homomorphism is again semisimple and likewise so also the sum of semi-
simple modules (8.1.5), Us is a semisimple submodule of M, thus is the
sum of simple submodules of M. Consequently we have Us; — U,, since
U, is the sum of all simple submodules of M.

“U; = Us”: We claim that U, is semisimple. Let C <= U, and let C' be
inco of C in M, thenwe have C+C'=C®C' & M (5.2.5),thus U; = C +
C'. By the modular law (note C = U,) it follows that U; = C®(C'n U}),
thus U, is semisimple. Let ¢: U; > M be the inclusion, then it follows that
U,=Im() = Us. O
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9.1.2 Definition

(1) The submodule of M defined in 9.1.1(a) is called the radical of M
and is denoted by Rad(M).

(2) The submodule of M defined in 9.1.1(b) is called the socle of M and
is denoted by Soc(M).

9.1.3 COROLLARY
(a) For m € Mg we have: mR & M &m € Rad(M).
(b) Soc(M) is the largest semisimple submodule of M.

Proof. (a) mR &S M —>memR - Rad(M) by 9.1.1. The converse, me
Rad(M)=>mR < M, was shown in the proof of 9.1.1(a) with regard to
“Uy— U,".

(b) By definition Soc(M) is semisimple as the sum of simple submodules.
Let C be a semisimple submodule of M, then C is contained in Soc(M)
being the image of the inclusion ¢:C > M, thus Soc(M) is the largest
semisimple submodule of M. a

We come now to the main theorem on the radical and socle.

9.1.4 THEOREM

(a) pe Homg(M, N)=> ¢(Rad(M)) = Rad(N) A ¢(Soc(M)) = Soc(N)

(b) Rad(M/Rad(M))=0AVC - M[Rad(M/C)=0=>Rad(M) - C]
i.e. Rad(M) is the smallest submodule of M with Rad(M/C)=0.

(¢) Soc(Soc(M))=Soc(M)AVC > M [Soc(C)=C=>C = Soc(M)] i.e.
Soc(M) is the largest submodule which coincides with its socle.

Proof. (a) From Rad(M)= ) A it follows that o(Rad(M))= ¥ ¢(A).
ASM

ASM
As shown in 5.1.3 we have ¢@(A)> N, thus it follows that
¢(Rad(M)) = Rad(N). Since the image of a semisimple module is again
semisimple, we have also ¢ (Soc(M)) = Soc(N).

(b) Assertion. The maximal submodules A of M/C are obtained as images
of the maximal submodules B < M with C < B by v: M > M/C.

Proof. See 3.1.13 or directly as follows. w ' (A)=AnIm(r)=A. Let
B = V_I(A). Then v(B)=AAC = B = M. Since A is maximal (M/C)/A=
(M/C)/(B/C)=M]/B simple, thus B is maximal in M.
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Assertion. If (B;]i € I) is a family of submodules of M A Vi € I[C < B;], then
we have

m(B,/C)—(mB)/c.

iel

Proof. It is clear that () B;)/C = [ \(B:/C). Let now v+ C e[ \(B;/C).
Then for every i thereisa b, € B;withv+C =b;+C,sov =b;+c;€e B;+C =
B;foralliel hence v+ Ce(()B;)/C.
We now apply the two statements established above.
Rad(M/Rad(M) = M A= () (B/Rad(M))

max A in M/Rad(M) max B>M
Rad(M)—>B

=(maXB%M ) /Rad(M) (maXB“M ) /Rad(M)

Rad(M)—B
=Rad(M)/Rad(M) = 0.

Let now C < M aRad(M/C)=0, then it follows for the mapping
v:M > M/C by (a) that

v(Rad(M)) - Rad(M/C)=0

and consequently
Rad(M) = Ker(v) = C.

(c) A semisimple module coincides with its socle. Since Soc(M) is the
largest semisimple submodule of M, it is hence clear that Soc(Soc(M)) =
Soc(M). Let Soc(C)=C, then C is semisimple and it follows that
C = Soc(M). O

The properties (a), (b), (c) of this theorem can be formulated functorially
and motivate the definition of preradical ((a)), radical ((a) and (b)) and
socle ((a) and (c)) in categories.

9.1.5 COROLLARIES
(a) Epimorphism ¢:M - N A Ker(¢) > M = ¢(Rad(M)) = Rad(N)
ARad(M) = ¢~ '(Rad(N)).
Monomorphism ¢: M > N AIm(e) % N = ¢(Soc(M)) =Soc(N)
ASoc(M) = ¢ '(Soc(N)).
(b) C = M =>Rad(C) <= Rad(M) A Soc(C) = Soc(M).
(c) M= EB M, > Rad(M) EB Rad(M;) A Soc(M) =@ Soc(M).

iel
d) M= @M=>M/Rad(M) @ (M;/Rad(M))).

iel
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Proof. (a) ¢(Rad(M)) <> Rad(N) holds by 9.1.4. Now let U & N and for
AsMlet A+ (U)=M.

Since ¢ is an epimorphism it then follows that ¢(A)+ U =N, thus
¢(A)=N and consequently

A+Ker(p) =M.

As Ker(p)>M we obtain A=M, ie. ¢ (U)SM>De '(U)>
Rad(M)=> (e (U)) = U = ¢(Rad(M)), thus Rad(N)< ¢(Rad(M)),
which was to be shown.

From ¢(Rad(M))=Rad(N) it follows finally as Ker(¢) < Rad(M) that

Rad(M)=Rad(M)+Ker(p) = ¢ '¢(Rad(M)) = ¢~ '(Rad(N)).

For the socle we have on the other hand by 9.1.4 ¢(Soc(M)) < Soc(N).
Let now E < N be simple, then as Im(¢) % N we have: E - Im (¢)>
@ Y(E) > Soc(M)=>¢p (E) = E = ¢(Soc(M))=>Soc(N) = ¢(Soc(M)).
From ¢(Soc(M)) =Soc(N) it follows finally that

Soc(M) = ¢ @(Soc(M)) = ¢~} (Soc(N)).

(b) Let ¢: C - M be the inclusion, then it follows by 9.1.4 that
Rad(C) = (Rad(C)) = Rad(M) A Soc(C) = t(Soc(C)) = Soc(M).
(c¢) Rad(M;) = Rad(M) from (b) hence
¥ Rad(M;) =@ Rad(M;) = Rad(M).

iel iel

Let now m =Y m; € Rad(M) and let 7;: M > M, be the ith projection. Then
mi(m)=m; € Rad(M,) from 9.1.4 and so m e P Rad(M;). Hence Rad(M) —
D Rad(M;) whence Assertion. Analogously for the socle.

(d) We exhibit explicitly an isomorphism

@:M/Rad(M) -{EBI (M;/Rad(M;)).

Let Y m; e @M, with m; € M; be an arbitrary element from M, then let

@((Xm;)+Rad(M)) = ¥(m; + Rad(M))) GBI (M;/Rad(M;)).

“¢ is a mapping”’: Let (Y m;)+Rad(M) = (I m})+Rad(M) with m;, m' e
M, then it follows that Y (m;—m;)e Rad(M) hence, by (c), m;—mie
Rad(M;) and therefore it follows that m; + Rad(M;) = m; + Rad(M;), thus

L(m; +Rad(M))) = ¥(m; +Rad(M)).
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“@ is a monomorphism”: Let
@((Xm;)+Rad(M)) = ¥(m; +Rad(M;)) =0,

then it follows that m; € Rad(M;) for all occurring m;. As Rad(M;) = Rad(M)
we deduce therefore that

(Ym;)+Rad(M)=Rad(M),

thus Ker(¢) =0.
“¢ is an epimorphism”: Clear. 0

Examples

(1) Rad(Zz) =0, since by 5.1.2 0 is the only small ideal in Z. Soc(Zz) =0
for Z has no simple ideals.

(2) Rad(Qz) =Q, since for every q € Q, gZ is small in @ (see 5.1.2). This
is equivalent to saying that @ has no maximal submodules.

(3) Let neZ, n>1 with the unique decomposition into powers of prime
numbers

n=pi...prpi#p; for i#jm>0.

The maximal ideals of Z are the prime ideals generated by prime numbers.
The maximal ideals which contain nZ are then the ideals p;Z, i =1, ..., k,
and we have

k
OlpiZ=p1...ka.

Hence we have

Rad(Z/n2) -( r_fw )/nz=p, . peZ/nZ.

Therefore it follows that
Rad(Z/nZ)=0&n =p1...Dk

Likewise for n =0 and n =1 we have Rad(Z/nZ)=0.

We now wish to determine Soc(Z/nZ). This is equal to 0 for n =0 and
n =1. Now again let n > 1 with the decomposition into powers of primes
as given above. First of all we establish: Z/nZ is a simple Z-module, if
and only if n is a prime number. If namely #» = p is a prime number, then
Z/pZ (as a ring) is a field and hence is simple as a Z-module. If n has at
least one proper divisor g, then gZ/nZ is a proper submodule #0 of Z/nZ.
As

§Z/nZEZ/p,~Z (i=1,...,k)
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the modules i Z/nZ are simple submodules of Z/nZ. Then

k n k n n
5 —Z/nZ=( v —-z)/nz= Z/nZ < Soc(Z/nZ).
i=1pi i=1PDi P1...Dk

On the other hand let gZ/nZ with n=gn; be a simple submodule
of Z/nZ. Since

qZ/nZ=7/n\Z
n, must then be one of the prime numbers p, ..., pi, say p;; thus g = ﬁ,
and it follows that pi
Soc(Z/n2)=—"—1/n1.
Pi1...Dk

We point out the following special cases:
Rad(Z/p,...pZ)=0, Soc(Z/p1...;xZ)=2Z/p; ... D2,
Rad(Z/p"Z)=pZ/p"Z=Z/p""'Z,  Soc(Z/p"Z)=p" 'Z/p"Z=Z/pZ.

9.2 FURTHER PROPERTIES OF THE RADICAL

We collect together several other properties of the radical in the following
theorem.

9.2.1 THEOREM. Let M = Mg, then we have

(a) M is semisimple > Rad(M) =0.

(b) M Rad(Rgr) = Rad(M).

(c) M is finitely generated > Rad(M) = M, in particular Rad(Rr) © Rg.

(d) M is finitely generated nA = Rad(Rr) (& A S Rr)>MA S M
(Nakayama’s Lemma).

(e) M is finitely generated n M #0=>Rad(M) # M.

(f) Rad(RgR) is a two-sided ideal of R.

(g) For every projective module Pg we have: Rad(P) = P Rad(RRg).

(h) C > M=>C+Rad(M)/C = Rad(M/C).

Proof. (a) M is semisimple > every submodule is a direct summand=0 is
the only small submodule > Rad(M) =0.
(b) Let m e M, then ¢,,: Rg 3r— mr e Mg is a homomorphism. By 9.1.4
we have
m Rad(Rgr) = ¢n(Rad(Rg)) = Rad(M)
> Y m Rad(Rg)=M Rad(Rg) = Rad(M).

meM
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(c) Let Rad(M)+ C =M. Suppose C # M. Then, since M is finitely
generated, C is contained (2.3.11) in a maximal submodule B <> M ; hence
M =Rad(M)+ C = B4. Thus we have C =M and so Rad(M) & M.

(d) MA - M Rad(Rgr) = Rad(M) > M =>MA & M.

(e) Since M #0ARad(M)=> M we have Rad(M)#M, since from
Rad(M) =M we should have Rad(M)+0= M, thus 0 =M would follow.

(f) This follows from (b) with Mg = Rg.

(g) Let (y; ¢;) be a “projective basis’’ in the sense of the Dual Basis
Lemma (5.4.2). For u € Rad(P) it then follows that ¢;(u) € Rad(Rgr) (by
9.1.4) and hence we have

u =Y yipi(u) € P Rad(RR),

thus Rad(P) — P Rad(Rg). Since by (b) the reverse inclusion also holds,
the assertion follows.

(h) Let v:M->M/C be the natural epimorphism, then we have
C +Rad(M)/C =v(Rad(M)) = Rad(M/C). 0

We point out meantime that we need

(f) in order to prove in 9.3 that Rad(Rr) = Rad(rR).

We now wish to show: If M is artinian then M/Rad(M) is semisimple.
We deduce this from the following more general theorem.

9.2.2 THEOREM

(a) Every submodule of M has an adco in M and Rad(M)=0&M is
semisimple.

(b) M is artinian and Rad(M)=0&M is semisimple and M is finitely
generated.

Proof. (a) “=>”: Let C>M AC adco of C in M. Then M=C+C A
CnC > Rad(M)=0. Then (by 5.2.4(a)) M = COC > M is semisimple.

(a) “<&”: Clear.

(b) “=>”": M is artinian=>every submodule has an adco. By (a) it then
follows that M is semisimple. Since M is semisimple and artinian, M is
finitely generated (8.1.6).

(b) “<”: Since M is semisimple and finitely generated, M is artinian
(8.1.6). Rad(M) =0 is clear. 0

9.2.3 COROLLARY. M is artinian => M/Rad(M) is semisimple. Special
case: Ry is artinian = R/Rad(RR) is semisimple.

Proof. M is artinian=> M/Rad(M) is artinian. Since Rad(M/Rad(M))=0
by 9.1.4(b), it follows by 9.2.2 that M/Rad(M) is semisimple. O
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We remark further in the special case of Mz = Rr being artinian that
first of all R/Rad(RR) is semisimple as a right R-module. Since Rad(Rg)
is, by 9.2.1(f), a two-sided ideal, R := R/Rad(Rg) is also as a ring right-
sided semisimple. As we have earlier shown (8.2.1), gR is then also
semisimple and consequently also xkR. Hence by 9.1.4(b) we must have

Rad(RR) > Rad(RR)

From the basic symmetry the reverse inclusion also holds and equality then
follows. This equality is proved in the next section for arbitrary rings.

9.3 THE RADICAL OF A RING

The main result of this section is the equation
Rad(RR) = Rad(RR)

We lead up to the proof by means of a lemma.

9.3.1 LeEMMA. The following statements are equivalent for A < Rrg.
(1) A Rg.
(2) A = Rad(Rg).
(3) YVae A [1—a has a right inverse in R].
(4) Yae A [1—a has an inverse in R].

Proof. “(1)=>(2)”: By definition of the radical.

“(2)=>>(1): By 9.2.1(c) we have Rad(RRg) < Rk, thus A = Rg.

“(1)=>>(3)”: For arbitrary reR we have ar+(l—-a)yr=r>
A+(1-a)R=R=>(1-a)R =R (since A Rzg)=>(3).

“3)=>@4)’: Let 1—a)r=1; then r=1+ar=1—(—ar). Since —are A,
there exists s € R with rs = (1 —(—ar))s = 1. Thus r has 1 —a as left inverse
and s as right inverse which then must coincide and it follows that 1 =rs =
r(1—a), i.e. ris an inverse of (1—a).

“4)=>(1)’: Let A+B=Rgr. Then 1=a+b withacA, beB;ie b=
1 —a andsothereexistsrwithbr=(1—a)r=1hence B=R,i.e.A > Rz. 0O

Remarks

(a) In the literature a right ideal with property (3) is also called quasi-
regular.

(b) Evidently this lemma holds also ‘‘on the left side” i.e. if we inter-
change the right and left sides.

9.3.2 THeEOREM. Rad(RRr)=Rad(gR).
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Proof. We apply the lemma to A =Rad(Rg). For it (4) then also holds.
Since A is a two-sided ideal (9.2.1(f)) A is also a left ideal, and so (4) of
the ‘‘left-sided” version of the lemma holds; thus it follows that

Rad(RR) < Rad(gR )

On the basis of symmetry the reverse inclusion also holds and the equality
follows. 0

9.3.3 Definition. Rad(R) := Rad(Rg) = Rad(gR).

In general R/Rad(R) is not semisimple; e.g. we have for R =Z since
Rad(Z)=0: Z/Rad(Z)=2Z/0=Z and Z is nct semisimple. If however the
case arises that R/Rad(R) is semisimple, then interesting statements can
be made.

9.3.4 THEOREM. If R is a ring such that R/Rad(R) is semisimple then we
have:

(a) Every simple right resp. left R-module is isomorphic to a submodule
of (R/Rad(R))g resp. r(R/Rad(R)).

(b) The number of the blocks of R/Rad(R) is finite and equal to the
number of the isomorphism classes of simple right R-modules and equal to
the number of isomorphism classes of simple left R-modules.

Proof. (a) Since every cyclic right R-module Mg = mR is an epimorphic
image of Rp, it follows that M = R/A with A = Rg. If now My, is simple,
then A must be maximal. Consequently Rad(R) —> A then holds and we
obtain

M =R/A =(R/Rad(R))/(A/Rad(R)).

Since R := R/Rad(R) is semisimple, A = A/Rad(R) is a direct summand,
thus

Rx=A®B,
from which Mg = B follows. Analogously for the left side.

(b) As we know, the R-submodules of Rg coincide with the right ideals
of R, and two R-submodules are isomorphic if and only if they are
isomorphic as right ideals of R. The assertion then follows from 7.2.3 and
8.2.6. 0

We had established in 9.2.1, that for an arbitrary module we have

M Rad(R) = Rad(M).
Here we give a condition sufficient to ensure M Rad(R) = Rad(M).
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9.3.5 THEOREM. If R/Rad(R) is a semisimple ring then we have for every
module My :

(1) Rad(M) =M Rad(R).

(2) Soc(M) = I (Rad(R)) := {m|m e M A m Rad(R) =0}.

Proof. (1) Since (M/M Rad(R)) Rad(R)=0, M/M Rad(R) can be con-
sidered as an R/Rad(R)-module, in which the R-submodules and the
R/Rad(R) submodules are the same. As a module over the semisimple
ring R/Rad R, by 8.2.2 M/M Rad(R) is semisimple, thus we have by 9.2.1
(a) Rad(M/M Rad(R))=0. By 9.1.4(b) it follows therefore that
Rad(M) < M Rad(R) and then 9.2.1 (b) implies (1).

(2¥ Firstofallfrom9.2.1 (a) and (b) it follows that Soc(M) = I,,(Rad(R)).
On the other hand /p,(Rad(R)) is semisimple as an R/Rad(R) module and
hence also as an R-module. Thus we have also I;(Rad(R)) = Soc(M). O

9.3.6 Definition. A right, left or two-sided ideal A of a ring R is called
a nil ideal : ®VaeA3neN[a" =0], resp. nilpotent ideal :<3ne
N[A" =0].

9.3.7 COROLLARY
(a) Every one-sided or two-sided nilpotent ideal is a nil ideal.
(b) The sum of two nilpotent right, left or two-sided ideals is again nilpotent.
(c) If Ry is noetherian then every two-sided nil ideal is nilpotent.

Proof. (a) Clear.

(b) Let A—>Rg, B—>Rr and A™ =0, B"=0. We assert that
(A+B)"™"=0. Let a;e A, b;eB,i=1,..., m+n, then by the Binomial
Theorem

m+n

[1 (a;i+6)
i=1

is a sum of products of m +n factors of which either at least m factors are
from A or at least n factors are from B. Since A and B are right ideals
the assertion follows.

(c) Let N be a two-sided nil ideal of R. Since Ry is noetherian, among
the nilpotent right ideals contained in N there is a maximal one; let A
be one such and suppose we have A" =0. By (b) A is indeed the
largest nilpotent right ideal contained in N. Since for x € R xA is also a
nilpotent right ideal contained in N, A is in fact a two-sided ideal. If for
an element b€ N we have: (bR)* = A, then it follows that (bR)*" =0,
thus bR — A.
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We claim that A = N. Suppose A # N, then let b € N\A (set-complement
to A in N) be chosen so that
re(b, A) = {rl[re R nbre A}
is maximal. For an arbitrary x € R we then have xb € N as well as
rR(b’ A) = rR(xb9 A),
since N and A are two-sided ideals. Consequently for xb€ A we must have
re(b, A)=rgr(xb, A).

For xb£ A let (xb)“ec A and (xb)* "' ¢ A (k exists, since xb is nilpotent!),
then it follows that

rR(b’ A) = rR((Xb)k-la A)a
thus bxb € A and consequently (bR)* = A, in which the two-sidedness of

A for xb € A is used. As established at the beginning, it follows that bR — A,
thushe A K. a

We now investigate the relation between the recently introduced concepts

and the concepts of the radical.

9.3.8 THEOREM. Every (one-sided or two-sided) nil ideal is contained in
Rad(R).
Proof. Let A be a nil right ideal and let a € A, a” =0, then we have
(1+a+...+a" HYl-a)=(1-a)dl+a+...+a""")
=1-a"=1,

i.,e. 1—a has an inverse element. By Lemma 9.3.1 it follows that
A = Rad(R). g
We consider now the radical of an artinian ring.

9.3.9 THEOREM. Ry is artinian = Rad(R) is nilpotent.

Proof. For brevity let U '= Rad(R). Since Ry is artinian, the chain
ReU«eUle...

is stationary, i.e. there is an n e N with U" = U"*' (i e N). It is to be shown
that U" = 0. Suppose U" # 0. Then the set of right ideals

I''={A|A > Rx AAU" #0}
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is not empty, since U €. By assumption there is a minimal AygeI'. Then
there exists ape Ay with aoU" #0, thus also aoRU" #0, and from the
minimality of A, it follows that aoR = Ao. As U" = U""' and RU = U we
deduce further that

aoRU" =aoRUU" =a()U . Un,

so that indeed aoU = aoR = Ay holds. Since Ry is finitely generated and
U =Rad(R) it follows on the other hand by Nakayama’s Lemma (9.2.1)
that: aoU = aoRU > ayR, thus agU #aoR 4. g

9.3.10 COROLLARIES

(a) ‘Rpg is artinian => Rad(R) is the largest rilpotent right, left or two-sided
ideal of R.

(b) R is commutative and artinian > Rad(R) is the set of all nilpotent
elements of R.

(c) Rg is artinian = for every right R-module Mg resp. for every left
R-module gkM we have

Rad(M) = MRad(R) & M resp. Rad(M)=Rad(R)M & M.

Proof. (a): Rad(R) is nilpotent and every nilpotent ideal is contained in it.
(b): Since Rad(R) is nilpotent, every one of its elements is nilpotent.
Let now a € R, a" =0. Then it follows that since R is commutative

(aR)"=a"R"=a"R=0R =0,

thus aR is nilpotent and consequently a € aR = Rad(R).

(c) By 9.2.3 and 9.3.5 we have Rad(M)=M Rad(R) resp. Rad(M) =
Rad(R)M. Since by 9.3.9 Rad(R) is nilpotent, there is an neN with
(Rad(R))" =0. Let now for U = Mg

M =U + M Rad(R),

then by substituting the equality for M (n —1)times into M Rad(R) it
follows that on the right side of the equality we have

M=U+M(Rad(R))" =U,
thus M Rad(R) < M holds. This equally holds for left R-modules. a

9.3.11 THEOREM. Let R/Rad(R) be semisimple and let Rad(R) be nil-
potent. Then the following are equivalent for a module Mg :

(1) Mg is artinian.

(2) My is noetherian.

(3) Mg has finite length.
(Analogously for left R-modules.)
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Proof. Since (1)A(2)&(3) it suffices to show that (1)&(2). Put
U = Rad(R); then we define

e(M) = Min{ilieNAMU' =0},

then this e (M) exists, since there is an n with U" =0, thus also MU" =0.
We now prove (1)&>(2) by means of induction over ¢(M) for all modules
Mg #0.

Beginning: e(M) =1, i.e. MU = 0. Then by putting

m(r+U) = mr, reR,meM

M becomes an R := R/U-module, in which the R- and R-submodules
coincide. Since R is semisimple, M is semisimple (8.2.2(a)) and (1)&(2)
holds by 8.1.6.

Now let the assertion be satisfied for all M with e(M) =<k and suppose
e(M)=k+1. Then it follows that e(MU*)=1. As (M/MU*)U* =0 we
have further e(M/MU"*)<k.

Let now M be artinian resp. noetherian, then by 6.1.2 MU* and M/MU*
are both artinian resp. noetherian. Then by the induction assumption both
are noetherian resp. artinian, and by 6.1.2 M is noetherianresp. artinian. [

9.3.12 COROLLARY

(a) Let Rg be artinian and let Mg be artinian resp. noetherian, then Mg
is also noetherian resp. artinian.

(b) If Ry is artinian, then Rg is noetherian.

(c) If Ry is artinian and gR is noetherian then gR is artinian.

Proof. (a) By 9.2.3 R/Rad(R) is semisimple and by 9.3.9 Rad(R) is nil-
potent. The assertion then follows from 9.3.11.

(b) Special case of (a) for Rg = M.

(¢) By 9.3.11 for gR = gM. 0

9.4 CHARACTERIZATIONS OF FINITELY GENERATED
AND FINITELY COGENERATED MODULES

We have already become acquainted earlier with finitely generated and
finitely cogenerated modules and in particular we have used them for the
characterization of noetherian and artinian modules (in Chapter 6). We
are now in a position to present further characterizations.

9.4.1 THEOREM. Mg is finitely generated if and only if we have:
(a) Rad(M) is small in M ; and
(b) M/Rad(M) is finitely generated.
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Proof. First let Mz be finitely generated. Then (a) holds by 9.2.1(c). As
with M every epimorphic image of M is finitely generated, thus (b) also
holds. Let us now assume (a) and (b). Thus let x; =x;+Rad(M), i=
1, ..., n, be a generating set of M/Rad(M). Then it follows that

x1R+...+x,R+RadM)=M,
since Rad(M) < M we deduce that

x1R+...+x,R=M,
thus M is finitely generated. ]
9.4.2 COROLLARY. A module Mg is noetherian if and only if for every
U = M we have:

(a) Rad(U) % U; and
(b) U/Rad(U) is finitely generated.

Proof. This follows by 6.1.2 and 9.4.1. 0
We now consider finitely cogenerated modules.

9.4.3 THEOREM. For a module Mg #0 the following conditions are
equivalent:

(1) M s finitely cogenerated.

(2) (a) Soc(M) is large in M and (b) Soc(M) is finitely cogenerated.

(3) For an injective hull I(M) of M we have

IM)=0,®...@Q,
where every Q; is an injective hull of a simple R-module.
Proof. “(1)=>(2)”": (a) With the help of Zorn’s Lemma we show that every

submodule U = M, U # 0 contains a simple submodule E, so that U n
Soc(M) # 0 then also holds. Let

I={Uliel}

be the set of all submodules U;#0 of U. As Uel', I'# &. In I" we define
an ordering by

U=sU:oU > U,
(reverse inclusion). Let

A={Ajlje]}
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be a totally ordered subset of I'. We then show that
D= m Ai
jeJ
is an upper bound of A inT'. If we suppose D = 0, then by (1) the intersection
of finitely many of the A; must already be equal to zero. Since A is totally
ordered, under these finitely many A, there is a largest element (with
respect to the reverse inclusion), and this must then be already equal to
zero: contradiction to U; #0! Thus D #0 and consequently Del’. By
Zorn’s Lemma there is now a maximal element U, in T" and this Uj is
obviously a simple submodule of U.
(b) By definition of “finitely cogenerated’ as well as M every submodule
of M is finitely cogenerated, thus also Rad(M).
“(2)=>(1)”: From
A =0 with A, oM
iel
it follows that ﬂ Soc(A;)=0.
As iel
Soc(A;) = Soc(M)
and since Soc(M) is finitely cogenerated, there is a finite subset I, < I with

M Soc(A;)=0.

iely
For an arbitrary submodule A — M we have by the definition of the socle
Soc(A)=A nSoc(M).
Therefore it follows that
0= Soc(A) = N (A;nSoc(M) =( M A) ~Soc(M).

iely ielp iely
Since by assumption Soc(M) is large in M, we obtain finally
m A,‘ =0.

iely

(2)=>(1) is therefore proved.
“(2)=>(3)”: Let I(M) be an injective hull of M with M — I(M) and let
M #0. As Soc(M) % M it follows that Soc(M) # 0. Let

Soc(M)=E®...®E,

with simple modules E; and let Q; < I (M) be the injective hull of E;. Then
by 5.1.7 we have

I ™M s

Qi=£‘5101

i=1
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(as sums in I(M)), as well as

Soc(M) = é Q.
i=1

As a finite direct sum of injective modules @ Q; is injective and con-

i=1
sequently is a direct summand in I(M). As Soc(M) % M and M & I(M)
it follows that Soc(M) < I(M), thus also

D Qs I(M).
i=1
From the last two statements we deduce that
@ Q;=IM)
i=1

which was to be shown.
“(3)=>(2)”’: Without loss it can again be supposed that

M'->I(M>=@o,~

and that as well as E; & Q,, E; is simple. As E; % Q; E; is the only simple
submodule of Q;. Hence by 9.1.5 we have

Soc(I(M)) = @ Soc(Q) = @ E.

i=1

AsM < I(M)we have E; =~ M fori=1,...,n, thus
SOC(M)= @E,’.
i=1

By 8.1.6 Soc(M) is finitely cogenerated, i.e. (2)(b) is satisfied. As
Soc(M)=Soc(I(M)) % I(M)

we also have Soc(M) %> M, i.e. (2)(a) is also satistied. 0
9.4.4 COROLLARY. A module Mg is artinian if and only if for every
factor-module M/ U we have:

(a) Soc(M/U) % M/U; and
(b) Soc(M/U) is finitely cogenerated.

Proof. This follows from 6.1.2 and 9.4.3. ad
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9.5 ON THE CHARACTERIZATION OF ARTINIAN
AND NOETHERIAN RINGS

In Chapter 6 the following Theorem (6.6.4) was stated but was there
proved only in part.

9.5.1 THEOREM

(a) The following conditions are equivalent:
(1) Rg is noetherian.
(2) Every injective module Qg is a direct sum of directly indecompos-
able (injective) submodules.

(b) The following conditions are equivalent:
(1) -Rg is artinian.
(2) Every injective module Qg is a direct sum of injective hulls of
simple R-modules.

The implication (1) > (2) was proved in 6.6.5, from which it now suffices,
by 9.3.12, only to assume in (b) that Ry is artinian (and not additionally,
as in Chapter 6, that Ry is noetherian). The lemma for proving the converse
is now available.

Proof of (b). “(2)=>(1): In view of 9.9.4 it suffices to show that every
factor module M = R/A of Ry satisfies condition (3) in 9.4.3. Let I(R/A)
be an injective hull of R/A with R/A < I(R/A). By assumption we have

I(R/A) =B Q,

iel

where the Q; are the injective hulls of simple R-modules. Since R/A is
cyclic, R/ A is already contained in a finite subsum:

R/A-> P Q, finite I,.

iely

From R/A < I(R/A)it then follows that = I, i.e. I(R/A) = @® Q, which
was to be shown. iely

Proof of (a). “(2)=(1)”: The proof is established by showing that condition
(3)in 6.5.1 is satisfied. Let

M=éo;

be a direct sum of injective hulls Q; of simple R-modules E; < Q;. Let
I(M) be the injective hull of M with M — I(M). We prove that M = I (M).
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As M < I(M) we have Soc(M) = Soc(I(M)). Further we have
Soc(M) = Soc(Q:) = D E.
i=1 i=1

We now use the assumption [ (M)=@D,~ where the D; are directly
indecomposable injective modules. Let ’ </

Ji={jljeJ aSoc(D;) # 0},
then we have
Soc(I(M)) = @ Soc(D;).
jeJy .
If Soc(D;) # 0 then by 6.6.3 F; := Soc(D;) is simple and D; is the injective
hull of F;. Consequently we have

SocI(M))=@ Ei= D F,
i=1 jely
and by the Krull-Remak-Schmidt Theorem these two decompositions are
isomorphic (in the sense of 7.3.1). If E;=F; then by 5.6.3 it follows that
Q; =D, and by consideration of the bijection in 7.3.1 we obtain

M=éOiE@Dﬁ

1 jeJq

100-(® p)e( @ D)

jeJy jeJ\Jy

M is therefore isomorphic to a direct summand of the injective module
I(M) and is itself thereby injective which was to be shown. 0

9.6 THE RADICAL OF THE ENDOMORPHISM RING OF
AN INJECTIVE OR PROJECTIVE MODULE

For certain considerations it is of interest to know the radical of the
endomorphism ring of an injective or projective module. We wish to
concern ourselves here with this issue. As an application it is then to be
shown that for a projective module P # 0 we always have Rad(P) # P, which
also indicates that P always contains a maximal submodule.

9.6.1 THEOREM
(a) Let Qg be injective and let S = End(Qr), then we have fora € S

Sa & ¢S < a e Rad(S) & Ker(a) & Qr.
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(b) Let Pr be projective and let S ‘= End(Pr), then we have fora € S:
a8 S SsoaeRad(S)eIm(a) = Pr.

Proof. (a) “Sa = ¢S <a € Rad(S)”’: This holds by 9.1.3.

(a) “aeRad(S)=>Ker(a)®» Qr”’: Let U = Qr with Ker(a)n U =0.
Then = a|U is a monomorphism and there exists a commutative
diagram

As u=1(u)=Bao(u)=Ba(u), ue U, we have U = Ker(1 —Ba). Since a €
Rad(S), it follows that Ba € Rad(S). From 9.3.1 1 —Ba is then invertible,
thus Ker(1—pBa)=0, from which U =0 follows. Hence we have shown
that Ker(a) is large in Q.

(a) “Ker(a)® Qr>Sa = 3S7: Let Sa +I'= ¢S with I’ = S, then there
are o € S, y eI with oa +y = 1. From this it follows that Ker(a) n Ker(y) =
0, and as Ker(a) %> Qr we deduce that Ker(y)=0. Then there exists a
commutative diagram

v
Q > Q
///
10 P
//'S
P
&
Q

i.e., we have 15 = 8y and hence it follows that I' =S, thus Sa < S.

(b) “aS = Ss<>a € Rad(S)”: This holds by 9.1.3.

(b) “a eRad(S)=>Im(a) > Pr”: Let U = Pg with Im(a)+ U = P, and
let v: P> P/U be the natural epimorphism. Then va is an epimorphism
and we obtain the commutative diagram

va

P/U

From v = vaf it follows that v(1—aB) =0, thus Im(1-aB) > U. As a €
Rad(S) we also have af € Rad(S), and by 9.3.1 1 —ap is then invertible,
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thus
P=Im(l-aB)> U< P,

i.e. U = P. Hence we have shown that Im(a) < Pkg.

(b) “Im(a) > Pr=>aS > Ss”’: Let aS+TI'=S8s with I' = Sg, then there
are o € S, y € I" with ao +y = 1. From this it follows that Im(a) + Im(y) = P,
thus Im(y)=P as Im(a) > Pr. Hence vy is an epimorphism and con-
sequently there exists a § so that the diagram

p—' p

is commutative, thus we have 1p = ¥8. It then follows that I' = S, which was
to be shown. g0

9.6.2 COROLLARY. Let Qg be injective and let S .= End(Qg). Then to
every a € S there is a y € S with aya —a € Rad(S).

Proof. Let a €S and let U be an inco of Ker(e) in Q. By 5.2.5 we then
have Ker(a)+ U % Q. As Ker(a)n U =0, ag ‘= a|U is a monomorphism.
Hence there exists a y € S so that the diagram

o

U—0Q
’
7
e

[

//7

s
-,
I'4

Q

is commutative (¢ = the inclusion mapping). For u € U it then follows that
ya(u) = yao(u)=u.
Hence we have
Ker(a)+ U = Ker(aya —a)
and as
Ker(a)+U & Q
it also follows that

Ker(aya —a) % Q.
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From 9.6.1 it then follows that
aya —a € Rad(S). 0

This result says that S/Rad(S) is a regular ring. Regular rings are introduced
in the next paragraph and investigated in detail.

The Dual Basis Lemma and 9.6.1(b) also yield an interesting result on
the radical of a projective module.
9.6.3 THEOREM. For every projective module P # 0

Rad(P)#P.

Proof. We consider generally: If p € Pz and ¢ € P*=Homg(Pg, Rr), then
pe can be considered as an element from S = End(Pr); namely let for x € P

(pe)(x) = pep(x),
then from
(p@)(x1r1+ x2r2) = pe(x1r1 + X212)
=p(e(x)r+e(x2)r) =(pe(x1))ri + (pe (x2))r2
= (pe)(x)r1+ (pe)(x2)r2

this is in fact an element of S. Let now p € Rad(P), then pR = Rg, and
consequently we also have Im(pe)=pe(P) < Pr (as pe(P) = pR). By
9.6.1(b) it follows that peS <= Ss. Let

x= Y pipi(x)

®i(x)#0

be a representation of x in the sense of the Dual Basis Lemma 5.4.2. If
we now suppose x #0 and let (after a change of indices) i=1,...,n be
the indices with ¢;(x) # 0, then it follows that

lp(x)=x= i Pi(Di(x):(i pi‘Pi)(x)
i=1 i=1

> (1P“i§1 pi(Pi)(x)_—_O

in the sense of the earlier interpretation of the p;g; as elements of S. If we
now suppose Rad(P) =P, then we have Im(p.p:;) © Pgr, thus pp:S < Ss,
thus pi¢; € Rad(S) and finally

Y pipi € Rad(S).
i=1
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By 9.3.1
1p— ‘g,l Di®i

is then an invertible element in S; let o € S be the inverse element, then
it follows that

x=1px)=0(1- T pe)®=00)=0 4.

The supposition 0# xe€ P was thus false, and under the assumption
Rad(P) = P we have necessarily P =0. ]

As we have already remarked at the beginning, it follows from Rad(P) # P
that P has at least one maximal submodule.

9.6.4 COROLLARY. If P is projective and we have P=P,®P, with
P, <> Rad(P) then it follows that P, =0.

Proof. Let 7 : P> P, be the projection of P onto P,, then from P, — Rad(P)
it follows by 9.1.4 that P, < 7r(Rad(P)) = Rad(P,), thus P, =Rad(P,).
Since P, is projective, it follows from 9.6.3 that P, =0. O

9.7 GOOD RINGS

As we have seen in 9.2.1(b) we always have M Rad(R) — Rad(M). The
question arises as to when equality holds. By no means is this the case for
an arbitrary ring and module; e.g. Rad(Z) =0 but there are, as we know,
Z-modules with non-zero radical, as say Z/4Z or Qz(Rad(Qz) = Qz!).

Additionally the following theorem gives certain information.

9.7.1 THEOREM. Let Mg be the category of unitary right R-modules, and
let R = R/Rad(R), then the following are equivalent:

(1) VM e Mr [M Rad(R) =Rad(M)].

(2) VM € Mr [M Rad(R)=0=>Rad(M)=0].

(3) VQ e Mz [Rad(Q))=0].

(4) VM, N € MgV e Homg (M, N)[¢(Rad(M)) = Rad(¢(M))].

(5) VM € MrVU - M[Rad(M)+ U/U =Rad(M/U)).

(6) VM € MxVU = M[Rad(M)=0=>Rad(M/U)=0].

Proof. We prove (1) (2)>(3)=>(1) and (1) (4)=>(5)=> (6)=>(1).
“(1)=>(2)’: Special case.
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“(2)=>(3)": Let Qe Mg, then Q can be made into a right R-module by
means of the following definition:

wr = wF, we, F=r+Rad(R)eR.

For Q) considered as a right R-module we then obviously have
Q Rad(R)=0. By (2) it follows that Rad({2x) = 0. But since by the definition
of Qx the R- and R-submodules of Q coincide, it follows also that
Rad(Qz)=0.

“(3)=>(1)’: As (M/M Rad(R)) Rad(R) =0, M/M Rad(R) can be made
into an R-module by the following definition

mfr =(m+M Rad(R))(r + Rad(R)) := rar = mr + M Rad(R),

in which the R- and R-submodules of M/M Rad(R) again coincide. It
then follows from Rad((M/M Rad(R))z)=0 that also
Rad(M/M Rad(R))zr)=0, and hence from 9.1.4(b) we have
Rad(M) =< M Rad(R), thus from 9.2.1(b) it follows that Rad(M)=
M Rad(R).

“(1)=>(4)”: From M Rad(R)=Rad(M) A ¢ (M) Rad(R) = Rad(eM)) it
follows that ¢(Rad(M)) = ¢ (M Rad(R)) = ¢ (M) Rad(R) = Rad(¢ (M)).

“(4)=>(5)": Special case ¢ =v: M >M/U.

“(5)=>(6)’: Special case for Rad(M) = 0.

“(6)=>(1)": By 9.1.5(a) (1) is preserved under isomorphisms of modules.
Since every module is an epimorphic image of a free module, it suffices to
prove (1) for modules of the form F/U, where F is a free module and
U>F. By 9.2.1(g) we have Rad(F)=F Rad(R). Hence we have
Rad(F/F Rad(R)) =0, thus by (6) we also have

Rad(F/F Rad(R))/(F Rad(R)+ U/F Rad(R))=0.
Since
(F/F Rad(R))/(F Rad(R)+ U/F Rad(R))=F/(F Rad(R)+ U)

=(F/U)/(F Rad(R)+ U/ U)
it then follows that
Rad((F/U)/(F Rad(R)+ U/ U) =0,

thus by 9.1.4(b)

Rad(F/U) - F Rad(R)+ U/ U = (F/U) Rad(R).

By reference to 9.2.1(b) it follows therefore that Rad(F/ U) = (F/ U)Rad(R)
which was to be shown. 0
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9.7.2 Definition. Let a ring, which satisfies the conditions of Theorem
9.7.1, be called a right good ring. Correspondingly let a left good ring be
defined. Let a two-sided good ring be called a good ring.

9.7.3 COROLLARIES _

(a) A ring R, for which R = R/Rad(R) is semisimple, is by (3) a good
ring.

(b) By 9.2.3 every (one-sided) artinian ring is consequently a good ring.

(c) If R is right good ring then by 9.1.5(b) and 9.7.1(1) we have for an
arbitrary module Mg :

M =} M,>Rad(M)=} Rad(M,).
iel

iel

Finally we remark that there are good rings for which R/Rad(R) is not
semisimple; e.g. this is the case if R/Rad(R) is commutative and regular
(see Chapter 10, Exercise 18), but is not semisimple.

EXERCISES

1)
(a) Show that for a ring R the following statements are equivalent:
(1) For every right R-module Rad(M) < M.
(2) There is no right R-module M # 0 with Rad(M) =M.
(b) Show that for a ring R the following statements are equivalent:
(1) For every right R-module Soc(M) <> M.
(2) For every cyclic right R-module M Soc(M) < M.
(3) There is no right R-module M # 0 with Soc(M) = 0.

(2)
(a) Let Soc(M) < Br <> Mg raeM rag B. Show: Then there exists
C* M withB— CnragC.

(b) Show: Soc(M)—=> Br > Mr=>B= () C

BosCasM

(c) Show: Soc(M) > A - M ASoc(M/A) > M/A>A & M.

3)
Show: Rpg is a cogenerator if and only if the injective hull of every finitely
cogenerated right R-module is projective.
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(4)
(a) Determine Rad(R), Soc(gzR), Soc(Rr) and find out whether
Soc(Rg) = Soc(gR) holds for the following rings:

e ([0 Dlcancsen

_[(? a
R: {(0 b)‘zEZAa,beQ}.

In the above let R be the field of real numbers.
(b) Assumptions as in Exercise 6 of Chapter 6. Show

Rad(R) = { (g ’:) la cRad(A), meM, be Rad(B)}.
(Hint: Determine the right-invertible elements in R.)

5
Show: The following statements are equivalent for Mg (Compare 9.2.2(b)):
(1) M is finitely cogenerated and Rad(M) =0.
(2) M is finitely generated and semisimple.

(6)
Let A be a complete lattice (see 3.1). Let the smallest element be denoted
by 0 and the largest by M. For A, B € A with A<B let

[A,B]={LeAJA<L<B};

under the lattice structure induced from A this is again a complete lattice.

Definitions

(a) A family I'=(A;|ieI) of elements from A is said to be directed
upwards if to any two elements A;, A; from I' there exists an element A,
from I' with A; <A, and A; < A,.

(b) An element A€ A is called compact, if in every directed family
(Aili e I with A <|J A, there exists an A; with A< A,

iel

(c) A is called compactly generated, if every element from A is a union
of compact elements.

(d) A is called modular&VA,B,CeA[B=A>ANBUC)=Bu
(AnC)).

(e) AeAiscalled small in A: &VBeA\{M{AUB#M).

(f) Rad(a) = N B.

max. B in A\{M}
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Show:
1 U  A=<Rad().

A smallin A

(2) A is compact and A <Rad(A)=> A is small in A.
(3) Ais compactly generated=> | J A =Rad(A).

A smallin A

(4) For A € A we have A uRad(A)<Rad((A, M)).

(5) If A<Rad(A), then we have Rad(A) =Rad([A, M)).

(6) If A is compact Rad(A) is small in A.

(7) Let A be modular and A € A then we have Rad([0 A])<Rad(A).

(8) In the lattice A of submodules of a module M what does it mean if
A €A is compact? (Observe: |_J is then +).

(7
For a module My we define:
(a) M is semiartinian : © VU < M[Soc(M/U) #0].
(b) Sa(M) = Y U.

UM
semiartinian U

Show:

(1) M is semiartinian>VU — M[M/ U is semiartinian].

(2) For arbitrary M Sa(M) is semiartinian.

(3) VM, N e MgV ¢ € Homg (M, N)[¢(Sa(M)) = Sa(N)].

(4) Sa(Sa(M))=Sa(M).

(5) Sa(M/Sa(M))=0.

(6) M is semiartinian = Soc(M) < M.

(7) M is semiartinian>VU < M[Soc(M/U) % M/U].

(8) Let U = M => M is semiartinian& M/ U is semiartinian A U is semi-
artinian.

(9) A is semiartinian and M is noetherian& M is artinian and M is
noetherian.

(10) M issemiartinian and Ry is noetherian => M is the sum of its artinian
submodules.

8)
Definition. (a) M is seminoetherian : © VU = M, U # 0[Rad(U) # U].
(b) Snr(M)= Y U.

UM
Rad(U)=U

Consider whether the properties dual to those given in problem 7 hold
and consider respectively under which additional assumptions they hold.
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9

Definition. Coatomic:

M: VU » M3A - M[U < A A A maximal in M].

Show:

(a) If A is semisimple or finitely generated then M is coatomic.

(b) There is a coatomic Z-module M which is neither semisimple nor
finitely generated.

(c) M is semisimple © M is coatomic and every maximal submodule of
M is a direct summand in M.

(d) U - Rad(M) and U is coatomic> U < M.

(e) M is coatomic=>Rad(M) < M.

(f) There is a module M with Rad(M) =0 but M is not coatomic.

(10)
Let M = M3 be an abelian group and let

T(M) ={meM|3z #0[mz =01}

be the torsion subgroup. Show:
(a) Soc M) S MST(M)=M; Soc(M)=0T(M)=0.
®) UsMSSocM)>U >MATM/U)=M/U.
(¢) M is semisimple< T(M)= M and Rad(M) =0.

(11)
Show that for a ring R the following statements are equivalent:
(1) For every family (M;|i € I) of right R-modules we have:

SOC(H M,-) =[] Soc(M)).
iel iel

(2) Every product of semisimple right R-modules is again semisimple.

(3) Every radical-free right R-module (i.e. with Rad(M)=0) is semi-
simple.

(4) R/Rad(R) is semisimple.

(12)
For a right R-module M show:
(@) U—> MU is a direct summand in M = Rad(M/U)=(Rad(M)+
U)/U, Soc(M/U)=(Soc(M)+U)/U.
(b) VU = M[Rad(U)= U nRad(M)]<Rad(M) =0.
(¢) VU = M[Soc(M/U) = (Soc(M)+ U)/UJ<>M semisimple.
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(13)
(a) Show that for a left ideal U — gR the following statements are
equivalent;
(1) (H M)U= [1 (M;U) for every family (M;|iel) of right R-
iel iel
modules.
(2) rU s finitely generated.
(b) If R is right good, then the radical in Mg is permutable with direct
products if and only if rkRad(R) is finitely generated.
(c) If R is commutative and noetherian then the radical is permutable
with direct products.

(14)
For a commutative ring R we have Rad(Mg) = {MA|A maximal ideal in
R}. A corresponding result will be shown more generally for rings in which
every maximal right ideal is two-sided.
Definition: For a right R-module My let

D (M) = ( {MA|A maximal right ideal in R}.

Show:

(a) D(M) is a submodule of My and for every homomorphism f: M > N
we have f(D(M))< D(N) (i.e. D is a preradical in Mg).

(b) D(RRr) =R <no maximal right ideal is two-sided.

(c) D(M)=Rad(M) for all M € Mg < every maximal right ideal is two-
sided.

(15)
Let M = M5 be an abelian group.
Show: There is an abelian group N with Rad(N) = M. (Hint: Choose an
injective extension M < Q and consider Soc(Q/M).)

(16)
Notations as in Chapter 5, Exercise 27. Show:
(a) S is local.
(b) The socle of Ss has length n +1.

(17)
For every R-module M we define an ascending sequence of submodules
M(i=0,1,2,...) by

Moy=0 and  M../M; = Soc(M/M)



9.7 GOOD RINGS 241

(more precisely: let v: M -> M/M; be the natural epimorphism, then let
M., = v~ (Soc(M/M;)). Show:
(a) If M is artinian, then we have for every i =0:
(1) M;,, has finite length.
(2) If B M,,, and if the length of B is <i then it follows that
B —> M,
(b) If M is artinian and a self-generator then M is also noetherian. (M
is called a self-generator, if for every submodule U of M we have:
U= 2 Im(f).
feHompg (M, U)
Hint: With regard to (b) show that the set {A|A < M A M/A noetherian}
has a smallest element A, and apply (a) with i =length of M/A,.)

(18)
For every R-module M we define a descending sequence of submodules
M'(i=0,1,2,...) by

M°=M and M"':=RadM).

Show:

(a) If R/Rad(R) is semisimple and if My is ndetherian then we have for
i=0:
(1) M/M'™" has finite length,
(2) if M™*' o B - M and if the length of M/B is <i then it follows that
M' < B.

(b) If R/Rad(R) is semisimple and if M is a noetherian selfcogenerator,
then M is also artinian.

(¢) Question: In (b) can we omit the assumption “R/Rad(R) semi-

simple”’? (M is called a selfcogenerator if for every submodule U of M

we have: 0= M Ker(f).)

feHomg(M/U.M)



Chapter 10

The Tensor Product, Flat Modules and Regular Rings

The significance of the tensor product depends above all on the two
following facts:

(1) The tensor product has an important factorization property, namely
every tensorial mapping can be factorized over the tensor product and the
tensor product is uniquely determined up to isomorphism by this property.

(2) The tensor product is a functor (10.3.1) and in fact is an adjoint
functor to the functor Hom (10.3.4).

10.1 DEFINITION AND FACTORIZATION PROPERTY

The tensor product links amodule As and a module U into a new module
AR®U,
S

which, in general, is a Z-module, under suitable assumptions however it
can also be a module over other rings.
In order to define A ® U let
N

AxU={(a,u)lacAruecU}

be the product set of A and U and let F = F(A X U, Z) denote the free
right Z-module (or left module—the side for Z plays no role) with the basis
A x U (see 4.4). We again denote the basis elements of F by (a, u). Finally
let K be the submodule of F (as a Z-module) generated by the set
DyuD,uT with

D,={(a+a’,u)—(a,u)—(a',u)|a,a’'e Anue U},

242
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D,={(a,u+u")—(a,u)—(a,u’)|ac Aru u' e U},
T={(as, u)—(a,su)|lacAruecUnrseS}

10.1.1 Definition. The factor module F/K is called the tensor product of
As and sU over S, notationally

A®U = F/K.
S
The image of the element (a, u) € F under the natural epimorphism F > F/K
is called the tensor product of a and u and is denoted by a ® u:
a®@u:=(a,u)+K.

If it is clear from the relationship that we have a tensor product over S,
then we write only A ® U.

For the tensor product the following operational rules hold.
10.1.2 Operational Rules
(1) (a+aY®u=a®u+a' @ u,
(2) a®u+u)=a®@Qu+ad@u’,
(3) as@u=a® su,
(4) 0®u=a®0=0,
(6) —(a®u)=(-a)®u=a®(-u),
(6) (@®u)z=(az)®u=a® (uz), zel.

Proof. (1), (2), (3) by definition of K.
(4) 0®u+0®u=0+0)Ru=00u=>0® u=0;
analogously it follows that a ® 0=0.
(5) a®@u+(-a)Ru=(a-a)Qu=00u=0=>(-a)@u
=—(a®u);

analogously for a ® (—u).

6) 2>0:(a®u)z=aQu+...+a®Qu=@+...+a)Pu=(az)Pu;
\__—.W———_/

z summands
z=0:(a®@u)0=0=0Q® u=(a0)® u;
z<0:(@a®@u)(-z)=(@(-2)Qu=(—az)@®u=—((az)® u)
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by (5). Since we also have
@@u)(-z2)+(@®u)z=(a®u)(~z+z)=(a®u)0=0

the uniquely determined element negative to —((az) ® u) is on the one
hand az ® u and on the other hand (a ® u)z, thus we have (az)® u =
(a ® u)z; analogously for u. O

10.1.3 Remarks
(1) The free right Z-module F can also be considered as a free left
Z-module; the side is of no significance, and in the following the side for

F and A® U is chosen which is the more convenient for the purpose
s

under consideration.

(2) By Rule (6) every element t€ A ® U can be written as a finite sum
S

of the form

t=§:a,~®u,~.

(3) The representation ¢ =Y a; ® u; is not uniquely determined in gen-
eral, and indeed not even if it is a representation of ‘‘shortest length’’.

(4) The tensor product of two modules different from zero can be zero.
Example for (3) and (4). Let A =(Z/2Z)z, U = 2(Z/3Z), then we have for
arbitraryae A, ue Uin A® U:

z

0®0=0=a®0-0Qu=a®Bu)—2a)®u

=3@®@u)-2@aQu)=a@u,
thus
AQ®U=0.

10.1.4 Definition. Let As, sU, M7z be given.
(1) A mappingof ¢ : A X U - M is called biadditive :<
Va,a'e AVu,u'e Ulp(a+a',u)=p(a, u)+ela’, u)a
ela,u+u')y=¢(a, u)+oela, u'))
(2) A biadditive mapping ¢ is called an S-tensorial mapping &
Yae AVue UVseS[plas, u)=¢l(a, su)l.

10.1.5 CoOROLLARY. Letv:F—>F/K = A ® U be the natural epimorphism
S
and let T be its restriction onto the basis A X U of F,

r=v|AxU, ie. ta,u)=a®u,
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then we have: For every Z-homomorphism A : A @ U - M the mapping
S

¢ =AT:AXU->M

is an S-tensorial mapping. In particular t is an S-tensorial mapping.

Proof. We have
Aa+a’, u)=A((a+a)@u)=2(a@u+a'" @u)=A(a® u)
+A(a' @ u)=Ar(a, u)+Arr(a’, u).

The other properties follow analogously. 0

In the following it is important that we can express the image of an
element under A by ¢ = A7:

(10.1.6) AQa®u)=Y A(a; @ u)=Y Ar(a, u;) =Y o(a;, u:).

Now let Tens(A x U, M) denote the set of S-tensorial mappings of A X U
into M ; then by the definition

(p1+e2)(a, u) = @i(a, u)+pa(a, u), (—¢)a,u)=—-¢(a,u)
this set obviously becomes a Z-module and the mapping

®:Homz(A® U,M)sA—¢ = AreTens(A X U, M)
S
is a Z-homomorphism.
10.1.7 THeEOREM. & is an isomorphism.

Proof. Injectivity of ®: This follows from 10.1.6. Surjectivity of ®: Given
¢ € Tens(A X U, M) we seek a A € Homz(A ® U, M) with ¢ = AT.
First of all ¢ is extended to ¢ € Homg(F, 1\; ) by the definition
¢ (aiy u)zi) =X @(a, ui)zi

Since ¢ is S-tensorial it follows that K — Ker(¢). Consequently ¢ can be
factorized over F/K = A ® U (3.4.7 special case); the factorizing mapping,
s

whichisagaina Z-homomorphism, we call A and therefore we have ¢ = A~.

0

For later applications we summarize 10.1.6 and 10.1.7 in the following
statements:
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10.1.8 CoRroOLLARY. For every S-tensorial mapping ¢ :AX U > M there

is exactly one Z-homomorphism A : A ® U » M with ¢ = Ar, such that
S

AT aQu)=y el(a;, u;)
also holds.

Finally it is to be shown that the tensor product A ® U is uniquely
N

determined by 10.1.8 up to isomorphism.

More precisely: Given Cgz, let y: A X U -» C be an S-tensorial mapping
so that for every Z-module M and every S-tensorial mappinge : AX U > M
there exists exactly one Z-homomorphism

n:C-M

with ¢ = nv, then we have A ® U = C as Z-modules.
N

In the proof we can certainly make do with weaker assumptions as the
following theorem shows.

10.1.9 THEOREM. Let y: A XU - C be an S-tensorial mapping with the
following properties::
(1) There exists a Z-homomorphism

g C>oAQU
s

with 7 = oy (i.e. factorization of T over vy is possible).

(2) The equation y = ny with n € Homz(C, C) is only satisfied for n = 1¢
(i.e. factorization of vy over vy is unique).

Then we have

C=AQ®RU as Z-modules.
S

Proof. By 10.1.8 there is a p: A ® U » C with y = pr and by assumption
we have 7 = gy. From the two eqlfations together it follows that:
T =0pT, Y = poy.
By 10.1.8 and assumption (2) it then follows that
op =lasu po=lg,

thus C=A® U. a
s
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Nevertheless with regard to the tensor product only the equation y = pr
and the uniqueness of the factorization 7 = opr will be used.

10.2 FURTHER PROPERTIES OF THE TENSOR PRODUCT

10.2.1 THE TENSOR PRODUCT OF HOMOMORPHISMS

Let S-modules Ag, Bs as well as sU, sV and S-homomorphisms
a:A-B, w:U->V
be given. Then we consider the mapping
0:AxU3(a,u)~a(a)®u(u)eB @ V.

As is immediately verified, this is an S-tensorial mapping of A X U into
B ® V, in which thus ¢(a, u) =a(a) ® u(u) holds. The Z-homomorphism
s

of A® U into B ® V, which exists in the sense of 10.1.8, is to be denoted
N S

by a ® w; thus we have:
a@u:AQU33Y ai®@ui—Y ala;)®u(u;)e BV,
S N

i.e. we apply @ and u to the respective components.

Definition. a @ u is called the tensor product of the homomorphisms a and

M.
The following properties of this tensor product of homomorphisms are
immediately clear:

(1) 1A®1U=1A®U~
S

(2) Besides a and u let the homomorphisms 8 :Bs—> Cs, v:sV > sW be
given, then we have (Ba) ® (vu) = (B @ v)(a ® u).

(3) Let @ and u be isomorphisms, then o ® w is an isomorphism and
(@a®u) ' '=a'®u"" holds.

10.2.2 MODULE PROPERTIES OF THE TENSOR PRODUCT

Now let R be also aring and let RAs be a bimodule. It is to be established
that according to the definition

rai®u) =Y (ra;) ® u, reR,
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A ® U is then a left R-module. For this purpose we consider for fixed
s
r € R the mapping

Asa—racA.

Since gAs is a bimodule, this is evidently an S-homomorphism which is to
be denoted by r". By 10.2.1 " ® 1, is then a homomorphism with

roOly:A®UsY a;@ui—Y (ra)®ue A® U,
S S

so that the definition above in fact makes A ® U into a left R-module.

N
(X (ra;) ® u; is uniquely determined by r and Y a; ® u;, independently of
the representation of ) a; ® u;!)
If sUr is a bimodule, then by the definition

Ta®u)t=Ya®wt), teT

A ® U becomes a right T-module and in the case rAs, sUr, we have
N

A ® U as an R-T-bimodule.
Lset homomorphisms
a :rAs > rBs, nisU->sV
be given, then @ ® u is an R-homomorphism

a®u:R(AC>SD U)->r(B®YV),
s

for
(@®@u)ryai®u)=% a(ra)® u(u)
=Yra(@a)®uu)=rY ala)® uu)
=rla®@uw)X a; ® ;).
Correspondingly for

a :rAgs~ rBs, wisUr->sVr

a ® w is an R-T-bimodule homomorphism of g(A ® U)r into g(B® V).
s s

If R is a subring of the centre of S (for commutative S e.g. R =S) then
by definition

ra = ar, ur = ru, reR, aceA, uelU
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As and sU become R-S resp. S-R bimodules and A ® U is a two-sided
R-bimodule. We then have ’
rai®u)=Y (ra)®u; =% (air) ® u;
=2a;®(ru)=Y a; ® (wr) = a: ® w)r.

The special case of S commutative and R = S is of particular interest.
Now let rAs, sU and gM be given, as well as an S-tensorial mapping

¢:AXU->M with o¢(ra,u)=re(a,u), reR.

We consider A ® U as aleft R-module and show that the Z-homomorphism
S

A which exists in the sense of 10.1.8 is also an R-homomorphism:
ArYai®@u)=AE (ra) ® u) =2 o(ra; u;)
=Y re(ai, u;) =rA (X a; ® w;).

A corresponding statement holds also in the case rAg, sUt, rRMT.
Finally we wish to establish that the mapping

AMA®RSSY a,®si—>Yyas, €A
S

is an S-isomorphism of the right S-modules A ® S and Ag. Since
s

¢:AXS3(a,s)—ascA

is S-tensorial and ¢(a, s51) = ¢(a, s)s; holds, A is an S-homomorphism and
indeed is obviously an epimorphism. Let ) a; ® s; € Ker(A), thus ¥ a;s; =0,
then it follows that

2a®s5=Y(asi®1)=Fas)®1=0®1=0,
i.e. A is also a monomorphism, thus an isomorphism. Analogously we also
have s(S® U)=sU.
S

10.2.3 ASSOCIATIVITY OF THE TENSOR PRODUCT

We have to show here that the tensor product is associative up to
isomorphism. Let modules Ag, RMs, sU be given, then we assert:

ARM)®U=AR® (M U),
R S R N
and this isomorphism is obtained from

(%) 2(@®m)®ui—y a;® (m; ® u;).
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For the proof we consider the mapping
o AXM>3(a,m—»a@(mMmOu)eAQM® U)
R S

with respect to a fixed ue U.
As we see immediately, this is an R-tensorial mapping, so that by 10.1.8
the homomorphism

A AROM3Y a;®@mi—>Ya,®(m@u)e AQ M U)
R R s

exists. Consequently the element Y a; ® (m; ® u) is uniquely determined
by Y a;®m; and u (independently of the representation of } a; ® m;).
Consequently the mapping

(A%M)XUB(Za;®mi, u)»—>Za.~®(m,~®u)eA%)(M® U)
S

is an S-tensorial mapping. By 10.1.8(x) is then a homomorphism p. Similarly
a corresponding homomorphism ¢ exists in the reverse direction, and hence
we have obviously

op = luaemeu 0 = lasmeu);

thus p and o are isomorphisms.

On the basis of the associativity of the tensor product we can omit
brackets in many tensor products if we are not concerned about
isomorphisms.

10.2.4 COMMUTABILITY OF THE TENSOR PRODUCT WITH THE DIRECT
SUM

Let now modules Ag, sU with

A=BA, U=QU

iel jeJ

be given. Let M, denote the subgroup of A ® U which is generated by
N

the elements a; ® u;, a; € A;, u; € U. Then we have

(1) ARU= P M, M;=A;®U;
S ieljeJ S
and consequently

2) (@4)0(@U)= ® “oU).

iel jeJ ieljer
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Proof of (1). By definition of M;; we have firstofal AQ U= Y M. Let
N

ieljeJ
LA > A, :U-»>U
be the inclusion mappings and let also
m:A>A, w:U-U;
be the projections with respect to the direct sums. Then we have
i =1a, mi =1y,

and consequently
laou =7t @ mjv; = (m @ 7)1t ® ).

Hence ¢; ® «; is a monomorphism with Im(s; ® ¢;) = Mj;. By definition of

M; and ; ® ¢} we even have Im(i; ® ¢j) = Mj; i.e. ; ® ¢ induces (by restric-

tion of the codomains) an isomorphism w; between A; ® U; and M;;. This
N

means that we do not have to differentiate between the elements a; ® u; €
A; ® U with a; € A, uj € U; and the elements a; ® u;€ A; ® U,
N N
Note: The first a; ® u; is regarded as an element from A ® U, the second
S
a; ® u; is regarded as an element from A; ® U,
S

Since w;; is an isomorphism, it follows that m; ® =j|M; is also an
isomorphism. Hence we have

wi(m ® 7rll)|Ml = 1Mn‘i

and consequently w;;(m; ® 7}) is the projection of A ® U on M;;. Therefore
N

we obtain finally A® U = ® M, O
S

10.2.5 THE TENSOR PRODUCT OF FREE MODULES

Now let A be afree S-module with basis {x, |/ € L}, so thatin consequence,
A =@ xS holds.

leL
PROPOSITION. Every element of A ® U is representable as a finite sum
S
Y ®u, welU

in which the u; # 0 are uniquely determined.
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Proof. By the use of 10.2.4 x,S=S and xS® U=S ® U = U. The proof
S S

can also be inferred directly from 10.1.8. By the distributive law for the

tensor product (10.1.2) it is clear that every element from A ® U can be
S

written as a finite sum Y. x; ® u;. The uniqueness remains to be shown. Let
a= z X181, S| € S
be the representation of a € A in terms of a basis and let k € L be fixed.

S, if x, appears in the basis representation of a,
0, otherwise,

(@, u-

is obviously an S-tensorial mapping A X U -» U. Consequently there exists
a homomorphism A ® U - U for which the following holds:
S

Ui, if x;, appears in the sum Y x; ® u;,
> .
La®u { 0, otherwise,

Since the image with regard to a homomorphism (independently of the
representation ), x; ® u;) is uniquely determined, the uniqueness of the
u # 0 follows. ]

If A and U are vector spaces over the same field of dimension m and
n then the tensor product is a vector space of dimension mn over this field.
More generally we have the following.

PROPOSITION. Let S be a commutative ring, let As be a free S-module with
a basis x,, ..., xn and let sU be a free S-module with a basis z., ..., z,,
then A ® U is a free S-module with the basis

S

{x,-®zi|i=1,...,m;j=1,...,n}.

Proof. This follows from 10.2.4 or from the preceding proposition. Accord-
ingly the u; # 0in ¥, x; ® u, are uniquely determined thus also the coefficients
# 0 in the representation

U =Y SuZk

of u; in terms of a basis. Then in the representation Y x, @ u; =Y, (x;  zx s
the s; # 0 are uniquely determined. O
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10.3 FUNCTORIAL PROPERTIES OF THE
TENSOR PRODUCT

Let Ms resp. sM denote the categories of the (unitary) right resp. left
S-modules and A the category of Z-modules, i.e. of abelian groups
(definition see Chapter 1).

10.3.1 THEOREM. The tensor product is a functor of Ms X sM into A which
is covariant in both arguments.

Proof. 1t is to be shown that the conditions of 1.3.4 are satisfied. First of
all it is clear that

Obj(Ms) xObj(sM)3(A, U)» AR UeA
S
and
Homg(A, B)xHomg(U, V)3 (a, u)—~a @ueHomz(A® U,BR V)
N S

are mappings with the proper codomains. Further we have, as shown in
10.2.1,

1A®1U=1AC§)Uy Ba @vu =B O v)a®wu).

Hence the theorem is proved. g

In addition we may observe that the tensor product can be considered

as a covariant functor of the form
? : RMS X SMT -> RMT.

We direct our attention now to the proof of the fact that the tensor
product and Hom for a suitable fixed argument are adjoint functors in the
other argument. We deduce this as a special case from the following general
theorem. In order to understand the formulation of this theorem we have
first to recall some earlier statements.

Let the modules X, sUr, YT be given. If we apply the homomorphisms
from Homr(U, Y) on the left of the elements of U, i.e. let u(u) be the
image of u € U under u € Homr(U, Y), then by the following prescription
Hom7(U, Y) becomes a right S-module

(us)(u)=w(su), uelU, seS, weHomr(U,Y).

In this sense then Hom+(U, Y) is to be considered as a right S-module in
Homgs(X, Hom7(U, Y)). Further, with regard to sUp, X ® U is a right
S

T-module which appears as such in Hom7(X ® U, Y).
S
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Now let a homomorphism ®xyy) of Homr(X® U, Y) into
N

Homg(X, Hom7(U, Y)) (as additive groups) be given. For this purpose for
every p e Hom(X ® U, Y) there must be made explicit an image p* e
S

Homg (X, Homr(U, Y)).For x € X we must .henhave p*(x)e Homr(U, Y).
The application of p*(x) on u € U is to be written in the form p*(x)(u).
We now define:

p*(x) () = p(x ® u), xeX, "uel, x®ueXC>;)U,

peHom(X®U,Y).
)

By this means p* is evidently uniquely defined for every x € X and u e U.
If we now consider for xq, xo € X, uy, uo€ U, 81, 52€ S, 11, ,e€ T

p*(x181+ x282)(Urty + uzty)
=p((x151+x252) ® (U141 + uztr))
=p(x1 ® s1u)t +p(x1 @ s1u2)t2 +p(x2 @ sau1)ty +p(x2 @ sau2)t,
= p*(x1)(s1u1)ty + p*(x1)(s1uU2)t2 + p* (x2) (S2u1) 11 + p*(x2)(52U2) 12,
from which it follows that p* e Homg(Xs, Hom7(U, Y)). Let now p,, p2 €
Hom¢(X C>S<) U, Y), then evidently we have

(p1+p2)*(x)(u) = (p1+p2)(x ® u)
= p1(x ® w) +palx ® u) = p¥ (x)(w) +p¥ (X)),
thus
(pr+p2)* =pf +p3.

Altogether

(10.3.2) ®xu.y): Homr(X C>S<) U, Y)sp—p*eHoms(X, Homr(U, Y))
with

p*(x)u) =px D u), xeX, uelU

is a homomorphism of the additive groups.

10.3.3 THeorREM. (1) For every triple Xs, sUr, Y1, ®xuvuy) is an
isomorphism.
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(2) Let ¢:X5-Xs, n:sUr>sUr, n:Yr> YT, then the following
diagram is commutative :

Six.u.vy
Hom (X ® U, Y) — Homgs(X, Hom(U, Y))
S
Hom(¢®wu,m) Hom(&,Hom(u,m))
Pixunvy
Homr(X' C:) U, Y") Homg (X', Hom+(U', Y").

Proof. (1) Put ® = ®&x 1, v). ® is a monomorphism for p* = 0 signifies that
p¥X)u)=p(x®u)=0 for all xeX, uelU, thus p=0. Let oe
Homg(X, Hom+(U, Y)), then consider the S-tensorial mapping

XxXUs(x, u)y—~ox)ueY;
in addition there is a T-homomorphism

p: XQU3Y xi®u—Y olx)(u)eY.
S

For this p we then have
p*(x)(u) =p(x ® u)=o(x)(u),

ie. ®(p)=0, thus @ is also an epimorphism and consequently an
isomorphism.

(2) By running down the left edge we obtain for p e Homr(X ® U, Y):
s
p—>Hom(£® u, n)(p) =np (£ @ u)—>(np (£ ® u))*
and similarly from the right edge

p—>p*—>Hom(£ Hom(u, n))(p*) = Hom(u, n)p*&.

If we apply the mappings first on the right to x'€ X' and subsequently to
u'e U’ then we obtain

P (£ @ u)*(x")(u") = (np(£ @ w))(x' ® u') = np(&x' @ pu')
(Hom(u, n)p*&)(x")(u') = (Hom(u, n)p™*)(&x')(u') = n(p*(&x')(uu'))
=np(éx’ uu').

Consequently the diagram is commutative and the theorem is proved. 0
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10.3.4 CoroLLARY. Forevery U € sMr
- ®U:Ms->Mr and Hom¢(U, =) : Mr-> Mg
S

form a pair of adjoint functors.
(For the definition of adjoint functors, see Chapter 1.)

Proof. This follows from 10.3.3 for u =1¢. O

10.3.5 Remark. 10.3.3 and 10.3.4 hold analogously also for sX, rUs, rY
(permutation of the sides). In particular in the place of (1) in 10.3.3 the
isomorphism

Homg (U ® X, Y)=Homs(X, Homg(U, Y)),
s

appears and the adjoint functors in 10.3.4 are now

U®—23M—)RM
S

HOI‘DR([], —) : RM—) sM.

Since important applications of the adjointness of ® and Hom are treated
later, we can here forego examples. In the next section the first application
already follows.

104 FLAT MODULES AND REGULAR RINGS

Let A = R be a two-sided ideal of the ring R and let ¢ : A > R be the
inclusion mapping. We consider then

t®1: AQR/A->R®R/A (where 1 =1g;a).
R R

PROPOSITION
(1) t®1=0.
(2) A®R/A=A/A%* thus A®R/A#0 for A#A”
R R

Proof. (1) Forac A, Fe R/A we have
®N@a®F)=a®F=1-a®7F=1Qar=1®0=0,
thus t ® 1=0.
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(2) Nowletd :=a+A*c A/A’ for a € A. Since the mapping
AXR/A3(a,F)—dre A/A?
is R-tensorial and surjective, there is an epimorphism

A:A %)R/A—»A/Az
with A(a ® r)=dr. Let
él a®F = il ar,®1= ( gn:l airi) ® TeKer(r),
then it follows that

{

n
a;r; € Az,
=1

thus

I =

k
a;r; =Y, aja’jwith a}, a’je A.
i=1

i=1

Consequently we have
n _ k _ k B
(Z “"")®1=<Z “?a7)®1= Y (aja}®1)
i=1 i=1 P

k k _
=Y a/®a'=Y a,®0=0,
j=1 j=1

i.e. A is also a monomorphism, thus in fact an isomorphism. In the case
that A># A (e.g. A =nZ = Z withn >1) . : A > R is thus a monomorphism
but ¢ ® 1 is not a monomorphism. 0

On the other hand there are modules gM so that for every monomorph-

ism a:Agr - Br
a®@lyy: AOM->BOM
R R
is also a monomorphism. As we show in the following this property is
satisfied, for example, by all projective modules. Such modules are of
interest in many respects. They are now to be investigated.
10.4.1 Definition. gM is called a flat module if for every monomorphism
o 2AR -> BR

a ® 1, is also a monomorphism.
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10.4.2 CoROLLARY. Every isomorphic image of a flat module is flat.

Proof. Let gkM be flat and let ¢ : kM > gN be an isomorphism. Then we
have the commutative diagram:

a®l1,,

AROM B®M
R R
J1A®w 1,®@¢

a®1y

A®N B ® N.
R R

Since 14 ® ¢ and 15 ® ¢ are isomorphisms, a ® 15 is a monomorphism
if and only if a ® 1,/ is a monomorphism. a

10.4.3 THEOREM. Let

M =11M, (OTRM"@M),

iel iel

then we have: M is then flat if and only if all M, i € I are flat.

Proof. By 10.4.2 it suffices to consider the case M =[] M; in which the
iel

elements are denoted as in Chapter 4 by (m;) (with only finitely many

m; # 0). Then the diagram

a®1,,
A1) p(um)
I (A® M, Lo 1 (B® M,)
iel R iel R

is commutative; letting the vertical mappings be the isomorphisms defined
in 10.2.4 (e.g. we have for the left isomorphism a ® (m;)—(a ® m;)). It
follows that a ® 15, is a monomorphism if and only if (@« ® 1,,) is a
monomorphism and this is the case if and only if a ® 1,4, is a monomorphism
for every i € I. Hence the assertion follows. a
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10.4.4 THEOREM. Every projective module is flat.

Proof. Since, as we know, every projective module is isomorphic to a direct
summand of a free module, it suffices by 10.4.2 and 10.4.3 to prove the
assertion for gR. In the commutative diagram

a®lg

A®R >B® R
R

»Q®

>
R

v

o)

a ® 1g is then a monomorphism if and only if « is a monomorphism. 0O

If we consider this result, the question immediately and naturally arises
whether the converse holds and as to what assumptions are necessary. In
1960 H. Bass characterized those rings R for which every flat R-module
is projective. They are characterized by the following equivalent conditions:

(1) R/Rad(R) is semisimple and Rad(R) is right transfinitely nilpotent,
i.e. to every sequence a,, a,, ds, . . . of elements from Rad(R) there is an
n with a1a,...a,=0.

(2) R satisfies the minimal condition for principal right ideals (= cyclic
right ideals).

(3) Every left R-module gM has a projective cover, i.e. there exists an
epimorphism gP - rM with projective P and small kernel. A ring with
these (and further equivalent) properties is called left perfect. By (1) resp.
(2) every left resp. right artinian ring is left perfect. We shall later discuss
thoroughly the theory of perfect rings.

A second related question concerns the rings R for which every R-module
is flat. The main aim of the following considerations is to characterize these
rings.

10.4.5 LEMMA. Let Br and rM be given.
(a) If 0=Y b, ® m;€ B® M, holds, then there are finitely generated sub-
R
modules By — B, My — M with b; € By, m; € My and

O=Zb,~®m,~€Bo®MO.
R
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(b) Let By B, M1 > M and let 0=3 b; ® m; € B; ® M, hold, then it
R

follows that
0=Zb,®m,eB®M
R

Proof. (a) As generating elements of By resp. of M, we take firstly the b;
resp. m; occurring in Y, b; ® m;, so that we have Y b; ® m;€ Bo® M,. In
R

order to conclude that Y, b; ® m; = 0e€ By ® M, further elements are needed.
R

In the sense of 10.1.1 ¥ b; ® m; =0 B ® M, indicates that Y (b, m;)e K
R

where K = K(B, M) depends on B and M. With regard to the representa-
tion of Y (b, m;) as an element in K there occur only finitely many first
components from B resp. second components from M. These are subsumed
as generating elements for By resp. M, so that we then have Y (b, m;) e
K(Bo, Mo), thus 0= Z bi ® m; e Bo ® Mo.

R

(b) Let tp,: B1~> B and g, : M1 > M be the inclusion mappings. Then
we have

0=0(8,® tr,)(0) = (15, ® tar )L b ®m;) =Y. bi ® m;e BO M. g
R

10.4.6 CoOROLLARY. If xRM is a module such that every finitely generated
submodule of M is contained in a flat submodule then M is flat.

Proof. Let a:Ar->Bg be a monomorphism and let Y a, ®me
Ker(a ® 1ps). Then by 10.4.5(a) there is a finitely generated submodule
My—>Msothaty a, ® m;e AQ My and ) a; ® m; e Ker(a ® 1,y,).

R

Let My, — M; = M and let M, be flat, then by 10.4.5(b) it follows that
Y a; ® m;eKer(a ® 1,,). Since M, is flat we must have Y a; ® m; =0¢
A ® M, and by 10.4.5(b) it follows that ) a; ® m; =0e A ® M, which was

R R

to be shown. O

10.4.7 COROLLARY. If for a homomorphism a : Ag » Br and a module
M
R

a@1py: AOM->BROM
R R

is not a monomorphism, then there is a finitely generated submodule Ao —> A
such that (a|Ag) ® 1 is not a monomorphism.
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Proof. By assumption there is an element 0# Y. a; ® m; € Ker(a ® 1,,). Let
Ay be the submodule of A generated by the a; appearing in ), a; ® m;, then
by 10.4.5(b) we have

O;éZai@m;er@M
R

and as before
((a|Ao)®lM)(Zai®m,~)=2a(ai)®m;=0€B®M. D
R

In order to verify whether a module M is flat, by virtue of this corollary,
we can confine ourselves to monomorphisms a : A - B in which A is finitely
generated. The question arises as to whether we can still further restrict
the class of necessary ‘‘test monomorphisms” « : A > B. We are led back
in this situation to injective modules and to the application of Baer’s
Criterion.

The reduction to injective modules is facilitated by the help of an injective
cogenerator of Mz. Let D be an injective cogenerator, say D =Q/Z (see
5.8.6) then for X € My define

X° = Homz(X, D),
so that X° is again a Z-module. For X = xM by setting (see 3.6)
(er)(m)=@(rm), @eM°, reR,meM

M?° becomes a right R-module and can then be considered as a Z-R-
bimodule. For arbitrary p: gM - gN let

/"'o = Hom(/‘") 1D):N°_)M°’

then ° is a contravariant functor of kM into Mx.

10.4.8 THEOREM. The following are equivalent for kM :
(1) rM is flat.
(2) For every finitely generated right ideal A — Rg with

LAIAR "RR

as the inclusion mapping v ® 1y, is a monomorphism.
(3) Mg =Homz(M, D) is injective.

Proof. The following are equivalent for a homomorphism a : A - B:
(a) a ® 1, is a monomorphism.

(b) Hom(a ® 1ps 1p): (B ® M)°> (A ® M)° is an epimorphism.

R R
(¢) Hom(a, Hom(1,4, 1p)) = Hom(a, 1) : Homg (B, M°) >
Homg (A, M°®) is an epimorphism.
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But (a)<>(b) holds by 5.8.4, and (b)<>(c) by 10.3.3. If we demand the
validity of (a), (b), (c) for every monomorphism «, then (a) implies that
&M is flat and (c) implies that M % is injective; i.e. we have therefore proved
(1)©(3). According to Baer’s Criterion 5.7.1 M % is then injective if and
only if (c) holds for all inclusions t4 : Ag - Br. If therefore we again return
to (a), then it follows that M is injective if and only if for every Ag = Ry
ta ® 1, is a monomorphism. Finally, by virtue of 10.4.7 we can restrict
ourselves to finitely generated right ideals Az = Rr and so we have (3)&
(2). 0

We now answer the question of those rings for which every module is
flat. In this context we recall that the rings for which every module is
projective resp. injective, are semisimple rings. Since, as was established
before, every projective module is flat the semisimple rings are in any event
subsumed by those rings which are characterized in the following theorem.

10.4.9 THEOREM. The following conditions are equivalent for a ring R:
(1) Every module rM is flat.
(2) For every element r € R there exists an element r' € R with rr'r =r.
(3) Every cyclic right ideal of R is a direct summand of Rg.
(4) Every finitely generated right ideal of R is a direct summand of Rg.

It is clear that condition (2) is symmetric with regard to sides so that the
corresponding left-sided conditions are equivalent to those above.

10.4.10 Definition. A ring R, which satisfies the conditions of 10.4.9, is
called a regular ring.

Proof of 10.4.9. “(1)=>>(2)”’: For r € R we consider the inclusion ¢ : rR > R.
Then by assumption

t® 1g/rr rR® (R/Rr)> R ® (R/Rr)
R R

is a monomorphism. Since
(®lgr)r®D=r®1I=1®ri=1®7=1®0=0

we must have 0=r ® T rR ® (R/Rr). As before we denote j := y + Rre

R/Rr and let 7z == rz +rRr eI:R/ rRr. Then evidently

rR XR/Rr>(rx, y)—>rxy e rR/rRr
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is an R-tensorial mapping and consequently

T:rR®(R/Rr)3Y rm; ® y;—Y rx;y; € rR/rRr
R

is a homomorphism (of additive groups, and indeed even an isomorphism).
As0=r®1erR ® (R/Rr)
R

r(r®1)=F=0erR/rRr,

thus r€rRr, i.e. there isan r'e R with rr'r=r.
“(2)=>(3)”: From rr'r=r it follows that (r#')(r')=(rr'r)r'=r', thus
= rr' is an idempotent so that
Rr=eR®(1-¢)R

follows. Further we have eR =r'R <= rR and on the other hand as er =
rr'r =r we have rR < eR, thus altogether rR = ¢R.

“(3)=>(4)”: By induction on the number of generators we show that
every finitely generated right ideal is generated by an idempotent. The
beginning of the induction is provided by (3) for if Rk =rR®A with
1=e1+e, e1€rR, e;€ A, then e;, e, are orthogonal idempotents with
rR=¢e,R, A=¢e,3R (see 7.2.3). Let now

B=rnR+...+r,R - Ry

be given. By the induction hypothesis there is an idempotent e € R with
eR=rR+...+r._1R. Thenasr, =er, +(1—e)r, we have

R = er,R+(1—e)r,R
and consequently
B=¢eR+r,R=eR+(1-¢e)r,R.

As shown at the beginning of the induction, there is an idempotent fe R
with

fR=(1-e)r.R,

so that eR+r,R=eR +fR holds. As fe(l1—e)r,R we have ef =0. We
claim that g := e + f(1 —e) is an idempotent with

gR=eR+fR=rR+...+r.R.

First of all we have gR < eR +fR. Further we have geR =¢R —> gR as
well as

g/R = (ef +f*+fef)R =f'R =fR > gR,
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(as ef =0 and f> =f), thus gR = eR +fR. Finally
ge=(e+f(l-e)e+f(l—e))=e+f(1—e)f(1—e)
=e+f—fle=e+f(l-e)=g,

i.e. g is an idempotent. It follows that

Rr=gR®(1-g)R,

by which (4) is proved.
“(4)=>(1)": By 10.4.8 it suffices to verify whether for every inclusion
mapping
LA - AR -> RR

of a finitely generated right ideal A — Rg and for an arbitrary module M
the mapping ¢4 ® 1, is a monomorphism. Since A is a direct summand in
Rg there is an idempotent g with A =gR. Let

Ya®m=Yga®m=yg°a®@m;
=2 g ® gaim; =g ® (X gam;) € Ker(ta ® 1p),
thus
g®zaimi=1®2ga,~m,-=O€R(>§M‘

Then it follows (by 10.2.5) that ) ga;m; =0, thus also
Ya,®m=g®( gam)=g®0=0.

Consequently t4 ® 1,, is a monomorphism, hence (1) is proved. 0

As mentioned before every semisimple ring is regular. However, there
are also regular rings which are not semisimple. In order to construct such
an example let K be a regular ring (e.g. a field) and let

R:=1]] Ki with K;=K fori=1,2,3,....

i=1

By means of componentwise defined addition and similarly defined multipli-
cation

(ki) - (ki) = (kik?)

R becomes a ring. This ring is regular. Namely let k;k ;k; = k; then it follows
that

(ki) (k) (ki) = (ky).
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If K is a field then we can choose
k,_{k:‘ for k; #0
1o for k; =0.
As we easily verify A = [] K; is a proper two-sided ideal in R = [] K;
i=1 i=1

which is large both in Rr and in gR. Consequently A cannot be a direct
summand in Rg (or in gR). Hence R is not semisimple and neither (R/A)r
nor g(R/A) are projective (for then R > R/A would split). Since every
R-module is flat we have in (R/A)g a flat but not projective module.

In conclusion we direct attention to the concept of a pure homomorphism
which “‘dualizes” the concept of a flat module.

Definition 10.4.11. A monomorphism is called pure if a ® 1) is a
monomorphism for every R-module M. If Agr < Br and the inclusion
mapping ¢ : A > B is pure then A is called a pure submodule of B.

10.5 FLAT FACTOR MODULES OF FLAT MODULES

We investigate here the question of those conditions under which a factor
module of a flat module is again flat. This question is particularly of interest
in connection with perfect rings, which are treated in the next section.

10.5.1 LEMMA. Let gM be flat, let U < gM, A <> R and let L :A->R
denote the inclusion mapping. Then the following are equivalent:
1) t@1lpyy:ARQM/U)> R @ (M/U) is a monomorphism.
R R

2y UnAM =AU.

Proof. “(1)=>(2)”: Let u=Y am;e UnAM, then for t=Y a,®m; €
A ® (M/U) it follows that:
R

Rlpyu))=Ya®m=10Yam=10a=0ecR® M/U),
R
thus by assumption ¢ = 0. The relation
AX(M/U)>3(a, m)—am =am+AU e AM/AU

is evidently an R-tensorial mapping, by which a homomorphism

AMARM/U)>AM/AU
R
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is induced. From ¢ =0 it follows that
0=0(0)=@() =Y am; =4,
thus ue AU.
“Q2)>(1): Lett=Ya®@meA (:) (M/U) with
(®lmu))=Ya®m=10% am=0,
thus Y a;m; € U. By assumption there is an equation
Yam;=Y ajuije AU with u;eU.
Obviously it then follows that
Yai®m—Y a; ® u;eKer(t ® 1p).

Since by assumption M is flat, we thus have Ker(¢ ® 1,,) =0, this implies
that Y a; ® m; =Y a; ® u; and consequently for y: M >M/U':
t=1a®y)Xa®m)=Y a; ®m;
=(1a®Y)Xaj®u)=Ya;®a=0eA (;';)(M/U).

Thus in fact ¢ ® 1,4y is a monomorphism. 0

We remark that for (1)=>(2) we have not used the assumption that xfM
is flat but only for (2)=>>(1).

10.5.2 THEOREM. Let grM be flat and let U — gM. Then the following
are equivalent:

(1) M/U is flat.

(2) UNAM = AU for every finitely generated right ideal A — Rg.

Proof. This follows from 10.5.1 and 10.4.8. g

As is easily seen the proof of 10.5.1 (1) > (2) is a generalization of 10.4.9
(1)=(2). Conversely we can deduce 10.4.9 (1)=>(2) from 10.5.1 resp.
10.5.2. Namely in 10.5.2 let M =gR, U = Rr, A =R, then we have

RrnrR-R=RrnrR=rR - Rr=rRr;

as r€ RrnrR it follows that there is an r’' with rr'r =r.
Theorem 10.5.2 has an interesting application for flat factor modules of
projective modules.
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10.5.3 THEOREM. Let grP be projective, U — Rad(P) and let P/ U be flat,
then U =0.

Proof. (1) We establish the proof firstly for a free module gF in place of
rP. Let {x;|ieI} be a basis of F and let u € U with a representation in
terms of the basis as

U =Za,x,~, a; € R.

By A =Y a;R denote the right ideal generated by the coefficients a; of u,
which by definition is finitely generated. By 10.5.2 we have

UnAF =AU,

thus u =) bju; with b;€ A, u; € U. By assumption we have U < Rad(F) =
Rad(R)F (latter equation holds by 9.2.1). Thus (since Rad(R) is a two-sided
ideal) in the representation of

U= ) CikXk
in terms of the basis all ¢;, € Rad(R). It follows that

u=yax;=yy biciix
i ik

and on comparing coefficients we deduce that a; = Z bic;; € A Rad(R).

1)
Since this holds for all generators a; of A it follows that A — A Rad(R),
thus

A=A Rad(R).

Then by 9.2.1 we must have A =0, thus we also have u =0. Since ue U
was arbitrary, it follows that U =0. Hence the proof is established for a
free module.

(2) Now let P be a direct summand of a free module F, thus

F=P ®P,,

and let U <= Rad(P) and also let P/U be flat. Let v:F - F/U; then it
follows that

F/U = v(F)=v(P)+v(P)).
As U = P we have further

v(P)+v(P) =v(P)®v(P1),
and also

v(P)=P+U/U=P/U, v(P)=Pi+U/U=P,/P,nU=P;.
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Consequently we have
F/ U=P, / U @P 1.

Since P/ U, by assumption, and P; (by 10.4.4), as a projective module,
are flat, by 10.4.2 and 10.4.3 F/ U is also flat. Since U < Rad(P) < Rad(F)
it follows, as shown above, that U = 0. For an arbitrary projective module
the assertion holds by 10.4.3. a

Since the 0-module is flat, as a direct corollary we obtain a result already
proved in 9.6.3.

10.5.4 COROLLARY. Let rP be projective and let Rad(P)=P, then it
follows that P = 0.

EXERCISES

)

Let a commutative ring S as well as S-modules A and U be given. Show:
ARU=U®A.
N N
()

Let an arbitrary ring S and let S-modules Bs <> As, sV < sU be given.
Let L(B, V) denote the subgroup of A ® U which is generated by the
S

elements of the form a® v, b® v withae A, beB, ve V, uec U. Show:
(A/B)®(U/V)=(A® U)/L(B, V).
S S

3)
(a) Let B be a right and V be a left ideal of a ring S and let B+ V
denote the additive subgroup of S generated by B and V. Show:

(S/B)®(§/V)=S/(B+ V).
N
(b) Give an example of a ring S and ideal Bs#S, sV #S with
(§/B)® (S/V)=0.
S

“@)
(a) For the ideals Bg, sV <= S show:

B®(S/V)=B/BV
s
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where BV denotes the additive subgroup of § which is generated by the
elements of the form bv with be B, ve V.

(b) Give an example of the case Bs #0, sV#S and B® (S/V)=0.
S

é)
(a) Let ¢z and ¢ty be the inclusion mappings of the ideals Bs and sV in
S. Show:

Im(LB ® Lv) =RBYV.

(b) Give an example of the case B® V #0, but Im(tz ® ¢v)=0.
S

(6)

Let Q be the additive group of the rational numbers. Show:

o®a=Q.
z

@
For an abelian group A show: A ® A =0& A is divisible and every element
z

of A has finite order (see Chapter 4, Exercise 10 and 11.)

(8)
Let S := K[x, y] be the polynomial ring in the indeterminates x and y
with coefficients in a field K. Let B = xS+ yS denote the ideal of S

generated by x and y. Show: The element x® y—y ® xe B® B is not
equal to 0. S

9

For a set H and a module M let

MY =[] M, with M,=M forallheH.

heH

As in Chapter 4 we denote the elements of M H by (my). Show for Ms:
(a) For every set H there is exactly one homomorphism.

e MR ST > MY with  ou(m ® (s¢)) = (ms).
S

(b) If the set H is finite, then ¢4 is an isomorphism.

(¢) Im(ex)=\U B" where B runs over all finitely generated submodules
of Ms.
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(d) Mg is then finitely generated if and only if for every set H ¢ is an
epimorphism.

10)
Construct sets I and J and also right resp. left S-modules A; resp. U, so
that there holds:

(ma)e(nu)= 1 AU

iel jeJ ieljeJ S

11
Let a unitary ring homomorphism p:R - S be given. Then every right
S-module Mg becomes by the definition mr .= mp(r), me M, r€ R a right
R-module (see 3.2). The analogue holds on the left side. Let this be assumed
in the following for right resp. left S-modules.
Show for sU':

(a) The mapping A:Usu—1® ueS ® U is a monomorphism of the
left R-modules rU and (S ® U).
(b) The mapping -
w: S(:? UsYsiQu—Y sueU

is an S-epimorphism and the kernel of u is generated by the elements
s@u—1® su.

(c) R(E®U)=Im(A)DKer(u).
R
(d) Further let gC be given and let

k:Co¢c—1®ceS®C.
R

Then
Homg(s(S ® C), sU) 3 ¢+ ¢« € Homg (rC, rU)
R

is an isomorphism.

(e) Let p:R—->S and rC be given. Further let an ¢X be given so that
an R-homomorphism «':grC - gX exists such that for every sU the
mapping

Homg(sX, sU) 3 ¢ —¢x’ € Homg (rC, rU)

is an isomorphism. Show that S ® U and X are then S-isomorphic.
R
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(f) Give an example of a p: R > S and a module zC so that k: Cac—

1®ceS® C is not a monomorphism.
R

12)
Let R, S be rings and let kM5 be an R-S bimodule. Define the functors

F: MR 3A'—>A®M€Ms,
R

G: Ms>X—Homgs(M, X)e Mr
and show:

(a) F is left adjoint to G.

(b) The following are equivalent:
(1) F preserves monomorphisms.
(2) G preserves injective objects (i.e. injective Xs=> injective
Homgs (M, X)Rr).
(3) RM is flat.

(c) The following are equivalent:
(1) G preserves epimorphisms.
(2) F preserves projective objects (i.e. projective Ag = projective
(A @;? M)s).

(3) M5 is projective.
For a unitary ring homomorphism p : § - R we have:
(d) Qs is injective=>Homg(P, Q) is injective as a right R-module.
(e) Ps is projective=> P ® R is projective as a right R-module.
N

aa3)
(a) Let M be free with basis {e;|ieI}. Show that for U <= M the
following are equivalent:
(1) M/ U is flat.
(2) ue U>uc AU where A, is the right ideal generated by the
coefficients of u with respect to the given basis.
(3) ue U=>thereis ¢ : M -> U with ¢(u) =u.
4) uy,...,u,eU>>there is ¢ :M->U with ¢o(u)=u; for i=
1,...,n
(b) Show that the equivalence of (1), (3), (4), holds also for projective M.

(14)
Let R be commutative and let kM be semisimple. Show:
(a) If M is injective then it is flat.
(b) If M is flat and if it has only finitely many homogeneous components
then it is injective.
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(c) Now give an example in which gM is semisimple and flat but is not
injective.

as)
(a) Show: An abelian group is flat if and only if it is torsion-free.
(b) Construct an abelian group which is flat but not projective.

(16)

Let a module RM be called regular if every cyclic submodule of M is a
direct summand. Show:

(a) In a regular module every finitely generated submodule is a direct
summand.

(b) If M;|iel) is a family of regular projective R-modules, then M =
LI M; is also regular (and projective).
iel

(Hint: Show the assertion first for |I|=2.)

(¢) Question: Does the statement in (b) hold without the additional
assumption ‘‘projective’’?

(d) If R is left noetherian or if R/Rad(R) is semisimple then every
regular left R-module is already semisimple.

an

Let R be a ring, M an R-module and S = End(M). Show:

(a) S isregular&for every a € S Im(a) and Ker(a) are direct summands
in M.

(b) R is regular=>every projective R-module is regular.

(c) R is regular and M projective and finitely generated= S = End(M)
is regular.

(d) R is regular> M, (R) (=ring of n Xn square matrices over R) is
regular.

18)
Show that for a commutative ring R the following are equivalent:
(1) R is regular.
(2) Every (cyclic) ideal I — R is idempotent (i.e. [ Z=1).
(3) Every irreducible ideal is a prime ideal.
(4) Every irreducible ideal is maximal.
(5) Every (cyclic) R-module M has zero radical (i.e. Rad(M) = 0).
(6) Every simple R-module is injective.

19
Let G be a finite group and let T be a ring. Show: The group ring GT
is regular if and only if T is regular and Ord(G) is a unit in T.



Chapter 11

Semiperfect Modules and Perfect Rings

In the historical development of the structure theory of ‘“non-commuta-
tive” rings and modules the finite-dimensional algebras were first investi-
gated. For this the essential resource of the theory of vector spaces was
available. Then later it was shown—above all beginning with E. Noether—
that frequently in the investigation of the structure only chain conditions
are required and that the investigation can be pursued not only for rings
and their ideals but also for modules. Thus, in particular, there is obtained
a structure theory for artinian rings and for modules over such rings.

The most recent development goes further in this regard. New concepts,
in particular categorical and homological concepts such as projectivity,
injectivity, flatness, homological dimension, etc., give rise to the possibility
of extending the structure theory in different directions. For example we
have already become acquainted with the decomposition theorems of
injective modules over noetherian and artinian rings. Now we shall require
the existence of projective covers for certain modules and under this
assumption develop in a simple manner a structure theory for a class of
modules and rings which embraces properly the artinian case.

In this introduction we cannot present all of the results to follow in this
chapter, but nevertheless we should like to present here a particularly
significant result since it gives a good impression of the considerations to
follow.

THEOREM (H. Bass, 1960). The following conditions are equivalent for a
ring R:

(1) Every module Mg has a projective cover (i.e. there exists an epimor-
phism &: P> M with projective domain P and small kernel in P).

(2) Every flat right R-module is projective.

273
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(3) R satisfies the descending chain condition for cyclic left ideals.

(4) Every left R-module #0 has a socle #0 and grR satisfies the minimal
condition for direct summands.

(5) R/Rad(R) is semisimple and Rad(R) is left t-nilpotent; i.e. to every
sequence a.,d,,as,... of elements a;e Rad(R) there is a keN with
Ql—1...a1=0.

A ring with these equivalent properties is called right perfect. As (5)
shows every right or left artinian ring is right perfect. The conditions (1)
and (2) are of particular interest for us, for they enable us to answer two
of the questions that we earlier pursued. For these reasons the theorem is
also noteworthy because the “outer’ properties as in (1) and (2) turn out
to be equivalent to the “inner” properties as in (3) and (5).

11.1 SEMIPERFECT MODULES, BASIC CONCEPTS

We had earlier established that every module does indeed possess an
injective hull but not however a projective cover. In the case R =Z for
example, only the projective =free Z-modules have projective covers
(which are then isomorphic to the free modules). Here the existence of
“sufficiently many”’ projective covers will be assumed.

We begin with a theorem which under the assumption of the existence
of the projective cover represents the counterpart dual to 5.6.4. Evidently
this theorem could already have been proved in Chapter 5; nevertheless
we should like to have collected here as far as possible all considerations
involving the existence of projective covers.

11.1.1 THEOREM. Let the module Nr have a projective cover. If
og:P>N

is an epimorphism with projective domain P, then there is a direct decomposi -
tion P = P,® P, where P, = Ker(o) and

oy =0|Py:P,>N
is a projective ccver.

Proof. Let 7: Po—~ N be a projective cover of N, then there exists a commuta-
tive diagram



11.1 SEMIPERFECT MODULES, BASIC CONCEPTS 275

Po—— SN

Since o is an epimorphism, by 3.4.10 we have P, =Im(x)+Ker(r). Since
Ker(7) & P, we have in fact Py = Im(k), i.e. x is an epimorphism. Moreover
since Py is projective it follows by 5.3.1 that « splits:

P =P, ®Ker(x).
Then
K1 = Kk|Py: P> Py
is an isomorphism. Since
.Ker(‘rxl) =7 (Ker(r)) & P,
(by 5.1.3)
®1=01.P1>N

is also a projective cover of N. As Ker(x) = Ker(o) and P = P;®Ker(x)
we have finally with P, := Ker(k) the assertion for P,. 0

11.1.2 CoROLLARY. Let U = P, let P be projective and let P/U have a
projective cover. Then there is a decomposition P = P, ® P, with

P> UANP,NUS P;.
Proof. This follows from 11.1.1 for o =v:P-> P/ U. a

We notice also that from P, = O it follows that Py =Pand PN U =U % P,
i.e. if U contains no direct summand #0 of P, then U is small in P.

If the existence of a projective cover is demanded for every epimorphic
image of a fixed module Mg, then this already has such interesting con-
sequences for the structure of M that we wish first to examine this situation.

11.1.3 Definition. Let R be an arbitrary ring and let Mg be a right
R-module.

(a) M is called semiperfect : & every epimorphic image of M has a
projective cover.

(b) M is called complemented : < every submodule of M has an addition
complement (=adco, see 5.2.1) in M.
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11.1.4 COROLLARY
(1) Every epimorphic image of a semiperfect module is semiperfect.
(2) Every projective cover of a simple module is semiperfect.
(3) Every epimorphic image of a complemented module is complemented.

Proof. (1) Clear by definition.

(2) Let £: P> E be the projective cover of a simple module E. Then
Ker(¢) is a small and maximal submodule of P. For arbitrary U « P we
then have U +Ker(¢) « P and consequently U < Ker(¢£). Thus we also
have U < P and consequently P> P/ U is a projective cover of P/U. Thus
P is the projective cover of every epimorphic image #0 of P, i.e. P is
semiperfect.

(3) Let C be complemented, let y: C > M be an epimorphism and let
B — M. We assert that y(y '(B)) is a complement of B in M. Put
A=y Y(B). From C = A +A it follows that

M=vy(A)+y(A)=B+y(A).
Since A’ is an adco of A, we have AnA = A", By 5.1.3(c) this implies
y(ANA)S y(A). Since also
y(AnA)=y(y (B)nA)=Bny(A),

the assertion is proved. a

Later we shall show that a finitely generated projective module P is
already semiperfect if every simple image of P has a projective cover.

The next theorem shows that the investigation of semiperfect modules
can be reduced essentially to the projective semiperfect modules.

11.1.5 THEOREM. Let £: P> M be a projective cover of M, the following
are equivalent:

(1) M is semiperfect.

(2) P is semiperfect.

(3) Pis complemented.

Proof. We show (2)=>(1)=>(3)=>(2).
“(2)=>(1)”: Clear from the definition of semiperfect.
“(1)=>(3)": Let A = P, then consider the epimorphism

o= vt P> M5 MJEA).
By 11.1.1 there is a direct summand P; <= P such that
o= o|P;: P1>M/£(A)
is a projective cover.
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We assert that P, is an adco of A in P. From o (P;) = M/¢(A) it follows
that P=P,+Ker(o). As Ker(o)=Ker(v¢)=¢ "' Ker(v)= £ (£(A)) =
A +Ker(¢) it follows that P =P, + A +Ker(¢), since Ker(£¢) = P we have
P=P,+A. For U < P, let now P=U +A, then it follows that o(P)=
o(Py) = o1(Py) = 01(U) (since o(A) =0), thus

Pi=0i' (g1(P)) =07 (:1(U)) = U +Ker(a).

Since Ker(o1) < P, it follows that P, = U, and hence P; is in fact an adco
of Ain P.

“(3)=>(2)”: Let o: P> N be an epimorphism and let U := Ker(o), then
let U be an adco of U in P. By 5.2.4 we have U nU = U nKer(ag) > U".
We show that U’ is a direct summand of P, and thus is projective. Then
it follows that

olU:U->N
is a projective cover of N.
Let U™ be an adco of U", then we assert: P = U"® U". For the proof let
v:P=U+U"->P/U~NU"

be the natural epimorphism from which, with the notation P = v(P),
U=vU), U =v(U"), we have evidently P=U®U". Further let
m:P>U be the projection onto U corresponding to P= U @ U". Then
a commutative diagram exists
P
k "1 =v|U" —[—-
U

As v =v1p we have mv(U’) = U = v1o(U’), thus U = (U")+Ker(ry).
Since Ker(v))=U NnU" U’ (see 5.2.4) it follows that U = ¢(U"), thus
P=U+Ker(p). As Ker(¢) = Ker(mv)=U" and from the minimality of
U it follows that Ker(¢) = U". On the other hand we have

U~ =Ker(mv)=Ker(vi¢) = ¢ 'Ker(r)) = (U A U"),
and since ¢ is an epimorphism, it follows that
0 - (p(U..) - (P‘P—](U.m U..) - U.m U“,

which was to be shown. |

O A i BN
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11.1.6 COROLLARY. Every projective artinian module is semiperfect.
Proof. Every artinian module is complemented. a

11.1.7 THEOREM. If My, is semiperfect, we have
(a) M is complemented.
(b) M/Rad(M) is semisimple.
(¢) Rad(M) is small in M.

Proof. (a) This follows from 11.1.4 and 11.1.5.

(b) Since M/Rad(M), as an epimorphic image of M, is again semlperfect
M/Rad(M) is complemented. Let A — M/Rad(M), then for an adco A’ of
A in M/Rad(M) we have:

M/RadM)=A+A and AN A S M/Rad(M),

thus A~ A = Rad(M/Rad(M))=0. Consequently we have M/Rad(M) =
A®A, ie., every submodule is a direct summand and consequently
M/Rad(M) is semisimple.

(c) Let ¢£: P> M be a projective cover of M. Since Ker(£) < P, thus
Ker(¢) = Rad(P), it follows by 9.1.5 that ¢(Rad(P)) = Rad(M), so that by
5.1.3 we have only to show that Rad(P) < P. Let v: P> P/Rad(P), then
by 11.1.2 there is a decomposition P = P; @ P,, with P; ~Rad(P) % P, and
P, < Rad(P). By 9.6.4 it follows that P, =0, thus P = P; and

Rad(P)=P nRad(P)> P. O

11.2 LIFTING OF DIRECT DECOMPOSITIONS

11.2.1 Definition
(a) Let a: A > M be a homomorphism. We say that the decomposition

M= M,
iel
can be lifted with respect to a, if a decomposition
A= @ A,'

iel

exists so that for all / € I we have: a(A;) =M,
(b) Let B = A. We say that the decomposition

A/B=BM,

iel

can be lifted to A, if it can be lifted with respect to v: A > A/B.
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11.2.2 THEOREM. Let £: P> M be a projective cover and let

M=@M.

iel

For every i €I let there be given an epimorphism a;: A; > M, with projective
A, and Ker(a;) = Rad(A;). Then the decomposition M = GB M; can be lifted
with respect to ¢. iel

Proof. Consider the commutative diagram

A:=®A,‘
7 iel
“l/// @,
/// l
«” £
p M =P M,

iel

where ¢ exists since £ is an epimorphism and A is projective. Since Pa;
is an epimorphism we have by 3.4.10

P =1Im(p)+Ker(£).

As Ker(£) = P it follows that P =Im(gp), i.e. ¢ is an epimorphism. Since
P is projective, ¢ splits:

A =P, D Ker(e).

Since the diagram is commutative, it follows that Ker(¢) = Ker(@a;) =
PKer(a;) = PRad(A;) = Rad(A), in which the last equation holds by 9.1.5.
By 9.6.4 it then follows that Ker(¢) = 0, thus ¢ is an isomorphism. Therefore
we have

P= 69[ ¢(A)
with ¢p(A;) =a;(A;) =M, i€l Hence we have lifted the decomposition
M =@M; with respect to & 0

From this there follows directly

11.2.3 COROLLARY. Let £: P> M be a projective cover of the semiperfect
module M. Then every direct decomposition of M can be lifted with respect

to &.

Proof. This follows from 11.2.2 since every direct summand of M possesses
a projective cover. O
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11.2.4 COROLLARY. Let P be semiperfect and projective. Then every direct
decomposition of the semisimple module P/Rad(P) can be lifted to P.

Proof. This follows from 11.2.2 since by 11.1.7 Rad(P) < P and every
direct summand of P/Rad(P) possesses a projective cover. 0

As a special case it follows that with respect to a right artinian ring R
every direct decomposition of R/Rad(R) (as right R-module) can be lifted
to Rg. If this lemma is not available then the lifting is done in the literature
usually by calculations with idempotents.

11.3 MAIN THEOREM ON PROJECTIVE
SEMIPERFECT MODULES

The following characterizations of a projective, semiperfect module are
of great interest both with regard to the structure of such a module and
also for determining whether a given module is semiperfect.

11.3.1 THEOREM. The following are equivalent for a projective module Rg:

(a) P is semiperfect.

(b) Pis complemented.

(c) There holds

(1) P/Rad(P) is semisimple

(2) every direct summand of (P/Rad(P))r is the image of a direct
summand of Pr with regard to P - P/Rad(P);

(3) Rad(P)> P.

We have in (c) made condition (2) to be as weak as possible, since by
11.2.4 for the assertion (a)=>> (c) we have in any case a stronger statement.
Since for applications the direction (c)=>(a) is of interest it is desirable to
formulate (c) as weakly as possible.

Proof. ““‘(a)&(b)”’: This was shown in 11.1.5.
“(a)=>(c)”: This holds by 11.1.7 and 11.2.4.
It remains to prove (c)=> (b): Let

v:P- P/Rad(P) = P

denote the natural homomorphism. Let now A — P, then there is, since P
is semisimple, a direct decomposition

Pr=v(A)®T.
By (2) there is a direct summand P, — P with v(P,) =T. We claim that P,
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is a complement of A in P. From P = v(A) ® »(P,) it follows that
P=A+P,+Rad(P), A NP, = Rad(P),
thus since Rad(P) & P
P=A+P,, AnP, S P.

Since P, is a direct summand in P, it follows from A NP, < P by 5.1.3(c)
(with the help of the projection of P on P,) that indeed AP, P,. If
we suppose that for B < P we have

A+B=P, B> P,
then by the modular law it follows that
ANnP,+B=P,,
thus B=P,as AnP, S P,. O

11.3.2 COROLLARY. Let R be an arbitrary ring. Then we have
(I) Rg is semiperfect &
(1) R := R/Rad(R) is semisimple and
(2) to every idempotent € € R there is an idempotent e € R with ¢ = é.
(IT) Rg is semiperfect <> gR is semiperfect.

Proof. (I) By 9.2.1 we have Rad(R) & Rg, thus (3) in 11.3.1(c) is satisfied
for an arbitrary ring and hence the condition is here superfluous. Further
since the condition (1) here coincides with that in (c), we must only check
whether the conditions (2) in 11.3.1 and in 11.3.2 follow mutually from
one another.

“=": Let £ € R be an idempotent. Corresponding to the decomposition
Rr = eR®(1-¢)R there is by 11.2.4 a decomposition

Rr=eR®(1-¢)R,
with an idempotent e € R and
éR=e¢R, (1-&)R=(1-¢)R.
Then it follows that ¢ = ¢, (1 — e)(i_— é)=1-¢, thus e=eé.
“&”: Every direct summand of Rg is of the form ¢R for an idempotent
e € R. Let now e be an idempotent of R with & =¢, then eR is a direct

summand of Rg with eR=¢R=¢R.
(II) Conditions (1) and (2) in (I) are independent of the side. 0

A ring R is called semiperfect, if it satisfies the (equivalent) conditions
of 11.3.2. In particular this concept is by (II) independent of the side.
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As already established, a projective artinian module is semiperfect. In
particular a right artinian ring Rg is thus semiperfect and indeed so also
on the left, independently of whether R is also left artinian. However there
are also semiperfect rings which are not artinian. Let R be a local ring
(7.1.2), then R/Rad(R) is a skew field, thus in particular semisimple and
R/Rad(R) has only 1 as an idempotent #0. By 11.3.2 R is consequently
semiperfect. ©

For example the ring R = K[[x]] of all power series ¥ kx' in an
i=0

indeterminate x and with coefficients from a field K is a local ring. In this
case

Rad(R)={ 5 k,~x'|k,~eK}=xR
i=1

and this radical has no ‘“‘nil-properties” of any kind. We emphasize this
here, because this is a semiperfect ring which is not perfect (see 11.6).

11.3.3 THEOREM. Let (PjieI) be a family of semiperfect, projective R-
modules. Then we have:
P = @ P,'

iel

is semiperfect if and only if Rad(P) = P.

Proof. By 11.3.1 the condition Rad(P) < P is necessary. In order to prove
this it is sufficient we show that in 11.3.1(c) the conditions (1), (2), (3) are
fulfilled. By assumption we have (3).

(1) By 9.1.5(d) we have

P/Rad(P)=Ep P,/Rad(P;).
iel

Since by 11.3.1 P;/Rad(P;) is semisimple for every i € I, P/Rad(P) is also
semisimple.

(2) First of all we establish that every simple submodule E of P/Rad(P)
possesses a projective cover. As P/Rad(P) =P;/Rad(P;) E is isomorphic
to a simple submodule E’' of @P,/Rad(P;). If we decompose every
P;/Rad(P;) into a direct sum of simple submodules and we apply 8.1.2(b)
then it follows that E’ is isomorphic to a simple submodule of one of the
P,/Rad(P;). Since this, as a direct summand of the semiperfect module
P;/Rad(P;), has a projective cover, the module E isomorphic to it has a
projective cover.
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Let now P/Rad(P)= A, @ A,. Since P/Rad(P) is semisimple, every A, is
a direct sum of simple submodules.
A=@® E, k=1,2.

i€tk

Let £&£:AF > Ef be a projective cover, then

ay = @ f:(Ak = @ A;(")Ak = @ E:(
jeJk j€Ji jeJk
is an epimorphism with projective domain A, and we have as Ker(¢) & A,’-‘,
hence Ker(g;‘) g Rad(A}‘) and thus

Ker(ay) = P Ker(¢f) > Rad(Ar), k=1,2.
jeJk
If in 11.2.2 we put £ =v:P-> P/Rad(P), then the assumptions of 11.2.2
are satisfied and it follows that the decomposition P/Rad(P) = A; @A, can
be lifted to P.

11.3.4 COROLLARY
(a) Every direct sum of finitely many semiperfect R-modules is semiperfect.
(b) If Rg is semiperfect then every finitely generated R-module is semi-
perfect.

Proof. (a) Let M,, . .., M, be semiperfect and let
& P> M, i=1,...,n

be a p'{ojective cover. By n11.1.5 P; is semiperfect and by 11.3.3 so also is
P = @ P; for Rad(P) = P Rad(P;) is itself, as a finite sum of small sub-
i=1 i=1

modules Rad(P;), small in P. Since P is semiperfect, M, ®...®M,, is also
semiperfect as an epimorphic image of P.

(b) By (a) every finitely generated free module is semiperfect and then
also every epimorphic image of it. a

We give now another interesting characterization of the semiperfect
modules which will be useful later.

11.3.5 THEOREM. The following are equivalent for a projective module:
(1) Pis semiperfect.
(2) P satisfies the conditions:
(a) Every proper submodule of P is contained in a maximal submodule
of P; and
(b) every simple factor-module of P has a projective cover.
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Proof. “(1)=>(2)”: By definition of ‘“‘semiperfect” (b) is satisfied. For the
proof of (a) let U « P; since P/U is semiperfect, P/U has by 11.1.7 a
small radical, which consequently is a proper submodule of P/ U. Since the
radical is the intersection of all maximal submodules, there exists at least
one maximal submodule of P/ U of the form X/ U with U = X = P. Since
X/ U is maximal in P/U and we have P/X =(P/U)/(X/U), then X is
maximal in P.
“(2)=>(1)’: We establish this proof in three steps.

Step 1. We are to show that Rad(P) = P. Suppose that U +Rad(P) =P
with U s P, then by (a) there exists a maximal submodule X < P with
U = X. From this it follows that U + Rad(P) < X # P, contradiction!

Step 2. We are now to show that P := P/Rad(P)issemisimple. Let v: P > P
be the natural epimorphism. Suppose that Soc(P) # P, then it follows that
v~ (Soc(P)) # P and by (a) a maximal submodule X < P exists with
v~ (Soc(P)) = X. Since P/X by (b) has a projective cover, we deduce from
11.1.2 that

1,==1)1C)1D2==1)14')(

wijth P, = X and Py X & P;, thus P; " X = Rad(P). Therefore it follows
that

(*) P=v(P)®v(X).

Since X is @aximal in P (thus Rad(P)- X), P/){ = (P/Rad(P))/
(X/Rad(P)) = P/v(X)=wv(P,) is simple, thus »(P;) = Soc(P) - v(X); con-
tradiction to (*)!

Step 3. Now let
P=PE, with simple E;.

There follows for every jel
E=F/@E = P/u“(@ E;).
i#f i#jf
By (b) projective covers
ajrA; > E; jel
exist.

Since every simple module, which has a projective cover, is obviously
semiperfect, all E; and by 11.1.5 also all A; are semiperfect.
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For v:P - P/Rad(P) (in place of ¢) and for P/Rad(P)=@E; (in place
of M) the assumptions of 11.2.2 are satisfied. As in the proof of 11.2.2 it
follows that

0:A=(@A->P

is an isomorphism. Thus P =@¢(A;) is a direct sum of the semiperfect
modules ¢(A;). As Rad(P) = P it follows from 11.3.3 that P is semi-
perfect. O

11.4 DIRECTLY INDECOMPOSABLE
SEMIPERFECT MODULES

It was established in 11.2.4 for a projective semiperfect module Pg that
every decomposition of the semisimple module P := P/Rad(P) into a direct
sum

P = @ E,'
iel
of simple modules E;, i € I can be lifted to P. Let
v: PP =P/Rad(P),
then a decomposition

P=®P; with V(Pi)-_-'Ei,iGI.
iel
exists. As Rad(P) =@ Rad(P;) (see 9.1.5) we have Rad(P;) = Rad(P) N P.
Therefore it follows that

E; = V(R) =P;+ Rad(P)/Rad(P) E}),'/I‘.,i N Rad(P) =P,/Rad(P,)

Since E; is simple Rad(P;) is a maximal submodule of P,

We wish now to investigate projective modules in which the radical is a
maximal submodule. In this regard a module Mg # 0 is called indecompos-
able, if it is not the sum of two proper submodules. If Mz =0 or if Mg is
the sum of two proper submodules, then My is called decomposable (for
“directly indecomposable” see 6.6.1).

11.4.1 THEOREM. Let Pr #0 be projective. Then the following are
equivalent:

(a) Pis indecomposable,

(b) P is semiperfect and directly indecomposable,

(c) Rad(P) is a maximal and a small submodule of P,

(d) Rad(P) is the largest proper submodule of P,

(e) End(PR) is local.
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Proof. *‘(a)=>(b)”": By 11.1.5 it has only to be shown that P is complemented.
But by (a) every submodule of P different from P has P itself as adco.

“(b)=>(c)”’: By 11.1.7 we have Rad(P) < P. Since by 11.2.4 P/Rad(P)
is directly indecomposable, P/Rad(P) is not only semisimple but also simple,
thus Rad(P) is maximal in P.

“(c)=>(d)”: Let U > P, U +» Rad(P). Since Rad(P) is a maximal sub-
module, it follows that U +Rad(P)=P. As Rad(P) > P it follows that
U = P. Thus (d) also holds.

“(d)=>(e)”: If ¢: P> P is an epimorphism then it must split. By (d) it
follows that ¢ is an automorphism. If ¢;, ¢, € End(Pg) are not invertible
then they cannot in consequence be epimorphisms. Then we have

Im(ep; + ¢2) = Im(p;) +Im(p,;) = Rad(P),

thus ¢; + ¢, is also not invertible, i.e., End(Pg) is local.
“(e)=>(a)”: From P = A + B we obtain a commutative diagram

A" . p/B

and for y = s, where t4: A > P is the inclusion mapping we then have
Im(y) = A, Im(lg —y)=> B (since x + B = ¢(x)+ B for all x € P).

As 1p=v+(1p—1v), and since End(Pg) is local, y or 1—y must be an
automorphism, thus we have A=P or B=P. O

11.4.2 CorOLLARY. If Pr is a projective, semiperfect module then a
decomposition
P = @ P i
iel
exists, in which the P; satisfy the properties of 11.4.1. The decomposition is
unique in the sense of the Krull-Remak-Schmidt Theorem (7.3.1).

For later use we wish to write down explicitly the result in the case of
a ring, bearing in mind 7.2.3.

11.4.3 COROLLARY. Let R be a semiperfect ring. Then there exists a
decomposition, unique in the sense of 7.3.1,

Rr=e;R®D...De,R
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with the following properties:
(1) ey, ..., e, are orthogonal idempotents #0 with

(2) Rad(e;R) is the largest proper right ideal in e,R and Rad(e;R)=
e,-Rad(R).

(3) e:R is indecomposable.

(4) End(e.R) is local and End(e;R) = e;Re;.

Proof. By 11.4.2 and 7.2.3 all is immediately clear except for the two
following aspects, which hold for arbitrary idempotents e € R: “Rad(eR) =
eRad(R)”. By 9.1.5 we have Rad(eR) < Rad(R). Since x =ex for every
element x € ¢R it follows that Rad(eR) = ¢Rad(R). On the other hand by
9.2.1 we have eRad(R) — Rad(eR).

“End(eR)=eRe”: Multiplication of e¢R by an element eae € eRe
evidently involves the endomorphism

(eae)': eR 3 er— eaer € eR
_ of eR. We obtain therefore a ring homomorphism
¢: eRe 3 eae— (eae) € End(eR).

¢ is a “monomorphism”’: From eaer = eber for all er € eR there follows
for r =1: eae = ebe.

¢ is an “‘epimorphism’’: Let « € End(eR); since eR is a direct summand
in Rg, a can be extended to an epimorphism of Rg, i.e. to a left multiplica-
tion by an element a € R:

a(er) =aler) = eaer,
the latter equality since aer € eR. Thus we have a = (eae)'. 0
Example.ForR = Z/nZ, n > 1, we wish to set out explicitly the decomposi-

tion existing by 11.4.3. At the end of section 9.1 the radical and socle of
R were determined. We utilize here the previously employed notation. Let

n,~2=%, i=1,...,k,
pi'
then obviously we have GCD(ny,...,n,)=1. Consequently there are
ai,...,ar€Zwithayn,+. ..+ awn, = 1. Thereforeitfollowsthat(a; p;) = 1.

Let now

e = a,-n,-+nZ€Z/nZ.
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Then, it is asserted, Rr =¢; R®...DerR is the decomposition appearing
in 11.4.3. First of all it is clear that we have

ei+...tee=1€eR.
Further since nlnin,» for i #j we have

ee;=0 for i#].
Then it follows from e; +. . .+¢; = 1 on multiplication by e; that

el =e.
By 7.2.3 we then have
Rr=e;R®...PeR.

It still remains to be shown that the e;R have local endomorphism rings.
The ring epimorphism

Z>zr>e;Ze; =eiZ €eRe;

has, by definition of the e; (note that (a;, p;) = 1), the kernel p{"Z, thus we
have

eRe;=7/pZ.
As indicated in 9.1, we have further
Rad(Z/p7Z)=p;Z/p7Z,
and since
/pi2)/(piZ/pi“Z)=2/p:Z.

this is a maximal ideal in Z/p{"Z. Then Rad(e;Re;) is also a maximal ideal
and therefore’ the largest proper ideal of ¢;Re;. By 11.4.1 it follows that
e;Re; is a local ring.

11.5 PROPERTIES OF NIL IDEALS AND
OF NILPOTENT IDEALS

For the investigation of perfect rings properties of nil ideals and of
t-nilpotent ideals are needed, which here are collected together.

There is first the question of “lifting” orthogonal idempotents modulo
a nil ideal. To this effect we recall that an element e¢€ R is called an
idempotent if e’ =e holds. An ideal A of R is called a nil ideal if every
a € A is nilpotent, i.e. there exists an n € N (depending on a) with a" =0.
In 9.3.8 it was shown that every nil ideal is contained in Rad(R).
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As groundwork for the lifting of idempotents we prove the following
simple lemma.

11.5.1 LeMMA. Let b be an arbitrary element of a ring R and let R, be
the subring of R generated by 1€ R and b.
(a) For arbitrary m, n e N we have

R=b"R+(1-b)"R+(b-b")R, b"RN(1-b)"R=0"(1-b)"R.
(b) Ifb —b?is nilpotent then there is an idempotent e € Ry such that we have
e = bry, e—b=(b-b%s, with ro,so€ Ro.
Proof. (a) If Z[x] is the polynomial ring in the indeterminate x with
coefficients in Z. We have
1-x"—-(1-x)"ex—-x)Z[x],

forx(1—x)=x—x>divides 1 —x" — (1 —x)™, since x = 0and x = 1 are zeroes
of 1—x"—(1-x)™. Consequently there is a zo€ Z[x] such that we have

1=x"+(1—-x)"+(x—-xz,.
From the ring epimorphism Z[x]— R, with x — b it follows that
1=b"+(1=b)"+(b-b"ry,  roeR,,
thus we have
Ro=b"Ro+(1-b)"Ro+(b—b*Ro

and then also R=b"R +(1-5)"R +(b —b*)R.

For the proof of the second equation in (a) it is immediately clear
that $"(1-5)"R = b"Rn(1—-b)"R. Conversely let d=b"r=(1-5b)"se
b"RN(1-b6)"R (r,s€R). Then from

d=(1—b)’"s=(1—(’;’>b +(’2")b2—+ . .)s
=s—b((’;’)—(’:)b+—...)s

there follows an equation of the form

s=d+bros=b"r+bres with roeR,.

If we substitute, in this equation on the right for s, the same equation
again, then it follows that

s=b"r+bro(b"r+bros)=b"ri+b*rgs with r,eR,
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where we use the fact that R, is commutative. If we continue inductively
in this manner, then after finitely many steps we obtain an equation of the
form s = b"t with ¢t € R. Hence it follows that

d=(1-b)"s=(01-b)"b"t,

thus d € 5" (1 —b)™R, which was to be shown.

(b) Let (b—5>)"=0, then (b—b>)Ry is a nilpotent ideal in R, (since R,
is commutative), thus we have (b —b%)R, < Rad(R,) and consequently
(b—b*)R, is small in R,.

From

Ro=b"Ro+(1-50)"Ro+(b—b*)R,
it then follows that
Ro = bnRo + (1 - b)"Ro,
thus as
b"Ron(1—b)"Ro=b"(1-5)"Ro=(b—b>)"Ro=0
we have in fact Ry=56"Ro®(1—5)"R,.
Then by 7.2.3 an idempotent e € R, exists with
eRo = bnRo, (I1-e)Ro=(1- b)nRo,
thus we have e = brg, ro€ Ro. Further it follows from (a) that
e—b=(1-b)—(1-e)ebRon(1-b)Ro=(b—-b)R,,
thus e —b = (b —b)so, so€ Ro. 0
11.5.2 Definition. (a) Let A = grRr and let v: R > R/A be the natural
ring epimorphism. We say that an idempotent ¢ € R/A can be lifted to R
if an idempotent e € R exists with v(e) = ¢.
(b) We say that a set {g;]i € I} of orthogonal idempotents ¢;€ R/A can

be lifted to R if a set {¢;|i € I} of orthogonal idempotents ¢; € R exists with
vie))=¢;foralliel

11.5.3 THEOREM. Let A = Ry be a nil ideal. Then every finite or count-
ably infinite set of orthogonal idempotents €; € R/ A can be lifted to R.

Proof by induction. Beginning of the induction: An idempotent e € R/A
can be lifted to R. Again let »:R > R/A and let b € R with v(b)=¢, then
it follows that

v(b-b)=v(b)-v(b)’=ec—¢€ =0,
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thus b —b*e Ker(v) = A. By 11.5.1(b) there is an idempotent e € R with

e—b=(b—-b%see A. It then follows that
O=v(e—b)=v(e)—v(b)=v(e)—s¢,

thus v(e)=¢.
For the induction step now let

€1, €2, €3, ...

be finitely, or countably infinitely, many orthogonal idempotents from R/ A.
Let e;,...,e, be already determined as required. Then let c € R with

v(c)=e€,+1 and let
b= (1— ) ei)c(l— ) e,-).
i=1 i=1

From the orthogonality of the ey, ..., e, we have therefore
eb =be; =0, i=1,...,n,

and also

v(b)= (1_ Z €i)€n+1(1 - Z b‘i) = En+1.
i=1 i=1
By the initial induction step and 11.5.1(b) there is an idempotent e, ., with
v(ens1) =v(b) = €us1, en1=bro=rob.

As e;b = be; =0 it follows that

e,-e,,+1=e,,+1e,~=0, i 1,...,}1,

by which the proof is completed. a

We come now to the investigation of r-nilpotent ideals and repeat first
the definition previously given at the beginning of this chapter.

11.5.4 Definition. A set A of elements of a ring R is called left, resp.
right, t-nilpotent, if for every family
(ai, as, as,...), a;eA
a k €N exists with
Ag-y...a1=0, aiaz...ar=0.

It is clear then that every left or right t-nilpotent ideal is a nil ideal. On
the other hand not every ¢-nilpotent ideal is indeed nilpotent. The ¢-
nilpotent ideals come between the nilpotent ideals and the nil ideals.
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11.5.5 THEOREM. The following are equivalent for a right ideal A — Rg:
(a) A is left t-nilpotent.
(b) For every module Mr with MA = M we have M = 0.
(c) For every module Mg we have MA < M.
d) R™MA & R™ as right modules.

Proof. ““(a)=> (b)”’: Suppose we have MA = M and M # 0. Thenan m;a, #0
exists with m;eM, a,€A. Let my=Ymia;. Then mya,=Ymaia, and
hence there exists m,a,a; #0, me M, a,€ A.

Let m,=Ym'a". Then msasa,=Ym’a"asa,, so there exists
msasas,a; # 0. Inductively therefore we obtain a sequence (ai, a,, as, . . .),
a;ic A with a,a,_1...a,#0 for every neN. Contradiction to the ¢-
nilpotence!

“(b)=>(c)”: Assume MA + U =M. Then M/U)A=M/U, so M/U =0
by assumption, whence U = M which was to be shown.

“(c)=>>(d)”: (d) is a special case of (c).

“(d)=>(a)”: Let F:= R™ as a right module with basis x;, x2, x3,....
Along with the sequence (ai, a,, as, . ..) with a; € A we consider the sub-
module

of F with u; = x; —x;+1a;, i € N. Obviously we then have FA + U =F, thus
by assumption U = F.
In particular we then have x; € U, thus there is a representation

k

x1= Y uti=xini+x2(ra—ar)+xs(rs—axr)+.. .+
i=1

+ X0 (re = Qe —171-1) = Xie 41 QT
Hence by equating coefficients we have
rn=1, r,=a, r3=a,a,..., e = Ar-1Qk-2 ...041,
and also axre = arai—, ...a;=0. 0
11.5.6 CoOROLLARY. The following are equivalent for a ring R:
(1) Rad(R) is left t-nilpotent.

(2) Every projective right R-module has a small radical.
(3) As a right R-module R ™ has a small radical.

Proof. “(1)=>(2): This is a special case of (a)=(c) in 11.5.5, if we cbserve
that by 9.2.1 Rad(P) = P Rad(R) for a projective module P.
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*(2)=>(3)”: Clear.
“(3)=>(1)”: (d)=>(a) in 11.5.5 on observing 9.2.1(g). O

A further interesting characterization of ¢-nilpotent ideals arises with the
help of the annihilator conditions.

11.5.7 THEOREM. The following are equivalent for a right ideal A — Rg:
(a) A is left t-nilpotent.
(b) For every module gkM with ry(A) =0 we have M =0.
(c) For every module kM we have ry(A) & gM.

Proof. ““(a)=>(b)”’: Assume we have ry(A)=0 and M #0. Then to every
0# m e M there is an a € A with am # 0. For a fixed 0 # mo€ M we obtain
inductively therefore a sequence (a, a», as, . . .), a; € A with

Anly—1...a1my#0 forevery neN,

thus also a,a,-1 . .. a; # 0 for every n € N. This contradicts the assumption.
“(b)=>(c)”’: Assume that for X < M we have

(AN X =0,

then it follows that rx(A) =0, thus X =0.

“(c)=>(a)”’: We show that 11.5.5(b) is satisfied. For Mz # 0 we shall show
that MA #M. Let U = rgr(M), then U is a proper two-sided ideal in R.
Further let

H ={x|[xeRrnAx<c U},
then it follows that U < H and
H/U = rR/U(A).

By (c) we have H/U < R/U, thus U < H and consequently MH # 0,
but MAH < MU = 0. We deduce therefore that MA # M. O
11.6 PERFECT RINGS

As announced in the preamble to this chapter we now come to the
investigation of perfect rings and first of all repeat the definition.

11.6.1 Definition. A ring is called right perfect (= Rg perfect) : &. Every
right R-module has a projective cover.
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11.6.2 CoROLLARY. The following are equivalent for a ring R:
(a) R is right perfect.
(b) R™ is semiperfect as a right R-module.
(c) R is semiperfect and every free right R-module has a small radical.

Proof. ““(a)=> (b)”": Clear by definition.

“(b)=>(c)": As a direct summand of RR’, R is semiperfect. By 11.1.7
RY’ has a small radical so that by 11.5.6 every projective right R-module
has a small radical.

“(c)=>(a)”: If R is semiperfect and if every free right R-module has a
small radical then by 11.3.3 every free right R-module is semiperfect. Since
every right R-module is the image of a free right R-module, every right
R-module is semiperfect, i.e. R is right perfect. 0

In order to have an example of a perfect ring we take note that a right
artinian ring is perfect on both sides.

Thus let R be artinian. Referring to 11.3.2 it was there established that
a right artinian ring is semiperfect. Since by 9.3.10 we have for every right
R-module and left R-module M

Rad(M) < M

the assertion follows from 11.6.2.
In this section we shall prove the theorem mentioned in the preamble
which we repeat for the sake of completeness.

11.6.3 THEOREM. The following conditions are equivalent for a ring R:
(1) R is right perfect.
(2) Every flat right R-module is projective.
(3) R satisfies the descending chain condition for cyclic left ideals.
(4) Every left R-module #0 possesses a socle #0 and R contains no
infinite set of orthogonal idempotents.
(5) R/Rad(R) is semisimple and Rad(R) is left t-nilpotent.

Proof. We shall show successively (1)=>(2)=> (3)=>4)=>(5)=>(1).
“(1)=>(2)”’: By assumption every right R-module, thus in particular every
flat right R-module has a projective cover. By 10.5.3 (with M =P/U)
every flat right R-module is then projective.
“(2)=>(3)": Let

Ra, < Ra, < Ras < ...

be a chain of left ideals of R. As a;.1€ Ra; there is a b;,;€ R with
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a;+1 = bi+1a;. It follows inductively, if we put b; = a,, that
ay=bubn-1...by, neN.
The previous chain can consequently be presented in the form
Rb, « Rbyb; « Rbibrb; < ...

and it is uniquely determined by the sequence by, b3, b3, . ..
We show in three steps: There is a left ideal A < gR and an m € N with

Rb,,b,,_l N b1 =Ra,, =A

for all n=m. Then evidently this is equivalent to having the original
sequence stationary.

Step 1. Let F = R™ e My with the basis
xi=(0...010..), ieN.
N——

i places

Further let

B =} (xi—xi+10;)R = Fg,
i=1

then we have to show that F/B is flat. By 10.5.2 we show that for every
finitely generated left ideal L <> xR we have

BnFL=BL.

We always have BL < B n FL and in order to prove the reverse inclusion
let d € B~ FL, thus

n h
d=Y (xi—ximbdri= Y% filis fieF, lieL.
i=1 i=1
Since L is a left ideal, we obtain

d=

i

I ™M~

k
fli=Y xl; with lieL.
j=1

1
Equating coefficients yields
=1, ra=biri=1, rs=byra=1s,...,

from which it follows successively that all ; € L, thus we have d € BL which
was to be shown.



296 11 SEMIPERFECT MODULES AND PERFECT RINGS 11.6

Step 2. By virtue of assumption (2) it now follows that F/B is projective.
Then the epimorphism

v:F->F/B
splits and we deduce that F = B® U. Now let
mFab+u—uckF, beB,uelU,

be the corresponding projection of F onto U — F (with codomain F!).
Then we have

7 (xk — xk+161) = 0, keN,
thus 7 (xx) = m(xk+1)be. If we now put z, := 7(x,) then it follows that
Zk=2k+1bk, kEN,

from which by successive substitution we obtain

2y = 2m+1bmbm_1 e bk, m=k.

As 7% = 7 we have finally 7(zx) = z4, k €N.

Assertion. Let rg(z,) be the right annihilator of z;, in R, then we have
re(z)={rlre R Abmbpm-1...bpr=0 foranm=k}.

That the set appearing on the right is contained in rg (z, ) follows immediately
from zy = zp+1bmbm-1 . . . bi. Now let r € rr(zy), i.e. z;r = 0. Then from

Xie = Vi + Zg, y«€B, zr e U
there follows an equation of the form
m
xir =yr= Y (x;—xja1b)r, rieR,m=k.
i=1

Equating coefficients yields

r1=r2=...=rk_1=0,
e =1,
Ies1 = bary,

Te+2 = brs1list,

I'm = bm-—lrm—la

0=b,rm.
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By substitution it follows that
0= bmr,,. = bmbm_lr,,._l =...= bmbm—l “e. bkr,

by which the assertion is proved.

Step 3. In the sense of the definition of F = R™ now let
Z=(s5)=(s%%..), keN.

Let A be the left ideal of R generated by the coefficients s; of z;:
A=Y Rsi;
since almost all s} =0, A is finitely generated.

Assertion. There exists my with Rb,b,,_; ... by = A for all n =my. If this is
shown then obviously we have done with the proof of (2)=(3).
In Step 2

Z1= Zms1Pmbm-1 ... by, meN
was established, consequently we have for all i eN
st=s""bpbm-r ... b,
from which it follows that
A > Rbpbpm-1...b, meN.
We have to show that for sufficiently large m the reverse inclusion holds.
From 7 = 77 it follows that zi=m(x;)= 1r2(x,-) = 7(z;), and thus we obtain

2=6h=( £ o)

where & is so chosen that we have s; =0 for j=h; in addition we note
that from

h
z21=Y xiS/!
j=1
it follows that

zi=m(z))=Y% m(x)s) =Y z;5] =Y Y xisls).
i i i

Equating coefficients yields
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From z; = zp41bnbu—1 . . . by, h = (Step 2) we obtain
=S:1+1bhbh_1 e bl"

If we insert this into the preceding equation we deduce that

>

h
1 1
§;i = Z S, bhbh 1. ,S, _S, z bhbh_l . .b,s,-.
=1

On the other hand since we have s =s"*b,b._; . . . b, it follows that
““( S bubrert ... bys! — by . .. bl) =0, ieN
thus
h 1
Zh+1('zl bhbh_l N bij —bhbh_l N b1> =0.
i=

By Step 2 it follows that there is an mo =k + 1 with
bmobmo—l bh+1( Z bh ,S —bhbh 1. ) =0.

This implies that b,,,,bm,-1 . . . b1 € A and consequently we also have
Rb,... by > A for n=m,.

“(3)=>(4)”": Let 0# m € gpM, then we have to show that Rm contains a
simple submodule. Suppose this were not the case, then every submodule
#0 of Rm must contain a proper submodule #0. Then there is therefore
an infinite chain

Rm « Rrim @ Rryrim « .. ..
Consequently we have
ReereRrZrle...

in contradiction to the descending chain condition for cyclic left ideals.

Now we show that R cannot contain an infinite set of orthogonal idem-
potents. Namely if ey, e,, e3, . . . are orthogonal idempotents #0 in R then,
as we shall immediately establish,

R« R(l-e))«R(l—e1—e)) ...

is a proper descending chain of cyclic left ideals in contradiction to the
assumption. Since

(l1-e1—ex—...—e,)(1—e1—...—e,_1)=1—-e1—...—e,
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we have
R(l—ey...—e,.1) <« R(1—e,—...—e,);

suppose
l-e—...—e,_)=r(l—e;1—...—e,),

then it would follow on pre-multiplication by e, thate, =0 4.
““(4)=>(5)”: First of all in order to show that Rad(R) is left z-nilpotent,
by 11.5.7, it must be shown that for every left R-module M

rv(Rad(R)) & M.
But we always have
Soc(rM) = ry(Rad(R))

(for Rad(R)Soc(M) = Rad(Soc(M)) =0), and because Soc(M) ¢ M holds
by assumption, the assertion follows.

Since Rad(R) is left t-nilpotent and so is certainly nil it follows from
11.5.3 that R/Rad(R) cannot contain an infinite set of orthogonal idem-
potents.

For the further considerations we remark first of all that the left ideals
of R/Rad(R) coincide with the R-submodules of z(R/Rad(R)), so that
every left ideal #0 of R/Rad(R) contains a simple left ideal. For brevity
we put T := R/Rad(R).

Assertion. Every simple left ideal E — T is a direct summand in r7.

Proof. Since Rad(R/Rad(R))=Rad(T)=0, E is not small in 77, thus an
A o T exists with E + A = rT. Since E is simple, it follows that ENA =0
(since otherwise E> A=>A=T),thus E®A = rT.

We now construct a sequence of orthogonal idempotents which in accord-
ance with the assertion at the beginning must break off after finitely many
steps. Let E; <= T, then there is an idempotent e; with E; = Te; and

TT=E1®A1 (=T81@T(1_e1)).

If A; =0 then 7T is simple and we are done. If A; # 0 then by assumption
there is a simple left ideal E; = A;. Let T = E,@® U, then it follows by
the modular law that A; = E;®(A; N~ U). If now we put A, = AN Uit
follows therefore that

TT = El @Ez@Az
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If we continue inductively in this way, then we obtain a sequence of
decompositions

TT=E1('B..‘®E,,@A", n=1,2,3,...

with A,_1=E,®A,, n=2,3,..., which then only breaks off if A, =0
occurs. But then 77 is semisimple and the proof is complete.

By 7.2.3, to the sequence of direct decompositions there corresponds a
sequence of orthogonal idempotents

€1,..., e dn, n=1,2,3,...

with a,_1=e,+a,, n=2,3,... (i.e. with respect to the splitting of a,_,
into the idempotents e, and a, the orthogonal idempotents ey, . . ., ,_; do
not change!) Since as asserted the sequence e;, e,, e, ... must break off,
the case a, =0 must hold, thus A, = Ta, =0 happens.

“(5)=>(1)”: By 11.3.2 and 11.5.3 R is semiperfect. By 11.5.6 for every
free right R-module F, we have

Rad(FR) = FR.
Then it follows by 11.3.3 that every free and therefore every right R-module
is semiperfect. But this implies that Ry is perfect. 0

Hence the proof of Theorem 11.6.3 is complete. The rings characterized
by this theorem are of interest in various respects. We shall return later
many times to them. Here let it be emphasized once more that for every
right R-module over a right perfect ring R all statements concerning
semiperfect modules are at our disposal. In particular for every projective
module over such a ring we have the decomposition property 11.4.2
(Krull-Remak-Schmidt).

11.6.4 CoroOLLARY. For a right perfect ring R we have:
(a) Every noetherian left R-module is artinian.
(b) Every artinian right R-module is noetherian.
(c) If Ry is noetherian then Ry is artinian.

Proof. (a) Let kM be noetherian, then every submodule and every factor
module is again noetherian. Consequently the socle of any factor module
of M is finitely generated. Since by 11.6.3(4) the socle of an arbitrary left
R-module is large in the module, by 9.4.4 M is artinian.

(b) Let Mg be artinian and let U = Mg. Then U is artinian, thus
U/Rad(U) is semisimple and artinian and consequently finitely generated.
Since R is right perfect we have (by 11.1.7) that Rad(U) < U, and by
9.4.1 it follows that U is finitely generated. But this means that M is
noetherian.
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(c) By 9.3.7 Rad(R) is nilpotent. Since moreover R/Rad(R) is semi-
simple, 9.3.11 yields the assertion. O

11.7 A THEOREM OF BJORK

By 11.6.3 a ring is right perfect if and only if it satisfies the descending
chain condition for cyclic left ideals. The question then arises as to whether
it also satisfies the descending chain condition for finitely generated left
ideals. That this is in fact the case, is the content of the following theorem
(J.-E. Bjork, [32]).

11.7.1 THEOREM. Let R be an arbitrary ring. Every R-module which
satisfies the descending chain condition for cyclic submodules also satisfies
this condition for finitely generated submodules.

Proof. We recall first of all that the descending chain condition for cyclic,
resp. finitely generated, submodules is equivalent to the minimal condition
for cyclic, resp. finitely generated, submodules. As an abbreviation we
denote the descending chain condition for cyclic, resp. finitely generated,
submodules by (C) resp. (F). The proof is set out for right R-modules and
is subdivided into several steps.

Step 1. Assertion: In the set of the submodules of an arbitrary module,
satisfying (F), there is a maximal element. The proof is obtained with the
help of Zorn’s Lemma. Let M be an arbitrary module and let % be the
set of submodules of M that satisfy (F). Then we have 0 &% and & is
ordered by <. Let ¥ # & be a chain from %. Then

v=U U
UeX
is an upper bound of ¥ in %. For if vy,...,v,€ V, then a Ue X exists
(since J is a chain) with vy, ..., v, € U. Consequently every finitely gener-

ated submodule of V is already contained in a U € &. Hence every descend-
ing chain of finitely generated submodules of V is already contained in a
U e and consequently is stationary. Thus in fact we have Ve %. By
Zorn’s Lemma a submodule A < M, maximal in % then exists. If A=M
then we are done. Therefore in the following let A be properly contained
in M.

Step 2. Now let Mr be a module which satisfies (C). Since A « M the
set of cyclic submodules mR, m € M with mR & A is not empty. By assump-
tion there is in this set a minimal element yoR.
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Assertion: Uy = A +yoR satisfies (F) in contradiction to the maximality
of A. In order to see this let

U1<—’U2<—’U3<—’...

be a descending chain of finitely generated submodules of Uj,. If we have
U; = A for an i then by assumption on A this chain is stationary. Hence
let Uiz A foralli=1,2,....Inevery U, there is then a cyclic submodule
uR with uR# A. Then by assumption with respect to ur A there exists a
minimal cyclic submodule y;R < U.. In this sense for every i =1, 2, ... let
a fixed y; be chosen.

Step 3. Assertion: If U; = A; + y;R holds with A; < A, then it follows that
U, =Ai +y,'+1R fori= 0, 1, 2, ....As Yi+1€ U,‘+1 - U; it follows that Yiv1 =
a+yrwithaeA, reR. Asy.,1£A we also have yr£ A and consequently
yirR Z A. Since y;R is minimal in U; with respect to uR & A, it follows that
yi#R = y;R, thus there is an r'e R with ysr'=y. Then it follows that
yis1r' = ar'+ yir' = ar' + y;, thus we have y; = ar' — y; .17 with ar' € A;. Hence
altogether as y;,; € U; we deduce that U;=A;+ y;R = A; +y;.1R.

Step 4. By induction we show:
U:=A+yR, i=1,2,3,...
with
Ae A e A
and with A; being finitely generated.

Proof. By assumption every U;.1, i=0,1,2,... is finitely generated. Let
v1,..., U, beasetof generatorsof U;,;.Letnow U; = A; + y;R withA; = A,
then it follows by the third step that U,.; = U; = A; + y;.1 R, thus we have
vi=a;+yi+«1r; with a;€ A, rie R. It follows that a;=v;—y;+1r; and so
ai, ..., Qs yi+1 is a set of generators of U;,,. With A;,1 = a;R+...+a,R
the assertion then holds. As a beginning for the induction Uy = A + yoR is
available.

Step S. Since the condition (F) is satisfied for A, the sequence
Al A,eAje .
is stationary. Thus there is an n with
A=A, i=1,2,3,....
Then it follows that
U=Ap+yp1R=An11+ Y iR =U 4y
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and by induction we deduce that U,=U,.; i=1,2,3,.... Thus the
sequence U; « U, « Us « ... is also stationary. Hence the assertion
given in the second step is proved and the proof of Bjork’s theorem is
complete. 0

11.7.2 CoRroLLARY. The following are equivalent for a ring R:

(1) R is right perfect,

(2) every left R-module satisfies the descending chain condition for finitely
generated submodules.

Proof. ‘(1) > (2)”’: Every descending chain of cyclic submodules of a module
rM can be written in the form

Rm « Rrim « Rryrim « Rrararim < . ...
Since by 11.6.3 gR satisfies (C), the chain
R « Rri € Rryry « Rrsrary < ...

is stationary and consequently the preceding chain is also stationary. Thus
(C) holds for kM and by 11.7.2 then (F) also holds.

“(2)>(1): By assumption rR satisfies the condition (F), thus also (C)
and then (1) follows by 11.6.3. ]

11.7.3 CoROLLARY. If R is right perfect and B is a two-sided ideal of A
then R/ B is also right perfect.

Proof. By 11.7.2 (C) is satisfied for g(R/B). Since B is a two-sided ideal,
R/B is also an (R/B)-left module and the submodules of z(R/B) and
r/(R/B) coincide. Thus (C) is also satisfied for r/g(R/B). By 11.6.3 it
follows that R/B is right perfect. 0

Obviously in this proof 11.7.1 is not used, but only 11.7.2 for the
condition (C). Interesting corollaries of 11.7.1 in which not only (C) but
also (F) must be used-are still outstanding.

EXERCISES

@
For an integral domain R with quotient field K show:

(a) If R is not a field then K as an R-module does not have a projective
cover.
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(b) If R is not local and if My is indecomposable then Mg does not have
a projective cover.
(c) If R is not local and My is semiperfect then M =0.

2)
(a) If A and A @ B have projective covers then so also has B.
(b) Let R be an integral domain with exactly » maximal ideals (n =2).
Show:
(1) The R-module M = R/Rad(R) is semisimple and has 2" sub-
modules.
(2) Only two submodules of M have projective covers.

3
Let R be a local principal ideal domain, but not a field. Show for Mg:
(a) Then M has a projective cover if and only if it is the direct sum of
a projective and a finitely generated R-module.
(b) Then M is semiperfect if and only if it is finitely generated. (Hint:
The quotient field is countably generated as an R-module.)

4
(a) Give an example of a complemented module M with a non-comple-
mented submodule U.
(b) If M=A+B and if A and B are complemented then so also is M.
(c) If M is finitely generated and if every maximal submodule in M has
an adco, then M is itself complemented.

(5)
(1) Show the following are equivalent for a module My with Rad(M) #
M:
(a) M is indecomposable.
(b) For every X = M M/X is directly indecomposable.
(c) Rad(M) is a maximal and a small submodule of M.
(d) Rad(M) is the largest proper submodule of M.
(e) For all m e M either mR < M holds or mR =M.
(2) Let M #0 be semiperfect and let £: P> M be a projective cover.
Show that M then satisfies the equivalent properties of (1) if and only if
P satisfies the equivalent properties in 11.4.1.

(6)
(1) Show that a projective module Pr is semiperfect if and only if it
satisfies the two following conditions:
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(i) Every submodule which is not small contains a direct summand
different from zero.
(if) Every submodule contains a maximal direct summand.
(2) Show that a finitely generated module M with property (ii) already
satisfies the maximal condition for direct summands.

)
Show that the following are equivalent for a projective module Pg:
(a) S =End(Pr) is semiperfect.
(b) P is semiperfect and satisfies the maximal condition for direct sum-
mands.
(c) P is semiperfect and finitely generated.

®

(1) Show that the following are equivalent for a ring R:

(a) Every finitely generated right ideal has an adco in Rk.

(b) Every cyclic right ideal has an adco in Rg.

() R =R/Rad(R) is a regular ring and to every idempotent ¢ € R

there is an idempotent e € R with ¢ = ¢.
(2) If gR is injective then R satisfies the equivalent conditions in (1).
(3) R is semiperfect if and only if the equivalent conditions in (1) are

satisfied and R contains no infinite set of orthogonal idempotents.

L))
Show: If A is a two-sided ideal of a ring R which is left or right ¢-nilpotent
and which is finitely generated as a left or right ideal then A is nilpotent.

10)
For a ring R define the left R-module K = (Rz)°=Homgz(R, Q/Z). Show:
(a) rK is an injective cogenerator.
(b) A right ideal A = Ry is left t-nilpotent if and only if we have:
In(A) s KN,
(c) If KN has a large socle then the radical of R is left ¢t-nilpotent. Give
an example in which the converse does not hold.

an
Show for a ring R: (a) A projective module Pr has a small radical if and
only if P.Rad(P) as a right module has a projective cover.
(b) The radical of R is left z-nilpotent if and only if the right R-module
(R/Rad(R))™ has a projective cover.
(c) R is right perfect if and only if every semisimple right R-module has
a projective cover.
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a12)
It is to be shown: If R™ is a direct summand in R" (as a right R-module)
then R is right perfect. For this purpose let Ra, = Ra, < ... be a descend-
ing sequence of cyclic left ideals, let b; '= ay, b;+1a: = a;+1, and define

2e=1(0,...,0, by, bis1bi, bis2bes1br, .. .)€ RN with b, in the kth place.

Show:

1) zi=(ay, a2, ...,a6,0,...)+ 2z 10, forall k eN.

(2) If we decompose z, = u, +vi € R™®V =R", then we have v, =
vi+1ax for all k eN.

(3) If the co-ordinates of u; from the place m are equal to zero then
we have Ra,, =Ra,.1=. ..

13)
Let K be a field, let V by a vector space over K with countably infinite
basis xi, x2, . .. and let S = Endx (V). Further let

VO = 01 Vn = Z xiK’ n= 1:
i=1

then define
N = {feS|dim(Im f) <00 A f(V,+1) < V, for all n =0}.

Show:

(1) N is a subgroup of S with N?cN.

(2) N is left ¢-nilpotent but not right z-nilpotent.

(3) A c S is asubring admitting multiplication by a scalar then R := A +
N is a subring of S with Rad(R)= N and R/Rad(R)=K (as rings).

(4) R is alocal ring which is right perfect but not left perfect.

(5) Soc(Rg)=0.
(Hint: First show Is(N)=0.)

14)
Show: A ring R is semisimple if and only if the endomorphism ring of
Fr=R™is regular.
(Hint: First show: End(Fg) is regular= R is right perfect because in the
proof of Theorem 11.6.3 B is the image of an appropriate endomorphism
of F))



Chapter 12

Rings with Perfect Duality

12.1 INTRODUCTION TO AND FORMULATION OF THE
MAIN THEOREM

Let a ring R be called a ring with perfect duality if the right and left
R-modules have the same duality properties as vector spaces over a field,
thus the best possible duality properties. In this respect we have to put the
finitely generated or finitely cogenerated R-modules in the place of the
finite-dimensional vector spaces.

The question arises as to the characterization of rings with perfect duality.
This question originated from J. Dieudonné, who asked it for artinian rings
(1958). Here it is considered for arbitrary rings. In order to be able to
formulate the answer (12.1.1) we must first of all develop some concepts.

Let R be an arbitrary ring. By the dual module to an arbitrary module
My we understand

M* = HomR (MR’ RR),
in which in consequence of the definition
(re(m)=ro(m), reR,peM* meM,

M* is a left R-module (see 3.8.2).
If M =gM is a left R-module, then M* is a right R-module in con-
sequence of the definition

(er)(m)=@(m)r resp. (m)(er)=((m)e)r,

according as the homomorphisms are written on the left or right of the
argument.

307
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For every A = My the orthogonal complement A° of A in M* is defined
by

A’={p|loeM*rp(A)=0}

Then as we see easily, we have A°< gM*.
For X = gM™ on the other hand let

Xt ={m|meMaVéec X[£(m)=0]}.

Then it follows that X * < Mx.
For every module My there exists the homomorphism

(DM IMR —’Afﬁ*,
defined by
Oy (mip)=¢(m), meM,peM*

In the most favourable case ®,, is an isomorphism and M is then called
reflexive (3.8.3). It is well known that every finite-dimensional vector space
is reflexive.

The most important results of this chapter will now be presented. They
serve as guiding principles for the following considerations in which we
prove these results step by step. In the formulation of these results we
understand by an R-module, either a right or a left R-module.

12.1.1 MAIN THEOREM. The following are equivalent for a ring R
(1) Every finitely generated R-module is reflexive.
(2) Every cyclic R-module is reflexive.
(3) Every finitely cogenerated R-module is reflexive.
(4) Forevery R-module M and every submodule A of M we have A = A°".
(5) Rk and rR are cogenerators.
(6) Ry is a cogenerator and gR is injective.
(7) rR is a cogenerator and R is injective.
(8) Rr and rR are injective and to every simple R-module there is an
isomorphic ideal in R.¥

12.1.2 Definition. A ring, which satisfies the conditions of 12.1.1, is called
a ring with perfect duality.

12.1.3 CoROLLARY. If R is a ring with perfect duality then R is semiperfect
and both Rg and rR are finitely cogenerated.

+ The latter property is also named in the literature after the author.
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In the Main Theorem conditions (1) to (4) have to do with concepts of
duality whereas conditions (5) to (8) connect cogenerator and injectivity
properties.

The corollary asserts that for rings with perfect duality all results over
semiperfect rings (from Chapter 11) and over finitely cogenerated modules
are at our disposal.

In the following considerations we shall not only provide the lemmas
for the proof of the preceding results but we shall also prove results which
are of independent interest and such as are needed in the next chapter.

12.2 DUALITY PROPERTIES

Let R be an arbitrary ring and let f: Ag > Mg be an arbitrary R-
homomorphism. Then let
i RM* > gA*
be defined by
ffle)=o¢f, eeM*
As

FX(rie1+r@2) = (re1+ 1@2)f = ri(ef) + ra(@af) = nf*(e1) + raf *(@2)

f*, as constructed, is an R-homomorphism. We call f* the dual homo-
morphism to f. We now bring together some simple properties of dual
homomorphisms.

12.2.1 PROPOSITION. Let f:Ar > MR, fo: Mr > Agr and g: Mg > Wr be
homomorphisms. Then we have

(a) (gh* =f*g*,fof= L«\@f"‘ﬁ;< =15=14~

(b) fis an epimorphism = f* is a monomorphism.

(c) If Rg is injective, then we have: f is a monomorphism = f* is an
epimorphism.

(d) If Rg is a cogenerator, then we have: f* is a monomorphism =>f is
an epimorphism, f* is an epimorphism = f is a monomorphism.

f
(e) If O—>A-—>M—g> W >0 is a split exact sequence (3.9.1) then
0> WM A% 50

is also a split exact sequence.
(f) If Ry is injective then along with the exact sequence

0> ADMSW -0
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the sequence

* f*
0> W*— s M*——>A*>0
is also exact.

Proof. (a)
(8N*(w) = w(gf) = (wg)f = f*(wg) = f*(g*(»)) = (f*g*)(w) > (gf)* = f*g*.
1ﬁ(a) =ala=a=1s(a)> 132 = 1A*$(f0f)* =f*f3< = 1;!‘1 =14x

(b) From f*(¢) = ¢f =0 it follows that ¢(f(m))=0 for all me M. If f is
an epimorphism then it follows that ¢ (M) =0, thus ¢ =0.
(c) Let a € A* be given. Since Ry is injective a ¢ € M* exists with

a=of =f*().

A—— M

(d) Let f* be a monomorphism, i.e. from f*(p) = ¢f =0 it follows that
¢ = 0. Suppose f were not an epimorphism, then, since Ry is a cogenerator,
a 7€ (M/Im(f))*, r #0, would exist. Let now v : M -> M/Im(f) then letting
e=mweM¥* ¢#0 and ¢(Im(f))=0, then ¢f =0, thus f*(¢)=0, thus
=0 L.

Let f* be an epimorphism. Suppose f were not a monomorphism.
Since Rr is a cogenerator, there is an aeA* with a(Ker(f))#0.
Let ¢ e M* with a =f*(¢)=¢f, then it follows that 0# a(Ker(f))=
o(f(Ker(f))=0 K.

(e) Since the sequence splits, there is (by 3.9.3) a homomorphism fo: M -
A, go: WM with fof =14, ggo=1w. Therefore it follows from (a) that

1At =f*le)<, lw*=g6kg*.

Thus f* is an epimorphism, g* is a monomorphism and in the sequence
* f*
0> WH—sM*——A*50

both Im(g*) and the Ker(f*) are direct summands in M*. It remains to
show the exactness at the position M* where only the exactness of the
original sequence but not however its splitting is used.

From gf = 0 it follows that

(f*g*)w)=wgf=0 forall we W*,
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thus we have Im(g*) < Ker(f*). Now let f*(¢) = of =0, i.e. ¢(f(m))=0 for
every m € M. Consequently we have
Ker(g) =Im(f) = Ker(p).

In the diagram

an w € W¥* exists by 3.4.7 with ¢ = wg = g*(w), thus we also have

Ker(f*)—Im(g*).
(f) By (b) g* is a monomorphism and by (c) f* is an epimorphism. As
in the preceding proof it follows that Im(g*) = Ker(f*). 0

Obviously the corresponding statements hold on changing the sides.
These considerations are now to be applied to

(DM IMR -> M}k.z*.
There then holds

DF: RM¥** 5 cM* with  OF(1) = 7Dy, 7€ M¥**,
Further we have to consider
Dppe: gM* > g MF**
12.2.2 LEMMA. Let R be an arbitrary ring and let Mg be an arbitrary right
R-module. Then we have:
(a) DN Drre = Lpre
and consequently
DO+ is a monomorphism,
&% is an epimorphism,
rRM*** = Im(Ppr) DKer(Pry).

(b) If ®p is an epimorphism then @y~ is an isomorphism, i.e. M* is
reflexive.
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(c) For an arbitrary homomorphism f: Ar > Mg

A M

LN Py

f“
A** > M**

is commutative.

(d) Rr is a cogenerator if and only if for every module Mg @y,
is a monomorphism.

(e) Let R and rR be injective. Then for every exact sequence

O-»A—/>M—g> W-0

the sequence

3

is also exact and the diagram

0 sA—L s M—Eow >0

D, by, >,

e ek
g
0 —_— A** __,M**_> W**—> 0

is commutative.

Proof. (a) Let ¢ € M*, then first of all we have

(DA Par+) (@) = PAADPA(0)) = Par+(@) D
For m € M it follows that
(Dar(@)Par)(m) = Dar(@)(Par(m)) = Ppr (M) (@) = @(m),

thus (q)mM*)((D) =@, and thus QmM* = IM*.

(b) If ®,, is an epimorphism then it follows by 12.2.1(b) that &7 is a
monomorphism. By (a) % is then an isomorphism and ®y- is the inverse
isomorphism.
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(c) For ae A and ¢ € M* we have

(f**Da)(@)) (@) = (Dala)*)e)
=®4(a)(f*(@)) = Pala)(ef)
= ¢(f(a))=DPm(f(a))p)

=((Pmf)(a))(e),
thus f**® 4 = ®p,f.
(d) From ®p(m)=0 it follows that ¢(m)=0 for all ¢ € M* thus

me () Ker(p). If Rg is a cogenerator then we have
eeM*

(M Ker(p)=0

weM*

thus m = 0. The converse is clear.
(e) From 12.2.1(f) the exactness of

f!‘ g*li
0> A% — M** = W** 50

follows and from 12.2.2(c) the commutativity of the indicated
diagrams. a

From our considerations so far the following theorem, which is of interest,
immediately arises and later has other important applications.

12.2.3 THEOREM
(a) Let R be an arbitrary ring. If

0> ALSMEW>0
is a split exact sequence of right (or left) R-modules then we have: M is
reflexive if and only if A and W are reflexive.
(b) Let Rr and rR be injective cogenerators. If

0—)A—&M—iW—>0

is an exact sequence of right (or left) R-modules then we have: M is reflexive
if and only if A and W are reflexive.

Proof. (a) By assumption and 3.9.3(b) there are homomorphisms f,, go with

fof =1a, g80=1w,
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for which
Qe Ae—M——W<0

fo 8o

is also exact and splits. The diagram

f g
0 < AT M W& 0
fo 8o
P, Dy, L
f“ g**
— A% (——-_“"M**_’(TW**__*(——O
o 8o

then has by 12.2.1(e) split exact rows and by 12.2.2(c) is commutative.
Let M be reflexive. Since now ®,, is an isomorphism and f is a
monomorphism, as ®,f =f**d,, ®, must also be a monomorphism.
Analogously we see that ®y is also a monomorphism. The assertion that
&, and ®w are in fact isomorphisms now follows from 3.9.2.
Let now A and W be reflexive. In order to be able to apply 3.9.2 again,
it must be shown that ®,, is a monomorphism. Let m € Ker(®,,), then since

and since @y is an isomorphism it follows that
m € Ker(g) = Im(f).

Thus there is an a € A with

fa)=m.

Therefore it follows that
0=Pp (m)=DPp(f(a)) = (Prpf)(a) = (f**Pa)(a).

Since f** and ®, are both monomorphisms it follows that a =0, thus also
m =0. Since consequently ®,, is a monomorphism, the assertion follows
from 3.9.2.

(b) By assumption 12.2.2(e) holds. In the diagram in 12.2.2(e) ®,4, ®as

and ® are monomorphisms by 12.2.2(d). The assertion follows then from
3.9.2. a

12.2.4 COROLLARY. Let R be an arbitrary ring.
(@) If A =M then it follows: M is reflexive if and only if A is reflexive.
(b) Let Mg =@ M, then we have: M is reflexive if and only if all M,
i=1

i=1,..., narereflexive.
(c) Every finitely generated projective R-module is reflexive.
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Proof. (a) Let f: Agr > Mg be the given isomorphism. Then

0>A5M>0-0

is a split exact sequence and the assertion follows from 12.2.3(a).

(b) It suffices to prove the assertion for n =2 since it then follows for
arbitrary n entirely by induction. For n =2 it follows from 12.2.3(a) on
reflecting upon the split exact sequence

0->M;—M,®M,— M, -0

in which 7 is the inclusion of M; in M = M, ® M, and = is the projection
of M onto M,.

(c) Since Ry is reflexive, by (b) every finitely generated free R-module
is reflexive. (We see this also directly as for vector spaces on using a dual
basis.) Consequently every finitely generated projective module is reflexive
as a direct summand of a finitely generated free module. 0

12.2.5 CoRoOLLARY. For an arbitrary R-module we have:

(@) If M is reflexive, then all modules M*, M**, . .. are also reflexive.

(b) If M™* is not reflexive then none of the modules M**, M*** s
reflexive.

Proof. (a) This follows from 12.2.2(b).

(b) By (a) it suffices to show: If M*** is reflexive then so also is M*,
By 12.2.2(a) M* is isomorphic to the direct summand Im(®p;+) of M***,
If M*** is reflexive then it follows by 12.2.4 that M* is reflexive. a

To conclude these duality considerations we prove a lemma which gives
information on the reflexivity of cyclic modules.

12.2.6 LeEMMA. For A~ Ry we have:

(@) h:r(R/IA)*3¢0—>e(1)er(r(A)) with 1=1+AecR/A is an
isomorphism.

(b) ®r,a is a monomorphism Srrlr(A) = A.

(c) Letp:Rg~>Ir(A)* be defined by

p(r)(x)=2xr, reR, xelg(A),

then p is a homomorphism for which the diagram
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R——-y—-*R/A

e Prsa

IR(AY* —— (R/A)**
is commutative (in this, h is the isomorphism from (a)).

(d) ®g,a is an epimorphism if and only if p is an epimorphism.

Proof. (a) It is clear that A is an R-homomorphism. Let h(p)=¢(1)=0,
then it follows that

e()=e(Ar)=¢(1)r=0, reR,

thus ¢ =0, i.e. h is a monomorphism. Let x € Iz(A) then ¢ € (R/A)* with
h(@)=¢(1) =x is defined by

¢: R/AsF—>xreR.

Thus A is also an epimorphism.
(b) For Fe R/A we have

FeKer(@r/a)©Pr/a(F)@)=@(F)=@(1)r=0 forall pe(R/A*

&rerrlr(A) (by (a)). Therefore the assertion follows.
(c) For re R and ¢ € (R/A)* we have

(R*p(N)(@) = (p(Nh)(@)=p(N(e1)=e(1)r
and also

(Pr/av(N)(@) = Pr/a()e) = (F) = o(D)r,

thus we conclude that h*p = ®g/4v.
(d) Since h* is an isomorphism and » is an epimorphism the assertion
follows from h*p = ®g/av. O

Having become conversant with duality concepts we apply ourselves first
of all to other considerations which likewise are needed for the proof of
the Main Theorem and which to some extent find application also in the
next chapter.

12.3 CHANGE OF SIDE

We treat here of the question as to the manner in which given properties
of Mg carry over to sM where S = End(MRg).
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12.3.1 LEMMA. Let R be an arbitrary ring, let x, y € MR, let S .= End(MRz),
let yR = xR and let xR be contained in an injective submodule of Mg. Then
Sx is isomorphic to a submodule of Sy (as a submodule of sM). If Sy is
simple then it follows that Sy = Sx.

Proof. Let ¢:yR->xR be the given isomorphism. Further let
xR = Qg => Mg with injective Qg. Then a commutative diagram exists:

yR— 5 My

t3

!
Mg

where 1, ¢, ¢3 are the corresponding inclusion mappings. For so:=t3y€ S
we then have

@(yr) = soyr, reR.

Let ro, r1 € R be determined by
e(y)=soy =xro,  @(yrn)=soyn=x,
then it follows that
@: Sx 25x > 8xro =550y € Sy

is an S-homomorphism.
Suppose sxro = 0 then it follows that

sxrory = ssoyr; =sx =0,

thus @ is a monomorphism. Since from xR = yR we have either x =y =0
or x #0 Ay #0 it follows finally from the simplicity of Sy that Sy=Sx. 0O
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12.3.2 LeEMMA. Let S :=End(MR), let x € M, let xR be simple and let xR
be contained in an injective submodule Q of Mg. Then Sx is a simple
submodule of sM.

Proof. We show that for arbitrary sox #0, soe S it follows that
Ssox = Sx.
Since xR is simple and sox # 0, soxR is also simple and
xR 3 xr—soxr € soxR
is an isomorphism. Let
7:50xR > xR

be the inverse isomorphism, then a ¢ exists so that the diagram

13
SoxR ——— My

/
/
/
T /
/

| /

xR //w
/
/
t“ /
/
/

v ¢
L3

7
Mg

is commutative, where 71, 7, 73, are the corresponding inclusion mappings.
If we put #5'=(3¢ then we have 1, € S and fos0x = 750x = x, thus Ssox = Sx,
which was to be shown. 0

12.4 ANNIHILATOR PROPERTIES

In this section we examine the annihilator properties of R. As abbrevi-
ation in place of Izx(A) resp. rr(A) we write only I(A) resp. r(A). We have
already become acquainted with such an annihilator property in 12.2.6
where it was a question of characterizing the reflexitivity of cyclic modules.
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12.4.1 LEeEMMA. If Cg is a cogenerator then we have for every A= Rg:

l'lc(A) =A.

Proof. From the definition of annihilator it follows that
Aori-(A).
Let re R, r£ A, then by assumption there is a
7:(R/A)r>Cr with 7(r+A)#0.
Let now
v:R->R/A,

then it follows that
0=mw(A)=17v(1)A,

thus 7v(1)e lc(A), and also 7v(D)r=1v(r)=7(r+A)#0, thus ré ric(A).
Hence we have rlc(A)— A; thus in conclusion the assertion. 0

Mostly this lemma is applied in the case Cr = Rg where rl(A)=A is
then briefly written.

12.4.2 THEOREM
(a) If Ry is injective then we have:
(1) for arbitrary A—> Rg, B> Rr: I(AnB)=1(A)+1(B);
(2) for arbitrary finitely generated C — gR: Ir(C) = C.
(b) If conditions (1) and (2) in (a) are satisfied then every homomorphism
of a finitely generated right ideal of R into R is obtained by left multiplication
by an element from R.

Proof. (a) Obviously we always have I(A)+1(B)~>1(ANB). Let now x €
I({ANnB),

¢:A+B>sa+b—>xbeR

is an R-homomorphism (for a+b=a1+by>a-a;=b—be AnB>
xby=x(a—ay)+xb=xb).

Since Rpy is injective, there is a ye R with p(a+b)=y(a+b)=xb. In
particular O = ¢(a) = ya holds for all a € A, thus y € I(A). Further it follows
that for all be B

o(b)=yb =xb,

thus z := x —y € I(B). Therefore it follows that x =y + z € I(A)+I(B), from
which (1) is proved.
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For the proof of (2) let C = Rc; +. ..+ Rc, = grR. Trivially we have
r( ) Rc,-) =N r(Re)
i=1 i=1
and by successive applications of (1) it follows that

zr(i:1 Rc,-) - 1( A r(Rc,-)) - .-:21 Ir(Rey).

i=1
In order to obtain (2) it must only be shown that
Ir(Rc)=Rc, ceR.

Trivially we have Rc <> Ir(Rc). Let now b€ lr(Rc), then it follows that
r(c)=r(b) and hence

¢cR>3cr—breR
is a homomorphism which, since Ry is injective, is obtained by left muitipli-
cation by an a € R. In particular we then have ac =b, i.e. b€ Rc, thus
Ir(Rc)= Rc, which was still to be shown.

(b) The assertion is established by induction on the number »n of the
generating elements of a finitely generated right ideal.

n=1: Let ¢:aR - Rz be a homomorphism. Since from ar =0 there
follows also ¢ (ar) =0=@(a)r, we have r(a)- r(¢(a)). Hence we obtain
r(Ra)=r(Re(a))
and by (2) it follows that
Re(a)=Ir(Ryp(a))= Ir(Ra)=Ra.
Thus there is a ¢ € R with ¢(a) = ca and consequently we have
elar)=¢(a)r=car,
which was to be shown.

Inference from n ton+1: Let

n+1

¢: 2 aR->Rg

i=1

be a homomorphism, then by induction assumption there are c;, c2€ R so
that we have

n n
<P( > aifi)=6'1 X ai, @(Ans1rm+1) = C2Qpn+1ln+1.
i=1 i=1
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By (1) it then follows that

i

cl—czel( ) a;Rma,.+1R)=I(i a,-R)+l(a,,+1R),
=1 i=1

i.e. there are
sel( Y a,-R), tel(a,.1R)
i=1

with c;—c;=s—t Let c:=c,—s = c,—t then it follows that

n+1 n
<P( ) ai’i) = <P( ) airi) +@(@n+1rns1)
i=1 i=1

n+1
air;,
i=1

i=

n
=(c1—8) X airi+(c2—)ans1rmns1=¢
i=1

thus ¢ is obtained by left multiplication by ¢. Hence (b) is also proved. [

12.4.3 COROLLARY. If Ry is noetherian and if the conditions (1) and (2)
in 12.4.2 are satisfied then Ry is injective.

Proof. Since Rp is noetherian every right ideal of R is finitely generated.
Then the assertion follows from 12.4.2(b) and Baer’s Criterion. a

12.5 INJECTIVITY AND THE COGENERATOR
PROPERTY OF A RING

The cogenerator property of Ry is in general independent of the injec-
tivity of Rr (see Exercises 13, 14). In order to obtain the equivalence of
these properties additional conditions are required.

As a preparation for the corresponding theorem we need a lemma.

12.5.1 LeMMA. Let R be an arbitrary ring.

(a) Let Py, P, be projective right R-modules with small radicals. Then we
have:

P, =P,& Py /Rad(P;) = P,/Rad(P,).

(b) Let Q1, Q; be injective right R-modules with large socles. Then we
have:

Q= Q0,8 So0c(Q1) =Soc(Q>).
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Proof. (a) Let ¢ : P; - P, be the given isomorphism. Since
¢(Rad(P,)) =Rad(P,)
¢ induces an isomorphism
¢: P,/Rad(P,) 3 p; + Rad(P;) — ¢(p1) + Rad(P,) € P,/Rad(P,).

The converse follows from 5.6.3 for P, » P;/Rad(P;) and P, P,/Rad(P,)
are projective covers.
(b) Dual to (a). O

We come now to a theorem which is of independent interest. It can be
considered as a one-sided weakening of the Main Theorem as mentioned
at the beginning.

12.5.2 THEOREM. The following are equivalent for a ring R :

(1) Rgr is a cogenerator and there are only finitely many isomorphism
classes of simple right R-modules.

(2) Rg is a cogenerator and every simple left R-module is isomorphic to
a left ideal of R.

(3) Every module Mg with re(M) =0 (i.e. Mg faithful) is a generator.

(4) Every cogenerator of Mg is a generator.

(5) Rg is injective and finitely cogenerated.

(6) Rg is injective, semiperfect and has a large socle.

Remark. A ring with the properties of the theorem is denoted in the
literature as a right PF-ring. G. Azumaya posed the so far unanswered
question as to whether a right PF-ring is also a left PF-ring.

Proof of 12.5.2. We show (2)=>>(3)=>(4)=>(5)=>(6) together with (6)=>
(2)A (1), (1)=>(6).
“(2)=>>(3)’: Since Ry is a generator it suffices by 3.3.2 to show that

T:= ) Im(¢)=R.

¢eHomg(M,R)

Since M*=Homzg(M, R) is a left R-module, T is also a left ideal. Now
let z € rr(T), then it follows for every m € M and ¢ € M* that

e(mz)=¢(m)z =0,

thus Mz < () Ker(p).

eeM*
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Since Rp is a cogenerator we have

() Ker(e)=0,
peM*
thus Mz =0. Since by assumption rg(M) =0, it follows that z =0, thus
rrT =0. Suppose T # R, then there is a maximal left ideal A - xR with
T < A = R. By assumption there is an Rx <> gR and an isomorphism

o:R/A=Rx.
Then it follows for all a € A that
0=0(0)=0o(a)=ao(1),

thus 0# o(1)err(A) > re(T)=0 .
Consequently T = R must hold, which was to be shown.
“(3)=>(4)’: From 12.4.1 it follows for A =0 that every cogenerator is
faithful. Then by (3) it is a generator.
“(4)=>(5)": The cogenerator
Co= H Qi
jeJ

which is minimal in the sense of 5.8.6(b), is by assumption a generator.
By 5.8.2 Ry is then isomorphic to a direct summand of a direct sum of

copies of Cy and, by the definition of Cy, also of copies of Q,, j€J. Since

R = 1R is cyclic, R is isomorphic to a direct summand of a finite direct sum

Q;=.];[10,' with Q;e{Q;|jeJ}.

Since Q is injective, Ry is injective. By the definition of Q; =I(E;) (see
5.8.6) and by 9.4.3 Q is finitely cogenerated and then so also is Rr as an
isomorphic image of a direct summand of Q.

“(5)=>(6)”: It has only to be shown that Ry is semiperfect. From 9.4.3
we have

Rr = I(E;) withsimple E..
i=1

As E; % I(E;), I(E;) is directly indecomposable. By 7.2.8 End(I (E;)) is then
local and by 11.4.1 I(E;) is semiperfect and then by 11.3.4 so also is Rkg.
“(6)=>(2) A (1)”: By assumption we have

SOC(RR)"’& Rg.
Since by 12.3.2
Soc(Rg) <> Soc(rR)
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and since by 9.2.1(a) and (b)
Soc(gR) = rr(Rad(R)),
it follows that
rr(Rad(R))* Rg.

Now let E be a simple left R-module and let U < gR with E=R/U.
Since R is semiperfect (by 11.3.2 on both sides!) there is by 11.1.2 a
decomposition

rR =R1@R2
with R,> U, RinU S R;. Let now
R, =Re,, R;=Re,

with idempotents e;, e;=1—¢;. As R,> U it follows from the modular
law that we have

U=(RinU)®DR,,

in which Ry n U - Rad(R,) = Rad(R) holds.
As e2=¢,#1 (since R,> U #R) and r = e,r +(1—e,)r for re R it fol-
lows that

rr (R82) = (1 - 82)R # 0.
As Ry n U =Rad(R) we have
re(Rad(R))=>rr(RinU)= Rg.

Since, as established at the beginning, rz(Rad(R))<% R it follows that
re(Rin U)% Rg from which it follows that

0#rrR(RinU)Nnrg(Rez)=rr((RinU)+ Rey)=rr(U).
Now let
0#aerg(U),

then it follows that Iz(a)= U, since U is maximal in gR. Therefore it
follows that

Ra=R/U=E,

i.e. for every simple left R-module R contains an isomorphic left ideal.
Let now

Ral,. ..,Ra,.

with Ra; = grR be a set of representatives for the isomorphism classes of
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simple left R-modules. Since R is semiperfect, by 9.3.4, this is finite. Since
Ry has a large socle every right ideal a;R contains at least one simple right

ideal which can be written in the form ab;R, i=1, ..., n. If we now put
¢; = a;b; then it follows, since Ra; is simple, that Ra; = Rc; and consequently
RCl, ey RC,,

is a set of representatives for the isomorphism classes of simple left R-
modules. If we now suppose that ¢;R =¢;R then it follows by 12.3.1 that
Rc;=Rc; thus i =j. Consequently (by 9.3.4)

ClR,.. .,CnR

is a set of representatives for the isomorphism classes of simple right
R-modules. Since Ry is injective we deduce from 5.8.6 that Ry is a
cogenerator. Therefore (1) and (2) are proved.

“(1)=>(6)"": Since Rpg is a cogenerator there is (by 5.8.6) a set of rep-
resentatives of the isomorphism classes of simple right R-modules of the
form

aiR,...,a,R

with a;R = Q; = Rr where Q; is an injective hull of a;R. Since a;R is simple
and a;R % Q,, Q; is directly indecomposable. Since Q; is a direct summand
of Rg, Q; is projective. By 7.2.8 and 11.4.1 F; := Q,/Rad(Q;) is simple and
Rad(Q;)® Q.. From 12.5.1 it then follows that Fy, ..., F, form again a set
of representatives for the isomorphism classes of simple right R-modules.
Since

v;: Qi» Q;/Rad(Q;) = F;

is a projective cover of F;, we deduce from 11.3.5 that Rz and then also
rR (by 11.3.2) are semiperfect. Let

be a decomposition of Ry in the sense of 11.4.2, then for a suitable j
A;/Rad A; =F; thus by 12.5.1 A; = Q;. Consequently Ry as a finite direct
sum of injective modules is itself injective. Since Q; is the injective hull of
the simple ideal a;R, we have aq;R<% Q; and consequently a;R =
Soc(Q;)* Q;. As A;=Q; we then also have Soc(A;)* A; and Soc(A;) is
simple. By 5.1.8 and 9.1.5 it follows that

Soc(Rr) = B Soc(A;) % Rx.
i=1

Therefore (1)=> (6) is proved. 0
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12.5.3 CoROLLARY. If Ry is a noetherian cogenerator then R is injective
and semiperfect and has a large socle.

Proof. Since Ry is noetherian Soc(Rg) is finitely generated and has thus
only finitely many homogeneous components. Since Rr is a cogenerator
it follows that only finitely many isomorphism classes of simple right
R -modules exist. The assertion then follows from 12.5.2. a

12.6 PROOF OF THE MAIN THEOREM

We now prove the Main Theorem 12.1.1 as given in the introduction
by the following scheme.

(5)=(8),

(5)A (8)=>(6) A (7),

(6)=(5), (1)=>(5),

($)A(8)=>(1)A(3),

(H=>(2)=>(8),

(3)=>(5),

(S)e(4).

“(5)=>(8)": By (5) 12.5.2(2) is satisfied on both sides. By 12.5.2 (8)
then follows.

“(8)=>(5)”: Clear by 5.8.5(a).

“(SYN(8)=>(6)A(7)”: Clear.

“(6)=>(5)": It must be shown that gR is a cogenerator. To this end we
first show that Rg is complemented. Let A< Rr and let B gR be an
intersection complement of /{A), i.e. [(A)~ B =0 with B maximal in this
equality. Since rR is injective it follows by 12.4.2 (on interchanging the
sides) that

R=r(0)=r(l(A)nB)=rl(A)+r(B).
Since Ry is a cogenerator it follows by 12.4.1 that
R=A+r(B).

In this r(B) is minimal: Let U< r(B), then A+ U =R I(A)nIl(U) =
I(A+U)=Il(R)=0;as U=r(B)we have B> Ir(B)—>Il(U)andso l(U) =
B from the maximality of B in I(A)nB =0; from B=I(U)=>r(B)=
rl(U)=U by 12.4.1. Since R by 11.1.5 is thus semiperfect, there are by
9.3.4 only finitely many isomorphism classes of simple right R-modules.
Therefore 12.5.2(1) is satisfied. By 12.5.2(2) and since gR is injective, gR
is a cogenerator.
“(7)=>>(5)”: Analogously.
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We have therefore proved (5)<(6)&(7)<>(8); this is the part of the
Main Theorem not referring to the Duality properties.

“(5)A(8)e(1)A(3)”: Since every finitely generated module is an epi-
morphic image of a finitely generated free module, (1) follows from 12.2.4(c)
and 12.2.3(b). Now let Ag be finitely cogenerated, then there is by 9.4.3
(since every Q; from I(A) = Q@®. . .® Q, can be mapped monomorphically
into Rr) a monomorphism of A into a finitely generated free R-module.
12.2.4(c) and 12.2.3(b) yields as before the assertion.

“(1)=>(2)”: Clear.

“(2)=>(8)”: By Baer’s Criterion we have to show that gxR is injective.
Let B— rR; then we have by 12.2.6 (applied to g (R/B))Ir(B)=B. If we
now apply 12.2.6 to A = r(b) = Rg then it follows that to every homomorph-
ism 7 of gB =1Ir(B) into gR there is an roe R with 7(x) = xro. By Baer’s
Criterion gR is injective. Analogously we see that R is injective. Now let
Egr be simple and let A < Rr with

Byl12.2.6as A =rl(A)wehave I(A) #0.Let 0 # x € I(A) then it follows that
xR=R/A=E,

which had still to be shown. Analogously for R simple.

“(3)=>(5)”: If Eg is simple and Qg is an injective hull of Er then Qg
is finitely cogenerated. Since Qg is reflexive there is a ¢ € Q* with ¢ (E) # 0.
As E*— Q it would follow in the case Ker(¢) # 0 that on the other hand
E < Ker(¢). Thus we have Ker(¢) =0, i.e. ¢ is a monomorphism. Therefore
it follows that Ry is a cogenerator. Analogously for gR. (In this proof in
place of (3) we have only used the fact that the injective hulls of the simple
modules are torsionless.)

“(5)=>(4)”: By definition we have A = A°", Since Ry is a cogenerator,
for every meM, m¢ A there is a ¢ e M* with ¢(m)#0 and ¢(A)=0.
Therefore it follows that ¢ € A° and mg A°", thus A°* < A. Analogously
for the left side.

“(4)=>(5)”: Let My be arbitrary. Then 0° =M™ follows and

0=0°"= () Ker(p),
peM*

thus Ry is a cogenerator. Analogously for gR.
Hence the Main Theorem is completely proved. a

It remains finally to prove Corollary 12.1.3. This follows directly from
12.5.2 on using the fact that a ring with perfect duality satisfies the
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conditions of 12.5.2 on both sides (e.g. we see immediately that 12.1.1(5)=>>
12.5.2(2)).

12.6.1 APPENDIX. Let R be a ring with perfect duality. Then we have for
every R-module M : For every A = M the homomorphism

Y M*/As0p+A°—p|Ac A*
is an isomorphism.

Proof. By definition ¢ is a monomorphism. As we see easily ¢ is an
isomorphism for all Mk and all A< My if and only if Rg is injective.
Namely if ¢ is an epimorphism for all A <> Rg then this means that Baer’s
Criterion is satisfied, i.e. that Ry is injective. Conversely if Ry is injective
then every element of A* can be continued to one such of M*. a

In conclusion the following properties are to be pointed out. By 12.2.5
we have for every R-module M: If M is reflexive then so also is M* and
if M** is reflexive then so also M*. If R is a ring with perfect duality then
in fact from the reflexivity of M* the reflexivity of M follows. Namely let
M* be reflexive, then it follows by 12.2.2(a) that ®}; is an isomorphism.
By 12.2.1(d) ®,, is then an isomorphism, thus My, is reflexive.

In the next chapter we return to the duality properties. The quasi-
Frobenius rings considered there are rings with perfect duality, which are
artinian on both sides (it suffices to assume noetherian on one side).
However there are rings with perfect duality that satisfy no chain condi-
tions (see Exercise 11). In the case of artinian rings further additions
can be made to the characterizations of perfect duality, as, for example,
that the duals of all simple modules are again simple (see, for this,
Exercise 12).

EXERCISES

@

Show:

(a) If Mg is reflexive, if A< Mg, A°* = A and *: M* > A* is surjective
then A is also reflexive.

(b) If My isreflexive, if A = Mg, A°" = A and * : M** > A°* issurjective
(corresponding to ¢ : A°> M*) then A/M is also reflexive.

(c) Construct a reflexive module Mz and a submodule A = My so that
neither A nor M/ A is reflexive.
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)
Let (M;|i € I) be a non-empty family of right R-modules. Show:
(a) There is a commutative diagram

[IME ) — L (1] (MF)*

1 M, : > 1M,

in which ¢ and « : [[(M7F)~>[I(MF) are inclusion mappings.

(b) If I is finite then we have [[M; is reflexive if and only if all M; are
reflexive.

(c¢) If rR is a cogenerator or is injective and if [[M; is reflexive then
almost all (i.e. all up to finitely many) M; are equal to zero.

(Hint: In the first case «* is a monomorphism, in the second an epi-
morphism).

3)
For an arbitrary M let Y be a finitely generated submodule of M* and
let @ € Y*. Show: If Rg is a cogenerator then there is an m e M with
a =0y (m)]Y.

Q)
Let Mg be given. If ((m,, U;)|i € I) is a non-empty family with m; e M and
U; > M, then me M is called a solution (of the family) if m —m; € U; for
all i e I holds. The module My is called linearly compact if every finitely
soluble family ((m;, U;)|i € I) (i.e. soluble for every finite subset Io < I) has
a solution. Show:

(a) If Rr is a cogenerator then My, is linearly compact if and only if Mg
is reflexive and gR is injective with respect to M* (the latter means: For
every monomorphism a : g Y » gkM* and homomorphism 8 : g Y - gR there
is a y: gRM* > gR with 8 = ya; see Chapter 5, Exercise 21).

(b) R is a ring with perfect duality if and only if Rr is a cogenerator
and Rg is linearly compact.

(¢) If R is a ring with perfect duality then an R-module is reflexive if
and only if it is linearly compact.
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S

Show:

(a) Every artinian module is linearly compact.

(b) Every linearly compact module is complemented (i.e. for every
submodule an addition complement exists).

(Hint: The proof for the existence of an intersection complement may
here be dualized).

(c) The converse holds neither in (a) nor in (b).

(d) If M = @M, is linearly compact then almost all M; are equal to zero.

(e) If M is linearly compact and if A< M then A and M/A are also
linearly compact.

(f) If M is linearly compact and if Rad(M) is small in M (resp. Soc(M)
is large in M) then M is finitely generated (resp. finitely cogenerated).

(g) If R is a non-local principal ideal domain then every linearly compact
R-module is artinian.

()

A non-empty family ((m, U;)|i € I) with m; € M and U; = M is called projec -
tive if I is directed (i.e. is provided with an ordering < so that for arbitrary
i,jel there is a kel with i<k, j<k) and for i<j both U, U, and
m; —m; € U; hold. Show:

(a) M is linearly compact<>every projective family from M has a sol-
ution in M.

(b) If A—> M and if A and M/A are linearly compact then so also is M.

)
Show: If R is injective on both sides then for every finitely generated
R-module M, M* is reflexive.
(Hint: Use Exercise 1(a).)

)

If R is an integral domain with quotient field K then we define
Rank(Mg) = dimK(M ®K). Show:
R

(a) Rank(M)=Rank(M/T(M)), where T(M) is the torsion submodule
of M.

(Hint: Kpg is flat.)

(b) Rank(M)=0M =T(M).

(¢) Rank(M)<o and A<M =>Rank(A)<o0ARank(M/A)<o A
Rank(M) =Rank(A)+Rank(M/A).

(d) T(M)=0%there is a free submodule A of M with A% M, If
A =R, then Rank(M) = Card([).
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(e) If M is generated by n elements then we have Rank(M)<n.
(f) Rank(M)<o0=>Rank(M*)=<Rank(M) a reflexive M*,

)

Let Rr be a cogenerator. Show:

(a) Soc(gR)* rR.

(Hint: For 0# x € R choose a maximal right ideal which contains rz(x).)

(b) Soc(gR)<>Soc(RRg).

If in addition, Soc(R ) has only finitely many homogeneous components
then we have further

(c) rr(Rad(R))=Soc(gR)=Soc(Rgr)=Iz(Rad(R)).

(d) rrlr(Rad(R))=Rad(R) = Igrrz(Rad(R)).

a10)

Let T be a commutative ring and let Mr be a T-module. Then a commuta-
tive ring R = Id(M7) is defined in the following manner:

(1) R==MXT as a set.

(2) Addition in R is componentwise: (m, t)+(m', t'):=(m+m’, t+1').

(3) Multiplication in R: (m, t)(m', t'):=(mt'+m't, tt').
The unit element of this ring is then (0, 1). Show:

(a) x =(m, t) is invertible resp. nilpotent in R<& ¢ is invertible resp.
nilpotent in T.

(b) Rad(R)=M xRad(T).

(c) Soc(R)=Soc(M) X (Soc(T) N rr(M)).

(d) R is perfect resp. semiperfect if and only if T is.

(e) R is noetherian resp. artinian if and only if T and Mr are.

1)

Let T be a commutative ring and let Mt be a faithful T-module (i.e.
rr(M) =0). For the ring R = Id(M7) defined in Exercise 10 show:

(a) Rg is injective M is injective and to every ¢ € End(M7) there is
ate T with ¢(m)=mt for all me M.

(b) Rg is a cogenerator &Ry is injective and Mr is a cogenerator.

(c) Let T be a complete discrete valuation ring with quotient field K
and let Mr:=K/T. Show: R is a ring with perfect duality but R is not
noetherian.

12)
(a) Let R be a commutative local ring with finitely generated socle and
let E be a simple R-module. Show:

E*=E"  E*=E"™ s
where n :=Le(Soc(R)) (Definition 3.5.4).
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(b) Show: If K isafieldandif Mk := K" (n = 1) thenthering R = [d(Mk),
defined in Exercise 10, is commutative, local and artinian and Le(Soc(R)) =
n.

(c) Show: If R is a commutative local ring then the following are
equivalent for the simple R-module E:

(1) E is reflexive.
(2) E* is simple.
(3) Soc(R) is simple.

(d) Let T be a non-complete discrete valuation ring with quotient field
K and let M7 =K/T. Show: R =1d(M7) (see Exercise 10) satisfies the
conditions in (c), but R is not a ring with perfect duality.

a13)
Show:
(a) R is semisimple<>Rad(R) =0 and for every simple right R-module
there is an isomorphic right ideal in R.
(b) If R is an infinite product of fields then Rg is injective but not a
cogenerator (see also Chapter 5, Exercise 11).

14)
Let K be a field and let R be the K-algebra with the basis
{1, uo, u1, us, . . ., €y, €1, €2, .. .} and the multiplication
u;u; =0, ee; = b, e eu; = 6 ju; uie; = 81l

Show:

(1) For x =1k +Y uk; +Y eh; € R, where k, k;, h; e K we have
(a) x is left invertible<>x is right invertible &k #0A k +h; #0 for
alli=0,1,2,....

(b) xeRad(R)k =0=h; for all i &> x* =0& x is nilpotent.
(c) xecentre of R&k; =0=h, for all i.
(2) (a) (Rad(R))*=0.
(b) rr(Rad(R))=Rad(R) = Ig(Rad(R)).
(c) Soc{grR)=Rad(R)=Soc(RR).
(d) R/Rad(R) as a ring is commutative and regular.

(3) For the maximal resp. simple ideals of R we have

(a) The maximal right ideals are precisely

rr(uo),  re(ui),  rr(ua),
They are all two-sided ideals and are also precisely all the maximal

left ideals.
(b) The simple right ideals are precisely

uoR, uiR, uzR,
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They are all two-sided ideals and are also precisely all the simple
left ideals.

(¢) uoR, u1R, uzR, ... is a set of representatives of the simple right
R -modules.

(d) A=Y eR is a maximal left ideal in R and R/A, Ruy, Ru,,
i=0

Ru,, ... is a set of representatives of the simple left R-modules.
There is no left ideal of R isomorphic to R/A.

For all i =0 we have:

(a) eiRe; is ring isomorphic to K, in particular ¢; is a local idempotent.
(b) w;R is the unique non-trivial submodule of ¢;R and ¢;R/u;R =
ui+1R.

(c) &R is injective and consequently Ry is a cogenerator.

(d) Rg is not injective.

(Hint for (c)): If A— Rg,fe Homg(A, e;R) and b€ R f may be
continued to A+ bR if and only if there is a g€ Homg (bR, ¢;R) so
that f and g coincide on A N bR. Show that this procedure is also
feasible for b =¢;, j=0and b =1—e;_; —e; (putting e_; = 0).)

as)

Show for a ring R : Ry is a cogenerator if and only if the injective hull of
every finitely cogenerated R-module is projective.



Chapter 13

Quasi-Frobenius Rings

13.1 INTRODUCTION

In the following presentation of QF-rings we pursue a direction opposite
to that of their historical development. In the historical development there
were considered first in the representation theory of finite groups—more
or less explicitly—group rings of finite groups with coefficients in a field.

Let R := GK be such a group ring where

81=¢€ 82 ...,8n
are the elements of the group G. Then the mapping

@ R> Z g,'k,"—‘)kléK
i=1

is a K-homomorphism of R into K, i.e. ¢ € R* = Homg(R, K). This
homomorphism ¢ has the essential property that Ker(¢) contains no right
or left ideal different from 0. By means of this property ¢ is essentially
uniquely determined (i.e. up to multiplication by regular elements from R
on the right) and is called the Frobenius homomorphism. Since R* is a right
R-module, ¢R = R} and for a Frobenius homomorphism it follows in fact
that R = R*. Then

®: Rgar—pre pR=R%
is an R-isomorphism and conversely every R-isomorphism
®:Rr-> R%

yields, in the form ¢ = ®(1), 1€ R, a Frobenius homomorphism ¢ : Rx -
Kk. After it had become clearer in the course of the development that

334
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many attractive properties of group rings depend only on the existence of
a Frobenius homomorphism ¢ or—what is equivalent—of an isomorphism
P, the existence of such a ¢ resp. @ in regard to a finite-dimensional
K-algebra Rx was incorporated in the definition of a Frobenius algebra
(even if formulated originally in the context of representation theory, T.
Nakayama, 1939).

The next essential step in the development was taken in removing the
algebra property. As is easy to see, it follows for a Frobenius algebra by
use of ¢ resp. ® that the following annihilator equations hold:

rrlr(A)=A forall A < Rg
IRI'R(B)=B forall B h)RR.

(Orthogonality relations between a finite-dimensional vector space and its
dual space!) By an additional condition on dimensions the Frobenius
property of the algebra follows again conversely from the annihilator
equations. In these annihilator equations the algebra properties no longer
appear.

A two-sided artinian ring, which satisfied the annihilator equations, was
then called a quasi-Frobenius ring and—with an additional condition—a
Frobenius ring (T. Nakayama, 1941).

On this basis a plethora of results on quasi-Frobenius and Frobenius
rings was established.

An important new impulse stimulated the development with the coming
into use of categorical and homological concepts. This led on to to-day’s
situation in which we have the following results:

A ring is a quasi-Frobenius ring, i.e. is artinian (and hence also
noetherian) on both sides and with the annihilator conditions satisfied if
and only if it is noetherian on one side and is injective or a cogenerator
on one side.

This will be the main theorem of the following analysis. Since accordingly
a quasi-Frobenius ring is on both sides an artinian (and noetherian) injective
cogenerator, there is at our convenience all of the structure that we have
proved up till now for artinian and noetherian modules as well as for rings
with perfect duality.

13.2 DEFINITION AND MAIN THEOREM

We prove rather more than is mentioned in the introduction. In place
of Ir resp. rg we write in the following only / resp. r.
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13.2.1 THEOREM. Let Ry be noetherian, then we have:

(a) The following conditions are equivalent:
(1) Rg is injective.
(2) Rg is a cogenerator.
(3) rR is injective.
(4) rR is a cogenerator.
(5) VA = Rg[rl(A)=A]AVB < gR[Ir(B)=B].

(b) If the conditions in (a) are satisfied then R is artinian on both sides.

13.2.2 Definition

(1) A ring which satisfies the conditions of 13.2.1 is called a quasi-
Frobenius ring.

(2) Aring R is called a Frobenius ring if it is quasi-Frobenius and we have

Soc(Rg)=(R/Rad(R))r,  Soc(zR)=r(R/Rad(R)).

Obviously a ring with perfect duality is accordingly a quasi-Frobenius ring
if and only if it is noetherian on one side.

We divide the lengthy proof of 13.2.1 into several propositions, some
of which are also of interest in themselves.

13.2.3 PROPOSITION. If Ry is injective and noetherian then R is artinian
on both sides.

Proof. Since Rpy is injective by 12.4.2 we have Ir(C) = C for all finitely
generated left ideals C — gR. Since Ry is noetherian, then R satisfies the
descending chain condition for all finitely generated and in particular for
all cyclic left ideals. Consequently by 11.6.3 Ry is perfect. Then 11.6.4
implies that Ry is artinian. Therefore it follows from Ir(C) = C that gR
satisfies the ascending chain condition for finitely generated left ideals. We
reflect that gR is then indeed noetherian. If this were not the case then
an ideal B = gR would have to exist which would not be finitely generated.
To every finitely generated subideal of B there is then a proper larger
finitely generated subideal. In B there may be defined inductively an infinite
properly ascending chain of finitely generated subideals in contradiction
to the previous statement. Since R is thus also right artinian and left
noetherian it follows from 9.3.12 that gR is also artinian. 0

13.2.4 PROPOSITION. If Ry is noetherian and (5) of 13.2.1 holds, ther
Ry is injective and R is artinian on both sides.
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Proof. We wish to apply 12.4.3. For that purpose we have to show for
right ideals A and B of R that
I(AnB)=1(A)+1(B).
By (5) we have
rM(AnB)=AnB=rl(A)nrl(B)=r(l(A)+1(B)),

in which the last equality is easily verified. By application of [ it follows
therefore that

I(AnB)=Ir(lI(A)+1(B))=1(A)+I(B).
From 12.4.3 we deduce then that Ry is injective. The rest follows from
13.2.3. 0

13.2.5 PROPOSITION. If Rg or rR is noetherian and we have
rl(A)=A or Ir(A)=A

for every two-sided ideal A of R then Rad(R) is nilpotent.

Proof. 1t suffices to exhibit the proof for the case rl(A)= A since in the
other case everything proceeds analogously. Put N := Rad(R), then
N < N?>« N* < ... and consequently

IN)s IIN) >IN o> ...

is also a chain of two-sided ideals. Since Rz or gR is noetherian this chain
is stationary, i.e. there is an n with

I(N")=1(N"").
Therefore we have
N"=r(N")=rl(N"*")=N""".

Since Rgr resp. rR is noetherian, N resp. rkN" is finitely generated so
that by 9.2.1(d) N**' & N" follows. The last two relations together imply
that N" =0, which was to be shown. 0

13.2.6 PROPOSITION. If Ry is injective and rR is noetherian then Ry is
a cogenerator and R is artinian on both sides.

Proof. Since gR is noetherian every left ideal of R is finitely generated.
From 12.4.2 and 13.2.5 it follows then that Rad(R) is nilpotent. From
9.6.2 we deduce for Qg = Ry that R := R/Rad(R) is regular. Since gR is



338 13 QUASI-FROBENIUS RINGS 13.2

noetherian xR is noetherian and because of this xR is also noetherian.
Then 10.4.9 indicates that every left ideal of R is a direct summand of
R, i.e. R is semisimple. Consequently by 11.6.3 R is perfect on both sides
and bv 11.6.4 R is artinian. Since gR is perfect by 11.6.3 (4), Soc(Rg)
is large in Rg. From 12.5.2 it then follows that Ry is a cogenerator. By
12.4.1 we then have rl(A)= A for all A = Rg. Since gR is noetherian it
follows therefore that Ry is artinian. O

Proof of 13.2.1. Since (b) follows from 13.2.4 only (a) has to be shown.

“(1)=>(2)”: By 13.2.3 gR is artinian, thus also noetherian. Then the
proposition follows from 13.2.6.

“(2)=>(5): By 12.5.3 Ry is injective and by 13.2.3 gR is noetherian.
Since Ry is a cogenerator by 12.4.1 we have rl(A)=A for all A <= Rg.
Since Rp is injective and gR is noetherian by 12.4.2 we have also Ir(B) =B
for all B = rR, thus (5) holds.

“(S)=>(1)”: By 13.2.4.

“(5)=(3)’: From (5) and as Ry is noetherian it follows that gR is
artinian thus also gR is noetherian. Hence we obtain (3) from 13.2.4.

“(3)>(4)’: By 13.2.6.

“(4)=>(5)”: From (4) and as Ry is noetherian it follows from 12.4.1
that zR is artinian and hence is also noetherian. Then the proposition
follows as “(2)=>(5)".

13.3 DUALITY PROPERTIES OF QUASI-FROBENIUS RINGS

The quasi-Frobenius rings can be characterized under noetherian rings
by means of the conditions in 12.1.1. To the conditions in 12.1.1 further
characterizations can now be added by duality properties. In so doing we
take over the notations of Chapter 12.

As a lemma for further considerations we first establish how finiteness
conditions carry over to the dual module.

13.3.1 LEMMA. Let Mg be finitely generated, then we have for
M* = Hompg (Mg, Rr):

(a) If rR is noetherian then RM* is noetherian.

(b) If rR is artinian then rM™ is of finite length (i.e. artinian and
noetherian).

Proof. (a) If first of all F:= @ x;R is a finitely generated free right R-
i=1



13.3 DUALITY PROPERTIES OF QUASI-FROBENIUS RINGS 339

module with basis x;, . .., x, then (as in the case of a vector space)

n 0 fori#j
P - Ro with x)-]

.E:Bl R&; with  §;(x;) 1 fori=j
is a free left R-module with basis &;, ..., 8, Since grR is noetherian by
6.1.3 rF* is also noetherian. Now let

MR= z m,-R

i=1

and let

n n n
nF=@ xR>3Y xr— Yy mreM,
i=1 =1 i=1

then, since 7 is an epimorphism,
Hom(n, 1g): M*sa—>aneF*

is a monomorphism. Since rF* is noetherian, in consequence, kM * is also
noetherian.
(b) Follows from (a) and 6.1.3. O

If R is artinian on both sides then it follows, from 13.3.1 together with
the results of Chapter 6, that for every finitely generated right or left
R-module M all submodules and factor modules of M and of M* are of
finite length. Use is made of this in the following without explicit mention.
Further recall that Le(M) is the length of the module M (=length of a
composition series of M) (Definition 3.5.4).

13.3.2 THEOREM. The following are equivalent for a two-sided artinian
ring R:

(1) R is quasi-Frobenius.

(2) Dual modules of simple right and simple left R-modules are simple.

(3) For every finitely generated right R-module and every finitely generated
left R-module we have: Le(M) =Le(M¥*).

Proof. ““(1)=>(2)”: Let Er be simple, then, since Rg is a cogenerator, there
is a monomorphism u : Eg = Rg; thus E* := Homg(Eg, Rr)#0. Now let
0 # a € E*, then we have to show that E*¥ = Ra holds, i.e. that E* is simple.
Since Eg is simple and a # 0, @ must be a monomorphism. Since Ry is
injective for every ¢ € E* there exists a commutative diagram
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a
E—>R
4
d
d
3 7
s
/
Ve
«
R

where ro is left multiplication by an ro€ R. Thus ¢ =roa holds and con-
sequently E* = Ra. Analogously for the left side.

“(2)=>(1)”: We show that the annihilator conditions 13.2.1 (5) are
satisfied. The proof follows from two steps.

Step 1. Assertion: Let A—> B — Rr and let B/A be simple, then
I(A)/1(B) is simple or 0.
Proof. As is easily verified,
f:1(A)/1(B)> (B/A)*
with
fx+1(B))(b+A) = xb, xel(A),beB

defines a monomorphism. Since (B/A)* is simple by assumption the asser-
tion follows. Evidently the corresponding statement holds also for left
ideals.

Step 2. Letnow A — Rp. Then there is a composition series of Rg which
contains A:
(i) 0=A¢>...-A,,=R.
In addition consider the series
(ii) R=I10)«<l(A)«...«<l(R)=0.
By the first step it follows that
Le(rR)<Le(RRg).

Since everything is symmetric with regard to sides we also have Le(Rg) <
Le(rR), thus Le(rR) = Le(RRg) follows. Consequently (ii) must be a compo-
sition series of gR. Likewise

O0=rllAg)=>...=>rl(A,)=R

is then also a composition series of Rg. Since by assumption (i) is a
composition series and A; < rl(A;), i=1,...,m, holds it follows that
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A;=rl(A;), i=1,...,m, from which we conclude that ri(A)=A.
Analogously Ir(B) = B holds for B = rR.

“(1)A(2)=>(3)”: Induction on Le(Mg). By (2) the assertion holds for
Le(Mg)=1. Let it hold now for all modules with Le(Mg)=<n. Then let Lg
have Le(Lg)=n+1 and let E be a simple submodule of L. Then by
assumption we have Le((L/E)*) = n. Let, as previously introduced,

E°={p|loecL*rp(E)=0},

then obviously we have (L/E)*=E° and consequently also Le(E°)=n.
Since by 12.6.1
Y:L*¥/E°>E*

with ¢ (¢ + E°) = ¢ | E is an isomorphism and we have Le(E*) = 1, it follows
that Le(L¥*)=n +1.
“(3)=>(2)": (2) is a special case of (3). g

13.4 THE CLASSICAL DEFINITION

The characterizations above of quasi-Frobenius rings do not render the
classical definition, or further characterizations closely connected with the
latter, redundant, these give indeed a good insight into the ideal-theoretic
structure of a quasi-Frobenius ring.

The definition of quasi-Frobenius rings goes back to T. Nakayama (1939).
In order to be able to present these some notation is needed.

Let R be a two-sided artinian ring with N := Rad(R). Let

R =A11®. . ~®Alg|@A21@' . ~®A222@' . .@A}n@. . ~@Akgk
=€11R®. . -®elg.R @ . .@eklR@. . .@ekm‘R

denote a decomposition into directly indecomposable right ideals A; = ¢; R
with orthogonal idempotents ey, . . ., €k, ; in Which the indices are chosen
so that A;y,..., A, (i=1,2,...,k) are exactly all of the right ideals
isomorphic to A;; in the decomposition. For brevity put A; = A;; and
e;'=e;;. Let R:=R/N and 7:=r+NeR. In the following let ¢ and e’
denote two of the orthogonal idempotents ¢;. Then we have by 12.5.1:

eR=¢'R©eR=¢'R.
Every one of the &;R is simple and as well as being a right ideal of R

is in fact also a right R-module (11.4.3). Further every simple right R-
module is isomorphic to one of the (&;R)rz. Summarizing it follows that

éR, ..., &R
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is a representative system for the isomorphism classes of simple right
R-modules.

13.4.1 Remark. Let e and e’ be two of the orthogonal idempotents e;;,
then we have

¢eR=¢e'R&Re=Re'.

Proof. By 12.5.1 we have
eR=¢'R©ER =¢'R.

Since R as a semisimple ring is two-sided injective it follows by 12.3.1
and 12.3.2 that

éR=¢'RoRé=Re'.

Repeated application of 12.5.1 yields the assertion. a

If eR, for an idempotent e # 0, is directly indecomposable then this means
that e cannot be written as the sum e = e¢' + ¢” of two orthogonal idempotents
# 0. Therefore it follows that Re is also directly indecomposable. In this
regard we recall that e is then called a primitive idempotent.

From the right-sided decomposition of R stated at the beginning we
obtain the left-sided decomposition

R =R811@. . .@Relm@. . .@Re,d@. . .@Rekgk,

which possesses properties corresponding to those on the right side.
The following theorem embraces the original definition of T. Nakayama
for quasi-Frobenius rings.

13.4.2 THEeEOREM. The following are equivalent for a two-sided artinian
ring.

(a) R is quasi-Frobenius.

(b) For every primitive idempotent e Soc(eR) and Soc(Re) are simple and
in Soc(RRr) resp. Soc(gR) all simple right resp. left R-modules occur up to
isomorphism.

(c) For every primitive idempotent e Soc(eR) and Soc(Re) are simple and
we have Soc(Rg) =Soc(zR).

(d) (Definition of T. Nakayama). There exists a permutation mw of
{1, ..., k} so that for every i =1, .. ., k we have

Soc(eiR)r = (€-)R)r, rSOc(Re i) = r(RE)).

Proof. ““(a)=>(b)”’: Let E be a simple submodule of eR. Since eR as a
direct summand of R is injective, eR contains an injective hull of E which
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is a direct summand of eR. Since eR is directly indecomposable, eR is an
injective hull of E. Consequently as E % eR we have E =Soc(R). Hence
the first assertion is proved. Since Rg and gR are cogenerators, all simple
right R-modules resp. left R-modules occur up to isomorphism in Soc(Rg)
resp. Soc.(rR).

“(b)=>(c)”: Since in Soc(Rg) there is contained an ideal isomorphic to
(eR)r, we have (as ée =¢) Soc(Rg)e #0. Since Soc(Rg) is a two-sided
ideal, Soc(Rg) consequently contains a subideal # 0 of Re and hence also
Soc(Re) (since this is simple and large in Re). Thus we have
Soc(gR) > Soc(Rr) (as Soc(grR)=Soc(@®Re;) =@ Soc(Re;)). Since
analogously the reverse inclusion holds the assertion follows.

“(c)=>(b)”’: If e is a primitive idempotent, then as 0# Soc(Re)=
Soc(Re)e we have

0# SOC(RR)e = Soc(RR)e.

Consequently there is an x € Soc(RRr) so that xeR is simple. Hence we then
have xeR =¢R from which (b) holds.

“(b) A (c)=>>(d)”: Since Soc(e;R) is simple, to every i €{l,..., k} there
isaw(i)e{l,..., k}with
(%) Soc(eiR)=¢é,»HR.
Since in Soc(Rgr) = @ Soc(e; R) there are contained only simple ideals which
are isomorphic to a Soc(e;R), i=1,..., k, and from (b) all isomorphism
classes of simple right R-modules must be represented, {Soc(e;R)|i=
1,...,k} forms a set of representatives for these isomorphism classes.
Since {¢;R|i=1,..., k} is also such a set of representatives, i~ (i) (in
the sense of (*)) is a permutation of {1,..., k}. Let Soc(e;R) = e;a;R then
it follows from Soc(e;R) =é,.;,R that we have eaie,.;) # 0, thus Soc(e;R) =
e;aie,,(i)R. As

0# e (i)E SOC(RR) = SOC(RR)
we have

Re;a,-e,,(i) > SOC(RR) N Re,,(;) = SOC(RE,,(,‘))

and since Soc(Re,,(;) is simple it follows that Soc(Re,;)) = Re,a:e.). Then
the epimorphism

Re; 3 re;— reae.y€ Soc(Rey)
yields the isomorphism
Ré;=Soc(Re»),
by which (d) is proved.
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“(d)=>(b)”’: By the Krull-Remak-Schmidt Theorem it can be assumed
that the idempotent e in (b) is one of the ¢; in (d). Then the assertion is
immediately clear.

Hence we have demonstrated the equivalence of conditions (b), (c) and
(d).

“(b)a(c)=>(a)”: By 13.3.2 it suffices to show that the dual module of
every simple right R-module and left R-module is again simple. Since
isomorphic modules have isomorphic dual modules it suffices to show that
every Soc(e;R) and Soc(Re;), i=1,...,k has a simple dual module, in
which we can by the symmetry confine ourselves to Soc(e;R). We show
first that every non-zero homomorphism

[ ZSOC(@;R)R —>RR

is induced by multiplication on the left by an element of Re;.. We use, as
previously shown, Soc(e; R) = e;a;e.)R, then it follows that

eleaeiyr) = pleaieni)ermh reR.

Let q = ¢(eiaienm) # 0, then ge,»R is simple and by the same inference
as in the proof of (b)a(c)=>(d) (0# Rgen > Soc(rR)NReni)=
Soc(Re.) A simple Soc(Re..i)) = Rqeri) = Soc(Re.)) it follows that

Rgen)=Soc(Ren)) = Reiaian .
Thus an rge; € Re; exists with
qen(i) = ro€iGi€x(i)
and hence we have
¢(eaienyr) = ey = ro€idin i

If we write for the left multiplication of Soc(e;R) = e¢;a;e,()hR by xe;, x€ R,
(xe;)', then it follows that @= (roe;)’. Thus the mapping

¥: Re; 3 xe;— (xe;) € (Soc(e;R))*
is an epimorphism. Let N := Rad(R); as
0=N SOC(RR) =N SOC(RR)

we have Ne; = Ker(¢). Since ¢ # 0 and since by 11.4.3 Ne; is the unique
maximal ideal in Re; it follows that Ker(¢) = Ne; thus

Re;/Ne; = (Soc(e;R))*

and consequently (Soc(e;R))* is simple which was to be shown. O
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13.4.3 CoROLLARY. The following are equivalent for a two-sided artinian
ring R:

(1) R is a Frobenius ring.

(2) Soc(Rr)=(R/Rad(R))r and rSoc(rR)=r(R/Rad(R)) hold.

(3) R is a quasi-Frobenius ring and either

Soc(Rr)r =(R/Rad(R))g or rSoc(rR)=g(R/Rad(R)).
hold.

Proof. “(1)=>(2)”’: In definition 13.2.2(2) the condition “R is a Frobenius
ring”” was omitted.

“(2)=>(1)”: Since in (R/N)gr resp. r(R/N) all simple right resp. left
R-modules occur up to isomorphism, this holds also for Soc(Rg)r resp.
RSOC(RR). As

®Soc(e;R) =Soc(Rg)=(R/N)r = ®&;R

and since all éi,ﬁ are simple, on the basis of number all Soc(e; R) must
be simple. Correspondingly this holds for the left-hand side. Hence
13.4.2(b) is satisfied. Consequently “(2)=>(3)” also holds.

“(3)=>(1)”: Now let Soc(Rr)r =(R/N)g be satisfied. By 13.4.2(d) this

is evidently equivalent to having g; = g.(; for every i=1,..., k. Since by
13.4.1 g; is independent of the side, it follows that gSoc(gR)=jg(R/N)
which was to be proved. 0

13.5 QUASI-FROBENIUS ALGEBRAS

The principal aim of the following considerations consists in showing
that a quasi-Frobenius ring, resp. a Frobenius ring in the case that it is an
algebra over a field, can also be characterized by the classical definition
for quasi-Frobenius algebras resp. for Frobenius algebras.

Now let K be a field and let Rx be a unitary K-algebra (see 2.2.5). This
implies that R is a unitary K-module, i.e. a K-vector space. We call R a
finite-dimensional K-algebra if the dimension of R over K (as a vector
space) is finite. Let A < Rpg, then we have fora€ A, ke K,

ak=(alk=a(lk)e A,

i.e. every right ideal is also a K-subspace of Rx. Now let B = gR, then we
have for be B, ke K,

bk =(1b)k =(1k)b € B,

so that left ideals are also K-subspaces. For the K-dimension of a K-
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subspace U of Rx we write dimg (U). If dimg (R) < oo then for ideals
Ao B> Rr resp. Ao B iR
it follows that
dimg (A) <dimg (B) < 0.

Consequently R is then a two-sided artinian ring for a properly descending
chain of ideals must break off after at most dimg (R) steps.
We consider now the mapping

k:Ksk—1lkeR (1eR).
As 1(k1+k2)= 1k,+1k, and
1(k1kz) = (1k1)ko = ((1k1)D)ka = (1k1)(1k2)

Kk is a ring homomorphism. Let e be the unit element of K, then we have
1e =1, thus « is not the zero homomorphism and consequently (since K
is a field) is a monomorphism. We establish further that «(K) lies in the
centre of R:

r(lk)=(r1)k = (1r)k = (1k)r, reR, kek.

By virtue of this statement we can and do wish to assume in the following
that K is a subfield of the centre of R (i.e. letting «(K') be replaced by K
and calling «(K') again K).

Let now dimg (R) = n. We consider the dual vector space to Rx

R* = Homg (R, K),

for which then we likewise have dimg (R*)=rn (we notice that now the *
refers to K and not as earlier to R!). By putting

(@r)(x) = @(rx), eeR* rxeR

R* becomes a right R-module. As n = dimg (R) =dimg (R*) R and R* are
isomorphic as K-vector spaces. An important question for the following is
now whether R and R* are indeed isomorphic as right R-modules. It will
turn out that this is the case if and only if R is a Frobenius ring.

13.5.1 LeMMA. Let dimgx(R)=n. For ¢ € R* the following are then
equivalent:

(1) Ker(e) contains no non-zero right ideal of R.

(2) Ker(¢) contains no non-zero left ideal of R.

(3) f: Rr 3r—>¢re R% is an R-isomorphism.

Proof. “(1)=>(3)”: Let ¢r =0, thus ¢(rx) =0 for all x € R, thus ¢(rR) =0.
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By assumption it follows that r = 0, i.e. f is a monomorphism. As dimg (R) =
dimg (R*) f is then in fact an isomorphism.

“(3)=>(1)": From ¢(rR)=0 it follows that ¢r=0 and since f is an
isomorphism r = 0, thus (1) holds.

“(2)=>(3)”: @R is a K-subspace of R*. Suppose, ¢R # R* then there
is 0# x € R with ¢(rx) =0 for all re R (if we take x from the orthogonal
complement of ¢R in R), thus ¢(Rx)=0, contradiction to (2)! Con-
sequently we have ¢R = R*, i.e. f is epimorphism and thus, on account of
dimension, is an isomorphism.

“(3)=>(2)”: For every 0# xR there is an £ R* with £(x)#0. Let
£ = ¢r, then it follows that ¢(rx) # 0, thus ¢(Rx)#0, i.e. RxZ Ker(¢). 0O

13.5.2 Definition. A linear function ¢ on Rg, which satisfies the condi-
tions of 13.5.1, is called non-degenerate.

13.5.3 CoOROLLARY. Let dimg(R) <00, then the following are equivalent:

(1) There exists a non-degenerate function on R.
(2) Rk =R%.

Proof. “(1)=>(2)”: By 13.5.1.
“(2)=>(1)”: Let f: R =R% and let ¢ = f(1), then it follows that

[ =fAr=f)r=er,
thus f: R 3r—>¢re R* and by 13.5.1 ¢ is non-degenerate. 0

13.5.4 Definition. Let dimg (R) <o00.

(@) R is called a Frobenius algebra :& Rg =R¥%.

(b) R iscalled a quasi-Frobenius algebra :& the directly indecomposable
direct summands of Rz and R% coincide up to isomorphism and number
(i.e. for every directly indecomposable direct summand of Rg there is a
corresponding isomorphic copy of R% and conversely).

In this definition we have retained the classical formulation also in order
to make the older literature in this area more easily accessible. What this
means in modern terms is to be explained immediately. The foundation
for everything is the fact that for an arbitrary finite-dimensional algebra
Ry the dual space R% as a right R-module is an injective hull of
(R/Rad(R))g, from which it follows immediately that R% is an injective
cogenerator. Hence (b) is then equivalent to saying that Ry is also an
injective cogenerator thus a quasi-Frobenius ring and (a) implies addi-
tionally that

Soc(RRr)=Soc(R%)=(R/Rad(R))z,
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from which R is then in fact a Frobenius ring. All of this is now to be
explained precisely.

To prove that R% is an injective hull of (R/Rad(R))x it must first of all
be shown that every finite-dimensional semisimple algebra is a Frobenius
algebra. Here an algebra is called semisimple if it is semisimple as a ring
(see 8.2).

13.5.5 COROLLARIES

(1) If R is a Frobenius algebra, if Sk is a K-algebra and if R=S is a
K-algebra isomorphism then Sk is also a Frobenius algebra.

(2) If Rx is a K-algebra and if

R =A1@ .. @Am

is a direct decomposition into two-sided ideals #0, then we have: R is a
Frobenius algebra if and only if every A, i =1, ..., mis a Frobenius algebra.
(3) Let L be a skew field which contains K in its centre, for which
dimg (L) <00 holds, then the ring of all n X n square matrices (for n € N) with
coefficients in L is a Frobenius algebra over K.
(4) Every finite-dimensional semisimple algebra is a Frobenius algebra.
(5) If G is a finite (multiplicative) group and K is a field then the group
ring GK is a Frobenius algebra over K.

Proof. (1) An algebra isomorphism p:R S is a ring isomorphism for
which we have: p(x)k = p(xk)forall x € R, k € K. Let ¢ be anon-degenerate
linear function on Rg. Then ¢p~' is a non-degenerate linear function on
Sk, for from

0=0p ' (505) =@ (p ™ (s0)p ' (S)) = 0(p ' (50)R)

it follows that p_l(so) =0, thus so=0.

(2) Let ¢ be a non-degenerate linear function on R, then ¢|A;, i =
1,..., m is a non-degenerate linear function on A;. This implies immedi-
ately, if we take note, that we have A;A; =0 for i #j and consequently
aA;=aR for a € A;. Conversely let ¢; be a non-degenerate linear function
onA,i=1,...,m,then ¢ =(¢1,..., ¢.,)is a non-degenerate linear func-
tion on R for from

0=¢((ay...am)R)

it follows that 0 = ¢;(a;A;) for all i, thus by assumption a; =0,i=1,...,m.

(3) Let wy,..., w, with w; =1 be a basis of Ly over K and let d;; be
the matrix with 1 in the (i, j)th place and O elsewhere. Then d;w,
(i,j=1,...,n;1=1,..., m)is obviously a basis of the matrix ring L, over
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K. Define ¢: L, > K by
‘P( Y diwk f,) =)k .}1
il i

then ¢ is a non-degenerate linear function. Namely let

r= z di,wlkfy # 0,
i

then k2, # 0 exists. Consequently we have also

x=3 w,kfo,'o #0

=1
and it follows that
o(rd;ix ) =1.

Thus the kernel of ¢ contains no right ideal # 0.

(4) On account of 8.2.4 and (2) we can confine ourselves in the proof
to a simple finite-dimensional algebra Rg. For this we have 8.3.2 at our
disposal. Let E be a simple right ideal of R and let L := End(Eg), then
LE is a finite-dimensional vector space over L. Let v4,..., v, be a basis
of . E, then by 8.3.2 we obtain a ring isomorphism

p:Rar—(l;)elL,, liel
in which

vr U1
= (li/')
Ut Uy
holds. Since K is contained in the centre of R, K is a subfield of L and as
K = R even a subfield of the centre of L. Thus L, is also a K-algebra in

which (l;)k = (I;k) for k € K and [;k is the multiplication in L. For rk it
then follows that

v (rk) = (o)l = él o)k = é (k)0

thus we have p(rk) =p(r)k, i.e. p is a K-algebra isomorphism. Then the
assertion follows from (1) and (3).
(5) Let Ord(G)=n andlet G={g,=e, g3, ..., g.}. Then

¢0:GK > Y gki—keK
i=1
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is a non-degenerate linear function for if in ), gk; it happens that k; # 0,
i=1

then it follows that

(w8 -s 00
thus Ker(¢) contains no right ideal # 0. a

13.5.6 THEOREM. Let K be a field and let Rx be a K-algebra with
dimg (R) <00. Then we have:

(a) R/Rad(R)=Soc(R%) as right R-modules.

(b) RZ% is an injective hull of (R/Rad(R))g.

(c) R% is an injective cogenerator.

Proof. The proof follows in several steps.

(1) R% is injective. The proof of this follows completely analogously to
that of 5.5.2. In place of Z in 5.5.2 K now appears and Kx now appears
in place of Dz. To the Z-injectivity of Dz corresponds now the K-injectivity
of Kk. With these replacements the proof of 5.5.2 can be taken over word
for word.

(2) By 9.3.5 we have Soc(R%)=Ir+(Rad(R)). We claim that £e
Iz+(Rad(R))©Rad(R) = Ker(£). To this end let

(€u)(x) = €(ux)=0

for all u € Rad(R) and all x € R. For x =1 it follows that Rad(R) > Ker(¢).
Conversely if this is the case then it follows, since Rad(R) is a right ideal,
that

0= ¢(ux) = (éu)(x)

for all u € Rad(R), x € R; thus we have {€ Iz«(Rad(R)).
(3) For £ €Soc(R%) let £ be the linear function induced by

£: R/Rad(R)>x +Rad(R)—£(x) e K.
We claim that
¥: Soc(R%) 3 ¢— £ Homg (R/Rad(R), K)

is an R-isomorphism. It is clear that this is an R-monomorphism. Let now
g € Homg (R/Rad(R), K) and let

v:R - R/Rad(R),

then it follows that g € Soc(R%) and gv= g, thus ¢ is an isomorphism.
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(4) Since R/Rad(R) is a finite-dimensional semisimple K-algebra, by
13.5.5 there is an R/Rad(R)-isomorphism

A:Homg (R/Rad(R), K)- R/Rad(R),

which can and is to be considered also as an R-isomorphism. In short we
have the isomorphism

Ay :Soc(R%)r »> (R/Rad(R))g.

Let f be the inverse isomorphism. Thus (a) is satisfied.
(5) Let ¢:Soc(R%)-> R% denote the inclusion. Since Soc(R%) < R%
(because it is artinian) and R% is injective,

of :(R/Rad(R))r > R%

is an injective hull. Hence we have shown (b).
(6) Since all simple right R-modules occur in (R/Rad(R))r up to
isomorphism, R% is a cogenerator, thus (c) also holds. 0

We come now to the aforementioned characterization.

13.5.7 THEOREM. Let Rg be a finite-dimensional algebra over the field
K. Then we have:
(1) Risaquasi-Frobenius algebra if and only if R is a quasi-Frobenius ring.
(2) R is a Frobenius algebra if and only if R is a Frobenius ring.

Proof. (1) In regard to this we recall that a module is a cogenerator if and
only if for an injective hull of any simple module it possesses an isomorphic
submodule. This is then a directly indecomposable direct summand of the
cogenerators. Since R% by 13.5.6 is an (injective) cogenerator, we have
consequently: Ry is then also a cogenerator (and then also injective) if and
only if Rk is a quasi-Frobenius algebra.

(2) If Rk is a Frobenius algebra then R is also a quasi-Frobenius algebra
and consequently by (1) a quasi-Frobenius ring. Further by 13.5.6 and as
R}% =Rz we have

(R/Rad(R))r =Soc(R%) =Soc(Rr),

thus by 13.4.3 R is a Frobenius ring. Conversely let R be a Frobenius
ring, then R is a quasi-Frobenius ring and by definition we have

(R/Rad(R))r =Soc(RRg).

Consequently the injective hull R% of (R/Rad(R))g is isomorphic to the
injective hull Rz of Soc(Rg), thus Rk is a Frobenius algebra. That in fact
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Ry is the injective hull of Soc(Rg) follows from the injectivity of Rz and
since in an artinian ring Soc(Rg) % Rk. O

13.6 CHARACTERIZATION OF QUASI-FROBENIUS RINGS

In conclusion we return once again to the general case of quasi-Frobenius
rings and state an interesting characterization of them. It is particularly of
interest for the reason that set-theoretic considerations come essentially
here into the proof of algebraic results. For this we need to use some
set-theoretic facts, which are not proved here but which however are to
be found in any text-book on set theory.

13.6.1 THEOREM (FAITH-WALKER). The following are equivalent for a
ring R:

(1) R is quasi-Frobenius.

(2) Every projective right R-module is injective.

(3) Every injective right R-module is projective.

Proof. We go through the proof in the following steps: (1)=>(2), (1)=> (3),
(2)=>(1), (3)=>(1), in which the first two implications are easy to prove
whereas we must delve deeper for the last two.

“(1)=>(2): Since Rpy is injective and noetherian, by 6.5.1 every free
right R-module is injective and hence also every direct summand of a free
right R-module. Consequently every projective right R-module is injective.

“(1)=>(3)": Let Qg be an injective R-module, then by 6.6.4 Q is the
direct sum of submodules which are injective hulls of simple right R-
modules. It suffices therefore for such a module to show that it is projective.
Since Ry is a cogenerator then the injective hull of every simple right
R-module occurs up to isomorphism as a direct summand in Rg and is
therefore projective. 0

We preface the rest of the proof by a lemma.

13.6.2 LEMMA. For an arbitrary ring R and a module Mg we have: If
M™ is injective then R satisfies the ascending chain condition for right ideals
of the form rr (U) with U < M.

Proof. Indirect proof. Suppose we have for U, c M, ieN

rrR(U) o (U= ...,
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then it follows (as rrlyrr(U) = rr(U)) that
Irr(Uy) @ Iyrg (W) <@ . ...
For every i e N let
x; € I (UD), xi# Iyrr (Uisa),

then there is an element a;,; € rr(U;+;) with x;a;+1 #0. Let

A= U rR(I],‘),

ieN
then we have A = Rz and for every a € A there is an n, € N with
aerg(U;) forall i=n,.

Then it follows that

xa=0 forall i=n,
thus for an element x = (x;x2x3...)€ M" we have

xa =(x1axza. .. x,,-1a000.. )eM™,

Consequently

o Asa>xae M®

is a homomorphism. Since M™ by assumption is injective a commutative
diagram exists:
A - SR

e
e

e

.
@x )
e

e
7

~*
M
Let p(1)=(21z2...2,000...) then it follows for all a € A that
e(@a)=xa=p(a)=p(l)a=(z1a...z,a...2,a000...),
thus x;a =0 for all i >n and all a € A, thus in particular x;a;+; =0 for i >n.
Contradiction! 0

We continue now with the proof of Theorem 3.6.1.

“(2)=>(1)”: Since by assumption R™ is an injective right R-module,
13.6.2 can be applied in the case Mz = Rg. Thus R satisfies the ascending
chain condition for ideals of the form rg(U) with U < R. Since Rg is
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injective it follows therefore by 12.4.2 that R satisfies the descending chain
condition for finitely generated left ideals and in particular for cyclic left
ideals. By 11.6.3 Ry is then perfect.

Let N := Rad(R), then the chain

re(N) = re(N?) = re(N?) ...
is stationary, i.e. there is a 1 € N with
rrR(N)=re(N"™),  i=0.

Since N'isatwo-sidedideal, rg (N')isatwo-sided ideal. Suppose rr (N) # R,
then it follows from 11.6.3 that

Soc(r(R/rr(N))) #0.

Let ¥ be a non-zero element of this socle, then it follows that xg rz(N')
and, since the socle is semisimple, Nx =0, thus Nx < rgr(N"). Consequently
we have

N'Nx=N"x =0,

thus x e re(N"*")=rg(N"), contradiction! This contradiction shows that
rz(N') =R thus we must have N‘=0, i.e. N = Rad(R) is nilpotent. Con-
sequently gR is also perfect. By 11.6.3 every right R-module # 0 then has
a non-zero socle. Thus Soc(Rg) # Rg. Therefore 12.5.2 (6) is satisfied and
it follows that Ry is a cogenerator. By 12.4.1 we then have rrlr(A)=A
for every right ideal A of R and consequently Rg is noetherian. Since
moreover Ry is injective, by 13.2.1 R is quasi-Frobenius. Hence (2)=>(1)
is shown.

“(3)=>(1)": Since every injective right R-module is projective every
injective module can be mapped monomorphically into a free module.
Since every right R-module can be mapped monomorphically into an
injective module, by 4.8.2 Ry is a cogenerator. We now show that Ry is
noetherian. To this end let Qr be an injective hull of Rg. Since Ry is a
cogenerator Qg is also a cogenerator. First of all we assume that Q™ is
injective and complete the proof for (3)=>(1); we put the proof of the
injectivity of Q™ at the end. By 13.6.2 (with Mz = Qg) R satisfies the
ascending chain condition for right ideals of the form rx(U) with U < Q.
Since by 12.4.1 every right ideal of R is of this form, Rg is noetherian,
from which the proof is complete up to the injectivity of Q™.

While the proof was obtained so far in the context of the usual arguments,
use must be made in the following of essentially set-theoretic considerations.
We formulate separately particular steps of the proof which are of indepen-
dent interest.
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The next aim of our consideration consists in proving the Theorem of
Kaplansky which says that every projective module is a direct sum of
countably generated submodules. Here “countable” is to include “finite”.

13.6.3 LEMMA. Let R be an arbitrary ring and M an R-module. Suppose
we have

M=@M;=ADB,

jeJ

where every M; is countably generated. Then to every set H #J with the
property that for

U= M,
jeH
U=(AnU)®BU) holds we have a set I with H g I < J so that for
W=@M,

jel

W=(AnW)DB W) holds and AnW=(ANU)DC, where C is a
countably generated submodule.

Proof. Leta and B (= 1), — ) be the projections belonging to the decompo-
sition M = A@®B. Let ipe J\H. Since M; is countably generated, a(M,,)

and B(M,,) are countably generated. Hence there is a countable set I, =J
with
M, = a(M,)+B(M,) = D M,

jelh
Since every M; is countably generated and I is a countable set @ M; is

jel
countably generated. Consequently there is a countable set I, =J with

® M, o ® M) +8(D M) > DM,
jeh jeh iel jelx
We continue inductively. We obtain therefore a sequence of countable sets

Io = {io}, 11, 12, e
with

g i@ m)re(@m)~ @ M
As Im(a)= A and Im(B) = B this means that
) DM>(an ® M)+(Bn & M)

jel, j€lnin j€l
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Then both
L= I,

n=0.1.2....
and L\H are countable sets. Let now I := Hu L and

V=@ M, W=OM=-UdDV.

jeL\H jel

Then V is also countably generated.
Assertion. W=(ANW)D(BnW).

For the proof it is first of all clear that (A~ W)@ (B ~n W)— W. For the
reverse inclusion we establish that every M; with jel is contained in
(AN W)D(Bn W). For je H this holds by assumption. Let j€ L\H and
let j € I,,, then this holds by (x).

From W=U®V=ANU)®BNAU)®V
it follows by the modular law that

AnW=AnNU)DC, BAW=BnU)®D,
with
C=(BnUBV)NA, D=(AnU)®V)nB.

Therefore we deduce that

W=ANW)BBAW)=AnU)DBNAU)CED=UBCD®D.
Since also W = U@V it follows that

V=W/U=C®D.
Thus C is an epimorphic image of the countably generated module V and
hence is itself countably generated. 0

13.6.4 THEOREM. Let R be an arbitrary ring and M an R-module. If we -
have

M=-PM=-A®B

jeJ

with countably generated submodules M, then A and B are also direct sums
of countably generated submodules.

Proof. It suffices evidently to prove the assertion for A. Let {A,|A € A} be
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the set of all countably generated submodules of A. Let

X:={(H,F)|HcJArcAA@M=(An@A4,)@(Bn@M)A

jeH jeH jeH

Am@[\/f,:@A,\}.

jeH Ael
Since (J, J)e X, X # J. Further X is ordered by
H,. Ty)=sH, T)oH cH AT T,
If Y < X is a totally ordered subset then

(H',T") with H'= |J H and "= U T

(HDeY (HDNeY

is an upper bound of Y in X as is easily confirmed. Zorn’s Lemma ensures
then a maximal element (H, I') € X. If we now suppose H #J,13.6.3 yields
a properly larger element from X 4. Thus H =J must hold. a

13.6.5 CoOROLLARY. For an arbitrary ring R we have: Every projective
R-module is a direct sum of countably generated submodules.

Proof. Since every projective R-module is isomorphic to a direct summand
of a free R-module the assertion follows from 13.6.4 in the case M = RY’. O

13.6.6 LEMMA. Let R be an arbitrary ring and Ar a finitely generated
R-module. Then we have: If an injective hull of A is also projective then it
is finitely generated.

Proof. Since all injective hulls of A are isomorphic it can be assumed
without loss that A is a submodule of the injective hull Q of A. Since Q
is projective there is a monomorphism

,U.:Q—)R(”

into a free R-module. Since A is finitely generated there is a finite subset
Jo<J with

u(A) > R% < RY.

Denote the projection of R*” onto R by r, then it follows that 7u |A

is a monomorphism. Since A % Q then 7w is also a monomorphism.
Consequently mu (Q) as a direct summand of R is finitely generated and .
hence also is Q. d
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13.6.7 CoROLLARY. For an arbitrary ring R we have: Every R-module
which is simultaneously projective and injective is a direct sum of finitely
generated submodules.

Proof. By 13.6.5 it suffices to prove the assertion for a countably generated
projective and injective R-module M. Let

M=Zx,~R

ieN

be one such. Let Q; = M denote an injective hull of x,R. Since Q, is a
direct summand of M, Q, is also projective and consequently by 13.6.6
finitely generated. Let

M = Ql @Bl,
then B; is also projective and injective. Suppose Qi, ..., Q, and B, with

M=00:1®.. ®2Q.9B,
and

n
X1,...,x €@ Q;
i=1

have been inductively determined, then let
n
xn+l=an+l+bn+1 Wlth an+le@ Oi, bn+1€Bn
i=1

and let Q,+1 = B, be an injective hull of b,.,R. For the sequence, so
obtained, of finitely generated direct summands

Ol’ QZ’ QSy e

with xi, ..., x. €  Q; we then obviously have

i=1

M=®Qi« O

ieN

We wish now to show in the sense of the proof (3)=>>(1) of 13.6.1 that
Q™ is injective, where Q is an injective hull of Rg. By assumption Q is
also projective and hence by 13.6.6 finitely generated. Now let 7 be an
infinite cardinal which is properly bigger than 2 Rl where |R|is the cardinality
of R. If Ar is a finitely generated R-module then 7 is bigger than the
cardinality of the set of all submodules of Agr for this is a subset of the
power set of Ar (for reasons see a book on set theory).
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Now let [ be a set of cardinality 7 (or bigger), then let
M=0Q'=] Q; with Q;=Q forall iel

iel

Since Q is injective, M is injective and thus also projective. Let Q; be the
image of Q; = Q under the canonical monomorphism on; (in the sense of
4.1.5). On the other hand by 13.6.7 M is a direct sum of finitely generated
submodules:

M=®M.

jedJ

Now let i, € I be arbitrary. Since Qj, is finitely generated there is a finite
subset J, = J with

Q> DM,

jey

If we now put

Qun=Qi and D= DM,

jedy
then D; is finitely generated and there is a B; = D; with
D,=Qu®B:.
We now consider the set
(DinQllielni#i).

This is a set of submodules of the finitely generated module D. By choice
of the cardinality = of I not all of the D, n Q; can be different from one
another (transfinite box principle). Let iy, k € I\{i;}, i» # k with D, " Q}, =
D] [ OL

As Qi, nQ} =0 it follows that

D,~nQ,=D,nQ,=0.
Consequently

LM @ M,

jeJ jeJ\Jy

is a monomorphism (where ¢, resp.  is the inclusion resp. the correspond-
ing projection and we have Ker(m,t,) = Dy n Q}, = 0as Ker(,) = D,). Since
Qj}, is finitely generated there is a finite set

Jz < ]\J]
with Im(7r,t;) = D, = @ M

jely
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By choice of J, we have J;nJ, = . Now let
Q) = Im(mat,),
then it follows that
Q(z) = Q:z =Q
and there exists a B, with
D> =Q»®B..
Inductively we define Q;,, i, € I\{i1, ..., -1} by
(D1®...®D,-1)nQ;, =0

and

Q,—>POM—> D M

jeJ je\(Jyu..uJn 1)

aswellas J, cJ\(J;u...ulJ,_1) with J, finite and

Im(7nt,) = D, = P M,
el
Further we have

],, ﬁ(.hu. . .U]"_1)= .
If we put

Q(n) = Im(”n‘n ),

then we have again Q)= Q and there exists a B, with

Dn = Q(n)@Bm

For the inductively resulting sequences

Jl’ Jz’ J3 e ey D19 Dly D3a
Qu, Qa, Qs ..., B,, B,, Bs;,

we then have, if we put

H:=1J
ieN
(%) O(N) = @i‘ Q) (as Q= Q),

M=@m=(@ M) @ M)

jed jel\H

DOM=B DM,

jeH ieN (je.r,- ) ieN ieN

= @ D= @ (QiH®B)),

13.6
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thus
m=(@ 0u)o(@5)e( B, M)
Consequently
,-Ee% Qu

is a direct summand of the injective module M and hence in any case
injective. By (*) Q™ is then also injective which was to be shown. Hence
the proof (3)=> (1) is complete. 0

EXERCISES

@
Show:
(a) A commutative artinian ring is a quasi-Frobenius ring if and only if
it is a direct sum of ideals with simple socle.
(b) Every commutative quasi-Frobenius ring is a Frobenius ring.
(¢) If R is a commutative principal ideal domain and 0 # A — Rg then
R/A is a Frobenius ring.

(2)
Let K be a field and let R be the ring of all matrices of the form

(“ b) with a, b, ccK.
0 ¢

Show:
a
a) F =(
(a) For x 0
(1) x is left invertible & x is right invertible & ac # 0.
(2) x is nilpotent&>x* =0&>a = ¢ =0.
. . 0 0y /1 0y /0 b /1 b
o sisamemornsce| (0 0.3 0.0 4.0 1)
(3) x is an idempoten erO o 1) 1)\ o
(4) xR is simplec>x #0Aa=0; Rx is simple<x #0Aac =0.

b
c) € R we have:

(b) (1) Rad(R)=<g Ig) Soc(RR)=(g Ilg)
Soc(RR)=(IO< IO()

(2) rr(Rad(R))=Soc(rR), Iz(Rad(R))=Soc(Rgr), rr(Soc(Rgr))=
SOC(RR), IR (SOC(RR)) = 0, re (SOC(RR )) = 0, IR (SOC(RR)) = SOC(RR).
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(3) Soc(Rg) as'a left ideal is a direct summand, however as a right
ideal it is not cyclic (thus not a direct summand).
(4) Soc(gR) as a right ideal is a direct summand, however as a left
ideal it is not cyclic.

(c) For the determination of the lattice of the right ideals of R show:
(1) Le(Rg)=3.
(2) The maximal right ideals of R are Soc(Rg) and Soc(zR).

0 k
(3) The simple right ideals of R are Rad(R) and also E := ( )R,

0 1
keKk.
(4) The lattice of the right ideals has the following picture

R
Soc(zR) < >,SOC(RR)

.

Rad(R) l E..* E. Er s+

=

0

(d) For the determination of the injective hull of Rg show:
(1) For all k e K, E, =Rad(R) = R/Soc(gR) as right R-modules.
(2) The only injective right ideals of R are 0 and Soc(zR).

K K ‘
(3) R is a subring of s:=( ) (=K.); Rr —> S is an injec-
: K K

tive hull of Rg.

3
Show:
(1) Let R be a quasi-Frobenius ring. If e € R is an idempotent, for which
eR is a two-sided ideal, then e lies in the centre of R.
A M
(2) Let A and B be rings, let 4Mp be a bimodule and let R = ( 0 B ),
then we have: R is quasi-Frobenius& A and B are quasi-Frobenius and
M=0.
(Hint for (1): Show that the factor ring R/eR is again a quasi-Frobenius
ring and thereby deduce the assertion.)

()
Let K be a field and let R be the commutative K-algebra with the basis
1, a, b, c and the multiplication 1r =r1 =rforre R, ab=ba =0,a’ = b’ =,
ac=ca=bc=chb=c>=0.
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Show:
(a) For x =1k, +ak,+bks+ckse R (ki K) we have
(1) x is invertible& k; #0.
(2) x is nilpotent&>x® =0k, = 0 x € Rad(R).
(3) X € SOC(R)@kl = k2 = k3 =0.

(b) Let N:=Rad(R). Then N?’=Soc(R)=cR and 0->cR<aR<
N <= R is a composition series of Rg. In particular Soc(R) is simple, thus
R is a quasi-Frobenius ring.

(c) If we define A = (ak +b)R for every k € K then we have:

(1) cRoAroN;and Ay # A for k #k'.
(2) If U is an ideal of R of length 2, then U =aR or U = A, for a
k € K. (Hint: Show first that U is cyclic.)
(3) Determine the lattice of ideals of R.
(d) The factor ring R/N? is not a quasi-Frobenius ring.

€)
Let the ring R be commutative and artinian. Show:

(a) If A is a maximal ideal of R then the injective hull of R/A is finitely
generated.

(b) For every finitely generated R-module the injective hull is again
finitely generated.

(c) If C is a minimal cogenerator of Mg then the ring S = Id(Cg),
defined in Chapter 12, Exercise 10, is a quasi-Frobenius ring which has a
factor ring isomorphic to R.

(Hint for (a): If Q is an injective hull of R/A and if B; := Io(A’) then
show first that B;.,/B,; is finitely generated.)

(6)
Let Rr be noetherian and let every cyclic left R-module be reflexive. Show:

(a) R is artinian on both sides.

(b) Every maximal right ideal B is an annihilator ideal (i.e. B = rglg (B)).
(Hint: If E is a simple left R-module and if A is simple with A% < E%}
then it follows that gkA = gE).

(c) If Rg = My andif M/R issimple then Rg is a direct summand of M.

(d) R is a quasi-Frobenius ring.

)
Show: Every ring with perfect duality, if perfect on one side, is a quasi-
Frobenius ring.

®)
Show: All reflexive modules over a quasi-Frobenius ring are finitely gen-
erated.
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